General Description

The MAX1280 evaluation system (EV system) is a complete, 8-channel data-acquisition system consisting of a MAX1280 evaluation kit (EV kit), Maxim 68HC16MODULE-DIP microcontroller (μ C) module, and USBT0232. The MAX1280 is a high-speed, multichannel, 12-bit data-acquisition system. Windows[®] 98/2000/XP-compatible software provides a handy user interface to exercise the MAX1280's features.

Order the complete EV system (MAX1280EVC16) for a comprehensive evaluation of the MAX1280 using a PC. Order the EV kit (MAX1280EVKIT) if the 68HC16MOD-ULE-DIP module has already been purchased with a previous Maxim EV system, or for custom use in other μ C-based systems.

Windows is a registered trademark of Microsoft Corp.

__Component Lists MAX1280 EV System

MAX1280 EV Kit

PART	QTY	DESCRIPTION
MAX1280EVKIT	1	MAX1280 EV kit
68HC16MODULE-DIP	1	68HC16 μC module
USBTO232+	1	USB-to-COM port adapter board

+Denotes lead-free and RoHS-compliant.

DESIGNATION	QTY	DESCRIPTION
C1–C8, C10	9	0.01µF ceramic capacitors
C9	1	4.7µF, 10V tantalum capacitor
C11, C13	2	0.1µF ceramic capacitors
C12, C14	2	10µF, 10V tantalum capacitors
J1	1	2 x 20 right-angle socket
JU1	1	2-pin header
JU2	1	3-pin header
R1–R8	8	$300\Omega \pm 5\%$ resistors
R9, R10	2	$10\Omega \pm 1\%$ resistors
TP1	1	8-pin header
U1	1	MAX1280BCUP (20-pin TSOP)
	1	PCB: MAX1280 Evaluation Kit

MAX1280 EV Kit Files

FILE	DESCRIPTION
INSTALL.EXE	Installs the EV kit files on user's computer
MAX1280.EXE	Application program
KIT1280.C16	Software loaded into 68HC16 µC module

_Features

- Proven PCB Layout
- Convenient On-Board Test Points
- Data-Logging Software
- Fully Assembled and Tested
- EV Kit Software Supports Windows 98/2000/XP with RS-232/COM Port
- EV Kit Software Supports Windows 2000/XP with USB Port

_Ordering Information

PART	TEMP RANGE	INTERFACE TYPE
MAX1280EVKIT	0°C to +70°C	User supplied
MAX1280EVC16	0°C to +70°C	Windows software

Note: The MAX1280 software is designed for use with the complete MAX1280EVC16 EV system (includes 68HC16MODULE-DIP module, USBT0232, and MAX1280EVKIT). If the MAX1280 evaluation software will not be used, the MAX1280EVKIT board can be purchased by itself, without the μ C.

_Quick Start

Recommended Equipment (USB Port/PC Connection Option)

Before beginning, the following equipment is needed:

- MAX1280 EV system: MAX1280 EV kit 68HC16MODULE-DIP USBTO232 (USB cable included)
- A small DC power supply, such as a 12VDC, 0.25A plug-in transformer, or a 9V battery
- A user-supplied Windows 2000/XP computer with an available USB port to connect to the USBTO232 board

Note: In the following sections, software-related items are identified by bolding. Text in **bold** refers to items directly from the EV kit software. Text in **bold and underlined** refers to items from the Windows 2000/XP operating system.

Connections and Setup

The MAX1280 EV kit is fully assembled and tested. Follow the steps below to verify board operation. **Caution: Do not turn on the power until all connections are completed.**

M / X | / M

Maxim Integrated Products 1

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

- Visit the Maxim website (www.maxim-ic.com) to download the latest version of the USBTO232 User Guide. Follow the steps in the USBTO232 User Guide *Quick Start* section and return to step 2 of this *Quick Start* section when finished.
- 2) Carefully connect the boards by aligning the 40-pin header of the MAX1280 EV kit with the 40-pin connector of the 68HC16MODULE-DIP module. Gently press them together. The two boards should be flush against one another.
- 3) Ensure that jumper JU1 is closed and jumper JU2 is in the 1-2 position.
- Connect a 7VDC to 20VDC power source to the μC module at the terminal block located next to the on/off switch, along the top-edge of the μC module. Observe the polarity marked on the board.
- 5) Connect the USBTO232 board to the 68HC16MODULE-DIP module if you have not done so already.
- 6) The MAX1280 EV kit software should have already been downloaded and installed in the USBTO232 Quick Start.
- Start the MAX1280 program by opening its icon in the <u>Start I Programs</u> menu.
- Turn on the power supply and slide SW1 to the ON position on the 68HC16MODULE-DIP module. Press the **OK** button to automatically connect and download the KIT1280.C16 file to the module.
- Apply an input signal between analog common (COM) and input channel CH0. Observe the readout on the screen.

Recommended Equipment (RS-232-to-COM Port/PC Connection Option)

Before beginning, the following equipment is needed:

MAX1280 EV system:

MAX1280 EV kit

68HC16MODULE-DIP

- A small DC power supply, such as a 12VDC, 0.25A plug-in transformer, or a 9V battery
- A user-supplied Windows 98/2000/XP computer with an available serial (COM) port, preferably a 9-pin plug
- A serial cable to connect the computer's serial port to the 68HC16MODULE-DIP

Connections and Setup

The MAX1280 EV kit is fully assembled and tested. Follow the steps below to verify board operation.

Caution: Do not turn on the power until all connections are completed.

- Visit the Maxim website (www.maxim-ic.com/evkitsoftware) to download the latest version of the EV kit software. Save the EV kit software to a temporary folder and uncompress the file (if it is a .zip file).
- 2) Install the MAX1280 EV kit software on your computer by running the INSTALL.EXE program. The program files are copied and icons are created for them in the Windows **Start I Programs** menu.
- Carefully connect the boards by aligning the 40-pin header of the MAX1280 EV kit with the 40-pin connector of the 68HC16MODULE-DIP module. Gently press them together. The two boards should be flush against one another.
- 4) Ensure that jumper JU1 is closed and jumper JU2 is in the 1-2 position.
- 5) Connect a 7VDC to 20VDC power source to the μ C module at the terminal block located next to the on/off switch, along the top-edge of the μ C module. Observe the polarity marked on the board.
- 6) Connect a cable from the computer's serial port to the μC module. If using a 9-pin serial port, use a straight-through, 9-pin female-to-male cable. If the only available serial port uses a 25-pin connector, a standard 25-pin to 9-pin adapter will be required. The EV kit software checks the modem status lines (CTS, DSR, and DCD) to confirm that the correct port has been selected.
- 7) Start the MAX1280 program by opening its icon in the Windows **Start I Programs** menu.
- 8) Turn the power on and slide SW1 to the ON position. The program will automatically download KIT1280.C16 to the module.
- Apply an input signal between analog common (COM) and input channel CH0. Observe the readout on the screen.

Detailed Description

MAX1280 Stand-Alone EV Kit

The MAX1280 EV kit provides a proven printed-circuit board (PCB) layout to evaluate the MAX1280. It must be interfaced to appropriate timing signals for proper operation. Connect +5V to VDD1 and VDD2, and connect the ground return to GND. See the MAX1280 EV kit schematic (Figure 1). Refer to the MAX1280 IC data sheet for timing requirements.

M/IXI/M

Evaluate: MAX1280

MAX1280 Evaluation Kit/Evaluation System

MAX1280 EV System

The MAX1280 EV system operates from a user-supplied 7VDC to 20VDC power supply. Windows 98/2000/XP-compatible software running on a PC interfaces to the EV system board through the computer's serial communications port. See the *Recommended Equipment* and *Connections and Setup* sections for setup and operating instructions.

Description of Software

The evaluation software's main window controls the active control word bits, serial clock speed, and sample rate. It displays the voltage and output code for each active channel, as well as some statistics of the input signal. A separate graph window shows the data changing in real time. The update rate is limited to about 10 samples per second due to COM port bandwidth limitations.

Controls The control word is divided into several fields. To change the active control word, drop down the appropriate field's combo box and select the desired option. If the QSPITM clock is set to **STOP**, then configuration data will not be sent until the **READ** button is clicked.

Statistics The **Minimum** and **Maximum** fields show the highest and lowest readings acquired. The **Average** field shows a running mean based on the equation $a_i = (k)(x_i) + (1 - k)$ (a_{i-1}) . The **Clear** button resets the statistics. To remove offset errors, first apply 0V to the active input channel, clear statistics, acquire some samples, and then check **Tare**. This average offset voltage will now be subtracted from all subsequent measurements.

Choose the desired sampling rate (QSPI Clock), sampling size (**Sample!** menu item), click **Begin Sampling!** (in Sample! pop-up window). Sample size is restricted to a power of 2 to permit FFT processing once the data is saved to a file. After the samples have been collected, the data is automatically uploaded to the host and is graphed. Once displayed, the data can optionally be saved to a file.

Saving Graphs to Disk

Data in the real-time graph and in sampled data graphs may be saved to a file. Only the raw output codes are saved, but voltages may be inferred, based on the reference voltage and the maximum code value.

QSPI is a trademark of Motorola, Inc.

Sampling

Scanning All Channels

To scan through all channels, select **SCAN** from the **INPUT** menu.

Evaluating Shutdown

The evaluation software configures the 68HC16's QSPI submodule to continuously read data from the MAX1280 into the 68HC16. The sample rate is controlled by the QSPI clock. To evaluate power-saving modes, these automatic updates must be stopped. First, set the QSPI clock control to **STOP**. This reconfigures the 68HC16's QSPI submodule to stop driving the serial clock. Second, in the evaluation software's main window, uncheck the **Read Every...msec** checkbox. Next, choose the desired software power-down control word, and click the **Read** button to send the new configuration to the MAX1280. Or, if evaluating the hardware shutdown, move jumper JU2 to the 2-3 position. Sense the supply current by measuring the voltage across resistors R9 and R10.

Reference Voltage

The evaluation software assumes a 2.5V reference voltage, unless otherwise specified. Refer to the MAX1280 IC data sheet for more information. To override this value, type the new reference voltage into the **Vref** edit box and click the **Set Vref** button.

Description of Hardware

U1, the MAX1280, is a high-speed, multichannel, 12-bit data-acquisition system. Resistors R1–R8 and capacitors C1–C8 form single-pole, lowpass anti-aliasing filters with a nominal 3ms time constant and approximately a 50kHz corner frequency. Jumper JU1 connects the analog common (COM) to ground (GND). C10 bypasses the bandgap reference, and C9 bypasses the analog-to-digital converter's (ADC's) voltage reference. When plugged into the 68HC16MODULE, VDD1 and VDD2 are both powered by +5V. See the MAX1280 EV kit schematic (Figure 1) and refer to the MAX1280 IC data sheet.

Table 1. Jumper Functions

JUMPER	POSITION	FUNCTION
JU1	Closed*	COM is connected to GND
	Open	COM is disconnected from GND. All analog inputs, including COM, must still be within the MAX1280's common-mode input range.
JU2	1-2*	Operate
	2-3	Shutdown

*Default position.

Power-supply current can be monitored by measuring the voltage across resistor R9 (for VDD1) or R10 (VDD2). These resistors are $10\Omega \pm 1\%$, so every 0.001V across R9 represents 100μ A of supply current.

Troubleshooting Problem: No output measurement. System seems to report zero voltage or fails to make a measurement.

- 1) Check VDD1 and VDD2 supply voltages.
- 2) Check the 2.5V reference voltage using a DVM.

- 3) Verify with an oscilloscope that the conversion-start signal is being strobed.
- 4) Verify that SHDN is being driven high.

Problem: Measurements are erratic, unstable; poor accuracy.

- 1) Check the reference voltage using a DVM.
- Use an oscilloscope to check for noise. When probing for noise, keep the oscilloscope ground return lead as short as possible, preferably less than 1/2in (10mm).

Figure 1. MAX1280 EV Kit Schematic

Init: LDAA #\$08 ; CS high, clock low by default STAA QPDR LDAA #\$0F STAA QPAR ; pins that are assigned to the QSPI LDAA #\$0E STAA QDDR ; QSM pins that are outputs LDAA #\$80 ; CRCONT STAA CRO ; send eight-bit control word, and continue... STAA CR2 STAA CR4 . . . STAA CRE LDAA #\$40 ; (CRBITSE) STAA CR1 ; receive sixteen-bit data field STAA CR3 STAA CR5 . . . STAA CRF CLRD ; send zero when receiving data STD TR1 STD TR3 STD TR5 . . . STD TRF LDAB #%10001111 ; channel 0, unipolar, single-ended, pd=11 ; channel 0 command std TRO ldab #\$40 ; channel 1 bit mask ord TR0 std TR2 ; channel 1 command ldab #\$10 ; channel 2 bit mask ord TRO std TR4 ; channel 2 command . . . ldab #\$70 ; channel 7 bit mask ord TRO std TRE ; channel 7 command CLR SPCR3 ; disable QSPI halt mode interrupt LDD #\$8008 ; BITS=16, SPBR=8 (1.049 MHz), CPOL=0, CPHA=0 STD SPCR0 LDD #\$0204 ; DSCK, DTL not used STD SPCR1 LDD #\$4F00 ; newqp=0, endqp=15, wrap to zero STD SPCR2 ; run QSPI continuously on all channels BSETW SPCR1, #\$8000 ; start the QSPI BCLR SPSR, #\$80 ; clear SPIF bit ReadLoop: LDD RR1 jsr Process_Channel_0 LDD RR3 jsr Process Channel 1 LDD RR5 jsr Process_Channel_2 . . . LDD RRF Process Channel 7 jsr jmp ReadLoop

Example 1. Reading All Channels with QSPI


```
Evaluate: MAX1280
```

Init: LDAA #\$08 ; CS high, clock low by default STAA QPDR LDAA #\$0F STAA QPAR ; pins that are assigned to the QSPI ldaa #\$0e STAA QDDR ; QSM pins that are outputs LDAA #\$80 ; CRCONT ; send eight-bit control word, and continue... STAA CRO LDAA #\$40 ; (CRBITSE) STAA CR1 ; receive sixteen-bit data field CLRD ; send zero when receiving data STD TR1 LDAB #%10001111 ; channel 0, unipolar, single-ended, pd=11 std TRO ; channel 0 command CLR SPCR3 ; disable QSPI halt mode interrupt LDD #\$8008 ; BITS=16, SPBR=8 (1.049 MHz), CPOL=0, CPHA=0 STD SPCR0 LDD #\$0204 ; DSCK, DTL not used STD SPCR1 LDD #\$0100 ; newqp=0, endqp=1, no wrap STD SPCR2 ReadLoop: BSETW SPCR1,#\$8000 ; start the QSPI BCLR SPSR,#\$80 ; clear SPIF bit Idle: BRCLR SPSR,#\$80,Idle ; wait util SPIF bit is set LDD RR1 ROLD ROLD ROLD jsr Process Channel 0 jmp ReadLoop

Example 2. Reading a Single Channel with QSPI

Figure 2. MAX1280 EV Kit Component Placement Guide— Component Side

Figure 3. MAX1280 EV Kit PCB Layout—Component Side

Figure 4. MAX1280 EV Kit PCB Layout—Solder Side

Revision History

Pages changed at Rev 1: Title change—all pages,1–4, 7, 8

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____

© 2007 Maxim Integrated Products

MAXIM is a registered trademark of Maxim Integrated Products, Inc.

7

Evaluate: MAX1280

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru