

STC4054

800mA Standalone linear Li-Ion Battery charger with thermal regulation

Feature summary

- Programmable charge current up to 800mA
- No external MOSFET, sense resistors or blocking diode required
- Constant current / constant voltage operation with thermal regulation to maximize charge rate without risk of overheating
- Charges single cell li-ion batteries directly from USB port
- Preset 4.2V charge voltage with 1% accuracy
- Automatic recharge
- Single charge status output pin
- Charge current monitor output for gas gauging
- C/10 Charge termination
- 25µA supply current in shutdown mode
- Low battery voltage detect for precharge setting
- Soft-start limits inrush current
- TSOT23-5L package

Applications

- Cellular telephones
- PDAs
- Bluetooth applications
- Battery-powered devices

Description

The STC4054 is a constant current/constant voltage charger for single cell Li-lon batteries. No external sense resistor or blocking diode is

required and its ThinSOT package make it ideally suited for portable applications.

The STC4054 is designed to work within USB power specifications. An internal block regulates the current when the junction temperature increases, in order to protect the device when it operates in high power or high ambient temperature.

The charge voltage is fixed at 4.2V, and the charge current limitation can be programmed using a single resistor connectd between PROG pin and GND. The charge cycle is automatically terminated when the current flowing to the battery is 1/10 of the programmed value. If the external adaptor is removed, the STC4054 turns off and a 2μ A current can flow from the battery to the device. The device can be put into Shutdown Mode, reducing the supply current to 25μ A. The device also has a charge current monitor, under voltage lockout, automatic recharge. The device is packaged in TSOT23-5L.

Order code

Part number	Package	Packaging
STC4054GR	TSOT23-5L	3000 parts per reel
September 2006	Rev. 1	1/17

Contents

1	Bloc	k diagram
2	Pin c	onfiguration
3	Maxi	mum ratings
4	Elect	rical characteristics6
5	Туріс	cal performance characteristics
6	Appl	ication information
	6.1	Charge cycle
	6.2	V _{CC} Pin
	6.3	Power ON pin
	6.4	CHRG pin
	6.5	PROG pin
	6.6	Programming charge current 11
	6.7	BAT pin
	6.8	Charge termination
	6.9	Automatic recharge 11
	6.10	Soft start
	6.11	Thermal regulation
	6.12	Power dissipation
	6.13	Stability considerations 12
7	Pack	age mechanical data 13
8	Revis	sion history

1 Block diagram

Figure 1. Block diagram

57

2 Pin configuration

Figure 2. Pin connections (top view)

Table 1. Pin description

Pin N°	Symbol	Note
1	CHRG	Open Drain. This pin goes in low impedance when the STC4054 is in precharge or charge mode
2	GND	Ground pin
3	BAT	This pin provides an accurate 4.2V output voltage and the charge current to the battery. Only $2\mu A$ reverse current can flow in to the device when in Shutdown mode
4	V _{CC}	Input Supply voltage. The input range is from 4.25V to 6.5V. If V _{CC} <v<sub>BAT+30mV the device enters Shutdown mode and the sinked I_{BAT} is less than 2μA</v<sub>
5	PROG	Charge current program. Charge Current monitor and Shutdown pin

Figure 3. Application circuit

3 Maximum ratings

Symbol	Parameter	Value	Unit	
V _{CC}	Input supply voltage	From -0.3 to 10	V	
V _{BAT}	BAT pin voltage From -0.3 to 7			
V _{PROG}	PROG pin voltage	From -0.3 to V _{CC} +0.3	V	
V _{CHRG}	CHRG pin voltage	From -0.3 to 7	V	
I _{BAT}	BAT pin current	800	mA	
I _{PROG}	PROG pin current	800	μA	
	BAT short circuit duration	Continuous		
PD	Power dissipation	Internally Limited	mW	
Т _Ј	Max junction temperature	125	°C	
T _{STG}	Storage temperature range	-65 to 125	°C	
T _{OP}	Operating junction temperature range	-40 to 85	°C	

Table 2. Absolute maximum ratings

Table 3.Thermal Data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case	81	°C/W
R _{thJA}	Thermal resistance junction-ambient	255	°C/W

Electrical characteristics 4

Electrical characteristics Table 4.

