

Mixed-Signal Control Processor with ARM Cortex-M4

Preliminary Technical Data

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

176-lead (24 mm × 24 mm) RoHS compliant LQFP package 120-lead (14 mm × 14 mm) RoHS compliant LQFP package

Two Serial Peripheral Interface (SPI-compatible) ports

Four Encoder Interfaces, 2 with frequency division

SYSTEM FEATURES

Enhanced PWM units

Harmonic analysis engine 10/100 Ethernet MAC

Full Speed USB On-the-Go (OTG)

lated ADCs

Three UART ports

100 MHz to 240 MHz ARM Cortex-M4 with floating-point unit 128K Byte to 384K Byte zero-wait-state L1 SRAM with 16K Byte L1 cache Up to 2M Byte flash memory 16-bit asynchronous external memory interface

Four 3rd/4th order SINC filters for glueless connection of iso-

Two CAN (controller area network) 2.0B interfaces

ANALOG SUBSYSTEM FEATURES

Eight 32-bit general-purpose timers

Single power supply

ADC controller (ADCC) and DAC controller (DACC) Two 16-bit SAR ADCs with up to 24 multiplexed inputs, supporting dual simultaneous conversion in 380 ns (16-bit, no missing codes, ±3.5LSB INL)

Two 12-bit R-string DACs, with output rate up to 50 kHz Two 2.5 V precision voltage reference outputs (For details, see [ADC/DAC Specifications on Page 36.](#page-35-0))

Rev. PrE

Figure 1. Block Diagram

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 © 2013 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

REVISION HISTORY

09/13—Revision PrD to Revision PrE

Updated the [Specifications](#page-33-0) section to include Flash information and timing data for all interfaces. See [Specifications 34](#page-33-0)

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

GENERAL DESCRIPTION

The ADSP-CM40x family of mixed-signal control processors is based on the ARM® Cortex-M4[™] processor core with floatingpoint unit operating at frequencies up to 240 MHz and integrating up to 384KB of SRAM memory, 2MB of flash memory, accelerators and peripherals optimized for motor control and photo-voltaic (PV) inverter control and an analog module consisting of two 16-bit SAR-type ADCs and two 12-bit DACs. The ADSP-CM40x family operates from a single voltage supply (VDD_EXT/VDD_ANA), generating its own internal voltage supplies using internal voltage regulators and an external pass transistor.

This family of mixed-signal control processors offers low static power consumption and is produced with a low-power and lowvoltage design methodology, delivering world class processor and ADC performance with lower power consumption.

By integrating a rich set of industry-leading system peripherals and memory (shown in [Table 1](#page-2-1)), the ADSP-CM40x mixed-signal control processors are the platform of choice for

next-generation applications that require RISC programmability, advanced communications and leading-edge signal processing in one integrated package. These applications span a wide array of markets including power/motor control, embedded industrial, instrumentation, medical and consumer.

Each ADSP-CM40x family member contains the following modules.

- 8 GP timers with PWM output
- 3-Phase PWM units with up to 4 output pairs per unit
- 2 CAN modules
- 1 two-wire interface (TWI) module
- 3 UARTs

[Table 1](#page-2-1) provides the additional product features shown by model.

Table 1. ADSP-CM40x Family Product Features

ANALOG SUBSYSTEM

The processors contain two ADCs and two DACs. Control of these data converters is simplified by a powerful on-chip analog-to-digital conversion controller (ADCC) and a digital-toanalog conversion controller (DACC). The ADCC and DACC are integrated seamlessly into the software programming model, and they efficiently manage the configuration and real-time operation of the ADCs and DACs.

For technical details, see [ADC/DAC Specifications on Page 36.](#page-35-0)

The ADCC provides the mechanism to precisely control execution of timing and analog sampling events on the ADCs. The ADCC supports two-channel (one each—ADC0, ADC1) simultaneous sampling of ADC inputs with TBD ps time offset accuracy (aperture delay), and can deliver 16 channels of ADC data to memory in 3 μS. Conversion data from the ADCs may be either routed via DMA to memory, or to a destination register via the processor. The ADCC can be configured so that the

two ADCs sample and convert both analog inputs simultaneously or at different times and may be operated in asynchronous or synchronous modes. The best performance can be achieved in synchronous mode.

Likewise, the DACC interfaces to two DACs and has purpose of managing those DACs. Conversion data to the DACs may be either routed from memory through DMA, or from a source register via the processor.

Functional operation and programming for the ADCC and DACC are described in detail in the *ADSP-CM40x Mixed-Signal Control Processor with ARM Cortex-M4 Hardware Reference*.

ADC and DAC features and performance specifications differ by processor model. Simplified block diagrams of the ADCC, DACC and the ADCs and DACs are shown in [Figure 2](#page-3-1) and [Figure 3](#page-4-0).

Figure 2. CM402F/CM403F Analog Subsystem Block Diagram

Preliminary Technical Data

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

Figure 3. CM407F/CM408F Analog Subsystem Block Diagram

Figure 4. Typical Power Supply Configuration

Figure 5. Equivalent Single-Ended Input (Simplified)

Considerations for Best Converter Performance

As with any high performance analog/digital circuit, to achieve best performance, good circuit design and board layout practices should be followed. The power supply and its noise bypass (decoupling), ground return paths and pin connections, and analog/digital routing channel paths and signal shielding, are all of first-order consideration. For application hints of design best practice, see [Figure 4](#page-5-0) and the *ADSP-CM40x Mixed-Signal Control Processor with ARM Cortex-M4 Hardware Reference*.

ADC Module

The ADC module contains two 16-bit, high speed, low power successive approximation register (SAR) ADCs, allowing for dual simultaneous sampling with each ADC proceeded by a 12-channel multiplexer. See [ADC Specifications on Page 36](#page-35-1) for detailed performance specifications. Input multiplexers enable up to a combined 26 analog input sources to the ADCs (12 analog inputs plus 1 DAC loopback input per ADC).

The voltage input range requirement for those analog inputs is from 0 V to 2.5 V. All analog inputs are of single-ended design. As with all single-ended inputs, signals from high impedance sources are the most difficult to control, and depending on the

electrical environment, may require an external buffer circuit for signal conditioning [\(Figure 5\)](#page-5-1). An on-chip buffer between the multiplexer and ADC reduces the need for additional signal conditioning external to the processor. Additionally, each ADC has an on-chip 2.5 V reference that can be overdriven when an external voltage reference is preferred.

DAC Module

The DAC is a 12-bit, low power, string DAC design. The output of the DAC is buffered, and can drive an R/C load to either ground or V_{DD-ANA} . See [DAC Specifications on Page 38](#page-37-0) for detailed performance specifications. It should be noted that on some models of the processor, the DAC outputs are not pinned out. However, these outputs are always available as one of the multiplexed inputs to the ADCs. This feature may be useful for functional self-check of the converters.

Preliminary Technical Data

Harmonic Analysis Engine (HAE)

The Harmonic Analysis Engine (HAE) block receives 8 kHz input samples from two source signals whose frequencies are between 45 Hz and 65 Hz. The HAE will then process the input samples and produce output results. The output results consist of power quality measurements of the fundamental and up to 12 additional harmonics.

SINC Filter

The SINC module processes four bit streams using a pair of configurable SINC filters for each bitstream. The purpose of the primary SINC filter of each pair is to produce the filtered and decimated output for the pair. The output may be decimated to any integer rate between 8 and 256 times lower than the input rate. Greater decimation allows greater removal of noise and therefore greater ENOB.

Optional additional filtering outside the SINC module may be used to further increase ENOB. The primary SINC filter output is accessible through transfer to processor memory, or to another peripheral, via DMA.

Each of the four channels is also provided with a low-latency secondary filter with programmable positive and negative overrange detection comparators. These limit detection events can be used to interrupt the core, generate a trigger, or signal a system fault.

ARM CORTEX-M4 CORE

The ARM Cortex-M4, core shown in [Figure 6,](#page-7-1) is a 32-bit reduced instruction set computer (RISC). It uses a single 32-bit bus for instruction and data. The length of the data can be eight bits, 16 bits, or 32 bits. The length of the instruction word is 16 or 32 bits. The controller has the following features.

Cortex-M4 Architecture

- Thumb-2 ISA Technology
- DSP and SIMD extensions
- Single cycle MAC (Up to $32 \times 32 + 64 \rightarrow 64$)
- Hardware Divide Instructions
- Single-precision FPU
- NVIC Interrupt Controller (129 Interrupts and 16 Priorities)
- Memory Protection Unit (MPU)
- Full CoreSight[™] Debug, Trace, Breakpoints, Watchpoints, and Cross-Triggers

Microarchitecture

- 3-stage pipeline with branch speculation
- Low-latency interrupt processing with tail chaining

Configurable For Ultra Low Power

- Deep sleep mode, dynamic power management
- Programmable Clock Generator Unit

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

EmbeddedICE

EmbeddedICE® provides integrated on-chip support for the core. The EmbeddedICE module contains the breakpoint and watch-point registers that allow code to be halted for debugging purposes. These registers are controlled through the JTAG test port.

When a breakpoint or watchpoint is encountered, the processor halts and enters debug state. Once in a debug state, the processor registers can be inspected as well as the Flash/EE, SRAM, and memory mapped registers.

PROCESSOR INFRASTRUCTURE

The following sections provide information on the primary infrastructure components of the ADSP-CM40x processors.

DMA Controllers (DDEs)

The processor contains 17 peripheral DMA channels plus two MDMA streams. DDE channel numbers 0–16 are for peripherals and channels 17–20 are for MDMA.

System Event Controller (SEC)

The SEC manages the enabling and routing of system fault sources through its integrated fault management unit.

Trigger Routing Unit (TRU)

The TRU provides system-level sequence control without core intervention. The TRU maps trigger masters (generators of triggers) to trigger slaves (receivers of triggers). Slave endpoints can be configured to respond to triggers in various ways. Common applications enabled by the TRU include:

- Automatically triggering the start of a DMA sequence after a sequence from another DMA channel completes
- Software triggering
- Synchronization of concurrent activities

Pin Interrupts

Every port pin on the processor can request interrupts in either an edge-sensitive or a level-sensitive manner with programmable polarity. Interrupt functionality is decoupled from GPIO operation. Six system-level interrupt channels (PINT0–5) are reserved for this purpose. Each of these interrupt channels can manage up to 32 interrupt pins. The assignment from pin to interrupt is not performed on a pin-by-pin basis. Rather, groups of eight pins (half ports) can be flexibly assigned to interrupt channels.

Every pin interrupt channel features a special set of 32-bit memory-mapped registers that enable half-port assignment and interrupt management. This includes masking, identification, and clearing of requests. These registers also enable access to the respective pin states and use of the interrupt latches, regardless of whether the interrupt is masked or not. Most control registers feature multiple MMR address entries to write-one-to-set or write-one-to-clear them individually.

Figure 6. Cortex-M4 Block Diagram

General-Purpose I/O (GPIO)

Each general-purpose port pin can be individually controlled by manipulation of the port control, status, and interrupt registers:

- GPIO direction control register Specifies the direction of each individual GPIO pin as input or output.
- GPIO control and status registers A "write one to modify" mechanism allows any combination of individual GPIO pins to be modified in a single instruction, without affecting the level of any other GPIO pins.
- GPIO interrupt mask registers Allow each individual GPIO pin to function as an interrupt to the processor. GPIO pins defined as inputs can be configured to generate hardware interrupts, while output pins can be triggered by software interrupts.
- GPIO interrupt sensitivity registers Specify whether individual pins are level- or edge-sensitive and specify—if edge-sensitive—whether just the rising edge or both the rising and falling edges of the signal are significant.

Pin Multiplexing

The processor supports a flexible multiplexing scheme that multiplexes the GPIO pins with various peripherals. A maximum of 4 peripherals plus GPIO functionality is shared by each GPIO pin. All GPIO pins have a bypass path feature—that is, when the output enable and the input enable of a GPIO pin are both active, the data signal before the pad driver is looped back to the receive path for the same GPIO pin. See [ADSP-CM402F/ADSP-](#page-21-0)[CM403F Multiplexed Pins on Page 22](#page-21-0) and [ADSP-](#page-30-0)[CM407F/ADSP-CM408F Multiplexed Pins on Page 31.](#page-30-0)

MEMORY ARCHITECTURE

The internal and external memory of the ADSP-CM40x processor is shown in [Figure 7](#page-8-0) and described in the following sections.

ARM Cortex-M4 Memory Subsystem

The memory map of the ADSP-CM40x family is based on the Cortex-M4 model from ARM. By retaining the standardized memory mapping, it becomes easier to port applications across M4 platforms. Only the physical implementation of memories inside the model differs from other vendors.

ADSP-CM40x application development is typically based on memory blocks across CODE/SRAM and external memory regions. Sufficient internal memory is available via internal SRAM and internal flash. Additional external memory devices may be interfaced via the SMC asynchronous memory port, as well as through the SPI0 serial memory interface.

Code Region

Accesses in this region (0x0000_0000 to 0x1FFF_FFFF) are performed by the core on its ICODE and DCODE interfaces, and they target the memory and cache resources within the ADI Cortex-M4F platform component.

- **Boot ROM.** A 32K byte boot ROM executed at system reset. This space supports read-only access by the M4F core only. Note that ROM memory contents cannot be modified by the user.
- **Internal SRAM Code Region.** This memory space contains the application instructions and literal (constant) data which must be executed real time. It supports read/write access by the M4F core and read/write DMA access by system devices. Internal SRAM can be partitioned between

Preliminary Technical Data

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

CODE and DATA (SRAM region in M4 space) in 64K byte blocks. Access to this region occurs at core clock speed, with no wait states.

- **Integrated Flash.** This contains the 2M byte flash memory space interfaced via the SPI2 port of the processor. This memory space contains the application instructions and literal (constant) data. Reads from flash memory are directly cached via internal code cache. Direct memory-mapped reads are permitted via SPI memory-mapped protocol.
- **Internal Code Cache.** A zero-wait-state code cache SRAM memory is available internally (not visible in the memory map) to cache instruction access from internal flash as well as any externally connected serial flash and asynchronous memory.
- **MEM-X/MEM-Y.** These are virtual memory blocks which are used as cacheable memory for the code cache. No physical memory device resides inside these blocks. The application code must be compiled against these memory blocks to utilize the cache.

SRAM Region

Accesses in this region (0x2000\,0000 to 0x3FFF_FFFF) are performed by the ARM Cortex-M4F core on its SYS interface. The SRAM region of the core can otherwise act as a data region for an application.

• **Internal SRAM Data Region.** This space can contain read/write data. Internal SRAM can be partitioned between CODE and DATA (SRAM region in M4 space) in 64K byte blocks. Access to this region occurs at core clock speed, with no wait states. It supports read/write access by the M4F core and read/write DMA access by system devices. It supports exclusive memory accesses via the global exclusive access monitor within the ADI Cortex-M4F platform. Bitbanding support is also available.

External (Memory-Mapped) Peripheral Region

- **External SPI Flash Support.** Up to 16M byte of external serial quad flash memory optionally connected to the SPI0 port of the processor. Reads from flash memory are directly cached via internal code cache. Direct memory-mapped reads are permitted via SPI memory-mapped protocol.
- **System MMRs.** Various system MMRs reside in this region. Bit-banding support is available for MMRs.

External SRAM Region

• L2 Asynchronous Memory. Up to 32M byte \times 4 banks of external memory can be optionally connected to the asynchronous memory port (SMC). Code execution from these memory blocks can be optionally cached via internal code cache. Direct R/W data access is also possible. Figure 7. ADSP-CM40x Memory Map

System Region

Accesses in this region (0xE000_0000 to 0xF7FF_FFFF) are performed by the ARM Cortex-M4F core on its SYS interface, and are handled within the ADI Cortex-M4F platform. The MPU may be programmed to limit access to this space to privileged mode only.

- **CoreSight ROM.** The ROM table entries point to the debug components of the processor.
- **ARM PPB Peripherals.** This space is defined by ARM and occupies the bottom 256K byte of the SYS region $(0xE000\ 0000$ to $0xE004\ 0000)$. The space supports read/write access by the M4F core to the ARM core's internal peripherals (MPU, ITM, DWT, FPB, SCS, TPIU, ETM) and the CoreSight ROM. It is not accessible by system DMA.
- **Platform Control Registers.** This space has registers within the ADI Cortex-M4F platform component that control the ARM core, its memory, and the code cache. It is accessible by the M4F core via its SYS port (but is not accessible by system DMA).

Static Memory Controller (SMC)

The SMC can be programmed to control up to four banks of external memories or memory-mapped devices, with very flexible timing parameters. Each bank occupies a 32M byte segment regardless of the size of the device used.

Booting

The processor has several mechanisms for automatically loading internal and external memory after a reset. The boot mode is defined by the SYS_BMODE input pins dedicated for this purpose. There are two categories of boot modes. In master boot modes, the processor actively loads data from a serial memory. In slave boot modes, the processor receives data from external host devices.

The boot modes are shown in [Table 2.](#page-9-2) These modes are implemented by the SYS_BMODE bits of the RCU_CTL register and are sampled during power-on resets and software-initiated resets.

Table 2. Boot Modes

SECURITY FEATURES

The processor provides a combination of hardware and software protection mechanisms that lock out access to the part in secure mode, but grant access in open mode. These mechanisms include password-protected slave boot modes (SPI and UART), as well as password-protected JTAG/SWD debug interfaces.

PROCESSOR RELIABILITY FEATURES

The processor provides the following features which can enhance or help achieve certain levels of system safety and reliability. While the level of safety is mainly dominated by system considerations, the following features are provided to enhance robustness.

Multi-Parity-Bit-Protected L1 Memories

In the processor's SRAM and cache L1 memory space, each word is protected by multiple parity bits to detect the single event upsets that occur in all RAMs.

Cortex MPU

The MPU divides the memory map into a number of regions, and allows the system programmer to define the location, size, access permissions, and memory attributes of each region. It supports independent attribute settings for each region, overlapping regions, and export of memory attributes to the system.

For more information, refer to http://infocenter.arm.com/

System Protection

All system resources and L2 memory banks can be controlled by either the processor core, memory-to-memory DMA, or the debug unit. A system protection unit (SPU) enables write accesses to specific resources that are locked to a given master. System protection is enabled in greater granularity for some modules through a *global lock* concept.

Watchpoint Protection

The primary purpose of watchpoints and hardware breakpoints is to serve emulator needs. When enabled, they signal an emulator event whenever user-defined system resources are accessed or a core executes from user-defined addresses. Watchdog events can be configured such that they signal the events to the core or to the SEC.

Software Watchdog

The on-chip watchdog timer can provide software-based supervision of the ADSP-CM40x core.

Signal Watchdogs

The eight general-purpose timers feature two modes to monitor off-chip signals. The Watchdog Period mode monitors whether external signals toggle with a period within an expected range. The Watchdog Width mode monitors whether the pulse widths of external signals are in an expected range. Both modes help to detect incorrect undesired toggling (or lack thereof) of system-level signals.

Oscillator Watchdog

The oscillator watchdog monitors the external clock oscillator, and can detect the absence of clock as well as incorrect harmonic oscillation. The oscillator watchdog detection signal is routed to the fault management portion of the System Event Controller.

Low-Latency Sinc Filter Over-range Detection

The SINC filter units provide a low-latency secondary filter with programmable positive and negative limit detectors for each input channel. These may be used to monitor an isolation ADC bitstream for over- or under-range conditions with a filter group delay as low as 0.7 μs on a 10 MHz bitstream. The secondary SINC filter events can be used to interrupt the core, to trigger other events directly in hardware using the Trigger Routing Unit (TRU), or to signal the Fault Management Unit of a system fault.

Up/Down Count Mismatch Detection

The GP counter can monitor external signal pairs, such as request/grant strobes. If the edge count mismatch exceeds the expected range, the up/down counter can flag this to the processor or to the SEC.

Fault Management

The fault management unit is part of the system event controller (SEC). Most system events can be defined as faults. If defined as such, the SEC forwards the event to its fault management unit which may automatically reset the entire device for reboot, or simply toggle the SYS_FAULT output pin to signal off-chip hardware. Optionally, the fault management unit can delay the action taken via a keyed sequence, to provide a final chance for the core to resolve the crisis and to prevent the fault action from being taken.

ADDITIONAL PROCESSOR PERIPHERALS

The processor contains a rich set of peripherals connected to the core via several concurrent high-bandwidth buses, providing flexibility in system configuration as well as excellent overall system performance (see the block diagram [on Page 1\)](#page-0-2).

The processor contains high speed serial and parallel ports, an interrupt controller for flexible management of interrupts from the on-chip peripherals or external sources, and power management control functions to tailor the performance and power characteristics of the processor and system to many application scenarios.

The following sections describe additional peripherals that were not described in the previous sections.

Timers

The processor includes several timers which are described in the following sections.

General-Purpose Timers

The GP timer unit provides eight general-purpose programmable timers. Each timer has an external pin that can be configured either as a pulse width modulator (PWM) or timer output, as an

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

input to clock the timer, or as a mechanism for measuring pulse widths and periods of external events. These timers can be synchronized to an external clock input on the TMRx pins, an external signal on the TM0_CLK input pin, or to the internal SYSCLK.

The timer unit can be used in conjunction with the UARTs and the CAN controller to measure the width of the pulses in the data stream to provide a software auto-baud detect function for the respective serial channels.

The timer can generate interrupts to the processor core, providing periodic events for synchronization to either the system clock or to external signals. Timer events can also trigger other peripherals via the TRU (for instance, to signal a fault).

Watchdog Timer

The core includes a 32-bit timer, which may be used to implement a software watchdog function. A software watchdog can improve system availability by forcing the processor to a known state, via generation of a hardware reset, nonmaskable interrupt (NMI), or general-purpose interrupt, if the timer expires before being reset by software. The programmer initializes the count value of the timer, enables the appropriate interrupt, then enables the timer. Thereafter, the software must reload the counter before it counts to zero from the programmed value. This protects the system from remaining in an unknown state where software, which would normally reset the timer, has stopped running due to an external noise condition or software error.

After a reset, software can determine if the watchdog was the source of the hardware reset by interrogating a status bit that is set only upon a watchdog generated reset.

3-Phase PWM Units

The Pulse Width Modulator (PWM) unit provides duty cycle and phase control capabilities to a resolution of one system clock cycle (SYSCLK). The Heightened Precision PWM (HPPWM) module provides increased performance to the PWM unit by increasing its resolution by several bits, resulting in Enhanced Precision levels. Additional features include:

- 16-bit center-based PWM generation unit
- Programmable PWM pulse width
- Single/double update modes
- Programmable dead time and switching frequency
- Twos-complement implementation which permits smooth transition to full ON and full OFF states
- Dedicated asynchronous PWM shutdown signal

Each PWM block integrates a flexible and programmable 3-phase PWM waveform generator that can be programmed to generate the required switching patterns to drive a 3-phase voltage source inverter for ac induction motor (ACIM) or permanent magnet synchronous motor (PMSM) control. In addition, the PWM block contains special functions that considerably simplify the generation of the required PWM

switching patterns for control of the electronically commutated motor (ECM) or brushless dc motor (BDCM). Software can enable a special mode for switched reluctance motors (SRM).

The eight PWM output signals (per PWM unit) consist of four high-side drive signals and four low-side drive signals. The polarity of a generated PWM signal can be set with software, so that either active HI or active LO PWM patterns can be produced.

Each PWM unit features a dedicated asynchronous shutdown pin which (when brought low) instantaneously places all PWM outputs in the OFF state.

Serial Ports (SPORTs)

The synchronous serial ports provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices such as Analog Devices' audio codecs, ADCs, and DACs. The serial ports are made up of two data lines, a clock, and frame sync. The data lines can be programmed to either transmit or receive and each data line has a dedicated DMA channel.

Serial port data can be automatically transferred to and from on-chip memory/external memory via dedicated DMA channels. Each of the serial ports can work in conjunction with another serial port to provide TDM support. In this configuration, one SPORT provides two transmit signals while the other SPORT provides the two receive signals. The frame sync and clock are shared.

Serial ports operate in five modes:

- Standard DSP serial mode
- Multichannel (TDM) mode
- I^2S mode
- Packed I²S mode
- Left-justified mode

GENERAL-PURPOSE COUNTERS

The 32-bit counter can operate in general-purpose up/down count modes and can sense 2-bit quadrature or binary codes as typically emitted by industrial drives or manual thumbwheels. Count direction is either controlled by a level-sensitive input pin or by two edge detectors.

A third counter input can provide flexible zero marker support and can alternatively be used to input the push-button signal of thumb wheels. All three pins have a programmable debouncing circuit.

The GP Counter can also support a programmable M/N frequency scaling of the CNT_CUD and CNT_CDG pins onto output pins in Quadrature Encoding Mode.

Internal signals forwarded to each general-purpose timer enable these timers to measure the intervals between count events. Boundary registers enable auto-zero operation or simple system warning by interrupts when programmable count values are exceeded.

SERIAL PERIPHERAL INTERFACE (SPI) PORTS

The processor contains the SPI-compatible port that allows the processor to communicate with multiple SPI-compatible devices.

In its simplest mode, the SPI interface uses three pins for transferring data: two data pins Master Output-Slave Input and Master Input-Slave Output (SPI_MOSI and SPI_MISO) and a clock pin, SPI_CLK. A SPI chip select input pin (SPI_SS) lets other SPI devices select the processor, and seven SPI chip select output pins (SPI_SELn) let the processor select other SPI devices. The SPI select pins are reconfigured general-purpose I/O pins. Using these pins, the SPI provides a full-duplex, synchronous serial interface, which supports both master and slave modes and multimaster environments.

The SPI port's baud rate and clock phase/polarities are programmable, and it has integrated DMA channels for both transmit and receive data streams.

UART PORTS

The processor provides full-duplex universal asynchronous receiver/transmitter (UART) ports, which are fully compatible with PC-standard UARTs. Each UART port provides a simplified UART interface to other peripherals or hosts, supporting full-duplex, DMA-supported, asynchronous transfers of serial data. A UART port includes support for five to eight data bits, and none, even, or odd parity. Optionally, an additional address bit can be transferred to interrupt only addressed nodes in multi-drop bus (MDB) systems. A frame is terminated by one, one and a half, two or two and a half stop bits.

The UART ports support automatic hardware flow control through the Clear To Send (CTS) input and Request To Send (RTS) output with programmable assertion FIFO levels.

To help support the Local Interconnect Network (LIN) protocols, a special command causes the transmitter to queue a break command of programmable bit length into the transmit buffer. Similarly, the number of stop bits can be extended by a programmable inter-frame space.

The capabilities of the UARTs are further extended with support for the Infrared Data Association (IrDA®) serial infrared physical layer link specification (SIR) protocol.

TWI CONTROLLER INTERFACE

The processor includes a 2-wire interface (TWI) module for providing a simple exchange method of control data between multiple devices. The TWI module is compatible with the widely used I^2C bus standard. The TWI module offers the capabilities of simultaneous master and slave operation and support for both 7-bit addressing and multimedia data arbitration. The TWI interface utilizes two pins for transferring clock (TWI_SCL) and data (TWI_SDA) and supports the protocol at speeds up to 400k bits/sec. The TWI interface pins are compatible with 5 V logic levels.

Additionally, the TWI module is fully compatible with serial camera control bus (SCCB) functionality for easier control of various CMOS camera sensor devices.

CONTROLLER AREA NETWORK (CAN)

The CAN controller implements the CAN 2.0B (active) protocol. This protocol is an asynchronous communications protocol used in both industrial and automotive control systems. The CAN protocol is well suited for control applications due to its capability to communicate reliably over a network. This is because the protocol incorporates CRC checking, message error tracking, and fault node confinement.

The CAN controller offers the following features:

- 32 mailboxes (8 receive only, 8 transmit only, 16 configurable for receive or transmit).
- Dedicated acceptance masks for each mailbox.
- Additional data filtering on first two bytes.
- Support for both the standard (11-bit) and extended (29 bit) identifier (ID) message formats.
- Support for remote frames.
- Active or passive network support.
- CAN wakeup from hibernation mode (lowest static power consumption mode).
- Interrupts, including: TX complete, RX complete, error and global.

An additional crystal is not required to supply the CAN clock, as the CAN clock is derived from a system clock through a programmable divider.

10/100 ETHERNET MAC

The processor can directly connect to a network by way of an embedded fast Ethernet media access controller (MAC) that supports both 10-BaseT (10M bits/sec) and 100-BaseT (100M bits/sec) operation. The 10/100 Ethernet MAC peripheral on the processor is fully compliant to the IEEE 802.3-2002 standard. It provides programmable features designed to minimize supervision, bus use, or message processing by the rest of the processor system.

Some standard features are:

- Support for RMII protocols for external PHYs
- Full duplex and half duplex modes
- Media access management (in half-duplex operation)
- Flow control
- Station management: generation of MDC/MDIO frames for read-write access to PHY registers

Some advanced features are:

- Automatic checksum computation of IP header and IP payload fields of Rx frames
- Independent 32-bit descriptor-driven receive and transmit DMA channels
- Frame status delivery to memory through DMA, including frame completion semaphores for efficient buffer queue management in software

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

- Tx DMA support for separate descriptors for MAC header and payload to eliminate buffer copy operations
- Convenient frame alignment modes
- 47 MAC management statistics counters with selectable clear-on-read behavior and programmable interrupts on half maximum value
- Advanced power management
- Magic packet detection and wakeup frame filtering
- Support for 802.3Q tagged VLAN frames
- Programmable MDC clock rate and preamble suppression

IEEE 1588 Support

The IEEE 1588 standard is a precision clock synchronization protocol for networked measurement and control systems. The processor includes hardware support for IEEE 1588 with an integrated precision time protocol synchronization engine. This engine provides hardware assisted time stamping to improve the accuracy of clock synchronization between PTP nodes. The main features of the engine are:

- Support for both IEEE 1588-2002 and IEEE 1588-2008 protocol standards
- 64-bit hardware assisted time stamping for transmit and receive frames capable of up to 10 ns resolution
- Identification of PTP message type, version, and PTP payload in frames sent directly over Ethernet and transmission of the status
- Coarse and fine correction methods for system time update
- Alarm features: target time can be set to interrupt when system time reaches target time
- Pulse-Per-Second output for physical representation of the system time. Flexibility to control the Pulse-Per-Second (PPS) output signal including control of start time, stop time, PPS output width and interval
- Automatic detection and time stamping of PTP messages over IPv4, IPv6 and Ethernet packets
- Multiple input clock sources (SYSCLK, RMII clock, external clock)
- Auxiliary snapshot to time stamp external events

USB 2.0 ON-THE-GO DUAL-ROLE DEVICE CONTROLLER

The USB 2.0 OTG dual-role device controller provides a lowcost connectivity solution for the growing adoption of this bus standard in industrial applications, as well as consumer mobile devices such as cell phones, digital still cameras, and MP3 players. The USB 2.0 controller is a full-speed-only (FS) interface that allows these devices to transfer data using a point-to-point USB connection without the need for a PC host. The module can operate in a traditional USB peripheral-only mode as well as the host mode presented in the On-the-Go (OTG) supplement to the USB 2.0 specification.

CLOCK AND POWER MANAGEMENT

The processor provides three operating modes, each with a different performance/power profile. Control of clocking to each of the processor peripherals also reduces power consumption. See [Table 3](#page-13-1) for a summary of the power settings for each mode.

Table 3. Power Settings

Crystal Oscillator (SYS_XTAL)

The processor can be clocked by an external crystal, a sine wave input, or a buffered, shaped clock derived from an external clock oscillator. If an external clock is used, it should be a TTL compatible signal and must not be halted, changed, or operated below the specified frequency during normal operation. This signal is connected to the processor's SYS_CLKIN pin. When an external clock is used, the SYS_XTAL pin must be left unconnected. Alternatively, because the processor includes an on-chip oscillator circuit, an external crystal may be used.

Oscillator Watchdog

A programmable Oscillator Watchdog unit is provided to allow verification of proper startup and harmonic mode of the external crystal. This allows the user to specify the expected frequency of oscillation, and to enable detection of non-oscillation and improper-oscillation faults. These events can be routed to the SYS_FAULT output pin and/or to cause a reset of the part.

Clock Generation

The clock generation unit (CGU) generates all on-chip clocks and synchronization signals. Multiplication factors are programmed to the PLLs to define the PLLCLK frequency. Programmable values divide the PLLCLK frequency to generate the core clock (CCLK), the system clocks (SYSCLK) and the output clock (OCLK). This is illustrated in [Figure 8 on Page 34](#page-33-2).

Writing to the CGU control registers does not affect the behavior of the PLL immediately. Registers are first programmed with a new value, and the PLL logic executes the changes so that it transitions smoothly from the current conditions to the new ones.

SYS_CLKIN oscillations start when power is applied to the V_{DD-EXT} pins. The rising edge of $\overline{SYS_HWRST}$ can be applied as soon as all voltage supplies are within specifications (see [Oper](#page-33-1)[ating Conditions on Page 34\)](#page-33-1), and SYS_CLKIN oscillations are stable.

A SYS_CLKOUT output pin has programmable options to output divided-down versions of the on-chip clocks, including USB clocks. By default, the SYS_CLKOUT pin drives a buffered version of the SYS_CLKIN input. Clock generation faults (for example PLL unlock) may trigger a reset by hardware.

Clock Out/External Clock

SYS_CLKOUT can be used to output one of several different clocks used on the processor. The clocks shown in [Table 4](#page-13-2) can be outputs from SYS_CLKOUT.

Power Management

As shown in [Table 5](#page-13-3) and [Figure 4 on Page 6](#page-5-0), the processor supports three different power domains, V_{DD_INT} , V_{DD_EXT} and V_{DD} _{ANA}. By isolating the internal logic of the processor into its own power domain, separate from other I/O, the processor can take advantage of dynamic power management without affecting the other I/O devices. There are no sequencing requirements for the various power domains, but all domains must be powered according to the appropriate [Specifications](#page-33-0) table for processor operating conditions; even if the feature/peripheral is not used.

The dynamic power management feature of the processor allows the processor's core clock frequency (f_{CCLK}) to be dynamically controlled.

Table 5. Power Domains

The power dissipated by a processor is largely a function of its clock frequency and the square of the operating voltage. For example, reducing the clock frequency by 25% results in a 25% reduction in dynamic power dissipation. For more information on power pins, see [Operating Conditions on Page 34.](#page-33-1)

Full-On Operating Mode—Maximum Performance

In the full-on mode, the PLL is enabled and is not bypassed, providing capability for maximum operational frequency. This is the execution state in which maximum performance can be achieved. The processor core and all enabled peripherals run at full speed.

For more information about PLL controls, see the "Dynamic Power Management" chapter in the *ADSP-CM40x Mixed-Signal Control Processor with ARM Cortex-M4 Hardware Reference*.

Deep Sleep Operating Mode—Maximum Dynamic Power Savings

The deep sleep mode maximizes dynamic power savings by disabling the clocks to the processor core and to all synchronous peripherals. Asynchronous peripherals may still be running but cannot access internal resources or external memory.

Voltage Regulation for VDD_INT

TBD

Reset Control Unit

Reset is the initial state of the whole processor or of the core and is the result of a hardware or software triggered event. In this state, all control registers are set to their default values and functional units are idle. Exiting a core only reset starts with the core being ready to boot.

The Reset Control Unit (RCU) controls how all the functional units enter and exit reset. Differences in functional requirements and clocking constraints define how reset signals are generated. Programs must guarantee that none of the reset functions puts the system into an undefined state or causes resources to stall.

From a system perspective reset is defined by both the reset target and the reset source as described below.

Target defined:

- Hardware Reset All functional units are set to their default states without exception. History is lost.
- System Reset All functional units except the RCU are set to their default states.
- The processor core-only reset Affects the core only. The system software should guarantee that the core in reset state is not accessed by any bus master.

Source defined:

- Hardware Reset The \overline{SYS} HWRST input signal is asserted active (pulled down).
- System Reset May be triggered by software (writing to the RCU_CTL register) or by another functional unit such as the dynamic power management (DPM) unit or any of the system event controller (SEC), trigger routing unit (TRU), or emulator inputs.
- Trigger request (peripheral).

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

SYSTEM DEBUG

The processor includes various features that allow for easy system debug. These are described in the following sections.

JTAG debug and Serial Wire Debug Port (SWJ-DP)

SWJ-DP is a combined JTAG-DP and SW-DP that enables either a Serial Wire Debug (SWD) or JTAG probe to be connected to a target. SWD signals share the same pins as JTAG. There is an auto detect mechanism that switches between JTAG-DP and SW-DP depending on which special data sequence is used the emulator pod transmits to the JTAG pins.The SWJ-DP behaves as a JTAG target if normal JTAG sequences are sent to it and as a single wire target if the SW_DP sequence is transmitted.

Embedded Trace Macrocell (ETM) and Instrumentation Trace Macrocell (ITM)

The ADSP-CM40x processors support both Embedded Trace Macrocell (ETM) and Instrumentation Trace Macrocell (ITM). These both offer an optional debug component that enables logging of real-time instruction and data flow within the CPU core. This data is stored and read through special debugger pods that have the trace feature capability. The ITM is a single-data pin feature and the ETM is a 4-data pin feature.

System Watchpoint Unit

The System Watchpoint Unit (SWU) is a single module which connects to a single system bus and provides for transaction monitoring. One SWU is attached to the bus going to each system slave. The SWU provides ports for all system bus address channel signals. Each SWU contains four match groups of registers with associated hardware. These four SWU match groups operate independently, but share common event (interrupt and trigger) outputs.

DEVELOPMENT TOOLS

The ADSP-CM40x processor is supported with a set of highly sophisticated and easy-to-use development tools for embedded applications. For more information, see the Analog Devices website.

RELATED DOCUMENTS

TRD

Instruction Set Description

See ARM documents.

RELATED SIGNAL CHAINS

A *signal chain* is a series of signal-conditioning electronic components that receive input (data acquired from sampling either real-time phenomena or from stored data) in tandem, with the output of one portion of the chain supplying input to the next. Signal chains are often used in signal processing applications to gather and process data or to apply system controls based on analysis of real-time phenomena. For more information about this term and related topics, see the "signal chain" entry in the [Glossary of EE Terms](http://www.analog.com/en/technical-documentation/glossary/index.html) on the Analog Devices website.

Analog Devices eases signal processing system development by providing signal processing components that are designed to work together well. A tool for viewing relationships between specific applications and related components is available on the www.analog.com website.

The Application Signal Chains page in the Circuits from the Lab[™] site ([http:\\www.analog.com\circuits](http://www.analog.com/circuits)) provides:

- Graphical circuit block diagram presentation of signal chains for a variety of circuit types and applications
- Drill down links for components in each chain to selection guides and application information
- Reference designs applying best practice design techniques

ADSP-CM402F/ADSP-CM403F SIGNAL DESCRIPTIONS

[Table 6](#page-16-1) identifies each signal on the chip, describes the signal, and lists the driver type, port, and lead name.

Table 6. ADSP-CM402F/ADSP-CM403F Signal Descriptions

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

ADSP-CM402F/ADSP-CM403F MULTIPLEXED PINS

[Table 7](#page-21-1) through [Table 9](#page-22-0) identify the signals on each multiplexed pin on the chip, one table per port. The various functions are accessed through the indicated PORT_FER register and PORT_MUX register settings for each port.

Table 7. Signal Muxing Table Port A

Table 8. Signal Muxing Table Port B

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

Table 9. Signal Muxing Table Port C

ADSP-CM407F/ADSP-CM408F SIGNAL DESCRIPTIONS

[Table 10](#page-23-1) identifies each signal on the chip, describes the signal, and lists the driver type, port, and lead name.

Table 10. ADSP-CM407F/ADSP-CM408F Signal Descriptions

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

ADSP-CM407F/ADSP-CM408F MULTIPLEXED PINS

[Table 11](#page-30-1) through [Table 16](#page-32-0) identify the signals on each multiplexed pin on the chip, one table per port. The various functions are accessed through the indicated PORT_FER register and PORT_MUX register settings for each port.

Table 11. Signal Muxing Table Port A

Table 12. Signal Muxing Table Port B

Table 13. Signal Muxing Table Port C

Table 14. Signal Muxing Table Port D

Table 15. Signal Muxing Table Port E

Table 16. Signal Muxing Table Port F

SPECIFICATIONS

For information about product specifications please contact your ADI representative.

OPERATING CONDITIONS

¹The expected nominal value is 1.2 V ±5%, and initial customer designs should design with a programmable regulator that can be adjusted from 1.0 V to 1.4 V in 50 mV steps. 2 Must remain powered (even if the associated function is not used).

³ Parameter value applies to all input and bidirectional signals except TWI signals and USB0 signals.

⁴ Parameter applies to TWI_SDA and TWI_SCL.

Clock Related Operating Conditions

[Table 17](#page-33-4) describes the core clock timing requirements. The data presented in the tables applies to all speed grades except where expressly noted. [Figure 8](#page-33-2) provides a graphical representation of the various clocks and their available divider values.

Table 17. Clock Operating Conditions

Table 18. Phase-Locked Loop Operating Conditions

Figure 8. Clock Relationships and Divider Values

ELECTRICAL CHARACTERISTICS

¹ Applies to bidirectional pins TWI_SCL and TWI_SDA.

² Applies to input pins.

³ Applies to JTAG input pins (JTG_TCK, JTG_TDI, JTG_TMS, JTG_TRST).

⁴ Applies to three-statable pins.

⁵ Guaranteed, but not tested.

⁶ Applies to all signal pins.

⁷ See the *ADSP-CM40x Mixed-Signal Control Processor with ARM Cortex-M4 Hardware Reference* for definition of deep sleep operating mode.

Total Power Dissipation

Total power dissipation has two components:

1. Static, including leakage current

2. Dynamic, due to transistor switching characteristics

Many operating conditions can also affect power dissipation, including temperature, voltage, operating frequency, and processor activity. [Electrical Characteristics on Page 35](#page-34-0) shows the current dissipation for internal circuitry (V_{DD-NT}) .

IDD_DEEPSLEEP specifies static power dissipation as a function of voltage ($V_{DD~INT}$) and temperature, and $I_{DD~INT}$ specifies the total power specification for the listed test conditions, including the dynamic component as a function of voltage (V_{DD-NT}) and frequency.

There are two parts to the dynamic component. The first part is due to transistor switching in the core clock (CCLK) domain. This part is subject to an Activity Scaling Factor (ASF) which represents application code running on the processor core and L1 memories.

The ASF is combined with the CCLK frequency and V_{DD_INT} dependent data in Table TBD to calculate this part. The second part is due to transistor switching in the system clock (SYSCLK) domain, which is included in the I_{DD-NT} specification equation (TBD).

ADC/DAC SPECIFICATIONS

ADC Specifications

Typical values assume $V_{DD_ANA} = 3.3 V$, $V_{REF} = 2.5 V$, $T_{\text{JUNCTION}} = 25^{\circ}\text{C}$ unless otherwise noted.

Preliminary Technical Data

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

DAC Specifications

Typical values assume $V_{DD_ANA} = 3.3 V$, $V_{REF} = 2.5 V$, $T_{\text{JUNCTION}} = 25^{\circ}\text{C}$ unless otherwise noted.

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

ADC Typical Performance Characteristics

 $V_{DD_ANA} = 3.3 V$, $V_{REF} = 2.5 V$, $T_{JUNCTION} = 25°C$ unless otherwise noted.

Figure 11. Histogram of DC Input at Code Center (Internal Reference) **CODE IN HEX**

1FFD 1FFE 1FFF 2000 2001 2002 2003 2004

1FFC

Figure 14. Histogram of DC Input at Code Transition (Internal Reference)

CODE IN HEX

1FFC

Figure 15. FFT Plot (External Reference)

Figure 16. SNR, SINAD, and ENOB vs. External Reference Voltage

Figure 17. SINAD vs. Frequency

Figure 19. THD and SFDR vs. External Reference Voltage

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

DAC Typical Performance Characteristics

 $V_{DD_ANA} = 3.3 V$, $V_{REF} = 2.5 V$, $T_{JUNCTION} = 25°C$ unless otherwise noted.

Figure 27. Zero-Code Error and Offset Error vs. Supply

Figure 28. Gain Error and Full-Scale Error vs. Temperature

Figure 29. Noise Spectral Density

Figure 30. Gain Error and Full-Scale Error vs. Supply

Figure 31. Settling Time vs. Capacitive Load

FLASH SPECIFICATIONS

The Flash features include:

- 100,000 ERASE cycles per sector
- 20 years data retention

Flash PROGRAM/ERASE SUSPEND Command

[Table 19](#page-42-2) lists parameters for the Flash suspend command.

Table 19. Suspend Parameters^{1,2,3}

 $^{\rm 1}$ Timing is not internally controlled.

² Any READ command accepted.

³ Any command except the following are accepted: SECTOR, SUBSECTOR, or BULK ERASE; WRITE STATUS REGISTER.

Flash AC Characteristics and Operating Conditions

[Table 20](#page-42-1) identifies Flash specific operating conditions.

Table 20. AC Characteristics and Operating Conditions

¹ Typical values given for T_J = 25°C.

² When using the PAGE PROGRAM command to program consecutive bytes, optimized timings are obtained with one sequence including all the bytes versus several sequences of only a few bytes ($1 < n < 256$).

 $3 \text{ int}(A)$ corresponds to the upper integer part of A. For example $\text{int}(12/8) = 2$, $\text{int}(32/8) = 4 \text{ int}(15.3) = 16$.

ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed in the table may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 1 Applies to 100% transient duty cycle. For other duty cycles see [Table 21](#page-43-0). 2 Applies only when V $_{\rm DD_EXT}$ is within specifications. When V $_{\rm DD_EXT}$ is outside specifications, the range is $V_{DD_EXT} \pm 0.2$ Volts.

3Applies to pins TWI_SCL and TWI_SDA.

Table 21. Maximum Duty Cycle for Input Transient Voltage1

¹ Applies to all signal pins with the exception of SYS_CLKIN, SYS_XTAL.

ESD SENSITIVITY

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PACKAGE INFORMATION

The information presented in [Figure 32](#page-43-3) and [Table 22](#page-43-4) provides details about package branding. For a complete listing of product availability, see [Pre-Release Products on Page 82.](#page-81-0)

Figure 32. Product Information on Package

Table 22. Package Brand Information

¹ See available products in [Pre-Release Products on Page 82.](#page-81-0)

TIMING SPECIFICATIONS

Specifications are subject to change without notice.

Clock and Reset Timing

[Table 23](#page-44-0) and [Figure 33](#page-44-1) describe clock and reset operations. Per the CCLK, SYSCLK, SCLK, DCLK, and OCLK timing specifications in [Table 17 on Page 34](#page-33-0), combinations of SYS_CLKIN and clock multipliers must not select clock rates in excess of the processor's maximum instruction rate.

Table 23. Clock and Reset Timing

¹ Applies to PLL bypass mode and PLL non bypass mode.

² The t_{CKIN} period (see [Figure 33](#page-44-1)) equals $1/f_{CKIN}$.

 3 If the CGU_CTL.DF bit is set, the minimum $\rm\,f_{CKIN}$ specification is 40 MHz.

⁴ Applies after power-up sequence is complete. See [Table 24](#page-45-0) and [Figure 34](#page-45-1) for power-up reset timing.

Figure 33. Clock and Reset Timing

Power-Up Reset Timing

In [Figure 34](#page-45-1), $V_{DD_SUPPLIES}$ are V_{DD_INT} , V_{DD_EXT} , $\rm V_{DD_VREG}$, $\rm V_{DD_ANA0}$, and $\rm V_{DD_ANA1}$.

Table 24. Power-Up Reset Timing

Figure 34. Power-Up Reset Timing

Asynchronous Read

Table 25. Asynchronous Memory Read (BxMODE = b#00)

 1 SMC0_BxCTL.ARDYEN bit = 1.

 $^2\rm{RAT}$ value set using the SMC_BxTIM.RAT bits.

³ PREST, RST, and PREAT values set using the SMC_BxETIM.PREST bits, SMC_BxTIM.RST bits, and the SMC_BxETIM.PREAT bits.

⁴ Output signals are SMC0_Ax, SMC0_AMS, SMC0_AOE, SMC0_ABEx.

⁵ RHT value set using the SMC_BxTIM.RHT bits.

 6 SMC0_BxCTL.ARDYEN bit = 0.

Figure 35. Asynchronous Read

Asynchronous Flash Read

Table 26. Asynchronous Flash Read

¹ PREST value set using the SMC_BxETIM.PREST bits.

 2 RST value set using the SMC_BxTIM.RST bits.

³ PREAT value set using the SMC_BxETIM.PREAT bits.

⁴ Output signals are SMC0_Ax, SMC0_AMS, SMC0_AOE.

⁵ RHT value set using the SMC_BxTIM.RHT bits.

 6 SMC0_BxCTL.ARDYEN bit = 0.

 7 RAT value set using the SMC_BxTIM.RAT bits.

Figure 36. Asynchronous Flash Read

Asynchronous Page Mode Read

Table 27. Asynchronous Page Mode Read

¹ PREST, RST, PREAT and RAT values set using the SMC_BxETIM.PREST bits, SMC_BxTIM.RST bits, SMC_BxETIM.PREAT bits, and the SMC_BxTIM.RAT bits. 2 RST value set using the SMC_BxTIM.RST bits.

³ Output signals are SMC0_Ax, SMC0_AMSx, SMC0_AOE.

⁴ RHT value set using the SMC_BxTIM.RHT bits.

 5 SMC_BxCTL.ARDYEN bit = 0.

 $^6\rm{RAT}$ value set using the SMC_BxTIM.RAT bits.

Figure 37. Asynchronous Page Mode Read

Asynchronous Write

Table 28. Asynchronous Memory Write (BxMODE = b#00)

 1 SMC_BxCTL.ARDYEN bit = 1.

 2 WAT value set using the SMC_BxTIM.WAT bits.

³ PREST, WST, PREAT values set using the SMC_BxETIM.PREST bits, SMC_BxTIM.WST bits, SMC_BxETIM.PREAT bits, and the SMC_BxTIM.RAT bits.

⁴ Output signals are DATA, SMC0_Ax, SMC0_AMSx, SMC0_ABEx.

⁵ WHT value set using the SMC_BxTIM.WHT bits.

 6 SMC_BxCTL.ARDYEN bit = 0.

Figure 38. Asynchronous Write

Asynchronous Flash Write

Table 29. Asynchronous Flash Write

¹ PREST value set using the SMC_BxETIM.PREST bits.

² PREAT value set using the SMC_BxETIM.PREAT bits.

³ WST value set using the SMC_BxTIM.WST bits.

⁴ Output signals are DATA, SMC0_Ax, SMC0_AMSx, SMC0_ABEx.

⁵ WHT value set using the SMC_BxTIM.WHT bits.

 6 SMC_BxCTL.ARDYEN bit = 0.

 $^7\rm{WAT}$ value set using the SMC_BxTIM.WAT bits.

Figure 39. Asynchronous Flash Write

All Accesses

Table 30. All Accesses

Serial Ports

To determine whether communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame sync setup and hold, 2) data delay and data setup and hold, and 3) serial clock

Table 31. Serial Ports—External Clock

(SPT_CLK) width. In [Figure 40](#page-53-0) either the rising edge or the falling edge of SPT_CLK (external or internal) can be used as the active sampling edge.

¹ Referenced to sample edge.

 $^{\rm 2}$ Whichever is greater.

³ Referenced to drive edge.

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

Table 32. Serial Ports—Internal Clock

¹ Referenced to the sample edge.

² Referenced to drive edge.

 $^{\rm 3}$ Whichever is greater.

Figure 40. Serial Ports

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

Table 33. Serial Ports—Enable and Three-State

¹ Referenced to drive edge.

Figure 41. Serial Ports—Enable and Three-State

The SPT_TDV output signal becomes active in SPORT multichannel mode. During transmit slots (enabled with active channel selection registers) the SPT_TDV is asserted for communication with external devices.

Table 34. Serial Ports—TDV (Transmit Data Valid)

¹ Referenced to drive edge.

Figure 42. Serial Ports—Transmit Data Valid Internal and External Clock

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

Table 35. Serial Ports—External Late Frame Sync

 1 The $\rm t_{DDTLSE}$ and $\rm t_{DDTENES}$ parameters apply to left-justified as well as standard serial mode, and MCE = 1, MFD = 0.

Figure 43. External Late Frame Sync

Serial Peripheral Interface (SPI) Port—Master Timing

[Table 36](#page-57-1) and [Figure 44](#page-58-0) describe SPI port master operations. Note that:

- In dual mode data transmit the SPI_MISO signal is also an output.
- In quad mode data transmit the SPI_MISO, SPI_D2, and SPI_D3 signals are also outputs.

- In dual mode data receive the SPI_MOSI signal is also an input.
- In quad mode data receive the SPI_MOSI, SPI_D2, and SPI_D3 signals are also inputs.

¹ Whichever is greater.

² Applies to sequential mode with STOP \geq 1.

Preliminary Technical Data

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

Figure 44. Serial Peripheral Interface (SPI) Port—Master Timing

Serial Peripheral Interface (SPI) Port—Slave Timing

[Table 37](#page-59-1) and [Figure 45](#page-60-0) describe SPI port slave operations. Note that:

- In dual mode data transmit the SPI_MOSI signal is also an output.
- In quad mode data transmit the SPI_MOSI, SPI_D2, and SPI_D3 signals are also outputs.

Table 37. Serial Peripheral Interface (SPI) Port—Slave Timing

- In dual mode data receive the SPI_MISO signal is also an input.
- In quad mode data receive the SPI_MISO, SPI_D2, and SPI_D3 signals are also inputs.

¹ Whichever is greater.

Preliminary Technical Data

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

Figure 45. Serial Peripheral Interface (SPI) Port—Slave Timing

Serial Peripheral Interface (SPI) Port—SPI_RDY Slave Timing

Table 38. SPI Port—SPI_RDY Slave Timing

Figure 46. SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Receive (FCCH = 0)

Figure 47. SPI_RDY De-assertion from Valid Input SPI_CLK Edge in Slave Mode Transmit (FCCH = 1)

Serial Peripheral Interface (SPI) Port—Open Drain Mode Timing

In [Figure 48](#page-62-0) and [Figure 49,](#page-62-1) the outputs can be SPI_MOSI SPI_MISO, SPI_D2, and/or SPI_D3 depending on the mode of operation.

Table 39. SPI Port ODM Master Mode Timing

Figure 48. ODM Master

Table 40. SPI Port—ODM Slave Mode

Figure 49. ODM Slave

Serial Peripheral Interface (SPI) Port—SPI_RDY Timing

Table 41. SPI Port—SPI_RDY Timing

¹ BAUD value set using the SPI_CLK.BAUD bits.

Figure 50. SPI_RDY Setup Before SPI_CLK with CPHA = 0

Figure 51. SPI_RDY Setup Before SPI_CLK with CPHA = 1

Figure 52. SPI_CLK Switching Diagram after SPI_RDY Assertion, CPHA = x

General-Purpose Port Timing

[Table 42](#page-65-3) and [Figure 53](#page-65-4) describe general-purpose port operations.

Table 42. General-Purpose Port Timing

Figure 53. General-Purpose Port Timing

Timer Cycle Timing

[Table 43](#page-65-0) and [Figure 54](#page-65-1) describe timer expired operations. The input signal is asynchronous in "width capture mode" and "external clock mode" and has an absolute maximum input frequency of $(f_{SCLK}/4)$ MHz. The Width Value value is the timer period assigned in the TMx_TMRn_WIDTH register and can range from 1 to 2^{32} – 1.

Table 43. Timer Cycle Timing

 $^{\rm 1}$ The minimum pulse widths apply for TMx signals in width capture and external clock modes.

Figure 54. Timer Cycle Timing

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

Up/Down Counter/Rotary Encoder Timing

Table 44. Up/Down Counter/Rotary Encoder Timing

Figure 55. Up/Down Counter/Rotary Encoder Timing

Pulse Width Modulator (PWM) Timing

[Table 45](#page-66-1) and [Figure 56](#page-66-2) describe PWM operations.

Table 45. PWM Timing

¹ PWM outputs are: PWMx_AH, PWMx_AL, PWMx_BH, PWMx_BL, PWMx_CH, and PWMx_CL.

² When the external sync signal is synchronous to the peripheral clock, it takes fewer clock cycles for the output to appear compared to when the external sync signal is asynchronous to the peripheral clock. For more information, see the *ADSP-CM40x Microcontroller Hardware Reference*.

Figure 56. PWM Timing

Universal Asynchronous Receiver-Transmitter (UART) Ports—Receive and Transmit Timing

The UART ports receive and transmit operations are described in the *ADSP-CM40x Mixed-Signal Control Processor with ARM Cortex-M4 Hardware Reference*.

CAN Interface

The CAN interface timing is described in the *ADSP-CM40x Mixed-Signal Control Processor with ARM Cortex-M4 Hardware Reference*.

Universal Serial Bus (USB) On-The-Go—Receive and Transmit Timing

The USB interface timing is described in the *ADSP-CM40x Mixed-Signal Control Processor with ARM Cortex-M4 Hardware Reference*.

10/100 Ethernet MAC Controller Timing

[Table 46](#page-68-0) through [Table 48](#page-69-0) and [Figure 57](#page-68-1) through [Figure 59](#page-69-1) describe the 10/100 Ethernet MAC Controller operations.

Table 46. 10/100 Ethernet MAC Controller Timing: RMII Receive Signal

¹ RMII inputs synchronous to RMII REF_CLK are ERxD1-0, RMII CRS_DV, and ERxER.

Figure 57. 10/100 Ethernet MAC Controller Timing: RMII Receive Signal

Table 47. 10/100 Ethernet MAC Controller Timing: RMII Transmit Signal

¹ RMII outputs synchronous to RMII REF_CLK are ETxD1-0.

Figure 58. 10/100 Ethernet MAC Controller Timing: RMII Transmit Signal

Table 48. 10/100 Ethernet MAC Controller Timing: RMII Station Management

¹ETHx_MDC/ETHx_MDIO is a 2-wire serial bidirectional port for controlling one or more external PHYs. ETHx_MDC is an output clock whose minimum period is programmable as a multiple of the system clock SCLK. ETHx_MDIO is a bidirectional data line.

Figure 59. 10/100 Ethernet MAC Controller Timing: RMII Station Management

JTAG Test And Emulation Port Timing

[Table 49](#page-70-1) and [Figure 60](#page-70-2) describe JTAG port operations.

Table 49. JTAG Port Timing

¹ System Inputs = PA_15–0, PB_15–0, PC_15–0, PD_15–0, PE_15–0, PF_10–0, SYS_BMODE0–1, SYS_HWRST, SYS_FAULT, SYS_NMI, TWI0_SCL, TWI0_SDA.

 $2\,50$ MHz Maximum.

³ System Outputs = PA_15–0, PB_15–0, PC_15–0, PD_15–0, PE_15–0, PF_10–0, SMC0_AMS0, SMC0_ARE, SMC0_AWE, SYS_CLKOUT, SYS_FAULT, SYS_RESOUT.

Figure 60. JTAG Port Timing

OUTPUT DRIVE CURRENTS

[Figure 61](#page-71-0) and [Figure 62](#page-71-1) show typical current-voltage characteristics for the output drivers of the processors. The curves represent the current drive capability of the output drivers as a function of output voltage.

Figure 61. Driver Type A Current

Figure 62. Driver Type B Current

Capacitive Loading

Output delays and holds are based on standard capacitive loads of an average of 6 pF on all pins (see [Figure 63](#page-71-2)). $V_{\rm LOAD}$ is equal to $(V_{DD$ $_{\text{EXT}})/2$.

THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFELECT THE TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD), IS FOR LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.

ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.

Figure 63. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

The graph of [Figure 64](#page-71-3) shows how output rise and fall times vary with capacitance. The delay and hold specifications given should be derated by a factor derived from these figures. The graphs in these figures may not be linear outside the ranges shown.

Figure 64. Driver Type A Typical Rise and Fall Times (10%-90%) vs. Load **Capacitance**
ENVIRONMENTAL CONDITIONS

To determine the junction temperature on the application printed circuit board use:

$$
T_J = T_{CASE} + (\Psi_{JT} \times P_D)
$$

where:

 T_I = Junction temperature (°C)

 T_{CASE} = Case temperature (°C) measured by customer at top center of package.

 V_{IT} = From [Table 50](#page-72-0) and [Table 51](#page-72-1)

 P_D = Power dissipation (see [Total Power Dissipation on Page 35](#page-34-0) for the method to calculate P_D)

Table 50. Thermal Characteristics (120-Lead LQFP)

Parameter	Condition	Typical	Unit
θ_{JA}	0 linear m/s air flow	21.5	°C/W
θ_{JA}	1 linear m/s air flow	19.2	°C/W
θ_{JA}	2 linear m/s air flow	18.4	°C/W
$\theta_{\rm IC}$		9.29	°C/W
Ψ_{IT}	0 linear m/s air flow	0.25	°C/W
Ψ_{IT}	1 linear m/s air flow	0.40	°C/W
Ψ_{JT}	2 linear m/s air flow	0.56	°C/W

Table 51. Thermal Characteristics (176-Lead LQFP)

Values of θ_{IA} are provided for package comparison and printed circuit board design considerations. θ_{IA} can be used for a first order approximation of T_J by the equation:

$$
T_J = T_A + (\theta_{JA} \times P_D)
$$

where:

 T_A = Ambient temperature (°C)

Values of θ_{IC} are provided for package comparison and printed circuit board design considerations when an external heat sink is required.

In [Table 50](#page-72-0) and [Table 51](#page-72-1), airflow measurements comply with JEDEC standards JESD51-2 and JESD51-6. The junction-tocase measurement complies with MIL-STD-883 (Method 1012.1). All measurements use a 2S2P JEDEC test board.

120-LEAD LQFP LEAD ASSIGNMENTS

[Table 52](#page-73-0) lists the 120-lead LQFP package by lead number and [Table 53](#page-74-0) lists the 120-lead LQFP package by signal.

Table 52. 120-lead LQFP Lead Assignment (Numerical by Lead Number)

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

[Figure 65](#page-75-1) shows the top view of the 120-lead LQFP package lead configuration and [Figure 66](#page-75-0) shows the bottom view of the 120 lead LQFP package lead configuration.

Figure 65. 120-Lead LQFP Package Lead Configuration (Top View)

Figure 66. 120-Lead LQFP Package Lead Configuration (Bottom View)

176-LEAD LQFP LEAD ASSIGNMENTS

[Table 54](#page-76-0) lists the 176-lead LQFP package by lead number and [Table 55](#page-78-0) lists the 176-lead LQFP package by signal.

Lead No.	Signal Name	Lead No.	Signal Name	Lead No.	Signal Name	Lead No.	Signal Name	
$\mathbf{1}$	PA_13	46	JTG_TRST	91	PE_05	136	VDD_EXT	
2	VDD_EXT	47	JTG_TDO/SWO	92	PE_04	137	VDD_EXT	
3	PA_12	48	JTG_TMS/SWDIO	93	VDD_EXT	138	PD_12	
4	PA_11	49	PC_07	94	VDD_INT	139	PD_13	
5	PC_15	50	VDD_EXT	95	BYP_D0	140	PD_10	
6	PA_10	51	PC_05	96	GND_ANA3	141	PD_11	
7	PC_14	52	PC_06	97	ADC1_VIN00	142	PD_08	
8	VDD_EXT	53	PF_10	98	ADC1_VIN01	143	PD_09	
9	PC_13	54	PC_04	99	ADC1_VIN02	144	VDD_EXT	
10	PC_11	55	PF_08	100	ADC1_VIN03	145	PD_07	
11	PC_12	56	PF_09	101	ADC1_VIN04	146	PD_06	
12	PA_09	57	VDD_EXT	102	ADC1_VIN05	147	SMC0_AMS0	
13	PA_08	58	PF_06	103	ADC1_VIN06	148	SMCO_AWE	
14	PA_07	59	PF_07	104	ADC1_VIN07	149	SMCO_ARE	
15	VDD_EXT	60	PC_03	105	VDD_ANA1	150	VDD_EXT	
16	PA_06	61	PF_05	106	GND_ANA1	151	PB_10	
17	PA_05	62	PC_01	107	BYP_A1	152	PB_09	
18	PA_04	63	PC_02	108	VREF1	153	PB_08	
19	PA_03	64	VDD_EXT	109	GND_VREF1	154	PB_07	
20	PA_02	65	VDD_INT	110	REFCAP	155	PB_06	
21	PA_01	66	PC_00	111	GND_VREF0	156	PB_05	
22	VDD_INT	67	PF_04	112	VREFO	157	VDD_INT	
23	VDD_EXT	68	PF_03	113	BYP_A0	158	VDD_EXT	
24	SYS_RESOUT	69	PF_02	114	GND_ANA0	159	PB_03	
25	PA_00	70	PF_01	115	VDD_ANA0	160	PB_04	
26	SYS_FAULT	71	PF_00	116	ADC0_VIN07	161	PD_05	
27	SYS_HWRST	72	VDD_EXT	117	ADC0_VIN06	162	PB_02	
28	VDD_EXT	73	PE_15	118	ADC0_VIN05	163	PD_03	
29	SYS_XTAL	74	PE_14	119	ADC0_VIN04	164	PD_04	
30	SYS_CLKIN	75	PE_13	120	ADC0_VIN03	165	VDD_EXT	
31	VREG_BASE	76	PB_14	121	ADC0_VIN02	166	PD_01	
32	VDD_VREG	77	PB_15	122	ADC0_VIN01	167	PD_02	
33	VDD_EXT	78	PB_13	123	ADC0_VIN00	168	PB_01	
34	USB0_DM	79	VDD_EXT	124	GND_ANA2	169	PD_00	
35	USB0_DP	80	PB_11	125	VDD_EXT	170	PA_15	
36	USB0_VBUS	81	PB_12	126	PE_03	171	PB_00	
37	USBO_ID	82	PE_12	127	PE_02	172	VDD_EXT	
38	PC_10	83	GND	128	VDD_INT	173	PA_14	
39	PC_08	84	PE_11	129	VDD_EXT	174	SYS_CLKOUT	
40	PC_09	85	PE_10	130	PE_01	175	SYS_BMODE1	
41	VDD_EXT	86	VDD_EXT	131	GND	176	SYS_BMODE0	
* Pin no. 177 is the GND supply (see Figure 68) for the processor; this pad must connect to GND.								

Table 54. 176-lead LQFP Lead Assignment (Numerical by Lead Number)

Table 54. 176-lead LQFP Lead Assignment (Numerical by Lead Number)

* Pin no. 177 is the GND supply (see Figure 68) for the processor; this pad **must** connect to GND.

[ADSP-CM402F](http://www.analog.com/402F)/[CM403F/](http://www.analog.com/403F)[CM407F](http://www.analog.com/407F)[/CM408F](http://www.analog.com/408F)

Table 55. 176-lead LQFP Lead Assignment (Alphabetical by Signal Name)

* Pin no. 177 is the GND supply (see [Figure 68\)](#page-79-0) for the processor; this pad **must** connect to GND.

[Figure 67](#page-79-1) shows the top view of the 176-lead LQFP lead configuration and [Figure 68](#page-79-0) shows the bottom view of the 176-lead LQFP lead configuration.

Figure 67. 176-Lead LQFP_EP Lead Configuration (Top View)

Figure 68. 176-Lead LQFP_EP Lead Configuration (Bottom View)

OUTLINE DIMENSIONS

Dimensions in [Figure 69](#page-80-0) (for the 120-lead LQFP) and in [Figure 70](#page-81-0) (for the 176-lead LQFP) are shown in millimeters.

Dimensions shown in millimeters

¹ For information relating to the SW-120-3 package's exposed pad, see the table endnote in [120-Lead LQFP Lead Assignments on Page 74.](#page-73-1)

COMPLIANT TO JEDEC STANDARDS MS-026-BGA-HD

***NOTE: EXPOSED PAD DIMENSIONS ARE PRELIMINARY AND FOR ENG GRADE MATERIAL ONLY. THE PAD SIZE MAY CHANGE FOR VOLUME PRODUCTION MATERIAL. TO MAINTAIN COMPATIBILITY PCB DESIGNERS MUST OBSERVE THE SPECIFIED KEEP-OUT AREA.**

Figure 70. 176-Lead Low Profile Quad Flat Package, Exposed Pad [LQFP_EP]¹ (SW-176-3)

Dimensions shown in millimeters

¹ For information relating to the SW-176-3 package's exposed pad, see the table endnote in [176-Lead LQFP Lead Assignments on Page 77.](#page-76-1)

PRE-RELEASE PRODUCTS

¹ Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see [Operating Conditions on Page 34](#page-33-0) for the junction temperature (TJ) specification which is the only temperature specification.

² Actual temperature range for ENG grade product is subject to change, and will be provided to the customer at the time of shipment. The production target for ambient temperature is –40°C to +85°C.

©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR11805-0-9/13(PrE)

www.analog.com

ООО "ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

- *Конкурентоспособные цены и скидки постоянным клиентам.*
- *Специальные условия для постоянных клиентов.*
- *Подбор аналогов.*
- *Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.*
- *Приемлемые сроки поставки, возможна ускоренная поставка.*
- *Доставку товара в любую точку России и стран СНГ.*
- *Комплексную поставку.*
- *Работу по проектам и поставку образцов.*
- *Формирование склада под заказчика.*
- *Сертификаты соответствия на поставляемую продукцию (по желанию клиента).*
- *Тестирование поставляемой продукции.*
- *Поставку компонентов, требующих военную и космическую приемку.*
- *Входной контроль качества.*
- *Наличие сертификата ISO.*

 В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- *Регистрацию проекта у производителя компонентов.*
- *Техническую поддержку проекта.*
- *Защиту от снятия компонента с производства.*
- *Оценку стоимости проекта по компонентам.*
- *Изготовление тестовой платы монтаж и пусконаладочные работы.*

 Tел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www[.lifeelectronics.ru](http://lifeelectronics.ru/)