Sound Processor with Built-in 3-band Equalizer

BD37543FS

General Description

BD37543FS is a sound processor with built-in 3-band equalizer for car audio. The functions are stereo input selector (which can switch single and ground isolation input), input-gain control, main volume, loudness, 5ch fader volume, LPF and HPF for subwoofer and mixing input. Moreover, "Advanced switch circuit", which is an original ROHM technology, can reduce various switching noise (ex. No-signal, low frequency like 20 Hz \& large signal inputs). Also, "Advanced switch" makes control of microcomputer easier, and can construct a high quality car audio system.

Features

- Reduced switching noise of input gain control, mute, main volume, fader volume, bass, middle, treble, loudness, mixing by using advanced switch circuit.
- Built-in differential input selector that can make various combination of single-ended / differential input.
- Built-in ground isolation amplifier inputs, which is ideal for external stereo input.
- Built-in input gain controller reduces switching noise for volume of a portable audio input.
- Decreased number of external components due to built-in 3-band equalizer filter, LPF for subwoofer, and HPF. It is possible to control Q, Gv, fo of 3-band equalizer, and fc of LPF/HPF through the $1^{2} \mathrm{C}$ BUS control.
- It is possible to adjust the gain of the bass, middle, treble up to $\pm 20 \mathrm{~dB}$ with 1 dB step gain adjustment.
- It is equipped with output terminals for Subwoofer. Moreover, the stereo signal output of the front and rear can also be chosen by the $I^{2} \mathrm{C}$ BUS control.
- Built-in mixing input and mixing attenuator.
- Energy-saving design resulting in low-current consumption is achieved by utilizing the Bi-CMOS process. It has the advantage in quality over scaling down the power heat control of the internal regulators.
- Input terminals and output terminals are organized and separately laid out to keep the signal flow in one direction which results in simpler and smaller PCB layout.
■ It is possible to control the $\mathrm{I}^{2} \mathrm{C}$ BUS by $3.3 \mathrm{~V} / 5 \mathrm{~V}$.

Applications

It is optimal for car audio systems. It can also be used for audio equipment of mini Compo, micro Compo, TV, etc.

Key Specifications

- Power Supply Voltage Range:
- Circuit Current (No Signal):
- Total Harmonic Distortion 1: (FRONT,REAR)
7.0V to 9.5 V 38mA (Typ)
- Total Harmonic Distortion 2 . (SUBWOOFER)
- Maximum Input Voltage:
- Cross-talk Between Selectors:
- Volume Control Range:
0.001\%(Typ)
- Output Noise Voltage 1: (FRONT,REAR)
- Output noise voltage 2:
(SUBWOOFER)
- Residual Output Noise Voltage:
0.002\%(Typ)
2.3 Vrms (Typ)
-100dB (Typ)
+15 dB to -79 dB
$3.8 \mu \mathrm{Vrms}(\mathrm{Typ})$
$4.8 \mu \mathrm{Vrms}(\mathrm{Typ})$
$1.8 \mu \mathrm{Vrms}(\mathrm{Typ})$
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Package
W(Typ) x D(Typ) x H(Max)

Typical Application Circuit

Pin Configuration

※About single input 1 to 3 , it is possible to change from single input to GND Isolation input 2,3 .
※About GND Isolation1 and Full Differential it is possible to change from differential input to single input 4 to 6 .

TOP VIEW

Pin Descriptions

Pin No.	Pin Name	Description	Pin No.	Pin Name	Description
1	A1	A input terminal of 1ch	17	LDB2	Loudness setting terminal of 2ch
2	A2	A input terminal of 2ch	18	LDA2	Loudness setting terminal of 2ch
3	B1	B input terminal of 1ch	19	MUTE	External compulsory mute terminal
4	B2	B input terminal of 2ch	20	N.C.	No Connection
5	C1	C input terminal of 1ch	21	LOUT	Output terminal for Level meter
6	C2	C input terminal of 2ch	22	OUTS2	Subwoofer output terminal of 2ch
7	DP1	D positive input terminal of 1ch	23	OUTS1	Subwoofer output terminal of 1ch
8	DN	D negative input terminal	24	OUTR2	Rear output terminal of 2ch
9	DP2	D positive input terminal of 2ch	25	OUTR1	Rear output terminal of 1ch
10	EP1	E positive input terminal of 1ch	26	OUTF2	Front output terminal of 2ch
11	EN1	E negative input terminal of 1ch	27	OUTF1	Front output terminal of 1ch
12	EN2	E negative input terminal of 2ch	28	VCC	Power supply terminal
13	EP2	E positive input terminal of 2ch	29	SCL	I 2 C Communication clock terminal
14	MIN	Mixing input terminal	30	SDA	I 2 Communication data terminal
15	LDA1	Loudness setting terminal of 1ch	31	GND	GND terminal
16	LDB1	Loudness setting terminal of 1ch	32	FIL	VCC/2 terminal

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Rating	Unit
Power Supply Voltage	Vcc	10.0	V
Input Voltage	VIN	Vcc+0.3 to GND-0.3	V
Power Dissipation	Pd	0.95 (Note 1)	W
Storage Temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$

(Note 1) When mounted on the standard board $\left(70 \times 70 \times 1.6 \mathrm{~mm}^{3}\right)$, derate by $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for Ta above $25^{\circ} \mathrm{C}$.
Thermal resistance $\theta \mathrm{ja}=131.6\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Material : A FR4 grass epoxy board(3\% or less of copper foil area
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Power Supply Voltage	V_{cc}	7.0	-	9.5	V
Temperature	Topr	-40	-	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

(Unless specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=8.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vrms}, \mathrm{Rg}=600 \Omega$, $\mathrm{RL}=10 \mathrm{k} \Omega$, A 1 input, Input gain 0 dB , Mute OFF, Volume 0dB, Tone control 0dB, Loudness 0dB, LPF OFF, HPF OFF, Mixing OFF, Fader 0dB)

$\begin{aligned} & \text { Y } \\ & \text { O} \\ & \text { ■ } \end{aligned}$	Parameter	Symbol	Limit			Unit	Conditions
			Min	Typ	Max		
$\begin{aligned} & \underset{\sim}{\underset{\sim}{\underset{~}{\sim}}} \\ & \underset{\sim}{\underset{\sim}{u}} \end{aligned}$	Circuit Current (No Signal)	1 Q	-	38	48	mA	No signal
	Voltage Gain	Gv	-1.5	0	+1.5	dB	$\mathrm{Gv}=20 \log \left(\mathrm{~V}_{\text {Out }} / \mathrm{V}_{\text {IN }}\right)$
	Channel Balance	CB	-1.5	0	+1.5	dB	$\mathrm{CB}=\mathrm{G}_{\mathrm{v} 1}-\mathrm{G}_{\mathrm{v} 2}$
	Total Harmonic Distortion 1 (FRONT,REAR)	THD+N1	-	0.001	0.05	\%	$\begin{aligned} & \text { Vout=1Vrms } \\ & \text { BW }=400 \mathrm{~Hz}-30 \mathrm{KHz} \end{aligned}$
	Total Harmonic Distortion 2 (SUBWOOFER)	THD+N2	-	0.002	0.05	\%	$\begin{aligned} & \text { Vout }=1 \mathrm{Vrms} \\ & \mathrm{BW}=400 \mathrm{~Hz}-30 \mathrm{KHz} \end{aligned}$
	Output Noise Voltage 1 (FRONT,REAR) *	$\mathrm{V}_{\mathrm{NO} 1}$	-	3.8	15	$\mu \mathrm{Vrms}$	$\begin{aligned} & \mathrm{Rg}=0 \Omega \\ & \mathrm{BW}=I \mathrm{HF}-\mathrm{A} \end{aligned}$
	Output Noise Voltage 2 (SUBWOOFER) *	$\mathrm{V}_{\mathrm{NO} 2}$	-	4.8	15	$\mu \mathrm{Vrms}$	$\begin{aligned} & \mathrm{Rg}=0 \Omega \\ & \mathrm{BW}=I \mathrm{HF}-\mathrm{A} \end{aligned}$
	Residual Output Noise Voltage *	$V_{\text {NOR }}$	-	1.8	10	$\mu \mathrm{V}$ rms	$\begin{aligned} & \text { Fader }=-\infty \mathrm{dB} \\ & \mathrm{Rg}=0 \Omega \\ & \mathrm{BW}=1 \mathrm{HF}-\mathrm{A} \end{aligned}$
	Cross-talk Between Channels *	CTC	-	-100	-90	dB	$\begin{aligned} & \mathrm{Rg}=0 \Omega \\ & \mathrm{CTC}=20 \log (\mathrm{Vout} / \mathrm{VIN}) \\ & \mathrm{BW}=1 \mathrm{HF}-\mathrm{A} \end{aligned}$
	Ripple Rejection	RR	-	-70	-40	dB	$\begin{aligned} & \hline \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{RR}}=100 \mathrm{mV} \mathrm{rms} \\ & \mathrm{RR}=20 \log \left(\mathrm{~V}_{\mathrm{cc}} \mathrm{IN} / \mathrm{V}_{\text {OUT }}\right) \end{aligned}$
	Input Impedance(A, B, C)	Rin_s	70	100	130	$\mathrm{k} \Omega$	
	Input Impedance(D, E)	Rin_D	175	250	325	$\mathrm{k} \Omega$	
	Maximum Input Voltage	Vıм	2.1	2.3	-	Vrms	$\begin{aligned} & \text { VIм at } \mathrm{THD}+\mathrm{N}\left(\mathrm{~V}_{\text {OUT }}\right)=1 \% \\ & \mathrm{BW}=400 \mathrm{~Hz}-30 \mathrm{KHz} \end{aligned}$
	Cross-talk Between Selectors *	CTS	-	-100	-90	dB	$\begin{aligned} & \mathrm{Rg}=0 \Omega \\ & \mathrm{CTS}=20 \log \left(\mathrm{~V} \text { out } / \mathrm{VIN}_{\mathrm{IN}}\right) \\ & \mathrm{BW}=\mathrm{IHF}-\mathrm{A} \end{aligned}$
	Common Mode Rejection Ratio*	CMRR	50	65	-	dB	XP1 and XN input XP2 and XN input CMRR=20log(VIN/VOUT) BW = IHF-A,[*X...D,E]

Electrical Characteristics - continued

| Parameter | Limit | Unit | Conditions |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :--- |

