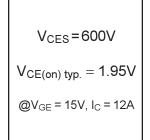
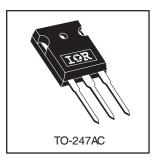
# International Rectifier

# IRG4PC30UPbF


#### INSULATED GATE BIPOLAR TRANSISTOR

#### UltraFast Speed IGBT

#### **Features**


- UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode
- Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3
- Industry standard TO-247AC package
- Lead-Free

# G C E n-channel



#### **Benefits**

- Generation 4 IGBT's offer highest efficiency available
- · IGBT's optimized for specified application conditions
- Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBT's



#### **Absolute Maximum Ratings**

|                                         | Parameter                              | Max.                              | Units |  |
|-----------------------------------------|----------------------------------------|-----------------------------------|-------|--|
| V <sub>CES</sub>                        | Collector-to-Emitter Breakdown Voltage | 600                               | V     |  |
| I <sub>C</sub> @ T <sub>C</sub> = 25°C  | Continuous Collector Current           | 23                                |       |  |
| I <sub>C</sub> @ T <sub>C</sub> = 100°C | Continuous Collector Current           | 12                                | A     |  |
| I <sub>CM</sub>                         | Pulsed Collector Current ①             | 92                                |       |  |
| I <sub>LM</sub>                         | Clamped Inductive Load Current ②       | 92                                |       |  |
| V <sub>GE</sub>                         | Gate-to-Emitter Voltage                | ± 20                              | V     |  |
| E <sub>ARV</sub>                        | Reverse Voltage Avalanche Energy ③     | 10                                | mJ    |  |
| P <sub>D</sub> @ T <sub>C</sub> = 25°C  | Maximum Power Dissipation              | 100                               | W     |  |
| P <sub>D</sub> @ T <sub>C</sub> = 100°C | Maximum Power Dissipation              | 42                                | ¬     |  |
| T <sub>J</sub>                          | Operating Junction and                 | -55 to + 150                      |       |  |
| T <sub>STG</sub>                        | Storage Temperature Range              |                                   | °C    |  |
|                                         | Soldering Temperature, for 10 seconds  | 300 (0.063 in. (1.6mm from case ) | ]     |  |
|                                         | Mounting torque, 6-32 or M3 screw.     | 10 lbf•in (1.1N•m)                |       |  |

#### Thermal Resistance

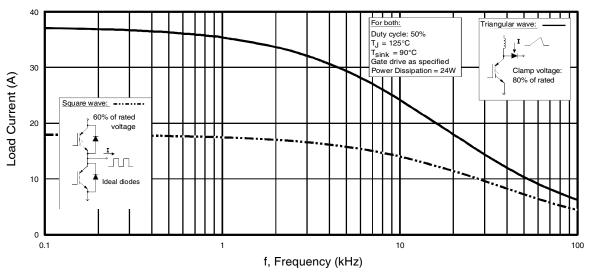
|                 | Parameter                                 | Тур.     | Max. | Units  |
|-----------------|-------------------------------------------|----------|------|--------|
| $R_{\theta JC}$ | Junction-to-Case                          |          | 1.2  |        |
| $R_{\theta CS}$ | Case-to-Sink, Flat, Greased Surface       | 0.24     |      | °C/W   |
| $R_{\theta JA}$ | Junction-to-Ambient, typical socket mount |          | 40   |        |
| VVt             | Weight                                    | 6 (0.21) |      | g (oz) |