(V_{CC} = 5V, C_I = 1 μ F, T_J = -40 to 85° unless otherwise specified) (*Note 1*).

I _{CC} Su V _{BAT} Te I _{BAT} BA I _{PRE} Pr V _{PRE} Pr V _{UV} V _C V _{MSD} Ma	upply voltage upply current (<i>Note 2</i>) ermination output voltage AT pin current re-charge current re-charge threshold	Charge mode, R_{PF} V _{BAT} = 3.5V Standby mode (ch Shutdown mode V_{CC} = 4.3V to 6.5V Current mode R_{PR} Current mode R_{PR} Standby mode $V_{B/}$ Shutdown mode (F connected), T_J =25 Sleep mode, V_{CC} = V_{BAT} <2.8V R_{PROG} R_{PROG} =10K Ω $V_{B/}$ Hysteresis R_{PROG}	arge terminated) $R_{PROG} \text{ not} \\ \text{connected} \\ V_{CC} < V_{BAT} \\ V_{CC} < V_{UV} \\ V, R_{PROG} = 10K\Omega \\ R_{OG} = 10K\Omega \\ R_{OG} = 2K\Omega \\ R_{T} = 4.2V \\ R_{PROG} \text{ not} \\ P^{\circ}C \\ = 2K\Omega T_{J} = 25^{\circ}C \\ = 2K\Omega T_{J} = 25^{\circ}C \\ R_{T} \text{ falling} \\ $	4.25 4.158 90 465 0 20 2.8	150 150 21 17 17 4.2 100 500 -2.5 ±1 ±1 45 2.9	6.5 500 300 40 50 40 50 40 50 40 51 6.5 110 535 -6 ±2 ±2 70	ν μΑ ΜΑ ΜΑ μΑ μΑ μΑ ΜΑ
V _{BAT} Te V _{BAT} BA I _{BAT} BA I _{PRE} Pr V _{PRE} Pr V _{UV} V _C V _{MSD} Ma	ermination output voltage AT pin current re-charge current	$V_{BAT} = 3.5V$ Standby mode (ch Shutdown mode $V_{CC} = 4.3V \text{ to } 6.5V$ Current mode R _{PR} Current mode R _{PR} Standby mode V _B Shutdown mode (F connected), T _J =25 Sleep mode, V _{CC} = $V_{BAT} < 2.8V \text{ R}_{PROG}$ R _{PROG} = 10KΩ V _B	arge terminated) $R_{PROG} \text{ not} \\ \text{connected} \\ V_{CC} < V_{BAT} \\ V_{CC} < V_{UV} \\ V, R_{PROG} = 10K\Omega \\ R_{OG} = 10K\Omega \\ R_{OG} = 2K\Omega \\ R_{T} = 4.2V \\ R_{PROG} \text{ not} \\ P^{\circ}C \\ = 2K\Omega T_{J} = 25^{\circ}C \\ = 2K\Omega T_{J} = 25^{\circ}C \\ R_{T} \text{ falling} \\ $	90 465 0 20	150 21 17 17 4.2 100 500 -2.5 ±1 ±1 45	300 40 50 40 4.242 110 535 -6 ±2 ±2 70	V mA mA µA µA
V _{BAT} Te V _{BAT} BA I _{BAT} BA I _{PRE} Pr V _{PRE} Pr V _{UV} V _C V _{MSD} Ma	ermination output voltage AT pin current re-charge current	Shutdown mode $V_{CC} = 4.3V$ to 6.5V Current mode R _{PR} Current mode R _{PR} Standby mode V _B / Shutdown mode (F connected), T _J =25 Sleep mode, V _{CC} = V _{BAT} <2.8V R _{PROG} R _{PROG} =10K Ω V _B /	$R_{PROG} \text{ not} \\ \text{connected} \\ V_{CC} < V_{BAT} \\ V_{CC} < V_{UV} \\ V_{RPROG} = 10K\Omega \\ R_{OG} = 10K\Omega \\ R_{OG} = 2K\Omega \\ R_{T} = 4.2V \\ R_{PROG} \text{ not} \\ R_{C} \\ \text{coc} \\ = 2K\Omega T_{J} = 25^{\circ}C \\ = 2K\Omega T_{J} = 25^{\circ}C \\ R_{T} \text{ falling} \\ R_{T} = 1000 \\ \text{coc} $	90 465 0 20	21 17 4.2 100 500 -2.5 ±1 ±1 45	40 50 40 4.242 110 535 -6 ±2 ±2 70	V mA mA µA µA
V _{BAT} Te V _{BAT} BA I _{BAT} BA I _{PRE} Pr V _{PRE} Pr V _{UV} V _C V _{MSD} Ma	ermination output voltage AT pin current re-charge current	$V_{CC} = 4.3V$ to 6.5V Current mode R_{PR} Current mode R_{PR} Standby mode $V_{B/}$ Shutdown mode (F connected), $T_J=25$ Sleep mode, $V_{CC}=$ $V_{BAT}<2.8V$ R_{PROG} $R_{PROG}=10K\Omega$ $V_{B/}$	connected $V_{CC} < V_{BAT}$ $V_{CC} < V_{UV}$ $V_{CC} < V_{UV}$ $V_{CG} = 10K\Omega$ $T_{OG} = 10K\Omega$ $T_{OG} = 2K\Omega$ $T_{AT} = 4.2V$ R_{PROG} not $r^{\circ}C$ $= 2K\Omega T_J = 25^{\circ}C$ $= 2K\Omega T_J = 25^{\circ}C$ T_{AT} falling	90 465 0 20	17 17 4.2 100 500 -2.5 ±1 ±1 45	50 40 4.242 110 535 -6 ±2 ±2 ±2 70	V mA mA µA µA
I _{BAT} BA	AT pin current re-charge current	$V_{CC} = 4.3V$ to 6.5V Current mode R_{PR} Current mode R_{PR} Standby mode $V_{B/}$ Shutdown mode (F connected), $T_J=25$ Sleep mode, $V_{CC}=$ $V_{BAT}<2.8V$ R_{PROG} $R_{PROG}=10K\Omega$ $V_{B/}$	$V_{CC} < V_{UV}$ $V_{RPROG} = 10K\Omega$ $MOG = 10K\Omega$ $MOG = 2K\Omega$ $M_{T} = 4.2V$ $M_{PROG} not$ $M_{O}C$ $M_{T} = 25^{\circ}C$ $= 2K\Omega T_{J} = 25^{\circ}C$ $M_{T} falling$	90 465 0 20	17 4.2 100 500 -2.5 ±1 ±1 45	40 4.242 110 535 -6 ±2 ±2 ±2 70	mA mA μA μA
I _{BAT} BA	AT pin current re-charge current	Current mode R_{PR} Current mode R_{PR} Standby mode $V_{B/}$ Shutdown mode (F connected), T_J =25 Sleep mode, V_{CC} = V_{BAT} <2.8V R_{PROG} R_{PROG} =10K Ω $V_{B/}$	A, R _{PROG} =10KΩ AOG=10KΩ AOG=2KΩ AT=4.2V R_{PROG} not PC	90 465 0 20	4.2 100 500 -2.5 ±1 ±1 45	4.242 110 535 -6 ±2 ±2 70	mA mA μA μA
I _{BAT} BA	AT pin current re-charge current	Current mode R_{PR} Current mode R_{PR} Standby mode $V_{B/}$ Shutdown mode (F connected), T_J =25 Sleep mode, V_{CC} = V_{BAT} <2.8V R_{PROG} R_{PROG} =10K Ω $V_{B/}$	$_{AOG}$ =10KΩ $_{AOG}$ =2KΩ $_{AT}$ =4.2V R_{PROG} not $_{PC}$ =0V, T _J =25°C =2KΩ T _J =25°C $_{AT}$ falling	90 465 0 20	100 500 -2.5 ±1 ±1 45	110 535 -6 ±2 ±2 70	mA mA μA μA