Electrical Characteristics - continued

$\begin{aligned} & \hline \text { ত } \\ & \text { O} \\ & \text { ㄹ } \end{aligned}$	Parameter	Symbol	Limit			Unit	Conditions
			Min	Typ	Max		
	Maximum Boost Gain	$\mathrm{GF}_{\text {_bst }}$	13	15	17	dB	$\begin{aligned} & \text { Fader }=15 \mathrm{~dB} \\ & V_{\text {IN }}=100 \mathrm{~m} \mathrm{Vrms}^{2} \\ & \mathrm{G}_{\mathrm{F}=20 \log \left(\mathrm{~V}_{\text {out }} / \mathrm{V}_{\text {IN }}\right)} \end{aligned}$
	Maximum Attenuation *	$\mathrm{GF}_{\text {_min }}$	-	-100	-90	dB	$\begin{aligned} & \text { Fader }=-\infty \mathrm{dB} \\ & \mathrm{G}_{\mathrm{F}}=20 \log \left(\mathrm{~V}_{\text {out }} / \mathrm{V} \text { IN }\right) \\ & \mathrm{BW}=\mathrm{IHF}-\mathrm{A} \end{aligned}$
	Gain Set Error	$\mathrm{GF}_{\text {_ERR }}$	-2	0	+2	dB	GAIN $=+1 \mathrm{~dB}$ to +15 dB
	Attenuation Set Error 1	GF_ERR1	-2	0	+2	dB	$A T T=-1 \mathrm{~dB}$ to -15 dB
	Attenuation Set Error 2	GF_ERR2	-3	0	+3	dB	ATT $=-16 \mathrm{~dB}$ to -47 dB
	Attenuation Set Error 3	GF_ERR3	-4	0	+4	dB	ATT $=-48 \mathrm{~dB}$ to -79 dB
	Output Impedance	Rout	-	-	50	Ω	$\mathrm{V}_{\text {IN }}=100 \mathrm{mVms}$
	Maximum Output Voltage	Vом	2	2.2	-	Vrms	$\begin{aligned} & \text { THD+N=1\% } \\ & \text { BW=400Hz-30KHz } \end{aligned}$
	Maximum Gain	GL_max	17	20	23	dB	$\begin{aligned} & \hline \text { Gain 20dB } \\ & V_{\text {IN }}=100 \mathrm{mV} \mathrm{Vrms}^{\prime} \\ & \mathrm{GL}_{\mathrm{L}}=20 \log \left(\mathrm{~V}_{\text {out }} / \mathrm{V}_{\text {IN }}\right) \end{aligned}$
	Gain Set Error	GL_ERR	-2	0	+2	dB	Gain $=+1 \mathrm{~dB}$ to +20 dB
	Maximum Output Voltage	VL_MAX	2.8	3.1	3.5	V	
	Output Offset Voltage	VL_OFF	-	0	100	mV	

VP-9690A(Average value detection, effective value display) filter by Matsushita Communication is used for * measurement.
Phase between input / output is same.

Typical Performance Curves

Figure 1. Circuit Current (No Signal) vs Power Supply Voltage

Figure 3. Gain vs Frequency

Figure 2. Total Harmonic Distortion vs Output Voltage

Figure 4. Bass Gain vs Frequency

Typical Performance Curves - continued

Figure 5. Bass fo vs Frequency

Figure 7. Middle Gain vs Frequency

Figure 6. Bass Q vs Frequency

Figure 8. Middle fo vs Frequency

Typical Performance Curves - continued

Figure 9. Middle Q vs Frequency

Figure 11. Treble fo vs Frequency

Figure 10. Treble Gain vs Frequency

Figure 12. Treble Q vs Frequency

Typical Performance Curves - continued

Figure 13. Output Noise vs Volume Gain

Figure 14. Output Noise vs Bass Gain

Figure 16. Output Noise vs Treble Gain

Typical Performance Curves - continued

Figure 17. CMRR vs Frequency

Figure 19. Advanced Switch 1

Figure 18. Output Voltage vs RLOAD

Figure 20. Advanced Switch 2

Typical Performance Curves - continued

Figure 21. Output Voltage vs Input Voltage
(Level Meter Vin)

Timing Chart

CONTROL SIGNAL SPECIFICATION
(1) Electrical Specifications and Timing for Bus Lines and I/O Stages

Figure 22. $1^{2} \mathrm{C}$-bus Signal Timing Diagram
Table 1 Characteristics of the SDA and SCL bus lines for $\mathrm{I}^{2} \mathrm{C}$-bus devices ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=8.5 \mathrm{~V}$)

Parameter		Symbol	Fast-mode ${ }^{2} \mathrm{C}$-bus		Unit	
		Min	Max			
1	SCL clock frequency		fscl	0	400	kHz
2	Bus free time between a STOP and START condition	tbuf	1.3	-	$\mu \mathrm{S}$	
3	Hold time (repeated) START condition. After this period, the first clock pulse is generated	thd;sta	0.6	-	$\mu \mathrm{S}$	
4	LOW period of the SCL clock	tLow	1.3	-	$\mu \mathrm{S}$	
5	HIGH period of the SCL clock	thigh	0.6	-	$\mu \mathrm{S}$	
6	Set-up time for a repeated START condition	tsu;sTA	0.6	-	$\mu \mathrm{S}$	
7	Data hold time:	thd;DAT	$0.066^{\text {(Note) }}$	-	$\mu \mathrm{S}$	
8	Data set-up time	tsu;DAT	120	-	ns	
9	Set-up time for STOP condition	tsu;sto	0.6	-	$\mu \mathrm{S}$	

All values refer to VIH Min and VIL Max Levels (see Table 2).
(Note) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH Min of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.
For 7 (thD;DAT) $) 8($ tsuj;DAT), make the setup in which the margin is full.
Table 2 Characteristics of the SDA and SCL I/O stages for $\mathrm{I}^{2} \mathrm{C}$-bus devices

Parameter		Symbol	Fast-mode devices		Unit
			Max		
10	LOW level input voltage:	V_{IL}	-0.3	+1	V
11	HIGH level input voltage:	V_{IH}	2.3	5	V
12	Pulse width of spikes which must be suppressed by the input filter.	tsp	0	50	ns
13	LOW level output voltage: at 3mA sink current	$\mathrm{V}_{\mathrm{oL} 1}$	0	0.4	V
14	Input current each I/O pin with an input voltage between 0.4 V and 4.5V.	I_{I}	-10	+10	$\mu \mathrm{~A}$

SCL clock frequency : 250 kHz
Figure 23. A Command Timing Example in the $\mathrm{I}^{2} \mathrm{C}$ Data Transmission
(2) $\underline{\underline{I^{2} \mathrm{C}} \text { BUS FORMAT }}$

MSB LSB		MSB		MSB		LSB	
S	Slave Address	A	Select Address	- A	Data	A	P
1bit	8bit	1 bit$=$	8bit	1bit	start bit) 8bit	1bit 1bit	
	S		condition (Recog	gnition of			
	Slave Address		gnition of slave a east significant b	address. bit is "L"	The first 7 bits cor hich correspond	to to	
	A		NOWLEDGE bit ((Recogn	on of acknowled		
	Select Address		ct address corresp	sponding	volume, bass		
	Data		on every volume	and ton			
	P		condition (Recog	gnition of	top bit)		

(3) $\underline{\underline{12} \mathrm{C} \text { BUS Interface Protocol }}$
(a) Basic Format

(b) Automatic Increment (Select Address increases (+1) according to the number of data.)

S	Slave Address	A	Select Address	A	Data1	A	Data2	A		DataN	A	P
	MSB LSB		L LSB		SB		MSB	LS		MSB		B

(Example) (1)Data1 shall be set as data of address specified by Select Address.
(2)Data2 shall be set as data of address specified by Select Address +1 .
(3)DataN shall be set as data of address specified by Select Address $+\mathrm{N}-1$.
(c) Configuration Unavailable for Transmission (In this case, only Select Address1 is set.)

> (Note) If any data is transmitted as Select Address 2 next to data, it is recognized as data, not as Select Address 2.
(4) Slave Address
MSB

A6	A5	A4	A3	A2	A1	A 0	R $/ W$
1	0	0	0	0	0	0	0

(5) Select Address \& Data

1. The Advance Switch works in the latch part while changing from one function to another.
2. Upon continuous data transfer, the Select Address rolls over because of the automatic increment function, as shown below.

3. Advanced switch is not used for the function of input selector and subwoofer output select, etc. Therefore, please apply mute on the side when changing these settings.
4. When using mute function of this IC at the time of changing input selector, please switch mute ON/OFF for waiting advanced-mute time.

Select address 01 (hex)

Time	MSB		Advanced	switch time		of Mute		LSB
	D7	D6	D5	D4	D3	D2	D1	D0
0.6 msec	Advanced Switch ON/OFF	0	Advanced switch time of Input gain/Volume Tone/Fader/Loudness Mixing		0	1	0	0
1.0 msec					0		1	
1.4 msec					1		0	
3.2 msec					1		1	

Time	MSB	Advanced switch time of Input gain/Volume/Tone/Fader/ Loudness/Mixing						SB
	D7	D6	D5	D4	D3	D2	D1	D0
4.7 msec	Advanced Switch ON/OFF	0	0	0	0	1	Advanced switch Time of Mute	
7.1 msec			0	1				
11.2 msec			1	0				
14.4 msec			1	1				

Mode	MSB							Ddvanced switch ON/OFF
	D7	D6	D5	D4	D3	D2	D1	D0
OFF	0	0	Advanced switch time of Input gain/Volume Tone/Fader/Loudness Mixing	0	1	Advanced switch Time of Mute		
ON	1		MS					

Select address 02(hex)

f_{C}	MSB	Subwoofer LPF fc					LSB	
	D7	D6	D5	D4	D3	D2	D1	D0
OFF	LPF Phase	Level Meter RESET	Subwoofer Output Select		0	0	0	0
55 Hz					0	0	1	
85 Hz					0	1	0	
120 Hz					0	1	1	
160 Hz						0	0	
Prohibition						s		

Mode	MSB	Subwoofer Output Select						LSB
	D7	D6	D5	D4	D3	D2	D1	D0
LPF	LPF Phase	Level Meter RESET	0	0	0	Subwoofer LPF fc		
Front			0	1				
Rear			1	0				
Prohibition			1	1				

Mode	MSB		Level Meter RESET					LSB	
	D7	D6	D5	D4	D3	D2	D1		
HOLD	LPF Phase	0	Subwoofer output select		0	Subwoofer LPF fc			
RESET		1							

Phase	MS	LPF Phase						LSB
Phase	D7	D6	D5	D4	D3	D2	D1	D0
0°	0	Level Meter RESET	Subwoofer output select		0	Subwoofer LPF fc		
180°	1							

Select address 03(hex)

Mode	MSB		Front/Rear HPF fc					LSB
	D7	D6	D5	D4	D3	D2	D1	D0
55 Hz	Front HPF Pass	Rear HPF Pass	0	0	0	0	1	0
85 Hz			0	0	1			
120 Hz			1	1	0			
160 Hz			0	1	0			
Prohibition			Other setting					

Mode	MSB	Rear HPF					LSB	
	D7	D6	D5	D4	D3	D2	D1	D0
pass	Front HPF Pass	0	Front/Rear HPF fc			0	1	0
NOT pass		1						

Mode	MSB			Front HPF				LSB
	D7	D6	D5	D4	D3	D2	D1	D0
pass	0	Rear	Front/Rear HPF fc			0	1	0
NOT pass	1	$\begin{aligned} & \text { HPF } \\ & \text { Pass } \end{aligned}$						

Select address 05(hex)

Mode			MSB	Input Selector						LSB
	OUTF1	OUTF2	D7	D6	D5	D4	D3	D2	D1	D0
A	A1	A2	Fulldiff bias type select	0	0	0	0	0	0	0
B	B1	B2				0	0	0	0	1
C	C1	C2				0	0	0	1	0
D single	DP1	DP2				0	0	0	1	1
E1 single	EP1	EN1				0	1	0	1	0
E2 single	EN2	EP2				0	1	0	1	1
A diff	A1	B1				0	1	1	1	1
C diff	B2	C2				1	0	0	0	0
D diff	DP1	DP2				0	0	1	1	0
E full diff	EP1	EP2				0	1	0	0	0
Input SHORT						0	1	0	0	1
Prohibition						Other setting				

Input SHORT : The input impedance of each input terminal is lowered from 100k Ω (Typ) to $6 \mathrm{k} \Omega(\mathrm{Typ})$. (For quick charge of coupling capacitor)

Select address 05(hex)

Mode	MSB							
	D7	D6	D5	D4	D3	D2	D1	D0
Negative Input	0	0	0	Input Selector				
Bias	1	0						

Negative input type
For Ground -isolation type.
Fias type

Select address 06 (hex)

Mode	MSB		Input Gain					LSB
	D7	D6	D5	D4	D3	D2	D1	D0
OdB	Mute ON/OFF	0	0	0	0	0	0	0
1 dB				0	0	0	0	1
2 dB				0	0	0	1	0
3 dB				0	0	0	1	1
4 dB				0	0	1	0	0
5 dB				0	0	1	0	1
6 dB				0	0	1	1	0
7 dB				0	0	1	1	1
8 dB				0	1	0	0	0
9 dB				0	1	0	0	1
10 dB				0	1	0	1	0
11 dB				0	1	0	1	1
12 dB				0	1	1	0	0
13dB				0	1	1	0	1
14 dB				0	1	1	1	0
15dB				0	1	1	1	1
16dB				1	0	0	0	0
17 dB				1	0	0	0	1
18 dB				1	0	0	1	0
19dB				1	0	0	1	1
20dB				1	0	1	0	0
Prohibition				1	1	0	1	1
				:	:	:	:	:
				1	1	1	1	1

Select address 06 (hex)

Mode	MSB			Mute ON/OFF				LSB
	D7	D6	D5	D4	D3	D2	D1	D0
OFF	0	0	0	Input Gain				
ON	1							

Select address 20, 28, 29, 2A, 2B, 2C (hex)

Gain \& ATT	MSB	Vol, Fader Gain / Attenuation						LSB
	D7	D6	D5	D4	D3	D2	D1	D0
Prohibition	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	1
	:	:	:	:	:	:	:	:
	0	1	1	1	0	0	0	0
15dB	0	1	1	1	0	0	0	1
14dB	0	1	1	1	0	0	1	0
13dB	0	1	1	1	0	0	1	1
:	:	:	:	:	:	:	:	:
-77dB	1	1	0	0	1	1	0	1
-78dB	1	1	0	0	1	1	1	0
-79dB	1	1	0	0	1	1	1	1
Prohibition	1	1	0	1	0	0	0	0
	:	:	:	:	:	:	:	:
	1	1	1	1	1	1	1	0
$-\infty \mathrm{dB}$	1	1	1	1	1	1	1	1

Select address 30(hex)

Gain \& ATT	MSB		Mixing	Gain / Attenuation				LSB
	D7	D6	D5	D4	D3	D2	D1	D0
Prohibition	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	1
	:	:	:	:	:	:	:	:
	0	1	1	1		0	0	0
7dB	0	1	1	1	1	0	0	1
6 dB	0	1	1	1	1	0	1	0
5 dB	0	1	1	1	1	0	1	1
:	:	:	:	:	:	:	:	:
-77dB	1	1	0	0	1	1	0	1
-78dB	1	1	0	0	1	1	1	0
-79dB	1	1	0	0	1	1	1	1
Prohibition	1	1	0	1	0	0	0	0
	:	:	:	:	:	:	:	:
	1	1	1	1	1	1	1	0
MIX OFF	1	1	1	1	1	1	1	1

Select address 41(hex)

Q factor	MSB		Bass		Q factor			LSB
	D7	D6	D5	D4	D3	D2	D1	
0.5	0	0	Bass fo		0	0	0	0
1.0					0		1	
1.5					1		0	
2.0					1		1	

fo	MSB			Bass f		fo	LSB	
	D7	D6	D5	D4	D3	D2	D1	D0
60 Hz	0	0	0	0	0	0	BassQ factor	
80 Hz			0	1				
100 Hz			1	0				
120 Hz			1	1				

Select address 44(hex)

Q factor	MSB		Middle		f			LSB
	D7	D6	D5	D4	D3	D2	D1	
0.75	0	0	Middle fo		0	0	0	0
1.0					0		1	
1.25					1		0	
1.5					1		1	

Select address 47 (hex)

Q factor	MSB	Treble			Q factor		LSB	
	D7	D6	D5	D4	D3	D2	D1	D0
0.75	0	0	Treble fo		0	0	0	0
1.25					1			

fo	MSB			Treble		fo	LSB	
	D7	D6	D5	D4	D3	D2	D1	D0
7.5 kHz	0	0	0	0	0	0	0	Treble Q factor
10 kHz			0	1				
12.5 kHz			1	0				
15 kHz			1	1				

Select address 51, 54, 57 (hex)

Gain	MSB		Bass/Middle/Treble Gain					$\begin{gathered} \text { LSB } \\ \text { D0 } \end{gathered}$
	D7	D6	D5	D4	D3	D2	D1	
OdB	Bass/ Middle/ Treble Boost /cut	0	0	0	0	0	0	0
1 dB				0	0	0	0	1
2 dB				0	0	0	1	0
3dB				0	0	0	1	1
4 dB				0	0	1	0	0
5 dB				0	0	1	0	1
6 dB				0	0	1	1	0
7 dB				0	0	1	1	1
8 dB				0	1	0	0	0
9dB				0	1	0	0	1
10dB				0	1	0	1	0
11 dB				0	1	0	1	1
12 dB				0	1	1	0	0
13dB				0	1	1	0	1
14 dB				0	1	1	1	0
15 dB				0	1	1	1	1
16dB				1	0	0	0	0
17 dB				1	0	0	0	1
18 dB				1	0	0	1	0
19dB					0	0	1	1
20dB				1	0	1	0	0
Prohibition				1	0	1	0	1
				:	:	.	:	:
				1	1	1	1	0
				1	1	1	1	1

Mode	MSB							Bass/Midale/Treble Boost/Cut
	D7	D6	D5	D4	D3	D2	D1	D0
Boost	0	0	0	Bass/Middle/Treble Gain				
Cut	1	0						

Select address 75 (hex)

Mode	MSB	Loudness Hicut						LSB
	D7	D6	D5	D4	D3	D2	D1	D0
Hicut1	0	0	0	Loudness Gain				
Hicut2		0	1					
Hicut3		1	0					
Hicut4		1	1					

Gain	MSB		Loudness Gain				LSB
	D7	D6 ${ }^{\text {D }}$ (5	D4	D3	D2	D1	D0
OdB	0	Loudness Hicut	0	0	0	0	0
1 dB			0	0	0	0	1
2dB			0	0	0	1	0
3dB			0	0	0	1	1
4dB			0	0	1	0	0
5 dB			0	0	1	0	1
6 dB			0	0	1	1	0
7dB			0	0	1	1	1
8 dB			0	1	0	0	0
9 dB			0	1	0	0	1
10 dB			0	1	0	1	0
11 dB			0	1	0	1	1
12 dB			0	1	1	0	0
13 dB			0	1	1	0	1
14dB			0	1	1	1	0
15 dB			0	1	1	1	1
16 dB			1	0	0	0	0
17 dB			1	0	0	0	1
18 dB			1	0	0	1	0
19dB			1	0	0	1	1
20 dB			1	0	1	0	0
Prohibition			1	0	1	0	1
			:	:	:	:	:
			1	1	1	1	1

(6) About Power ON Reset

Built-in IC initialization is made during power ON of the supply voltage. Please send initial data to all addresses at supply voltage on. And please turn ON mute until this initial data is sent.

Parameter	Symbol	Limit			Unit	Conditions
		Min	Typ	Max		
Rise Time of VCC	trise	33	-	-	$\mu s e c$	VCc rise time from 0V to 5V
VCC Voltage of Release Power ON Reset	VPOR	-	4.1	-	V	

(7) About External Compulsory Mute Terminal

It is possible to force mute externally by setting an input voltage to the MUTE terminal.

Mute Voltage Condition	Mode
GND to 1.0 V	MUTE ON
2.3 V to Vcc	MUTE OFF

Establish the voltage of MUTE in the condition you want to set.

Application Information

1. Function and Specifications

2. Volume / Fader Volume / Mixing Attenuation Data

(dB)	D7	D6	D5	D4	D3	D2	D1	D0	(dB)	D7	D6	D5	D4	D3	D2	D1	D0
+15	0	1	1	1	0	0	0	1	-33	1	0	1	0	0	0	0	1
+14	0	1	1	1	0	0	1	0	-34	1	0	1	0	0	0	1	0
+13	0	1	1	1	0	0	1	1	-35	1	0	1	0	0	0	1	1
+12	0	1	1	1	0	1	0	0	-36	1	0	1	0	0	1	0	0
+11	0	1	1	1	0	1	0	1	-37	1	0	1	0	0	1	0	1
+10	0	1	1	1	0	1	1	0	-38	1	0	1	0	0	1	1	0
+9	0	1	1		0	1	1	1	-39	1	0	1	0	0	1	1	1
+8	0	1	1	1	1	0	0	0	-40	1	0	1	0	1	0	0	0
+7	0	1	1	1		0	0	1	-41	1	0	1	0	1	0	0	1
+6	0	1	1	1	1	0	1	0	-42	1	0	1	0	1	0	1	0
+5	0	1	1	,		0	1	1	-43	1	0	1	0	1	0	1	1
+4	0	1	1	1	1	1	0	0	-44	1	0	1	0	1	1	0	0
+3	0	1	1	1	1	1	0	1	-45	1	0	1	0	1	1	0	1
+2	0	1	1	1	1	1	1	0	-46	1	0	1	0	1	1	1	0
+1	0	1	1	1	1	1	1	1	-47	1	0	1	0	1	1	1	1
0	1	0	0	0	0	0	0	0	-48	1	0	1	1	0	0	0	0
-1	1	0	0	0	0	0	0	1	-49	1	0	1	1	0	0	0	1
-2	1	0	0	0	0	0	1	0	-50	1	0	1	1	0	0	1	0
-3	1	0	0	0	0	0	1	1	-51	1	0	1	1	0	0	1	1
-4	1	0	0	0	0	1	0	0	-52	1	0	1		0	1	0	0
-5	1	0	0	0	0	1	0	1	-53	1	0	1	1	0	1	0	1
-6	1	0	0	0	0	1	1	0	-54	1	0	1	1	0	1	1	0
-7	1	0	0	0	0	1	1	1	-55	1	0	1	1	0	1	1	1
-8	1	0	0	0	1	0	0	0	-56	1	0	1	1	1	0	0	0
-9	1	0	0	0	1	0	0	1	-57	1	0	1	1	1	0	0	1
-10	1	0	0	0	1	0	1	0	-58	1	0	1	1	1	0	1	0
-11	1	0	0	0	1	0	1	1	-59	1	0	1	1	1	0	1	1
-12	1	0	0	0	1	1	0	0	-60	1	0	1	1	1	1	0	0
-13	1	0	0	0	1	1	0	1	-61	1	0	1	1	1	1	0	1
-14	1	0	0	0	1	1	1	0	-62	1	0	1	1	1	1	1	0
-15	1	0	0	0	1	1	1	1	-63	1	0	1	1	1	1	1	1
-16	1	0	0	1	0	0	0	0	-64	1	1	0	0	0	0	0	0
-17	1	0	0	1	0	0	0	1	-65	1	1	0	0	0	0	0	1
-18	1	0	0	1	0	0	1	0	-66	1	1	0	0	0	0	1	0
-19	1	0	0	1	0	0	1	1	-67	1	1	0	0	0	0	1	1
-20	1	0	0	1	0	1	0	0	-68	1	1	0	0	0	1	0	0
-21	1	0	0	1	0	1	0	1	-69	1	1	0	0	0	1	0	1
-22	1	0	0	-	0	1	1	0	-70	1	1	0	0	0	1	1	0
-23	1	0	0	1	0	1	1	1	-71	1	1	0	0	0	1	1	1
-24	1	0	0	1	1	0	0	0	-72	1	1	0	0	1	0	0	0
-25	1	0	0	1	1	0	0	1	-73	1	1	0	0	1	0	0	1
-26	1	0	0	1	1	0	1	0	-74	1	1	0	0	1	0	1	0
-27	1	0	0	1	1	0	1	1	-75	1	1	0	0	1	0	1	1
-28	1	0	0	1	1	1	0	0	-76	1	1	0	0	1	1	0	0
-29	1	0	0	1		1	0	1	-77	1	1	0	0	1	1	0	1
-30	1	0	0	1	1	1	1	0	-78	1	1	0	0	1	1	1	0
-31	1	0	0	1	1	1	1	1	-79	1	1	0	0	1	1	1	1
-32	1	0	1	0	0	0	0	0	-	1	1	1	1	1	1	1	1

Mixing Adjustable range is +7 dB to $-\infty \mathrm{dB}$.
(1) About Level Meter
(a) The Operation of Circuit

The level meter is a function which gives a DC voltage proportional to the size of the sound signal. It detects the peak level of the signal and keeps that peak level, so that it is possible to monitor the size of the signal by resetting the DC voltage kept with suitable interval.
(b) The Way to Reset Level Meter Output

Please send reset data through $I^{2} \mathrm{C}$ BUS
How to reset output of level meter : Send D6 = " 1 " to select address 02(hex).
How to cancel output reset of level meter (HOLD) : Send D6 = " 0 " to select address 02(hex).
(c) The Settings About Reset Period

Peak hold operation will start after HOLD data is transmitted. Set the WAIT time after HOLD data transmission according to the frequency bandwidth detected.
WAIT time must be set to a minimum of one cycle over the detected frequency bandwidth.
Ex) Detected frequency bandwidth is above $40 \mathrm{~Hz}, 『 40 \mathrm{~Hz}=25 \mathrm{~ms}=$ WAIT time』

Transmission Diagram Example by $\mathrm{I}^{2} \mathrm{C}$ BUS

3. Application Circuit

※About single input $1 \sim 3$, it is possible to change from single input to GND Isolation input 2,3
※About GND Isolation1 and Full Differential, it is possible to change from differential input to single input $4 \sim 6$.

Notes on wiring
(1)Please connect the decoupling capacitor of the power supply in the shortest possible distance to GND.
(2)GND lines should be one-point connected.
(3)Wiring pattern of Digital should be away from that of Analog unit and cross-talk should not be acceptable.
(4)SCL and SDA lines of $I^{2} \mathrm{C}$ BUS should not be parallel if possible.

The lines should be shielded, if they are adjacent to each other.
(5)Analog input lines should not be parallel if possible. The lines should be shielded, if they are adjacent to each other.

Power Dissipation

About the thermal design of the IC
Characteristics of an IC have a great deal to do with the temperature at which it is used, and exceeding absolute maximum ratings may degrade and destroy elements. Careful consideration must be given to the heat of the IC from the two standpoints of immediate damage and long-term reliability of operation.

Figure 24. Temperature Derating Curve
(Note) Values are actual measurements and are not guaranteed.
Power dissipation values vary according to the board on which the IC is mounted.

I/O Equivalent Circuits

Terminal No.	Terminal Name	Terminal Voltage	Equivalent Circuit	Terminal Description
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	A1 A2 B1 B2 C1 C2	4.25		A terminal for signal input. The input impedance is $100 \mathrm{k} \Omega$ (Typ).
$\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \end{gathered}$	DP1 DN DP2 EP1 EN1 EN2 EP2	4.25		Input terminal available to Single/Differential mode. The input impedance is $250 \mathrm{k} \Omega$ (Typ).
$\begin{aligned} & 15 \\ & 18 \end{aligned}$	$\begin{aligned} & \text { LDA1 } \\ & \text { LDA2 } \end{aligned}$	4.25		The loudness characteristic setting terminal.
$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & \text { LDB1 } \\ & \text { LDB2 } \end{aligned}$	4.25		The loudness characteristic setting terminal.
19	MUTE	-		A terminal for external compulsory mute. If terminal voltage is High level, the mute is off. And if the terminal voltage is Low level, the mute is on.

[^0]
I/O Equivalent Circuits -continued

Terminal No.	Terminal Name	Terminal Voltage	Equivalent Circuit	Terminal Description
$\begin{aligned} & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \\ & 27 \end{aligned}$	OUTS2 OUTS1 OUTR2 OUTR1 OUTF2 OUTF1	4.25		A terminal for fader and Subwoofer output.
28	VCC	8.5		Power supply terminal.
21	LOUT	0 to 3.3		A terminal for level meter output. Output impedance is $10 \mathrm{k} \Omega(\mathrm{typ})$.
29	SCL	-		A terminal for clock input of $\mathrm{I}^{2} \mathrm{C}$ BUS communication.
30	SDA	-		A terminal for data input of $I^{2} \mathrm{C}$ BUS communication.
31	GND	0		Ground terminal.
32	FIL	4.25		1/2 VCC terminal. Voltage for reference bias of analog signal system. The simple precharge circuit and simple discharge circuit for an external capacitor are built in.

[^1]I/O Equivalent Circuits - continued

Terminal No.	Terminal Name	Terminal Voltage		Terminal Description
14	MIN	4.25		A terminal for signal input.
The input impedance is $27 \mathrm{k} \Omega$ (Typ).				

Values in the pin explanation and input/output equivalent circuit are reference values only and are not guaranteed.

Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins.
2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.
3. Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.
4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Thermal Consideration

Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating.

6. Recommended Operating Conditions

These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.
7. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.
8. Operation Under Strong Electromagnetic Field

Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.
9. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.
10. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

11. Unused Input Pins

Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.

Operational Notes - continued

12. Regarding the Input Pin of the IC

This monolithic IC contains $\mathrm{P}+$ isolation and P substrate layers between adjacent elements in order to keep them isolated. $\mathrm{P}-\mathrm{N}$ junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below):

When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.
When GND > Pin B, the P-N junction operates as a parasitic transistor.
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.