## IRG4PC30UPbF

International

TOR Rectifier

#### Electrical Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)


|                                  | Parameter                                | Min. | Тур. | Max. | Units | Conditions                                      |                        |
|----------------------------------|------------------------------------------|------|------|------|-------|-------------------------------------------------|------------------------|
| V <sub>(BR)CES</sub>             | Collector-to-Emitter Breakdown Voltage   | 600  | _    | _    | V     | $V_{GE} = 0V, I_{C} = 250\mu A$                 |                        |
| V <sub>(BR)ECS</sub>             | Emitter-to-Collector Breakdown Voltage ④ | 18   | _    | _    | V     | $V_{GE} = 0V, I_{C} = 1.0A$                     |                        |
| $\Delta V_{(BR)CES}/\Delta T_J$  | Temperature Coeff. of Breakdown Voltage  | _    | 0.63 | _    | V/°C  | $V_{GE} = 0V, I_{C} = 1.0mA$                    |                        |
| V <sub>CE(ON)</sub>              | Collector-to-Emitter Saturation Voltage  | _    | 1.95 | 2.1  | V     | I <sub>C</sub> = 12A                            | V <sub>GE</sub> = 15V  |
|                                  |                                          | _    | 2.52 | _    |       | I <sub>C</sub> = 23A                            | See Fig.2, 5           |
|                                  |                                          | _    | 2.09 | _    |       | I <sub>C</sub> = 12A , T <sub>J</sub> = 150°C   |                        |
| V <sub>GE(th)</sub>              | Gate Threshold Voltage                   | 3.0  | —    | 6.0  |       | $V_{CE}$ = $V_{GE}$ , $I_C$ = 250 $\mu$ A       |                        |
| $\Delta V_{GE(th)}/\Delta T_{J}$ | Temperature Coeff. of Threshold Voltage  | _    | -13  | _    | mV/°C | $V_{CE} = V_{GE}$ , $I_C = 250\mu A$            |                        |
| 9 <sub>fe</sub>                  | Forward Transconductance ⑤               | 3.1  | 8.6  | _    | S     | $V_{CE} = 100 \text{ V}, I_{C} = 12 \text{A}$   |                        |
| I <sub>CES</sub>                 | Zero Gate Voltage Collector Current      | _    | _    | 250  | μA    | V <sub>GE</sub> = 0V, V <sub>CE</sub> = 600V    |                        |
|                                  |                                          | _    | _    | 2.0  |       | V <sub>GE</sub> = 0V, V <sub>CE</sub> = 10V, T  | j = 25°C               |
|                                  |                                          | _    | _    | 1000 |       | V <sub>GE</sub> = 0V, V <sub>CE</sub> = 600V, 7 | Г <sub>Ј</sub> = 150°С |
| IGES                             | Gate-to-Emitter Leakage Current          | _    | _    | ±100 | nΑ    | $V_{GE} = \pm 20V$                              |                        |

#### Switching Characteristics @ T<sub>J</sub> = 25°C (unless otherwise specified)

| Parameter                         | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                      | Тур.                                                                                                                                                                                                                                                                                                                                                                                                          | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Gate Charge (turn-on)       | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                            | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I <sub>C</sub> = 12A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Gate - Emitter Charge (turn-on)   | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.1                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V <sub>CC</sub> = 400V See Fig.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gate - Collector Charge (turn-on) | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                            | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>GE</sub> = 15V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Turn-On Delay Time                | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rise Time                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.6                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T <sub>J</sub> = 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Turn-Off Delay Time               | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 78                                                                                                                                                                                                                                                                                                                                                                                                            | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I <sub>C</sub> = 12A, V <sub>CC</sub> = 480V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Fall Time                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97                                                                                                                                                                                                                                                                                                                                                                                                            | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $V_{GE}$ = 15V, $R_G$ = 23 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Turn-On Switching Loss            | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Energy losses include "tail"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Turn-Off Switching Loss           | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | See Fig. 10, 11, 13, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Switching Loss              | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Turn-On Delay Time                | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T <sub>J</sub> = 150°C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rise Time                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $I_C = 12A$ , $V_{CC} = 480V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Turn-Off Delay Time               | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $V_{GE}$ = 15V, $R_G$ = 23 $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Fall Time                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Energy losses include "tail"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Total Switching Loss              | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.73                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | See Fig. 13, 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Internal Emitter Inductance       | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                            | <b>—</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nΗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Measured 5mm from package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Input Capacitance                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1100                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>GE</sub> = 0V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Output Capacitance                | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | рF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V <sub>CC</sub> = 30V See Fig. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Reverse Transfer Capacitance      | _                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | f = 1.0MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                   | Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Rise Time Turn-Off Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance | Total Gate Charge (turn-on) — Gate - Emitter Charge (turn-on) — Gate - Collector Charge (turn-on) — Turn-On Delay Time — Rise Time — Turn-Off Delay Time — Fall Time — Turn-On Switching Loss — Turn-Off Switching Loss — Total Switching Loss — Turn-On Delay Time — Rise Time — Turn-On Delay Time — Rise Time — Turn-Off Delay Time — Internal Emitter Inductance — Input Capacitance — Output Capacitance | Total Gate Charge (turn-on)         — 50           Gate - Emitter Charge (turn-on)         — 8.1           Gate - Collector Charge (turn-on)         — 18           Turn-On Delay Time         — 17           Rise Time         — 9.6           Turn-Off Delay Time         — 78           Fall Time         — 97           Turn-On Switching Loss         — 0.16           Turn-Off Switching Loss         — 0.20           Total Switching Loss         — 0.36           Turn-On Delay Time         — 20           Rise Time         — 13           Turn-Off Delay Time         — 180           Fall Time         — 140           Total Switching Loss         — 0.73           Internal Emitter Inductance         — 13           Input Capacitance         — 1100           Output Capacitance         — 73 | Total Gate Charge (turn-on)         —         50         75           Gate - Emitter Charge (turn-on)         —         8.1         12           Gate - Collector Charge (turn-on)         —         18         27           Turn-On Delay Time         —         17         —           Rise Time         —         9.6         —           Turn-Off Delay Time         —         78         120           Fall Time         —         97         150           Turn-On Switching Loss         —         0.16         —           Turn-Off Switching Loss         —         0.20         —           Total Switching Loss         —         0.36         0.50           Turn-On Delay Time         —         20         —           Rise Time         —         13         —           Turn-Off Delay Time         —         180         —           Fall Time         —         140         —           Total Switching Loss         —         0.73         —           Internal Emitter Inductance         —         13         —           Input Capacitance         —         73         — | Total Gate Charge (turn-on)         — 50 75           Gate - Emitter Charge (turn-on)         — 8.1 12           Gate - Collector Charge (turn-on)         — 18 27           Turn-On Delay Time         — 17 —           Rise Time         — 9.6 —           Turn-Off Delay Time         — 78 120           Fall Time         — 97 150           Turn-On Switching Loss         — 0.16 —           Turn-Off Switching Loss         — 0.20 —           Total Switching Loss         — 0.36 0.50           Turn-On Delay Time         — 20 —           Rise Time         — 13 —           Turn-Off Delay Time         — 180 —           Fall Time         — 140 —           Total Switching Loss         — 0.73 — mJ           Internal Emitter Inductance         — 13 — nH           Input Capacitance         — 1100 —           Output Capacitance         — 73 — pF |

#### Notes:

- 1 Repetitive rating;  $V_{GE}$  = 20V, pulse width limited by max. junction temperature. ( See fig. 13b )
- $@~V_{CC}$  = 80%(V\_{CES}), V\_{GE} = 20V, L = 10µH, R  $_{G}$  = 23 $\!\Omega_{\rm t}$  (See fig. 13a)
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- 4 Pulse width  $\leq 80\mu s$ ; duty factor  $\leq 0.1\%$ .
- ⑤ Pulse width 5.0µs, single shot.



 $\label{eq:Fig. 1-Typical Load Current vs. Frequency} Fig. 1 - Typical Load Current vs. Frequency (For square wave, <math>|=|_{PK}$ ) of fundamental; for triangular wave,  $|=|_{PK}$ )

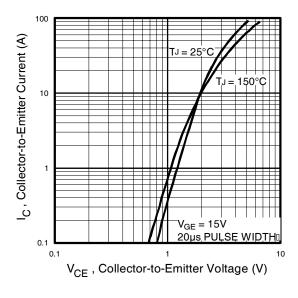



Fig. 2 - Typical Output Characteristics

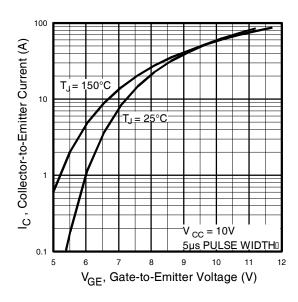
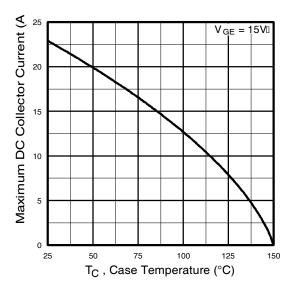




Fig. 3 - Typical Transfer Characteristics

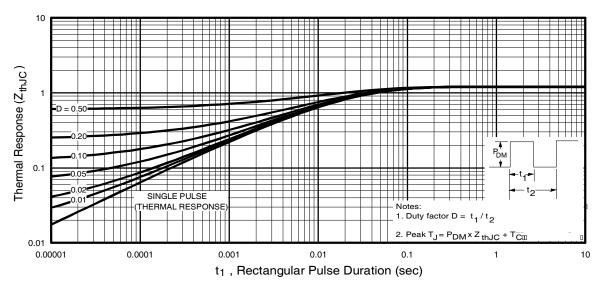
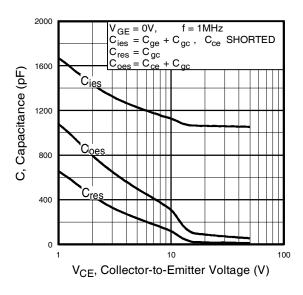
## IRG4PC30UPbF

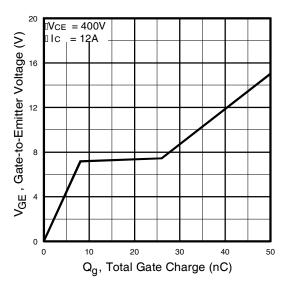


3.0 IV<sub>GE</sub> = 15V IC = 24A IC = 24A IC = 24A IC = 12A IC = 6.0A IC = 12A IC = 6.0A IC = 1.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T<sub>J</sub>, Junction Temperature (°C)

**Fig. 4 -** Maximum Collector Current vs. Case Temperature

**Fig. 5** - Collector-to-Emitter Voltage vs. Junction Temperature



Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

# International TOR Rectifier

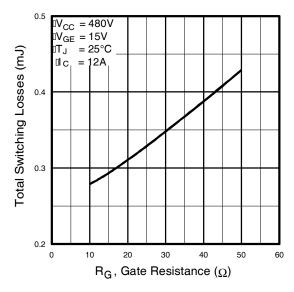
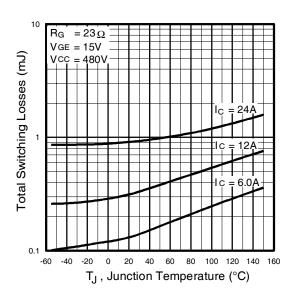
# IRG4PC30UPbF

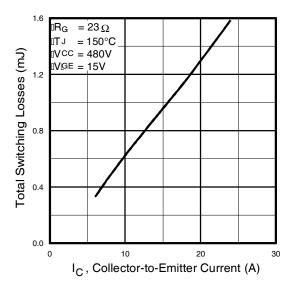


**Fig. 7 -** Typical Capacitance vs. Collector-to-Emitter Voltage



**Fig. 8** - Typical Gate Charge vs. Gate-to-Emitter Voltage



Fig. 9 - Typical Switching Losses vs. Gate Resistance



**Fig. 10** - Typical Switching Losses vs. Junction Temperature

# IRG4PC30UPbF

International
TOR Rectifier



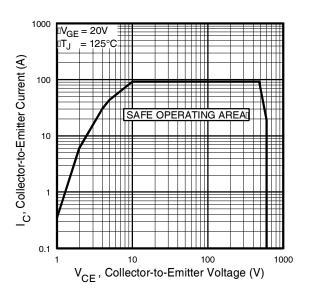
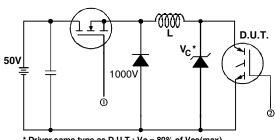




Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

# International TOR Rectifier

# IRG4PC30UPbF



\* Driver same type as D.U.T.; Vc = 80% of Vce(max)

\* Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated ld.

Fig. 13a - Clamped Inductive Load Test Circuit

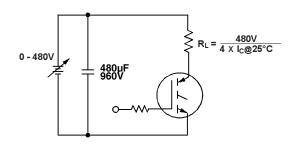



Fig. 13b - Pulsed Collector Current Test Circuit

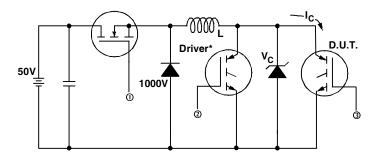
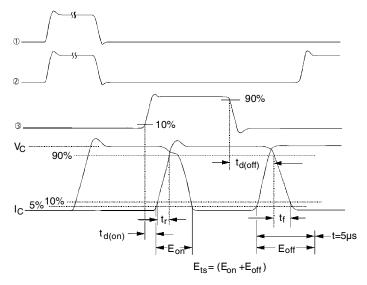
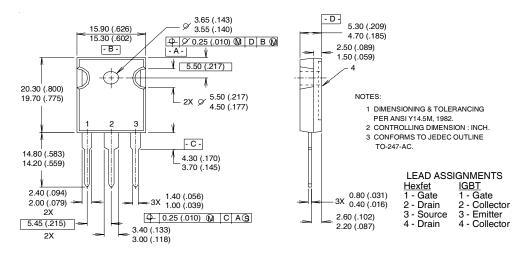
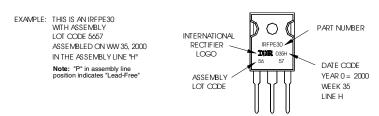



Fig. 14a - Switching Loss Test Circuit

\* Driver same type as D.U.T., VC = 480V



Fig. 14b - Switching Loss Waveforms

#### TO-247AC Package Outline

Dimensions are shown in millimeters (inches)



#### TO-247AC Part Marking Information



Data and specifications subject to change without notice.



IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.12/03

Note: For the most current drawings please refer to the IR website at: <a href="http://www.irf.com/package/">http://www.irf.com/package/</a>



OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

#### Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.



Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru