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Product Summary

Intended Use

e Fast Fourier Transform (FFT) Function for Actel
FPGAs

Key Features

e Forward and Inverse 32-, 64-, 128-, 256-, 512-,
1,024-, and 2,048-Point Complex FFT

¢ Decimation-In-Time (DIT) Radix-2 Implementation
Optimized for Actel FPGAs

e Selection of Unconditional or Conditional Block
Floating-Point Scaling

e Embedded RAM-Block-Based Twiddle
Generator

e 8- to 16-Bit Configurable Input/Output Data and
Twiddle Coefficients Precision

Factor

e Naturally Ordered Input and Output Data
¢ Two's-Complement Fixed-Point Arithmetic
e Built-In Memory Buffers

e CoreFFT Provides Register Transfer Level (RTL)
Code and a Behavioral Testbench

Targeted Devices

e ProASIC®3/E
* ProASICPLUS®
o Axcelerator®
e RTAX-S

Core Deliverables

e Full Version
— CoreFFT RTL Generator; Generates User-
Defined FFT Model and Test Harness; Fully
Supported in Actel Libero® Integrated Design
Environment (IDE)
e Evaluation Version
— Supports FFT Engine and Test Harness
Generation with Limited Parameters; Fully
Supported in Actel Libero IDE

Synthesis and Simulation Support

e Actel Libero IDE
e Synthesis: Synplicity® Synopsys® (Design Compiler /
FPGA Compiler), Exemplar™

e Simulation: OVI-Compliant Verilog Simulators and
Vital-Compliant VHDL Simulators
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General Description

CoreFFT is an RTL generator that produces an Actel
FPGA-optimized FFT engine. The resulting module
computes 32-, 64-, 128-, 256-, 512-, 1,024-, or 2,048-point
complex forward or inverse decimation-in-time (DIT)
FFTs. The input and output data is represented as bb-bit
words comprising b-bit real and imaginary parts
(bb = b + b; b =8 to 16 bits). Both the real and imaginary
parts of the input and output data are two’s-
complement numbers. The FFT module contains all the
necessary memory buffers and butterfly and control
logic, as well as a twiddle factor generator. A dual input
buffer and a single output buffer support simultaneous
input of the new data samples with FFT computation and
result output. The module processes frames (bursts) of
data with a frame size equal to the transform size of N
words. The FFT computational process occurs in a
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| CoreFFT Fast Fourier Transform

sequence of stages with the final result obtained at the
last computational stage. As soon as a final output vector
is ready, the FFT module puts out an N-word frame of FFT
results.

An FFT-based system (Figure 1) consists of the following:

e A host presenting data to the FFT module to be
processed

e The FFT module
¢ A host accepting processed data

Note: Signals shown in parentheses are optional. The
host may use/generate these optional signals if required
by the application.

A negative nreset signal resets the FFT module. After
reset (input nreset taken HIGH), the module enters an
initialization state where internal RAM-based lookup
tables (LUTs) are initialized. Once initialization is
complete, the CoreFFT module automatically switches to
a ready state, prepared to receive data samples to be
processed. The module input start can be used to bring
the module to the ready state at any time after
initialization.

Note: The CoreFFT module will discard data collected in
its input and output buffers when start is taken HIGH by
the host.
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== IMmaginary = o im load
: i Data
! HOST _ b-Bit I
! Source of i b-Bit d_re y_im fem IMaginary g
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Figure 1 o FFT Module System Block Diagram

The data-source host supplies the FFT engine with the
data to be transformed. Every complex input data
sample (i.e., a pair of b-bit imaginary and real words) is
accompanied with a validity bit. Upon receiving the
validity bit, the module assumes a valid complex data
sample is present on both b-bit input data busses.

Once the input data buffer is full, CoreFFT automatically
starts processing data stored in the buffer. At this time,
the host source should stop supplying the data to
CoreFFT, thus ending a current burst of input data. The
data-source host can do so either by counting the
number of input samples transferred or by monitoring

the state of the module signal, load. The CoreFFT
module drives load LOW once N samples (N is a
transform size) of the current burst are received into the
input buffer. As soon as the dual input buffer is ready for
the next data burst, load is asserted again. The module is
then ready to receive the next data burst to be
processed.

The data-source host can supply data at a maximum of
every clock cycle, or it may skip an arbitrary number of
"empty" clock periods. The host signals to the module
that no data is being transferred for a given clock cycle
by taking the validity bit d_valid LOW.
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Once the CoreFFT module has computed the FFT, the
results are written to the module’s output memory
buffer, and signal y_rdy is taken HIGH. Every output
sample is accompanied by a validity bit, y_valid, to
indicate to the receiving host that a valid output sample
is ready to be read from both b-bit output busses. The
receiving host can control the output sample rate using
the read_y input of the module. Asserting read_y
indicates to the FFT module that the receiving host is
ready to read samples. Deasserting read_y informs the
module that the host is not ready. Any unread samples
are held in the module’s output buffer until the host is
ready.

CoreFFT Fast Fourier Transform

CoreFFT Device Requirements

Table 1 and Table 2 on page 4 provide typical utilization
and performance data for CoreFFT, which s
implemented in various Actel devices with the
configurations listed in Table 1 and Table 2 on page 4.
Device utilization and performance will vary depending
upon the FFT parameters used. The transform size
parameter N primarily impacts the number of RAM
blocks and the time required for transformation. "FFT
Computation" on page 5 provides more details on how
the FFT time depends on the transform size.

Table 1 » CoreFFT Device Utilization and Performance (bit width b = 16)

Cells or Tiles Device Clock FFT
FPGA Family and FFT Utilization RAM Speed Rate, Time,
Device Points | Comb. | Seq. Total % Blocks Grade MHz Hsec
ProASIC3/E A3P1000 256 5,325 2,039 7,364 29.96% 14 -2 100 11
512 6,105 2,062 8,167 33.23% 14 -2 92 26
1,024 6,904 2,126 9,030 36.74% 28 -2 90 58
ProASICELUS APA1000 256 6,904 2,026 8,930 15.90% 28 Std 59 19
512 6,901 2,019 8,920 15.80% 28 Std 62 39
1,024 9,091 2,431 11,522 20.50% 56 Std 62 85
Axcelerator AX1000 256 3,398 2,373 5,771 31.81% 7 -2 130 9
512 3,601 2,380 5,981 32.96% 14 -2 120 20
1,024 3,863 2,404 6,267 34.54% 28 -2 105 50
RTAX-S RTAX1000S 256 3,407 2,370 5,777 31.84% 7 -1 107 10
512 3,596 2,381 5,977 32.94% 14 -1 90 27
1,024 3,881 2,397 6,278 34.60% 28 -1 76 69

Notes:
1. Auto-scaling (block floating point) is enabled in all cases.

2. The above data were obtained by typical synthesis and place-and-route methods. Other core parameter settings can result in

different utilization and performance values.
3. All memory buffers are RAM-block-based.
4. Timing constraints supplied with CoreFFT were used.

5. Timing-driven layout options were used, effort level 3, with no multiple passes.
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Table 2 » CoreFFT Device Utilization and Performance (bit width b = 8)

Cells or Tiles Device Clock FFT
FPGA Family and FFT Utilization RAM Speed Rate, Time,
Device Points Comb Seq Total % Blocks Grade MHz Hsec
ProASIC3/E A3P1000 256 2,126 968 3,094 12.6% 7 -2 114 10
512 2,283 989 3,272 13.3% 7 -2 122 20
1,024 2,509 1,026 3,535 14.4% 14 -2 18 44
ProASICELUS APA1000 256 2,386 949 3,335 5.9% 14 Std 87 13
512 2,569 974 3,543 6.3% 14 Std 82 29
1,024 2,759 1,124 3,883 6.9% 28 Std 82 64
Axcelerator AX1000 256 1,317 958 2,275 12.5% 7 -2 170 7
512 1,435 986 2,421 13.3% 7 -2 159 15
1,024 1,620 1,016 2,636 14.5% 14 -2 137 38
RTAX-S RTAX1000S 256 1,317 958 2,275 12.5% 7 -1 132 8
512 1,435 986 2,421 13.3% 7 -1 116 21
1,024 1,611 1,027 2,638 14.5% 14 -1 101 52

Notes:

1. Auto-scaling (block floating point) is enabled in all cases.

2. The above data were obtained by typical synthesis and place-and-route methods. Other core parameter settings can result in
different utilization and performance values.

3. All memory buffers are RAM-block-based.

4. Timing constraints supplied with CoreFFT were used.

5. Timing-driven layout options were used, effort level 3, with no multiple passes.

Architecture

The CoreFFT module input and output data are stored in
on-chip RAM blocks. The input memory buffer is also
used by the FFT processor as working memory where the
FFT engine stores results obtained at any intermediate
FFT stage. This dual memory usage is possible due to the
in-place FFT algorithm implemented by the core.

The twiddle factors (algorithm coefficients) used by the
FFT processor are generated by CoreFFT and stored in a
RAM-based LUT.

In addition to the FFT processor, the resulting module
also contains control logic and a host interface used for
entering data and reading the FFT results. See Figure 2.
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| LUT || Bit-Reversed
Write Addr
Figure 2 o CoreFFT Architecture
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Buffering Scheme

The CoreFFT module has one radix-2 butterfly, two input
memory banks implementing a ping-pong input buffer,
and one output buffer (Figure 2 on page 4).

Both of the identical memory banks can store N complex
samples. Each bank consists of two memory blocks, each
of N/ 2 complex words, so it can read/write two complex
samples per clock. Thus, the memory bandwidth is
(4 x b) bits per clock cycle. Internal logic controls the
ping-pong switching between the banks so a data-source
host only sees the buffer ready to accept new data. The
buffer not accepting data is used by the in-place FFT
engine as working memory.

This ping-pong buffering architecture increases the
efficiency of the FFT engine. While one of the two
identical ping-pong input banks is involved in current FFT
computation, the other is available for the downloading
of the next frame of input data. As a result, the FFT
engine does not sit idle waiting for fresh data to fill the
input buffer. From the data-source host standpoint, the
core is capable of receiving a data burst anywhere within
the FFT computational period. When the module has
finished processing the current data frame and the input
buffer bank has been filled with another data frame, the
memory ping-pong banks are swapped, and the data
load and computation continues on the alternate
memory banks.

The last stage of the FFT computation uses an out-of-
place scheme—the FFT final results are routed to the
output data buffer. The results appear at the FFT engine
output in bit-reversed order. A bit-reversed write address
is used when writing the results to the output buffer to
restore the data to normal read address order. The last
stage results remain valid until the FFT engine is ready to
store the results of the next data frame.

The CoreFFT generator also calculates the twiddle factors
required by the FFT algorithm. At power-up, the twiddle
factors generated are written to the twiddle factor
lookup table (Twiddle LUT).

FFT Computation

An FFT computational cycle starts when input data is
stored in the active ping-pong buffer bank and the FFT
engine has finished processing the previous N data
samples. Each memory bank comprises two bb-bit-wide
memories (Mem 0 and Mem 1), supplying a data
bandwidth of (4 x b) bits per clock cycle (two complex
samples per clock cycle). Even input samples D; (i=0, 2, 4, ...,
N —) are stored in Mem 0, odd samples in Mem 1.

The Read Switch function is used to rearrange the two

sample pairs read from the input bank to match the
input sample order required by the DIT FFT algorithm

CoreFFT Fast Fourier Transform

tree. The switch output samples are then routed to the
butterfly P and Q inputs. Table 3 shows a 16-point FFT
example of how Read Switch rearranges sample indices
coming from the Mem 0 and Mem 1 of the input
memory bank.

Table 3 ¢ Sample Indices before and after Read Switch for
16-Point FFT Example

Input From Output
Mem 0 Mem 1 P | Q
Stage 1
14 15 7 15
6 7 6 14
12 13 5 13
4 5 4 12
10 11 3 11
2 2 10
8 1 9
0 1 0 8
Stage 2
14 15 11 15
10 11 10 14
12 13 9 13
8 9 8 12
6 7 3 7
2 3 2 6
4 5 1 5
0 1 0 4
Stage 3
14 15 13 15
12 13 12 14
10 11 9 11
8 9 8 10
6 7 5 7
4 5 4 6
2 3 1 3
0 1 0 2
Stage 4
14 15 14 15
12 13 12 13
10 11 10 11
8 9 8 9
6 7 6 7
4 5 4 5
2 3 2 3
0 1 0 1
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The radix-2 butterfly processes the data according to the DIT algorithm,[” one pair of samples per clock. The Write
Switch works similarly to the Read Switch, rearranging the butterfly results prior to being written back to the in-place

memory bank.

On the last stage of every FFT computational cycle, the results are written into the output memory buffer rather than
back to the in-place memory bank. Figure 3 shows the FFT computational sequence.

4 FFT Cycle i a FFT Cycle i + 1 )
FFT Stages FFT Stages
v [ 2 | 3 ;.. i logN 1 [ 2 | 3 .. [ logN

Ping-Pong Input Buffer

Ping-Pong Input Buffer

Ping bank is busy.

Ping bank is available for loading input data.

Pong bank is available for loading input data.

Pong bank is busy.

Output Buffer

Output Buffer

A A
Available for reading results of cycle (i — 1) FFTCCrZELﬁt Available for reading results of cycle i FFchrf:Eﬁt
Figure 3 » FFT Computational Sequence
Every FFT stage takes the minimal read sample rate to avoid FFT engine idle
(N /2 + L) clock cycles time is
EQ 1 (N/2+L)(logy, N-1)/N~=(log, N—1)/2 clock cycles

to complete, where

N/2 = the number of butterflies to be
performed within a stage
L = an implementation-specific  parameter

representing the aggregate latency of the
memory bank, switches, and butterfly. L is
much less than the number of butterflies
required (N/2) and does not depend on
transform size N.

The full FFT cycle takes
(N/2+ L) log, N clock cycles.
EQ2
This time is available for the new frame of N data
samples to be loaded into the memory bank not involved
in the current FFT computation. To provide maximum FFT
engine utilization (no idle time, FFT engine full loading),

the minimal input sample rate that the host should
provide is

((N/2 +L)logy N)/ N = (logy N) / 2 clock cycles
EQ3
The host can read the output buffer during the first

log, N - 1 stages of the next FFT computational cycle (the
last stage is used to write fresh FFT results). Therefore,

EQ4

As a result, the minimal input and output sample rates
required to avoid FFT engine idle time depend on the
transform size N (Table 4).

Table 4  Minimal Input and Output Sample Rates

Transform Size Input Sample Output Sample
N, Points Rate, Clock Cycles | Rate, Clock Cycles
256 4 3
512 4 4
1,024 5 4

Finite Word Length
Considerations

The butterfly calculation involves complex multiplication,
addition, and subtraction. These operations can
potentially cause the butterfIP/ data width to grow by
two bits from input to output. 112 At every stage of the
in-place FFT algorithm, the butterfly takes two samples
out of the input buffer and returns two processed
samples to the same buffer location. Potentially,
returning samples may have a larger data width than the
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samples picked from the memory. Precautions must be
taken to ensure that there are no data overflows.

To avoid risk of overflow, one of three methods can be
employed:
¢ Input data scaling

e Unconditional block floating-point scaling

e Conditional block floating-point scaling

One way to ensure that overflow never occurs is to
include enough extra sign bits, called guard bits, in the
FFT input data. Data can grow by a maximum factor of
2.4 from butterfly input to output (two bits of growth).
However, it is not possible for the data value to grow by
this maximum amount in two consecutive stages.

The number of guard bits necessary to compensate for
the maximum possible bit growth for an N-point FFT is

logs N + 1
EQ5

For example, each of the input samples of a 256-point
FFT should contain nine guard bits, leaving only seven
bits for actual data. Obviously, the data bit resolution is
greatly limited when using the input data scaling
technique.

Another way to compensate for bit growth is to scale the
butterfly outputs down by a factor of two after each
stage. Consequently, the final FFT results are scaled down
by a factor of 1/ N. This approach is called unconditional
block floating-point scaling. Initially, two guard bits are
included in the input data to accommodate the
maximum bit growth at the very first stage. In each
successive butterfly calculation, the data can grow into
these guard bits. To prevent overflow in successive
stages, the guard bits are replaced before the next stage
is executed by shifting the entire block of data (all results
of the current stage) one bit to the right. The input data
of an unconditional block floating-point FFT can have at
most 14 bits (1 sign bit and 13 magnitude bits). EQ 6

Table 5 » Core Generator Parameters

CoreFFT Fast Fourier Transform

shows the total number of bits the data loses because of
bit shifting in the FFT calculation.

log, N — 1 bits
EQ6
Unconditional block floating-point scaling results in the
same number of bits lost as in input data scaling.

However, it produces more precise results, as the FFT
engine starts with more precise input data.

In conditional block floating-point scaling, data is shifted
only if bit growth actually occurs. If one or more
butterfly outputs grow, the entire block of data is shifted
to the right. The conditional block floating-point
monitor checks every butterfly output for growth. If
shifting is necessary, it is performed after the entire stage
is complete (at the input of the next stage butterfly). This
technique provides the least amount of distortion (noise)
caused by finite word length.

The CoreFFT module is configured to apply conditional
block floating-point scaling by default. In this mode, the
input data is checked as well and, if necessary,
downscaled by a factor of two prior to the first stage.

The user can optionally select one of the other two
scaling modes. To apply unconditional block floating-
point scaling, the CoreFFT configuration parameter scale
needs to be set to 1. To apply input data scaling, the
scale configuration parameter has to take the default
value of 0, and the FFT input data has to contain the
proper number of guard bits. Then the conditional block
floating-point scaling will take no effect.

CoreFFT Generator Parameters

CoreFFT generates RTL code for a few selectable FFT
cores that vary depending on parameters set by the user
when generating the module. The core generator
supports the variations specified in Table 5.

Parameter

Name Description Recommended Selection

inv Forward/inverse FFT 0 (FFT) / 1 (IFFT)

scale Unconditional block floating-point scaling [ 0 (conditional block floating-point) / 1 (unconditional block floating-point)
points Transform size 32, 64,128, 256, 512, 1024, 2048

bits FFT engine bit width 810 16

fpga_family FPGA family ax (Axcelerator, RTAX-S), apa (ProASICELUS) pa3 (ProASIC3)

lang RTL code language vhdl, verilog
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I/0 Signal Description

Figure 4 shows the CoreFFT module pinout.

FFT

— d_im load f—
— dire
— d_valid
— start pong [——
— read_y y_im f—

VAN -
—1 nreset y_valid [—
—] dk y_rdy |—

Figure 4 o CoreFFT I/O Signals

The CoreFFT module I/O signal functionality is listed in Table 6. It is assumed that the module has been configured to
compute an N-point FFT/IFFT.

Table 6 ¢ 1/0 Signal Description

Signal Name | Direction | Description

clk Input System clock. Active rising edge.
nreset Input System asynchronous reset. Active low.
d_im[b-1:0] [Input Input imaginary data bus. The imaginary part of the input complex data should be placed on this bus. Bit

b —1is the MSB. Data are assumed to be presented in two's-complement format. The imaginary and real
parts should be supplied simultaneously.

d_re[b-1:0] |Input Input real data bus. The real part of the input complex data should be placed on this bus. Bit b — 1 is the
MSB. Data are assumed to be presented in two's-complement format. The imaginary and real parts
should be supplied simultaneously.

d_valid Input Input complex word valid. Active high. The bit accompanies valid input samples coming to input busses
d_im and d_re. At any system clock interval where d_valid is active, input busses d_im and d_re are
considered to present another input complex sample.

load Output The FFT module input buffer accepts data. Active high. The signal is active when the input buffer (either
of two banks) is ready to accept data. The signal stays active until the buffer is full.

start Input FFT start signal. Active high. start is asserted to begin the transform processing or to return the module to
the initial ready state.

y_rdy Output FFT results ready. Active high. The signal goes active when the FFT results are ready for the host to read. It
stays HIGH during host read.

y_im[b-1:0] |Output Output imaginary data bus. The imaginary part of the output complex data appears on this bus. Bit b — 1
is the MSB. Data are presented in two's-complement format. The imaginary and real parts appear
simultaneously.

y_re[b—1:0] Output Output real data bus. The real part of the output complex data appears on this bus. Bit b — 1 is the MSB.
Data are presented in two's-complement format. The imaginary and real parts appear simultaneously.

8 v4.0



Table 6 ¢ 1/0 Signal Description (continued)

YActel

CoreFFT Fast Fourier Transform

Signal Name | Direction | Description

y_valid Output Output complex word valid. Active high. The bit accompanies valid output samples on output busses
y_im and y_re. At any system clock interval while y_valid is active, a complex sample is available on
output busses d_im and d_re.

read_y Input Read FFT output. Active high. If the signal is active, the module puts out the FFT results in a single burst,
one complex word per clock cycle. The host can insert arbitrary breaks into the burst by deactivating the
signal any time during the burst.

pong Output Pong bank of the input buffer is being used by the FFT engine as a working memory.

I/0 Interface and Timing

Resetting the Module

Upon reset, the module returns to its initial state with
input and output buffer pointers reset to zero. The input
buffer is now ready to accept a new data frame; signal
load is asserted, and signals y_rdy and y_valid are
deasserted. Both nreset and start reset the module.

Loading Input Data

Input data can be loaded once the signal load is
asserted; otherwise, the module ignores any activity on
the data loading pins. When the host detects an active
load signal, it may begin writing data via the b-bit
busses d_im and d_re. Every valid complex sample must
be accompanied by an active d_valid signal (Figure 5 on
page 10). The module samples d_valid at each rising
edge of the system clock. Once an active d_valid signal is
detected, the core assumes a new complex sample has
been written to the input busses. The module then
writes the new sample to the input buffer. By the next
system clock edge, the module is ready to accept another
input sample. The host can control the input sample rate
via d_valid. Once the module has received N complex
samples, the input buffer is now full, and the module
deasserts the signal load.

Reading Output Data

Once the FFT engine completes another FFT
computational cycle, it asserts the y_rdy signal. The FFT
results are now available for the host in the output

buffer. The CoreFFT module puts out the post-processed
complex samples on the two b-bit busses, y_im and y_re.
Every valid complex sample is accompanied by a y_valid
bit. In the basic mode where the host does not control
the FFT output data rate (signal read_y remains
permanently active), all N post-processed complex
samples from a single burst are available consecutively at
each rising system clock edge (Figure 6 on page 10).
During this mode, y_valid remains valid for N system
clock cycles.

The host can control the FFT output sample rate via the
read_y signal. The input read_y acts similarly to an
output clock enable signal: when held HIGH, the module
will continue generating FFT results at each clock edge;
when held LOW, the module will pause in generating.

An example of a controlled output rate mode is depicted
in Figure 7 on page 10. Every new output sample is valid
for two system clock cycles, as read_y is asserted only
every other clock cycle. (Note that there is latency of one
clock cycle between the signal read_y and a valid sample
output).

The CoreFFT module design does not place any
restrictions on the duty cycle of the read_y signal.
However, for the FFT engine to operate at maximum
efficiency (i.e., no idle time), the post-processed results
must be read out of the output buffer before the engine
needs to write the results of the next data frame (this
time is marked as Accept FFT Result in Figure 3 on
page 6). Table 4 on page 6 shows the minimal output
reading rate that does not impact the efficient use of the
FFT engine.
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clk

Figure 5  Data Load Timing

read_y
y_valid

Figure 6 o FFT Results Output
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Figure 7 ¢ Host Controls the Output Sample Rate
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References Ordering Information
1. L. R. Rabiner and B. Gold, Theory and Application of = Order CoreFFT through your Ilocal Actel sales
Digital Signal Processing, Prentice Hall, 1975. representative. Use the following numbering convention

2. Alan V. Oppenheim and Ronald W. Schafer with John when ordering: CoreFFT-XX, where XX is listed in Table 7.

R. Buck, Discrete-Time Signal Processing, Second Edition, Table 7 » Ordering Codes
Prentice Hall, 1998.

XX |Description

EV Evaluation version

A Sample Configuration File

The following is an example configuration file:

AR RTL for unlimited use on Actel devices

UR RTL for unlimited use and not restricted to Actel devices

inv 0

scale 0
points 256
bits 16
fpga_family pa3
lang verilog

v4.0 1
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Appendix I: Fast Fourier Transform

The FFT is a computationally efficient algorithm for computing a discrete Fourier transform (DFT). The N-point DFT is

defined as
N-1
X = 3 x[nge "IN 20,12, N -
n=0
EQ7
where N is the transform size, or number of points. The inverse N-point DFT is defined as
N-1
xm = (L) 3 xikge™ N =1,2,3, N
k=0
EQ 8

It is common practice to call the exponential vector rotating factors above the "twiddle factors." Every twiddle factor
contains real and imaginary parts

W= W _jW = oink2m/N
r |

EQ9

——P=Pr+jPi—> Q >@—outP=outP,+j x OUtP;—»

—Q=Q +jQ outQ = outQ; + j x outQ;—»

—W=W, +jW,

Figure 8 ¢ Radix-2 DIT Butterfly

The butterfly performs the basic FFT computation By substituting the values from EQ 12 and expressing P

according to the following equations: and Q in terms of their real and imaginary parts, EQ 10
OUtP=P+Q x W and EQ 11 become
£Q 10 outP =P, + jP; + (Q, cos X + Q; sin X) + j(Q; cos X — Q, sin X)
P=p W = (P, + Q, cos X + Q; sin X) + j(P; + Q; cos X = Q, sin X)
outP=P-Q x o3
EQ 11 ) _ . .

The twiddle fact b q outQ =P, +jP, - (Q, cos X + Q; sin X) —j(Q; cos X — Q, sin X)
© wiadle Tactor can be xpressed e = (F,~Qy cos X~ Q;sn X) + (P~ Q; cos X + Q; 5in X)
W =cos X—jsin X f0 14

EQ 12

12 v4.0
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Figure 9 depicts an example of an 8-point FFT algorithm. The tree contains log, 8 = 3 stages with 8/ 2 = 4 butterflies
calculated at every stage.

0
X(0 ® O (H— x0)
1
x4l ns, >©<@XE[] \ ® (1]
ws \/ Wi
2
x[2] O @ ® x[2]
Aw by
3
x[6] _1@ @Xe[ ] @ x[3]
we w3
0
x[1] O o ® x[4]
; /><>G*W4
1
3] 2® oLt @ xls]
. / A i
2
xI5] :><@ Ok ® xI6]
/ i / "
3
x[7] _1@ @Xo[ ] @ x[7]
weé w?

Figure 9 e 8-Point FFT Using Decimation-in-Time Algorithm
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List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version

Changes in Current Version (v4.0)

Page

v3.0

Fusion was removed from the "Targeted Devices" section.

The "Synthesis and Simulation Support" section was updated.

FFT size expanded to include 32-, 64-, 128-, and 2,048-point transforms.

Input/output data width changed to 8- to 16-bit (configurable).

All input and output data widths throughout document now expressed in terms of configurable bit
width b = 8 to 16 bits.

N/A

Table 1 replaced with Table 1 and Table 2.

3-4

EQ 4 was revised.

Table 5 updated: removed module_name parameter, added bits parameter, updated points and
fpga_family parameters.

Updated the sample in the "A Sample Configuration File" section.

v2.0

The "Targeted Devices" section was updated to include Fusion.

Table 1 (now Table 1 and Table 2) was updated to include Fusion data.

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before the data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," and "Production." The definitions of these

categories are as follows:

Product Brief

The product brief is a summarized version of an advanced or production datasheet containing general product

information. This brief summarizes specific device and family information for unreleased products.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed

grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.
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KomnaHus «Life Electronics» 3aHumaemcsi nocmaskamu 351€KmMpPOHHbIX KOMITOHEHMO8 UMIOPMHO20 U
omedyecmeeHHo20 rpouseodcmea om npoudeodumernel u co ckrnados KpyrHbix ducmpubbomopos Esporibi,
AMepuku u Asuu.

C koHua 2013 200a KoMraHusi akmueHo pacwiupsiem fuHelKy MocmagoK KOMIOHEHMO8 0 HarnpaeneHuo
KoakcuarbHbIl kabesb, Keapuesbie 2eHepamopbl U KOHOeHCcamopbi (KepaMuyeckue, nieHoYHbIe,
3neKmposiumuyeckue), 3a cuyém 3akntoyeHuss ducmpubbromopcKux 002060p08

Mbi1 npednasaem:

o KoHKypeHmocnocobHbie UeHbl U CKUOKU MOCMOSIHHbIM KITUeHmMam.

e CrieyuarsnbHbie ycrio8usi 07151 TOCMOSIHHbIX KITUEHIMO8.

e [lod6op aHarnoeos.

lMocmaeky KomMrnoHeHmMo8 8 ftobbix obbemax, y0oernemeopstouUx eawum MompebHoCMSsM.

lpuemnembie cpoku nocmasku, 803MOXHa yCKOPEeHHasi mMocmaska.
Locmaeky mosapa & ritobyto moyky Poccuu u cmpaH CHI™.
KomrinekcHytro nocmasky.

Pabomy no npoekmam u rnocmasky obpa3syos.

®opmuposaHue ckiada nod 3akaszyuka.

Cepmucgbukambl coomeemcmeus Ha rnocmassnseMyro npooyKyuUto (Mo XenaHu KueHma).
o TecmuposaHue nocmasnsemMou npodyKyuu.

e [locmasKy KOMMOHEHMOo8, mMpebyruux 806HHYIO U KOCMUYECKYH MPUEMKY.

e  BxodHoli KOHMposib Ka4yecmea.

e  Hanu4yue cepmugpukama I1SO.

B cocmaee Hawel komnaHuu opeaHu3oeaH KoHcmpykmopckuli omderst, npu3eaHHbIl MomMozamb
paspabomyukam, U UHXEHepaM.

KoHcmpykmopckuli omOen nomoaaem ocyujecmseums:

Pezaucmpauuro npoekma y npousgooumersisi KOMIOHEHMOS.

TexHu4eckyro no0depXKy rnpoekma.

Bawumy om cHaMuUs KOMroHeHma ¢ npoussoocmea.

OueHKy cmoumocmu fpoeKkma ro KOMIOHeHmam.

U3ezomoerneHue mecmosol rnnambl MOHMaX U ryckoHanadoyHbie pabomeil.
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