Figure 25. Example of monolithic IC structure
13. About Signal Input
(a) About Input Coupling Capacitor Constant Value

The constant value of input coupling capacitor $\mathrm{C}(\mathrm{F})$ is decided with respect to the input impedance Rin (Ω) at the input signal terminal of the IC. The first HPF characteristic of RC is composed.

$$
\mathrm{A}(\mathrm{f})=\sqrt{\frac{\left(2 \pi \mathrm{fCR}_{\mathrm{IN}}\right)^{2}}{1+\left(2 \pi \mathrm{fCR}_{\mathrm{IN}}\right)^{2}}}
$$

(b) About the Input Selector SHORT

SHORT mode is the command which makes switch $\mathrm{S}_{\mathrm{sH}}=\mathrm{ON}$ of input selector part so that the input impedance Rin of all terminals becomes small. Switch Ssh is OFF when SHORT command is not selected.
The constant time brought about by the small resistance inside and the capacitor outside the LSI becomes small when this command is used. The charge time of the capacitor becomes short. Since SHORT mode turns ON the switch of S_{st} and makes it low impedance, please use it at no signal condition.

Operational Notes - continued

14. About Mute Terminal (Pin 19) when Power Supply is OFF

There should be no applied voltage across the Mute terminal (Pin 19) when power-supply is OFF.
If in case voltage is supplied to mute terminal, please insert a series resistor (about $2.2 \mathrm{k} \Omega$) to Mute terminal. (Please refer to Application Circuit Diagram.)
15. About MIX
(1) About Specification of Fader $-\infty$ at MIX ON.

Mix_signal is added to Main_signal after Fader_Gain(+15dB to -79dB) like the figure. When Fader is set at $-\infty$, the signal after a MIX signal is added is done with MUTE because the $-\infty$ circuit of Fader is in the step after the additinn circulit

Figure 26. About Front Fader and MIX
(2) About Advanced Switching of MIX Gain/ATT

When advanced switching of MIX_Gain/ATT works, MIX goes a switching movement that it passes through the state of MIX_OFF like in B figure below (from current settingof MIX_Gain/ATT to MIX_OFF to a target setting of MIX_Gain/ATTT).

Fader_Gain/ATT 0dB to -6 dB advanced switching

MIX_Gain/ATT 0dB to -6dB advanced switching

Figure 27. Advanced Switching Movement when MIX_Gain/ATT is Changed

Operational Notes - continued

16. About the External Parts Setting of Loudness Circuit

This IC is equipped with a Loudness circuit.
The Loudness gain is fixed inside the IC but its frequency characteristic can be changed freely by adjusting the external part filter. The circuit composition of the Loudness part is shown below. Incidentally, when not using the Loudness circuit, please short the pins between LDA1(Pin 15) and LDB1(Pin 16), and between LDA2(Pin 18) and LDB2(Pin 17), so as to avoid the inner amplifier inputs to become floating.

Figure 28. About the External Parts Setting of Loudness Circuit
The Loudness frequency characteristics are decided according to Figure 28. G_LOUD can be made 20dB when external parts used are the same with Figure 28 (the recommended value). G_LOUD is the amount of effect of Loudness when Loudness Gain is set at 20 dB (P.22).

When Loudness frequency characteristics are changed, each parameter (Gain, Frequency) shown in Figure 28 can be decided using the following approximate equation below.
(Note) Design fc2 value more than one digit bigger than fc1 to get effect on Loudness.
Loudness cut-off frequency

$$
\begin{aligned}
& \mathrm{fc} 1=\frac{1}{2 \pi \mathrm{C}_{2}\left(\mathrm{R}_{1}+\mathrm{R}_{3}\right)} \quad[\mathrm{Hz}] \\
& \mathrm{fc} 2=\frac{1}{2 \pi \mathrm{C}_{1}\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right)} \quad[\mathrm{Hz}]
\end{aligned}
$$

Loudness Gain (The amount of effect of Loudness)

$$
\begin{aligned}
& \mathrm{G}_{\text {_LOUD }}=20 \log \left(\frac{R_{3}}{R_{1}+R_{3}}\right) \quad[\mathrm{dB}] \\
& \mathrm{G}_{\text {-HICUT }}=20 \log \left(\frac{R_{3}}{R_{1} / / R_{2}+R_{3}}\right) \quad[\mathrm{dB}]
\end{aligned}
$$

Ordering Information

Marking Diagram

SSOP-A32(TOP VIEW)

Physical Dimension, Tape and Reel Information

Package Name	SSOP-A32

<Tape and Reel information>

Revision History

Date	Revision		Changes
16.Dec.2015	001	New Release	

Notice

Precaution on using ROHM Products

1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment ${ }^{(N o t e ~ 1)}$, transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.
(Note1) Medical Equipment Classification of the Specific Applications

JAPAN	USA	EU	CHINA
CLASSIII	CLASSIII	CLASS II b	CLASSIII
		CLASSIII	

2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl , $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{SO}$, and NO_{2}
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
[h] Use of the Products in places subject to dew condensation
4. The Products are not subject to radiation-proof design.
5. Please verify and confirm characteristics of the final or mounted products in using the Products.
6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
8. Confirm that operation temperature is within the specified range described in the product specification.
9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including $\mathrm{Cl} 2, \mathrm{H} 2 \mathrm{~S}, \mathrm{NH} 3, \mathrm{SO} 2$, and NO 2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the la test information with a ROHM sale s representative.
3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

LifeElectronics
Живое партнерство

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

> Тел: +7 (812) 3364304 (многоканальный)
> Email: org@lifeelectronics.ru

[^0]: Values in the pin explanation and input/output equivalent circuit are reference values only and are not guaranteed.

[^1]: Values in the pin explanation and input/output equivalent circuit are reference values only and are not guaranteed.