I _{PRE} Pr V _{PRE} Pr V _{UV} V _C V _{MSD} Ma	re-charge current	Current mode R_{PR} Standby mode $V_{B/}$ Shutdown mode (F connected), T_J =25 Sleep mode, V_{CC} = V_{BAT} <2.8V R_{PROG} R_{PROG} =10K Ω $V_{B/}$	$_{AT}=4.2V$ R_{PROG} not PC	465 0 20	500 -2.5 ±1 ±1 45	535 -6 ±2 ±2 70	mA μA μA
I _{PRE} Pr V _{PRE} Pr V _{UV} V _C V _{MSD} Ma	re-charge current	Standby mode $V_{B/}$ Shutdown mode (F connected), T_J =25 Sleep mode, V_{CC} = V_{BAT} <2.8V R_{PROG} R_{PROG} =10K Ω $V_{B/}$	$A_{T}=4.2V$ $R_{PROG} \text{ not}$ $C^{\circ}C^{\circ}C^{\circ}C^{\circ}C^{\circ}C^{\circ}C^{\circ}C^{\circ}$	0	-2.5 ±1 ±1 45	-6 ±2 ±2 70	μΑ μΑ μΑ
I _{PRE} Pr V _{PRE} Pr V _{UV} V _C V _{MSD} Ma	re-charge current	Shutdown mode (F connected), T_J =25 Sleep mode, V_{CC} = V_{BAT} <2.8V R _{PROG} R _{PROG} =10K Ω V _B	P _{PROG} not °C =0V, T _J =25°C =2KΩ T _J =25°C _{AT} falling	20	±1 ±1 45	+2 +2 70	μA μA
I _{PRE} Pr V _{PRE} Pr V _{UV} V _C V _{MSD} Ma	re-charge current	connected), T_J =25 Sleep mode, V_{CC} = V_{BAT} <2.8V R _{PROG} R _{PROG} =10K Ω V _B	°C =0V, T _J =25°C =2KΩT _J =25°C _{AT} falling		±1 45	<u>±2</u> 70	μA
V _{PRE} Pr V _{UV} V _C V _{MSD} Ma		V _{BAT} <2.8V R _{PROG} R _{PROG} =10KΩ V _{BA}	=2K Ω T _J =25°C AT falling		45	70	-
V _{PRE} Pr V _{UV} V _C V _{MSD} Ma		$R_{PROG} = 10 K\Omega V_{BA}$	AT falling				mA
V _{UV} V _C V _{MSD} Ma	re-charge threshold			2.8	2.9	<u> </u>	
V _{UV} V _C V _{MSD} Ma	re-charge threshold	Hysteresis R _{PROG}	-10KO			3.0	V
V _{MSD} Ma			Hysteresis $R_{PROG} = 10K\Omega$		100	130	mV
V _{MSD} Ma	Lindervaltere leakout	V_{CC} Low to High R_{PROG} =10K Ω		3.7	3.8	3.9	V
	V _{CC} Undervoltage lockout	Hysteresis $R_{PROG} = 10 K\Omega$		50	180	300	mV
	V _{MSD} Manual shutdown threshold		PROG Pin Rising		1.21	1.30	V
V _{ASD} V _C	ianual shuldown infestiold	PROG Pin Falling		0.85	0.95	1.05	v
V _{ASD} V _C		V_{CC} Low to High T _J =25°C R _{PROG} =10K Ω		50	85	120	
	CC-V _{BAT} Lockout threshold	V_{CC} High to Low $T_J=25^{\circ}C$ $R_{PROG}=10K\Omega$		5	30	50	mV
	/10 Termination current	R _{PROG} =10KΩ			0.1		
	nreshold (I _{BAT} /I _{BATC10}) Note <i>3</i>)	R _{PROG} =2KΩ		0.1		mA/mA	
V _{PROG} PF	ROG pin voltage	Current Mode R _{PR}	0.93	1.0	1.07	V	
	HRG Pin current weak ull-down	V_{CHRG} =5V, V_{BAT} =4 R _{PROG} =10K Ω	8	20	35	μA	
Vouro	HRG Pin pull-down oltage	I _{CHRG} =5mA			0.35	0.6	V
	a da a marca da a tra	V _{FLOAT} V _{RECHRG} , ⁻ R _{PROG} =10KΩ	Tj=25°C		200		mV
6/17	lecharger battery threshold oltage	FHOG				•	

Table 4. Electrical characteristics

(V_{CC} = 5V, C_I = 1 μ F, T_J = -40 to 85° unless otherwise specified) (*Note 1*).

Symbol	Parameter Test		Min.	Тур.	Max.	Unit
T _{LIM}	Junction temperature in constant current mode			120		°C
R _{ON}	Power Fet "ON" resistance (Between V _{CC} and BAT)			600		mΩ
t _{SS}	Soft-start time	I _{BAT} =0 to I _{BAT} =1000V/R _{PROG}		100		μs
T _{RECHARGE}	Recharge comparator filter time <i>Note 4</i>	V _{BAT} High to Low	0.75	2	4.5	ms
t _{TERM}	Termination comparator filter time <i>Note 4</i>	I _{BAT} Falling Below I _{CHG} /10	400	1000	2500	μs
I _{PROG}	PROG pin pull-up current			1		μA

Note: 1 The STC4054 was tested using a battery simulator and an output capacitor value about 4.7μF

- 2 Supply current includes PROG pin current but not include any current delivered to the battery through the V_{BAT} pin
- 3 I_{TERM} is expressed as a fraction of measured full charge current with indicated PROG resistor

4 Guaranteed by design

Typical performance characteristics 5

6 Application information

The STC4054 uses an internal P-Channel MOSFET to work in constant current and constant voltage method. It is able to provide up to 800mA with a final regulated output voltage of 4.2V \pm 1% in full temperature range. No blocking diode and sensing resistor are required. It is also possible to use an USB port as power supply voltage.

6.1 Charge cycle

A charge cycle begins when the voltage at the V_{CC} pin rises above the UVLO threshold level, the R_{PROG} program resistor of 1% is connected between the PROG pin to GND pin and when a battery is connected to the charger output. If the battery voltage is below 2.9V, the charger enters in Trickle Charge mode. In this condition, the device supplies 1/10 of the programmed charge current to bring the battery voltage up to safe level otherwise the life of a battery is reduced. If the BAT pin voltage is higher than 2.9V the charger enters in Constant Current Mode. When the BAT pin voltage is close to the final float voltage (4.2V) the device enters in Constant Voltage Mode and the charge current begins to decrease. The charge cycle is terminated when the current drops to 1/10 of the programmed value.

6.2 V_{CC} Pin

Input Supply Voltage. This pin is used to supplie the device in the range from 4.25V to 6.5V voltage. A bypass capacitor of 1µF is recommended for use. When V_{CC} value drops of 30mV of the BAT pin voltage, the device enters in Shutdown Mode, dropping I_{BAT} to less than 2µA.

6.3 CHRG pin

This is a flag open drain. It indicates three different status of the output. When the charge is in progress this pin is pulled low instead at the end of the charge cycle, a weak pull down of approximately $20\mu A$ is connected to the CHRG pin, indicating a present supply power; if the flag is forced high impedance an under voltage condition is detected.

6.4 PROG pin

Charge Current Program, Charge Current Monitor and Shutdown Pin. The charge current is programmed by connecting a 1% resistor, R_{PROG} , to ground. When the device is charging in constant current, the value of voltage on this pin is 1.0V. In other conditions, the voltage on this pin can be used to measure the charge current using the following formula:

$I_{BAT} = (V_{PROG}/R_{PROG})^*1000$

The PROG pin is used to shut down the device, disconnecting the program resistor from ground a 1µA current flows to pull the PROG pin high. If the value of this Pin is 1.21V (shutdown threshold voltage), the device enters Shutdown mode and the input supply current drops to 25µA. Driving this pin to voltage beyond 2.4V a current of 35µA flows into the device from PROG pin.

