

RE46C190

CMOS Low Voltage Photoelectric Smoke Detector ASIC with Interconnect and Timer Mode

Features

- Two AA Battery Operation
- Internal Power On Reset
- Low Quiescent Current Consumption
- Available in 16L N SOIC
- Local Alarm Memory
- Interconnect up to 40 Detectors
- 9 Minute Timer for Sensitivity Control
- Temporal or Continuous Horn Pattern
- Internal Low Battery and Chamber Test
- All Internal Oscillator
- Internal Infrared Emitter Diode (IRED) driver
- Adjustable IRED Drive current
- Adjustable Hush Sensitivity
- 2% Low Battery Set Point

Description

The RE46C190 is a low power, low voltage CMOS photoelectric type smoke detector IC. With minimal external components, this circuit will provide all the required features for a photoelectric-type smoke detector.

The design incorporates a gain-selectable photo amplifier for use with an infrared emitter/detector pair.

An internal oscillator strobes power to the smoke detection circuitry every 10 seconds, to keep the standby current to a minimum. If smoke is sensed, the detection rate is increased to verify an Alarm condition. A high gain mode is available for push button chamber testing.

A check for a low battery condition is performed every 86 seconds, and chamber integrity is tested once every 43 seconds, when in Standby. The temporal horn pattern supports the NFPA 72 emergency evacuation signal.

An interconnect pin allows multiple detectors to be connected such that, when one unit alarms, all units will sound.

An internal 9 minute timer can be used for a Reduced Sensitivity mode.

Utilizing low power CMOS technology, the RE46C190 was designed for use in smoke detectors that comply with Underwriters Laboratory Specification UL217 and UL268.

PIN CONFIGURATION

TYPICAL BLOCK DIAGRAM

TYPICAL BATTERY APPLICATION

- **4:** Schottky diode D1 must have a maximum peak current rating of at least 1.5A. For best results it should have forward voltage specification of less than 0.5V at 1A, and low reverse leakage.
- **5:** Inductor L1 must have a maximum peak current rating of at least 1.5A.

NOTES:

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

† Notice: Stresses above those listed under "Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

DC Electrical Characteristics: Unless otherwise indicated, all parameters apply at $T_A = -10$ to +60°C, V_{DD} = 3V, VBST = 4.2V, Typical Application (unless otherwise noted)(**[Note 1](#page-4-0), [Note 2](#page-4-1)**, **[Note 3](#page-4-2)**)

Note 1: Wherever a specific V_{BST} value is listed under test conditions, the V_{BST} is forced externally with the inductor disconnected and the DC-DC converter NOT running.

2: Typical values are for design information only.

3: Limits over the specified temperature range are not production tested and are based on characterization data. Unless otherwise stated, production test is at room temperature with guardbanded limits.

4: Not production tested.

DC ELECTRICAL CHARACTERISTICS (CONTINUED)

DC Electrical Characteristics: Unless otherwise indicated, all parameters apply at T_A = -10 to +60°C, V_{DD} = 3V, VBST = 4.2V, Typical Application (unless otherwise noted)(**Note 1, Note 2**, **Note 3**)

Note 1: Wherever a specific V_{BST} value is listed under test conditions, the V_{BST} is forced externally with the inductor disconnected and the DC-DC converter NOT running.

2: Typical values are for design information only.

3: Limits over the specified temperature range are not production tested and are based on characterization data. Unless otherwise stated, production test is at room temperature with guardbanded limits.

4: Not production tested.

Note 1: Wherever a specific V_{BST} value is listed under test conditions, the V_{BST} is forced externally with the inductor disconnected and the DC-DC converter NOT running.

2: Typical values are for design information only.

3: Limits over the specified temperature range are not production tested and are based on characterization data. Unless otherwise stated, production test is at room temperature with guardbanded limits.

4: Not production tested.

AC ELECTRICAL CHARACTERISTICS

AC Electrical Characteristics: Unless otherwise indicated, all parameters apply at $T_A = -10^\circ$ to +60°C, $V_{DD} = 3V$, V_{BST} = 4.2V, Typical Application (unless otherwise noted) (**[Note 1](#page-7-0)** to **[Note 4](#page-7-1)**).

Note 1: See timing diagram for Horn Pattern ([Figure 5-2\)](#page-29-0).

2: T_{PCLK} and T_{IRON} are 100% production tested. All other AC parameters are verified by functional testing.

3: Typical values are for design information only.

4: Limits over the specified temperature range are not production tested, and are based on characterization data.

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

AC Electrical Characteristics: Unless otherwise indicated, all parameters apply at T_A = -10° to +60°C, V_{DD} = 3V, V_{BST} = 4.2V, Typical Application (unless otherwise noted) (Note 1 to Note 4).

Note 1: See timing diagram for Horn Pattern (Figure 5-2).

2: T_{PCLK} and T_{IRON} are 100% production tested. All other AC parameters are verified by functional testing.

3: Typical values are for design information only.

4: Limits over the specified temperature range are not production tested, and are based on characterization data.

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

AC Electrical Characteristics: Unless otherwise indicated, all parameters apply at $T_A = -10^\circ$ to +60°C, V_{DD} = 3V, $|V_{\text{BST}}| = 4.2V$, Typical Application (unless otherwise noted) (**Note 1** to **Note 4**).

Note 1: See timing diagram for Horn Pattern (Figure 5-2).

2: T_{PCLK} and T_{IRON} are 100% production tested. All other AC parameters are verified by functional testing.

3: Typical values are for design information only.

4: Limits over the specified temperature range are not production tested, and are based on characterization data.

TEMPERATURE CHARACTERISTICS

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in [Table 2-1.](#page-10-0)

NOTES:

3.0 DEVICE DESCRIPTION

3.1 Standby Internal Timing

The internal oscillator is trimmed to ±6% tolerance. Once every 10 seconds, the boost converter is powered up, the IRcap is charged from V_{BST} and then the detection circuitry is active for 10 ms. Prior to completion of the 10 mS period, the IRED pulse is active for a user-programmable duration of 100- 400 µs. During this IRED pulse, the photo diode current is integrated and then digitized. The result is compared to a limit value stored in EEPROM during calibration to determine the photo chamber status. If a smoke condition is present, the period to the next detection decreases, and additional checks are made.

3.2 Smoke Detection Circuitry

The digitized photo amplifier integrator output is compared to the stored limit value at the conclusion of the IRED pulse period. The IRED drive is all internal, and both the period and current are user programmable. Three consecutive smoke detections will cause the device to go into Alarm and activate the horn and interconnect circuits. In Alarm, the horn is driven at the high boost voltage level, which is regulated based on an internal voltage reference, and therefore results in consistent audibility over battery life. RLED will turn on for 10 ms at a 2 Hz rate. In Local Alarm, the integration limit is internally decreased to provide alarm hysteresis. The integrator has three separate gain settings:

- Normal and Hysteresis
- Reduced Sensitivity (HUSH)
- High Gain for Chamber Test and Push-to-Test

There are four separate sets of integration limits (all user programmable):

- Normal Detection
- Hysteresis
- HUSH
- Chamber Test and Push-to-Test modes

In addition, there are user selectable integrator gain settings to optimize detection levels (see [Table 4-1\)](#page-14-0).

3.3 Supervisory Tests

Once every 86 seconds, the status of the battery voltage is checked by enabling the boost converter for 10 ms and comparing a fraction of the V_{DD} voltage to an internal reference. In each period of 344 seconds, the battery voltage is checked four times. Three checks are unloaded and one check is performed with the RLED enabled, which provides a battery load. The High Boost mode is active only for the loaded low battery test. In addition, once every 43 seconds the chamber is activated and a High Gain mode and chamber test limits are internally selected. A check of the chamber is made by amplifying background reflections. The Low Boost mode is used for the chamber test.

If either the low battery test or the chamber test fails, the horn will pulse on for 10 ms every 43 seconds, and will continue to pulse until the failing condition passes. If two consecutive chamber tests fail, the horn will pulse on three times for 10 ms, separated by 330 ms every 43 seconds. Each of the two supervisory test audible indicators is separated by approximately 20 seconds.

As an option, a Low Battery Silence mode can be invoked. If a low battery condition exists, and the TEST input is driven high, the RLED will turn on. If the TEST input is held for more than 0.5 second, the unit will enter the Push-to-test operation described in **[Section 3.4 "Push-to-Test Operation \(PTT\)"](#page-12-0)**. After the TEST input is driven low, the unit enters in Low Battery Hush mode, and the 10 ms horn pulse is silenced for 8 hours. The activation of the test button will also initiate the 9 minute Reduced Sensitivity mode described in **[Section 3.6 "Reduced Sensitivity](#page-13-0) [Mode"](#page-13-0)**. At the end of the 8 hours, the audible indication will resume if the low battery condition still exists.

3.4 Push-to-Test Operation (PTT)

If the TEST input pin is activated (V_{H}) , the smoke detection rate increases to once every 250 ms after one internal clock cycle. In Push-to-Test, the photo amplifier High Gain mode is selected, and background reflections are used to simulate a smoke condition. After the required three consecutive detections, the device will go into a Local Alarm condition. When the TEST input is driven low $(V_{|L})$, the photo amplifier Normal Gain is selected, after one clock cycle. The detection rate continues at once every 250 ms until three consecutive No Smoke conditions are detected. At this point, the device returns to standby timing. In addition, after the TEST input goes low, the device enters the HUSH mode (see **[Section 3.6 "Reduced](#page-13-0) [Sensitivity Mode"](#page-13-0)**).

3.5 Interconnect Operation

The bidirectional IO pin allows the interconnection of multiple detectors. In a Local Alarm condition, this pin is driven high (High Boost) immediately through a constant current source. Shorting this output to ground will not cause excessive current. The IO is ignored as input during a Local Alarm.

The IO pin also has an NMOS discharge device that is active for 1.3 seconds after the conclusion of any type of Local Alarm. This device helps to quickly discharge any capacitance associated with the interconnect line.

If a remote, active high signal is detected, the device goes into Remote Alarm and the horn will be active. RLED will be off, indicating a Remote Alarm condition. Internal protection circuitry allows the signaling unit to have a higher supply voltage than the signaled unit, without excessive current draw.

The interconnect input has a 336 ms nominal digital filter. This allows the interconnection to other types of alarms (carbon monoxide, for example) that may have a pulsed interconnect signal.

3.6 Reduced Sensitivity Mode

A Reduced Sensitivity or Hush mode is initiated by activating the TEST input (V_{H}) . If the TEST input is activated during a Local Alarm, the unit is immediately reset out of the alarm condition, and the horn is silenced. When the TEST input is deactivated (V_{II}) , the device enters into a 9-minute nominal Hush mode. During this period, the HUSH integration limit is selected. The hush gain is user programmable. In Reduced Sensitivity mode, the RLED flashes for 10 ms every 10 seconds to indicate that the mode is active. As an option, the Hush mode will be cancelled if any of the following conditions exist:

- Reduced sensitivity threshold is exceeded (high smoke level)
- An interconnect alarm occurs
- TEST input is activated again

3.7 Local Alarm Memory

An Alarm Memory feature allows easy identification of any unit that had previously been in a Local Alarm condition. If a detector has entered a Local Alarm, when it exits that Local Alarm, the Alarm Memory latch is set. Initially the GLED can be used to visually identify any unit that had previously been in a Local Alarm condition. The GLED flashes three times spaced 1.3 seconds apart. This pattern will repeat every 43 seconds. The duration of the flash is 10 ms. In order to preserve battery power, this visual indication will stop after a period of 24 hours. The user will still be able to identify a unit with an active alarm memory by pressing the Push-to-Test button. When this button is active, the horn will chirp for 10 ms every 250 ms.

If the Alarm Memory condition is set, then any time the Push-to-Test button is pressed and released, the Alarm Memory latch is reset.

The initial 24 hour visual indication is not displayed if a low battery condition exists.

3.8 End of Life Indicator

As an option, after every 14 days of continuous operation, the device will read a stored age count from the EEPROM and increment this count. After 10 years of powered operation, an audible warning will occur indicating that the unit should be replaced. This indicator will be similar to the chamber test failure warning in that the horn will pulse on three times for 10 ms separated by 330 ms every 43 seconds. This indicator will be separated from the low battery indicator by approximately 20 seconds.

3.9 Photo Chamber Long Term Drift Adjustment

As an option, the design includes a Long Term Drift Adjustment for the photo chamber. If this option is selected, during calibration a normal no-smoke baseline integration measurement is made and stored in EEPROM. During normal operation, a new baseline is calculated by making 64 integration measurements over a period of 8 hours. These measurements are averaged and compared to the original baseline stored during calibration to calculate the long term drift. All four limits stored during calibration are adjusted by this drift factor. Drift sampling is suspended during Hush, Local Smoke and Remote Smoke conditions.

4.0 USER PROGRAMMING MODES

TABLE 4-1: PARAMETRIC PROGRAMMING

Note 1: GF is the user selectable Photo Integration Gain Factor. Once selected, it applies to all modes of operation. For example, if $GF = 1$ and integration time is selected to be 100 μs , the ranges will be as follows: Normal/Hysteresis = 58 nA, Hush = 116 nA, Chamber Test = 29 nA.

2: Nominal measurement resolution in each case will be 1/31 of the maximum input range.

3: The same current resolution and ranges applies to the limits.

TABLE 4-2: FEATURES PROGRAMMING

4.1 Calibration and Programming Procedures

Eleven separate programming and test modes are available for user customization. To enter these modes, after power-up, TEST2 must be driven to V_{DD} and held at that level. The TEST input is then clocked to step through the modes. FEED and IO are reconfigured to become test mode inputs, while RLED, GLED and HB become test mode outputs. The test mode functions for each pin are outlined in [Table 4-3](#page-15-0).

When TEST2 is held at V_{DD} , TEST becomes a tri-state input with nominal input levels at V_{SS} , V_{DD} and V_{BST} . A TEST clock occurs whenever the TEST input switches from V_{SS} to V_{BST} . The TEST Data column represents the state of TEST when used as a data input, which would be either V_{SS} or V_{DD} . The TEST pin can therefore be used as both a clock, to change modes, and a data input, once a mode is set. Other pin functions are described in **[Section 4.2 "User](#page-16-0) [Selections"](#page-16-0)**.

Note 1: SmkComp (HB) – digital comparator output (high if Gamp < IntegOut; low if Gamp > IntegOut)

2: SCMP (HB) – digital output representing comparison of measurement value and associated limit. Signal is valid only after MeasEn has been asserted and measurement has been made. (SCMP high if measured value > limit; low if measured value < limit).

3: LatchLim (IO) – digital input used to latch present state of limits (Gamp level) for later storage. T1-T4 limits are latched, but not stored until ProgEn is asserted in T5 mode.

4: Operating the circuit in this manner with nearly continuous IRED current for an extended period of time may result in undesired or excessive heating of the part. The duration of this step should be minimized.

4.2 User Selections

Prior to smoke calibration, the user must program the functional options and parametric selections. This requires that 14 bits, representing selected values, be clocked in serially using TEST as a data input and FEED as a clock input, and then be stored in the internal EEPROM.

The detailed steps are as follows:

1. Power up with bias conditions as shown in [Figure 4-1.](#page-16-1) At power-up TEST = TEST2 = FEED = $10 = V_{SS}$.

RE46C190

- 2. Drive TEST2 input from $\mathrm{V_{SS}}$ to $\mathrm{V_{DD}}$ and hold at V_{DD} through <mark>Step [5](#page-19-0)</mark> below.
- 3. Using TEST as data and FEED as clock, shift in values as selected from [Register 4-1.](#page-17-0)

Note: For test mode T0 only 14 bits (bits 25-38) will be loaded. For test mode T6 all 39 bits (bits 0-38), will be loaded.

REGISTER 4-1: CONFIGURATION AND CALIBRATION SETTINGS REGISTER

e
B

REGISTER 4-1: CONFIGURATION AND CALIBRATION SETTINGS REGISTER (CONTINUED)

The minimum pulse width for FEED is 10 µs, while the minimum pulse width for TEST is 100 µs. For example, for the following options, the sequence would be:

data - 0 0 0 1 1 0 0 0 1 0 0 0 0 1 bit - 25 26 27 28 29 30 31 32 33 34 35 36 37 38 Photo Amp Gain Factor = 1 Integration Time $= 200 \text{ }\mu\text{s}$ IRED Current = 100 mA Low Battery Trip $= 2.2V$ Long Term Drift, Low Battery Hush and EOL are all disabled Hush Option = Never Cancel Tone Select = Temporal

4. After shifting in data, pull IO input to V_{DD} , then V_{SS} (minimum pulse width of 10 ms) to store shift register contents into the memory.

5. If any changes are required, power down the part and return to Ste[p 1.](#page-16-2) All bit values must be reentered.

FIGURE 4-2: Timing Diagram for Mode T0.

As an alternative to [Figure 4-1,](#page-16-1) [Figure 4-3](#page-20-0) can be used to program while in the application circuit. Note that in addition to the five programming supplies, connections to V_{SS} are needed at TP1 and TP2.

FIGURE 4-3: Circuit for Programming in the Typical Application.

4.3 Smoke Calibration

A separate calibration mode is entered for each measurement mode (Normal, Hysteresis, Hush and Chamber Test) so that independent limits can be set for each. In all calibration modes, the integrator output can be accessed at the GLED output.

The Gamp output voltage, which represents the smoke detection level, can be accessed at the RLED output. The SmkComp output voltage is the result of the comparison of Gamp with the integrator output, and can be accessed at HB. The FEED input can be clocked to step up the smoke detection level at RLED. Once the desired smoke threshold is reached, the TEST input is pulsed low to high to store the result.

The procedure is described in the following steps:

- 1. Power up with the bias conditions shown in [Figure 4-1.](#page-16-1)
- 2. Drive TEST2 input from V_{SS} to V_{DD} to enter the Programming mode. TEST2 should remain at V_{DD} through Step [8](#page-21-1) described below.
- 3. Apply a clock pulse to the TEST input to enter in T1 mode. This initiates the calibration mode for Normal Limits setting. The Integrator output saw tooth should appear at GLED and the smoke detection level at RLED. Clock FEED to increase the smoke detection level as needed. Once the desired smoke threshold is reached, the IO input is pulsed low to high to enter the result. See typical waveforms in [Figure 4-4](#page-22-0). Operating the circuit in this manner, with nearly continuous IRED current for an extended period of time, may result in undesired or excessive heating of the part. The duration of this step should be minimized.
- 4. Apply a second clock pulse to the TEST input to enter in T2 mode. This initiates the calibration mode for Hysteresis Limits. Clock FEED as in Ste[p 3](#page-21-0) and apply pulse to IO, once desired level is reached.Operating the circuit in this manner, with nearly continuous IRED current for an extended period of time, may result in undesired or excessive heating of the part. The duration of this step should be minimized.
- 5. Apply a clock pulse to the TEST input again to enter in T3 mode and initiate calibration for Hush Limits. Clock FEED as in the steps above and apply a pulse to IO, once the desired level is reached. Operating the circuit in this manner, with nearly continuous IRED current for an extended period of time, may result in undesired or excessive heating of the part. The duration of this step should be minimized.
- 6. Apply a clock pulse to the TEST input a fourth time to enter in T4 mode, and initiate the calibration for Chamber Test Limits. Clock FEED and apply pulse to IO, once desired level is reached. Operating the circuit in this manner, with nearly continuous IRED current for an extended period of time, may result in undesired or excessive heating of the part. The duration of this step should be minimized.
- 7. If the Long Term Drift Adjustment is enabled, after all limits have been set, the long term drift (LTD) baseline measurement must be made. To do this, a measurement must be made under no-smoke conditions. To enable the baseline measurement, pull TEST from V_{SS} to V_{BST} again and return to V_{SS} . Once the chamber is clear, pulse FEED low to high to make the baseline measurement.
- 8. After limits have been set and baseline LTD measurement has been made, pulse IO to store all results in memory. Before this step, no limits are stored in memory.

© 2010 Microchip Technology Inc. **DS22271A-page 23**

4.4 Serial Read/Write

As an alternative to the steps in **[Section 4.3 "Smoke](#page-21-2) [Calibration"](#page-21-2)**, if the system has been well characterized, the limits and baseline can be entered directly from a serial read/write calibration mode.

To enter this mode, follow these steps:

- 1. Set up the application as shown in [Figure 4-1.](#page-16-1)
- 2. Drive TEST2 input from V_{SS} to V_{DD} to enter in Programming mode. TEST2 should remain at V_{DD} until all data has been entered.
- 3. Clock the TEST input to mode T6 (High = V_{BST} , Low = V_{SS} , 6 clocks). This enables the serial read/write mode.
- 4. TEST now acts as a data input (High = V_{DD} , Low = V_{SS}). FEED acts as the clock input (High = V_{BST} , Low = V_{SS}). Clock in the limits, LTD baseline, functional and parametric options. The data sequence should be as follows:
- 5 bit LTD sample (LSB first)
- 5 bit Chamber Test Limits (LSB first)
- 5 bit Hush Limits (LSB first)
- 5 bit Hysteresis Limits (LSB first),

5 bit Normal Limits (LSB first)

Then, the data sequence follows the pattern described in [Register 4-1](#page-17-0):

- 2 bit Photo Amp Gain Factor 2 bit Integration Time 2 bit IRED current 3 bit Low Battery Trip Point 1 bit Long Term Drift Enable 1 bit Hush Option 1 bit Low Battery Hush Enable
- 1 bit EOL enable
- 1 bit Tone Select

A serial data output is available at HB.

5. After all 39 bits have been entered, pulse IO to store into the EEPROM memory.

FIGURE 4-5: Timing Diagram for Mode T6.

4.5 Limits Verification

After all limits and LTD baseline have been entered and stored into the memory, additional test modes are available to verify if the limits are functioning as expected. [Table 4-4](#page-24-0) describes several verification tests.

TABLE 4-4: LIMITS VERIFICATION DESCRIPTION

4.6 Horn Test

The last test mode allows the horn to be enabled indefinitely for audibility testing. To enter this mode, clock TEST to Mode T11 (11 clocks). The IO pin is configured as horn enable.

5.0 APPLICATION NOTES

5.1 Standby Current Calculation and Battery Life

The supply current shown in the **[DC Electrical](#page-4-4) [Characteristics](#page-4-4)** table is only one component of the average standby current and, in most cases, can be a small fraction of the total, because power consumption generally occurs in relatively infrequent bursts and depends on many external factors. These include the values selected for IRED current and integration time, the V_{BST} and IR capacitor sizes and leakages, the V_{BAT} level, and the magnitude of any external resistances that will adversely affect the boost converter efficiency.

A calculation of the standby current for the battery life is shown in [Table 5-1](#page-26-0), based on the following parameters:

TABLE 5-1: STANDBY CURRENT CALCULATION

The following paragraphs explain the components in [Table 5-1,](#page-26-0) and the calculations in the example.

5.1.1 $FIXED I_{DD}$

The I_{DD} is the Supply Current shown in the [DC](#page-4-4) **[Electrical Characteristics](#page-4-4)** table.

5.1.2 PHOTO DETECTION CURRENT

Photo Detection Current is the current draw due to the smoke testing every 10.75 seconds, and the chamber test every 43 seconds. The current for both the IR diode and the internal measurement circuitry comes primarily from V_{BST} , so the average current must be scaled for both on-time and boost voltage.

The contribution to I_{BAT} is determined by first calculating the energy consumed by each component, given its duration. An average power is then calculated based on the period of the event and the boost converter efficiency (assumed to be 85% in this case). An I_{BAT} contribution is then calculated based on this average power and the given V_{BAT} . For example, the IR drive contribution during chamber test is detailed in [Equation 5-1:](#page-26-1)

EQUATION 5-1:

 $\frac{3.6V \times 0.1A \times 200 \mu s}{43s \times 0.85 \times 3V} = 0.657 \mu A$

5.1.3 LOW BATTERY CHECK CURRENT

The Low Battery Check Current is the current required for the low battery test. It includes both the loaded (RLED on) and unloaded (RLED Off) tests. The boost component of the loaded test represents the cost of charging the boost capacitor to the higher voltage level. This has a fixed cost for every loaded check, because the capacitor is gradually discharged during subsequent operations, and the energy is generally not recovered. The other calculations are similar to those shown in [Equation 5-1](#page-26-1). The unloaded test has a minimal contribution because it involves only some internal reference and comparator circuitry.

5.1.4 BATTERY LIFE

When estimating the battery life, several additional factors must be considered. These include battery resistance, battery self discharge rate, capacitor leakages and the effect of the operating temperature on all of these characteristics. Some number of false alarms and user tests should also be included in any calculation.

For ten year applications, a 3V spiral wound lithium manganese dioxide battery with a laser seal is recommended. These can be found with capacities of 1400 to 1600 mAh.

5.1.5 FUNCTIONAL TIMING DIAGRAMS

FIGURE 5-1: RE46C190 Timing Diagram – Standby, No Alarm, Low Supply Test Failure and Chamber Test Failure.

FIGURE 5-2: RE46C190 Timing Diagram – Local Alarm with Temporal Horn Pattern, Local Alarm with International Horn Pattern, Interconnect as Input with Temporal Horn Pattern and Interconnect as Input with International Horn Pattern.

NOTES:

6.0 PACKAGING INFORMATION

6.1 Package Marking Information

16-Lead SOIC (.150")

Example

16-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-108B

16-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2108A

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (December 2010)

• Original Release of this Document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE**.** Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV $=$ ISO/TS 16949:2002 $=$

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-782-8

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: <http://support.microchip.com> Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 **China - Qingdao**

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 **Denmark - Copenhagen** Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

ООО "ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

- *Конкурентоспособные цены и скидки постоянным клиентам.*
- *Специальные условия для постоянных клиентов.*
- *Подбор аналогов.*
- *Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.*
- *Приемлемые сроки поставки, возможна ускоренная поставка.*
- *Доставку товара в любую точку России и стран СНГ.*
- *Комплексную поставку.*
- *Работу по проектам и поставку образцов.*
- *Формирование склада под заказчика.*
- *Сертификаты соответствия на поставляемую продукцию (по желанию клиента).*
- *Тестирование поставляемой продукции.*
- *Поставку компонентов, требующих военную и космическую приемку.*
- *Входной контроль качества.*
- *Наличие сертификата ISO.*

 В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- *Регистрацию проекта у производителя компонентов.*
- *Техническую поддержку проекта.*
- *Защиту от снятия компонента с производства.*
- *Оценку стоимости проекта по компонентам.*
- *Изготовление тестовой платы монтаж и пусконаладочные работы.*

 Tел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www[.lifeelectronics.ru](http://lifeelectronics.ru/)