6.5 Programming charge current

The R_{PROG} resistor is used to set the charge current value. The battery charge current is 1000 times the Prog pin current value. The program resistor and the charge current are calculated using the following formula:

R_{PROG}=1000*V_{PROG}/I_{BAT};

The charge current out of the BAT pin can be monitored through the PROG pin voltage using the following equation:

 $I_{BAT} = (V_{PROG}/R_{PROG}) \times 1000$

6.6 Charge status indicator (CHRG)

The charge status output has three different states: Strong pull-down (~10mA), weak pull-down (20µA) and high impedance. The strong pull-down indicates that the device is charging the battery. Weak pull-down indicates that V_{CC} meets the UVLO conditions and the device is ready to charge. The last status high impedance indicates an insufficient voltage is applied to the V_{CC} pin or the voltage on V_{CC} is less than 100mV above the BAT pin voltage.

6.7 BAT pin

Charge Current Output pin. It provides charge current to the battery and regulates the final float voltage to 4.2V. An internal precision resistor is used as a feedback loop to compare the V_O with the reference.

6.8 Charge termination

A charge cycle is terminated when the final float voltage is reached consequently the charge current falls to 1/10th of the programmed value. The charge is over when the PROG pin voltage falls below 100mV for longer time than t_{TERM} (~1ms). The charge current is latched off, the device enters in standby mode and the input supply current drops to 200µA.

6.9 Automatic recharge

The device restarts the charge cycle when the battery voltage falls below 4.05V to maintain the battery capacity value higher than 80%. During the recharge time, the CHRG pin goes low state.

6.10 Soft start

When a charge cycle starts, a internal soft start circuit minimizes the inrush current. At starting phase, the charge current ramps from zero to the full scale in a 100µs period time.

6.11 Thermal regulation

An internal thermal feedback loop reduces the output current if the die temperature attempts to rise above a present value of approximately 120°C. This feature protects the device from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the device.

6.12 Power dissipation

It is very important to use a good thermal PC board layout to maximize the available output current. The thermal path for the heat generated by the IC is from the die to the copper lead frame through the package leads and exposed pad to the PC board copper. The PC board copper is the heat sink. The footprint copper pads should be as wide as possible and expand out to larger copper areas to spread and dissipate the heat to the surrounding ambient. Feed through vias to inner or backside copper layers are also useful in improving the overall thermal performance of the device. Other heat sources on the board, not related to the device, must also be considered when designing a PC board layout because they will affect overall temperature rise and the maximum output current.

6.13 Stability considerations

The STC4054 contains two control loops: constant voltage and constant current. The constant-voltage loop is stable without any compensation when a battery is connected with low impedance leads. Excessive lead length, however, may add enough series inductance to require a bypass capacitor of at least 1µF from BAT to GND. Furthermore, a 4.7µF capacitor with a 0.2 Ω to 1 Ω series resistor from BAT to GND is required to keep ripple voltage low when the battery is disconnected.

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

TSOT23-5L MECHANICAL DATA

DIM		mm.			mils	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			1.1			43.3
A1	0		0.1			3.9
A2	0.7		1.0	27.6		39.4
b	0.3		0.5	11.8		19.7
С	0.08		0.2	3.1		7.9
D		2.9			114.2	
E		2.8			110.2	
E1		1.6			63.0	
е		0.95			37.4	
e1		1.9			74.8	
L	0.3		0.6	11.8		23.6

	Tape & Reel SOT23-xL MECHANICAL DATA					
DIM		mm.				
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
Ν	60			2.362		
Т			14.4			0.567
Ao	3.13	3.23	3.33	0.123	0.127	0.131
Во	3.07	3.17	3.27	0.120	0.124	0.128
Ко	1.27	1.37	1.47	0.050	0.054	0.0.58
Po	3.9	4.0	4.1	0.153	0.157	0.161
Р	3.9	4.0	4.1	0.153	0.157	0.161

8 Revision history

Table 5. Revision history

Date	Revision	Changes
04-Sep-2006	1	Initial release.

16/17

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru