Precision Mixed-Signal 32-bit Microcontroller

Introduction

Q32M210 is a precision, mixed-signal 32-bit microcontroller. The microcontroller is built on the high performance $ARM^{\textcircled{B}}$ Cortex $^{\text{TM}}$ -M3 processor.

The microcontroller incorporates a highly configurable sensor interface designed to work directly with a wide range of sensors having multiple characteristics, including specialized electrochemical sensors. The sensor interface includes dual programmable gain amplifiers, dual 16-bit Analog-to-Digital converters, triple 10-bit Digital-to-Analog converters (for voltage waveform generation and other applications) and three uncommitted, low-noise opamps with configurable signal multiplexing. Flexible connectivity to external non-volatile memory, personal computers, wireless devices, LCD displays and a wide range of other peripherals is enabled by several digital interfaces including I²C, USB (2.0 full-speed compliant) and a high-speed SPI/SQI interface.

The microcontroller features flexible clocking options as well as intelligent failure monitoring of power and application interruptions required by high performance, portable, battery operated applications. All necessary clocks including an internal oscillator, real-time clock and a dedicated clock for USB operation are available on-chip (external crystals required for RTC and USB).

An embedded power management unit, which incorporates several low power modes, allows application developers to minimize both standby and active power under a wide range of operating conditions. The ultra-low sleep current makes the microcontroller ideal for applications that remain inactive for long periods of time.

A large on-chip non-volatile flash memory (256 kB) combined with on-chip SRAM (48 kB) supports complex applications and simplifies application development. The flash contains built-in hardware error checking and correction (ECC) for application reliability. Additionally, a configurable DMA unit which supports independent peripheral-to-memory, memory-to-memory, and memory-to-peripheral channels provides flexible, low power data transfers without processor intervention.

A suite of industry-standard development tools, hands-on training and full technical support are available to reduce design cycle time and speed time-to-market.

• The Q32M210 Microcontroller is Pb-Free, Halogen Free/BFR Free and RoHS Compliant

ON Semiconductor®

http://onsemi.com

TLLGA-140 DUAL-ROW CASE 513AL

MARKING DIAGRAM

Q32M210 AWLYYWWG

Q32M210 = Device Code A = Assembly Site

WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 50 of this data sheet.

Contents

Introduction	. 1
Key Features	. 2
Functional Overview	. 4
Pin Definition and Descriptions	11
Recommended Operating Conditions	19
ESD and Latch-up Characteristics	19
Electrical Characteristics	20
Typical Operating Characteristics	33
Detailed Function Descriptions	38
Example Application Diagrams	46

Key Features

Ultra Low-Power and Smart Power Management

- Less than 400 μA / MHz, up to 16 MHz clock speed
- Reliable operation down to 1.8 V; 3.3 V nominal supply voltage
- Ultra-low-current sleep mode with Real-time Clock active (< 750 nA)
- Low-current standby mode with register and SRAM retention (< 26 μA)
- Integrated power supplies minimize need for external components. Only a minimum of external passives is required

Efficient, Powerful and Robust Processing Architecture

- 32-bit ARM Cortex-M3 CPU
- 256 kB on-chip flash with integrated hardware ECC for program and user data storage
- 48 kB on-chip SRAM
- Flexible DMA, 4 general-purpose timers, CRC calculator
- No external voltage required for flash write operation

Low-Noise, Low-Leakage, Low-Temperature Drift, Configurable Sensor Interface

- Triple ultra low-noise opamps with low-leakage inputs and configurable outputs
- Dual on-chip Programmable Gain Amplifiers (PGA) and ADCs with flexible input multiplexing and wide dynamic range
- Reconfigurable voltage detection unit
- Optimal dynamic range scaling of sensor signals
- Flexible on-chip signal routing for dynamic reconfigurability
- Minimal temperature drift of gain and offset errors allows for precise calibration
- Built-in Temperature Sensor

Predictable Operation

 Dedicated brown-out protection circuit prevents execution of code outside of operating range

- Integrated hardware-based ECC for on-chip flash maintains code and data integrity
- Watchdog timer

High Precision Analog-to-Digital Conversion and Digital-to-Analog Conversion

- Dual 16-bit ADCs with on-the-fly data rate configurability
- Triple 10-bit DACs with configurable dynamic range

Precision Voltage Reference

 On-chip, low temperature drift (< 50 ppm/°C) voltage reference for ADCs and DACs

Flexible On-Chip Clocking

 Processor supports speeds up to 16 MHz provided either through internal oscillator or externally supplied clock

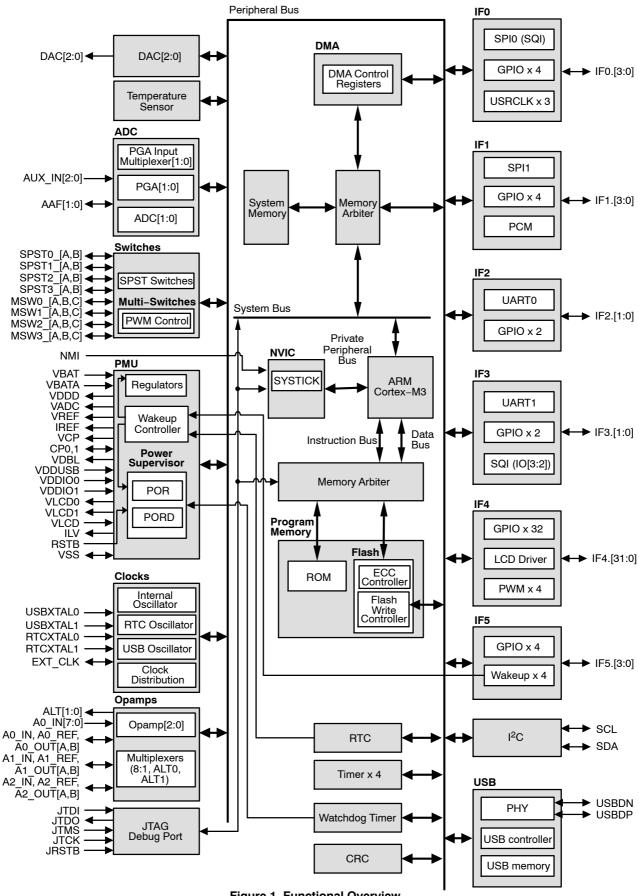
Flexible Sensor Interconnections

- Triple low R_{on} analog multiplexers, including an 8:1 input mux
- Quad SPST and quad multi-switches for effective simultaneous connection to different sensors

USB 2.0 Full-Speed Interface

• Built-in transceiver for 2.0 Full-speed compatible (12 Mbps) operation with dedicated power supply

Flexible External Interfaes


- Configurable Interface Wakeup pins with configurable pull-ups and pull-downs
- 8 Configurable GPIO interrupts
- Dual UARTs, dual SPI, SQI, I²C, PCM (including I2S mode), GPIOs

LCD Interface

• Up to 112 segments with integrated charge pump and backlight driver (up to 10 mA)

Packaging

• Available in 140-pin TLLGA

FUNCTIONAL OVERVIEW

Operating Modes

Three low-power operating modes are available

- Run mode used during normal program execution; the entire device is fully operational in run mode
- Standby mode used for lower current consumption, with paused program execution and fast wakeup
- 3. Sleep mode used for ultra low current consumption, with no program execution and restart after wakeup

Each mode is designed to provide the lowest possible current consumption, while maintaining power to specific parts of the device.

Run Mode

Run mode provides a low power mode where the entire system is fully functional. In run mode, the device enables the on-chip VDDD Digital Supply Regulator to provide power to the ARM Cortex-M3 Processor. The processor is clocked from either an internal or an external clock source. The program can be executed from the internal flash or SRAM.

The application can selectively enable or disable sensor interface components, including supply regulators and references, as required. The application may also adjust the device clock frequency through the internal oscillator or through clock divisors to minimize power consumption. The digital and analog interfaces may be configured as required in run mode. Internal clock dividers provide all the necessary clocks to the sensor interface and peripherals.

While in run mode, the application may switch into either sleep mode or standby mode.

Standby Mode

Standby mode provides a low power mode where the digital system state is retained. In standby mode, the ARM Cortex-M3 Processor execution is paused. The VDDD Digital Supply Regulator voltage is reduced. The contents of all the registers and SRAM are retained.

The power supervisor automatically disables and powers down the sensor interface components, including the analog supply regulators and references. The application may selectively enable or disable the RTC, RTC alarm, and the Wakeup controller. The internal oscillator is automatically disabled.

When in standby mode, the device may be switched into run mode by either the RTC alarm or by up to four external events (through the Wakeup controller).

Sleep Mode

Sleep mode provides an ultra-low power mode where the system is waiting for a wakeup event. In sleep mode, the power supervisor automatically disables and powers down the digital and analog supply regulators, the internal oscillator, and all the sensor interface components. The

application may selectively enable or disable the RTC, RTC alarm, and the Wakeup controller.

When in sleep mode, the device may be switched into run mode by either the RTC alarm or by up to four external events (through the Wakeup controller). After exiting sleep mode, the system state is reset and execution starts from the beginning of the ROM program.

A general purpose retention register is available to store state. The retention register contents are retained after exiting sleep mode. This register may be used by the application to quickly restore its state.

Power Supply

The device can powered from a single battery supply such as a 2032 lithium coin cell. The device supplies all required regulated voltages and references on–chip. This allows the device to operate directly from a single battery supply without the need for external regulators or switches.

VBAT and VBATA

The main power supply input for the device is VBAT. The supplied voltage to VBAT is typically 3.3 V but it can be supplied with any voltage between 1.8 V and 3.6 V. The device will operate reliably across this entire power supply range. This flexibility allows for a wide range of battery types to be directly connected to the device.

The sensor interface power supply for the device is VBATA. VBATA is typically 3.3 V but it can be supplied with any voltage between 1.8 V and 3.6 V. The sensor interface will operate reliably across this entire power supply range however the performance of the sensor interface may be reduced when VBATA drops below 2.2 V. VBATA also powers the IF5 pins.

In a typical application, VBATA and VBAT are both connected directly to the battery supply. To increase the useful operating life of the battery VBATA may be externally connected to the on-chip charge pump output (VDBL) instead of the battery. In this configuration the sensor interface power supply remains nominally 3.5 V even as the battery voltage drops.

VBAT is monitored by the built-in power supervisor. VBATA is not directly monitored but may be measured through the sensor interface.

Regulators

All required voltages for normal device operation are generated on-chip.

VDDD

The VDDD Digital Supply Regulator (VDDD) provides a nominal 1.8 V power supply for the ARM Cortex-M3 Processor, digital peripheral and memories, including the on-chip flash. VDDD is generated on-chip and is connected to the digital components internally. It is also available externally. Flash memory reads and writes require only a

minimum voltage of 1.8 V. No external power management circuitry is required to support flash access.

VADC

The VADC Analog Supply Regulator (VADC) provides a nominal 1.8 V power supply for the ADCs and PGAs. This separate supply ensures noise immunity between the analog and digital subsystems. VADC may be enabled or disabled as required to save power.

VDBL

The VDBL Charge Pump (VDBL) provides a nominal 3.5 V power supply under any normal operating range battery voltage. VDBL is powered from the dedicated on-chip Charge Pump Supply Regulator (VCP). This separate supply ensures noise immunity between VDBL, the other on-chip power supplies as well as from the battery. VDBL is normally used to power an LCD segment display and associated backlight or any other external devices requiring a fixed, high voltage rail. VDBL may also be used to power the sensor interface. This is useful when a fixed, higher voltage rail is required for the sensor interface compared to the battery voltage.

ILV

An on-chip programmable current sink (ILV) is available to adjust the amount of current from VDBL through an LED backlight. In a typical configuration an LED is connected between VDBL and ILV. The application controls the LED brightness by adjusting the current setting.

VREF Precision Voltage Reference

The device provides an on-chip low-temperature drift reference voltage, VREF. VREF is factory calibrated to 0.9 V. VREF is available externally and is also connected internally to the ADCs and DACs for their reference voltages.

I/O Pin Supplies

The device's I/O pins are powered from multiple supplies. This allows the device to match its I/O voltage levels to external devices as required.

One bank of digital I/O pins is powered from VDDIO0. The voltage applied to VDDIO0 determines the logic level for the associated pins. A second bank of mixed signal I/O pins is powered from VDDIO1.

The voltage applied to VDDIO1 determines the digital logic level for the associated pin. When the mixed signal I/O pins are configured for LCD operation, VDDIO1 must be at or above VLCD supply voltage for proper operation.

The USB pins USBDP and USBDN are powered directly from VDDUSB.

The IF5 pins are powered directly from VBATA. All analog signal pins are powered directly from VBATA.

Power Supervisor, Power-on Reset, and Brown-Out Protection

The device contains a dedicated hardware power supervisor for monitoring the supply voltages. The power

supervisor ensures the device operates deterministically, and without any unexpected behavior during all supply conditions

The power supervisor releases the internal Power-on Reset (POR) when the supply voltage on VBAT exceeds the minimum threshold for proper operation. The release of POR enables the VDDD Digital Supply Regulator. The power supervisor continues to monitor VBAT. If VBAT drops below the minimum threshold for proper operation the device is reset.

No external circuitry is required for proper device startup. All required start-up delays and reset thresholds are generated on-chip. The RSTB pin may be left floating during startup.

The ARM Cortex-M3 Processor and all digital subsystem components including the flash, SRAM, and peripherals will operate reliability down to a nominal VDDD supply voltage of 1.8 V. In run mode, the power supervisor continually monitors VDDD. If VDDD drops below the minimum threshold for proper operation the device is reset.

The power supervisor is automatically disabled in sleep mode and standby mode to save power.

Supply Monitor

During run mode, the actual voltage levels for VBAT, VBATA, VREF, and VADC can be measured through either one of the ADC channels. This allows the application to determine the actual supply levels and appropriately handle the graceful shutdown of the system when the battery approaches its useful end–of–life. Additional voltages may be monitored through one of the auxiliary inputs.

In a system configuration where the sensor interface may be supplied from either the battery or the VDBL Charge Pump, the application can use the measured VBAT voltage level to determine whether to enable VDBL or continue to supply the sensor interface from the battery.

External Reset

The device contains an external reset pin (RSTB). When RSTB is asserted, the digital subsystem including the ARM Cortex–M3 Processor is reset. The real–time clock counters are not reset by an external reset. The RSTB function is only available in run mode. Asserting the RSTB pin during the Power–on Reset sequence will prevent the ARM Cortex–M3 Processor from running. The system will be held in reset until the pin is released. RSTB can be left floating.

System Wakeup

Wakeup occurs when the device is switched from standby mode or sleep mode into run mode. This can be accomplished through one of the wakeup mechanisms. The wakeup controller allows for up to four external events to wake up the system. Two IF5 pins (IF5.0, IF5.1) will wakeup the system when a High-to-Low transition is detected. Two IF5 pins (IF5.2, IF5.3) will wakeup the system when a Low-to-High transition is detected. The RTC Alarm can also be configured to wakeup the system at a predetermined time.

Clocking

The device contains several clock generators and clock I/O capability. After Power—on Reset, the device selects the internal oscillator as the system clock source. The default clock frequency at POR is 3 MHz. After boot, the application may select another frequency or switch to another clock source. The device may select the real—time crystal oscillator (32.768 kHz) as the clock source, when low operating frequencies are required to save power.

Internal Oscillator

The device contains a reconfigurable, factory calibrated internal oscillator. The calibration settings are stored in the on-chip flash. Settings are available for all integer frequencies in the normal operating range (1 MHz to 16 MHz). Finer calibration is possible.

The default setting after Power-on Reset is 3 MHz. The application can switch to any operating frequency after entering run mode.

External Clock

The device contains an external clock I/O pin (EXT_CLK). EXT_CLK may be used as a clock source for the entire system or as a clock output. The application may switch to use an externally supplied clock or output a clock after boot. If neither function is desired EXT_CLK may be left floating.

An external clock detection circuit is included that will automatically switch the system to the internal oscillator, if the external clock is selected, but no clock signal is detected.

When EXT_CLK is used as an output, the frequency of the output clock can be divided before EXT_CLK is output.

Real-Time Clock

The device contains an ultra low-power real-time clock (RTC). The RTC includes a real-time crystal oscillator, read-write RTC counters, and a configurable alarm. The real-time crystal oscillator utilizes a 32.768 kHz external crystal.

The RTC may be enabled or disabled in each of the three operating modes. The RTC is powered directly from VBAT. This allows the RTC to continue to run when the VDDD Digital Supply Regulator voltage is reduced in standby mode or disabled in sleep mode and thus the system date and time information are always maintained. The RTC is reset after the initial Power–on Reset but remains operational through a digital reset (RSTB or watchdog) and operating mode switching.

The alarm function can be configured to wake-up the system from standby mode or sleep mode at a pre-determined time. The alarm will also generate an interrupt to the ARM Cortex-M3 Processor. The alarm can be configured for absolute mode or relative mode. In relative mode, the alarm is automatically reloaded after each alarm trigger. This is useful for extremely low-duty-cycle applications that require periodic polling.

USB Crystal Oscillator

The device contains a dedicated USB crystal oscillator. The oscillator requires an external 48 MHz crystal for compliance with the USB interface specification. The clock output is used internally for the USB PHY and USB core.

During USB operation the ARM Cortex-M3 Processor and all other system blocks continue to run on the slower system clock. This allows the device to achieve low system current even while the USB interface is active.

The USB Crystal Oscillator can be enabled or disabled.

Clock Divisors

On-chip clock divisors and prescalers are available to provide selectable frequencies to the ARM Cortex-M3 Processor, sensor interface, peripherals and external interfaces. These divided clocks are derived from the root clock source and may be configured independently. This adjustability allows the optimum clock frequency to be selected for each system component.

Sensor Interface

Opamps

Three uncommitted low-noise opamps are available. Each opamp is directly powered from the VBATA supply for achieving high input dynamic range for sensor interface signals. Each of the opamp's positive and negative terminals is brought out to a dedicated input pin on the device. Each opamp output terminal is connected to two dedicated output pins. An internal switch selects between output to one or both of the output pins, allowing for dynamic reconfigurability of the external opamp feedback network.

Signal Multiplexing

A comprehensive input multiplexing scheme allows for flexible interconnection of a wide range of sensors and external circuits to be connected to the sensor interface. The input multiplexing consists of:

- An 8:1 analog multiplexer Connects one of 8 low–leakage input pins to an opamp negative terminal
- A 3:1 analog multiplexer Connects one of 3 low–leakage input pins to an alternate sensor node (ALT0) and optionally to an opamp negative terminal
- A 5:1 analog multiplexer Connects one of 5 low–leakage input pins to an alternate sensor node (ALT1) and optionally to an opamp negative terminal

Each multiplexer signal path features low Ron characteristics providing nearly transparent signal routing for any external sensor. The input multiplexer configuration may be changed on—the—fly by the application.

Dual PGA and ADC

Two independent 16-bit Analog-to-Digital Converters (ADCs) are available. The ADCs provide a very high resolution, a high degree of linearity, as well as low gain and offset temperature drifts. Each ADC is coupled with a

Programmable Gain Amplifier (PGA) allowing signals to be sampled without external buffering. The ADC data rate is reconfigurable and a wide range of data rates are possible. Each ADC conversion takes a fixed time resulting in a deterministic, periodic sampling. Lower data rates may be configured to achieve a higher effective dynamic range.

The ADCs operate rail-to-rail from 0 V to VADC (1.8 V) using the internal VREF Precision Voltage Reference (0.9 V). Unsigned or two's complement output samples are provided to the ARM Cortex-M3 Processor and synchronized to the periodic ADC interrupt. The DMA may also be used to transfer samples directly from the ADC to SRAM.

Each PGA and ADC has 16 multiplexed inputs allowing a wide range of sensor interface signals to be measured. In addition, power supply voltages are available as measurement inputs for application level supply monitoring.

Programmable Gain Amplifiers

A PGA is used to directly feed each of the ADC inputs. The PGAs operate in either single-ended mode or differential mode. Single-ended operation is obtained by setting one PGA input to VSS. Differential operation is obtained by routing signals to each of the two PGA inputs. The resulting voltage is amplified, anti-alias filtered, and output into the ADC. A wide range of gain steps from 0 dB to 36 dB allow for optimal adjustment of the PGA output to match the dynamic range of the ADC.

PGA1 operates in one of three input modes. Each input mode provides a different common-mode voltage range with linearity characteristics and tradeoffs. The application may choose different PGA1 operating modes depending on the type of measurement being made. PGA0 operates in a single input mode only.

Automatic Voltage Detection

Automatic voltage detection is available on PGA0. When enabled, the PGA0 will output an interrupt to the ARM Cortex-M3 Processor when the PGA0 output voltage exceeds the configured threshold. To save power the ADCs may be disabled while waiting for the detection signal.

Auxiliary Inputs

Three auxiliary inputs provide a direct connection to the PGA and ADC multiplexers. External voltages such as thermistor networks may be connected to any of these high impedance inputs for direct measurement with the ADC.

Triple DAC

Three independent 10-bit DACs are available. Each DAC output is individually controlled by the ARM Cortex-M3 Processor. The DACs provide a high degree of linearity, low gain and offset temperature drift, and are monotonic within the normal operating range.

The dynamic range of DAC0 is reconfigurable. The 10-bit output range may be mapped into one of three ranges: 1 x VREF, 2 x VREF, or 3 x VREF. This reconfigurable

dynamic mapping allows a tradeoff between LSB resolution and dynamic range.

The dynamic range of DAC1 and DAC2 is fixed to 2 x VREF.

Temperature Sensor

The device contains a built-in temperature sensor. The temperature sensor works by generating a differential voltage that varies linearly with temperature. The voltage is routed into the PGA resulting in a single-ended output voltage measurable by the ADC.

The temperature sensor is calibrated during factory production by ON Semiconductor. The calibration value is stored in the flash. The device junction temperature may be determined based on the calibration factor and converted ADC output value.

SPST Switches

The device contains four analog general-purpose, low-leakage, low-Ron, single-pole single-throw switches (SPSTs). Each SPST consists of 2 ports – A and B. The SPST connection is determined by the application and may be changed in real-time. Port A can be connected or disconnected from Port B.

The SPSTs can be used for routing both power supplies and signals. Each SPST is designed to conduct a continuous current of up to \pm 10 mA. This provides sufficient current bandwidth to supply power to external devices such as LCD displays or wireless transceivers.

When routing signals through the SPST, the low-leakage characteristics allow the switch to create a high isolation between a measurement node and the sensor interface. The application may connect the measurement node to the sensor interface through the SPST as required. The low-leakage characteristics allow the SPST to be added to the signal chain without interfering with the impedance properties of the measurement node.

Multi-Switches

The device contains four analog general-purpose, low-leakage, low-Ron multi-switches (MSWs). Each MSW consists of 3 ports – Port A, Port B, and Port C (Common). The MSW connection is determined by the application and may be changed in real-time. The MSW may be configured to connect A to C, B to C, A and B to C, or neither to C. A signal of interest may be connected to the common port, and selectively routed to A, B, or A and B. Alternately, two signals of interest may be connected to A and B, respectively, and either one selectively routed to C.

The MSWs may be used for routing both power supplies and signals. Each MSW is designed to conduct a continuous current of up to 10 mA. This provides sufficient current bandwidth to supply power to external devices such as LCD displays or wireless transceivers.

The MSWs may be configured to switch based on the on-chip reconfigurable pulse-width modulator (PWM).

The PWM On/Off duty cycle time can be configured by the application allowing the MSWs to act as a power regulator.

ARM Cortex-M3 Processor

The ARM Cortex-M3 processor is a 32-bit RISC controller specifically designed to meet the needs of advanced, high-performance, low-power applications. The ARM Cortex-M3 processor provides outstanding computational performance and exceptional system response to interrupts while providing small core footprint, industry leading code density enabling smaller memories, reduced pin count and low power consumption.

The Q32M210 implementation of the ARM Cortex-M3 Processor contains all necessary peripherals and bus systems to provide a complete device optimized for battery powered sensor interface applications.

Memories

Flash Memory

256 kB flash is available for storage of application code and data. Flash memory can be written one or more words at a time. Each page must be erased between writes to a flash word. The flash memory can be erased as a set all at once or in individual 2 kB pages. An additional reserved block of flash memory is used to store factory calibration information provided by ON Semiconductor. This block can not be written by the application.

The ARM Cortex-M3 processor executes application code directly from flash with zero wait states.

Flash Error Checking and Correction

A dedicated hardware block performs real-time error checking and correction of the flash. Additional parity bits are stored automatically for each word in the flash. The hardware ECC is able to detect up to 2-bit errors per word or detect and correct 1-bit error per word. The hardware ECC operates as each word is read from the flash. An interrupt can be generated upon correction of a bit error and a bus fault will be generated when a bit error is detected, but cannot be corrected.

SRAM

48 kB of low-power SRAM is available for storage of intermediate data as well as application code.

ROM

An on-chip ROM includes boot functionality as well as firmware routines supporting writing to flash in an application.

External Interrupt Controller

Eight configurable external interrupt sources may be connected to any eight GPIO pins on the device. This is in addition to a dedicated interrupt for the wakeup controller. Each interrupt may be individually configured for positive edge triggering, negative edge triggering, high level triggering, or low level triggering.

A dedicated non-maskable interrupt (NMI) pin is connected directly to the ARM Cortex-M3 Processor. A logic high level on this pin will trigger the interrupt handler for the NMI.

DMA

A flexible DMA unit supports low overhead data exchange between system blocks. Memory-to-Peripheral, Peripheral-to-Memory, and Memory-to-Memory modes are available. Four simultaneous DMA channels can be established with configurable sources and sinks.

The DMA can be used with the UART, SPI, SQI, I²C, USB, and PCM interfaces, as well as the ADCs and DACs.

The DMA operates in the background allowing the ARM Cortex–M3 Processor to execute other applications or to reduce its operating frequency to conserve power.

General-Purpose Timers

The device contains four general-purpose timers. Each timer features a 12-bit countdown mode, an external interrupt to the ARM Cortex-M3 Processor, a dedicated prescaler, and the ability to poll the counter value. These four general-purpose timers are in addition to the 24-bit SYSTICK timer included as part of the ARM Cortex-M3 Processor.

CRC Engine

A 16-bit hardware CRC engine is available. The CRC engine may be used to ensure data integrity of application code and data. The CRC engine's input port and output port are directly accessible from the ARM Cortex–M3 Processor. The starting vector may be set to any value. Subsequently, data words of multiple bit lengths can be added to the CRC. The 16-bit CRC-CCITT polynomial is used.

Watchdog Timer

The device contains a digital watchdog timer. The watchdog timer is intended to prevent an indefinite system hang when an application error occurs. The application must periodically refresh the watchdog counter during operation. If a watchdog timeout occurs an initial alert interrupt is generated. If a subsequent watchdog timeout occurs, a system reset is generated. The initial alert may be used to gracefully shut down the system.

Dual UART

Two general-purpose UART interfaces are available. The UARTs support the standard RS232 protocol and baud rates at the VDDIO0 voltage level. The UART format is fixed at one start bit, eight data bits, and one stop bit. The baud rate is configurable over a wide range of baud rates up to 250 kbaud using a 1 MHz source clock.

The UART interfaces may be used either directly from the ARM Cortex-M3 Processor or through the DMA Controller.

Dual SPI

Two SPI interfaces are available supporting both master and slave operation. Each synchronous 4-wire interface provides a clock, chip select, serial data in, and serial data out connection. The SPI interface can be used to interface with external devices such as non-volatile memories, displays, and wireless transceivers.

The SPI interfaces can be used either directly from the ARM Cortex-M3 Processor or through the DMA Controller

SQI

The primary SPI interface can be configured to operate in SQI (serial quad interface) mode. In SQI mode 4 bits are interchanged simultaneously instead of 1 bit in SPI mode. In this way, the throughput of the interface is increased by a factor of 4 for the same clock frequency. The SQI interface is typically used to access large, external NVM arrays.

I²C

The I²C interface supports both master and slave operation. The interface operates at normal speed (100 kbit/sec) and high speed (400 kbit/sec). On-chip pull-up resistors are available on the SDA and SCL pins.

The I²C interface can be used either directly from the ARM Cortex-M3 Processor or through the DMA Controller. The I²C slave address is programmable by the application.

PCM

The pulse-code modulation (PCM) interface provides a data connection between the device and external devices such as Bluetooth or audio processors. The PCM interface can operate both in master and slave mode. The master device of a PCM transfer generates the frame signal.

The PCM interface can be used either directly from the ARM Cortex-M3 Processor or through the DMA controller. Two DMA channels are used with the PCM interface – one for RX, and one for TX.

The PCM interface supports a wide variety of interface protocols by reconfiguring the frame type and width, word size and clock polarities. The PCM interface supports the I2S data format directly for connecting to an I2S compatible audio device. Audio data can be streamed to and from the audio device over the PCM interface in I2S mode.

GPIO

GPIO pins can be configured as input or output signals. The pins are powered from VDDIO0, VDDIO1, or VBATA providing flexibility in the I/O voltage levels available. Different I/O voltage levels may be supplied to VDDIO0

and VDDIO1 within the normal operating range. GPIO functionality is shared with alternate functions on most GPIO pins. The GPIO or alternate function is selected through the application.

USB

The USB interface provides connectivity between the ARM Cortex-M3 Processor and a USB host. The USB interface operates as a USB Full Speed Device (12 Mbit/sec). The USB physical interface (PHY) is powered directly from VDDUSB. A minimum supply of 3 V is required. Typically VDDUSB will be powered from the +5 V provided by the USB bus regulated down to 3.3 V.

The interface requires a 48 MHz clock which is provided through the USB crystal oscillator. An external 48 MHz crystal is required for this interface to operate. The USB interface operates on a separate clock domain allowing the rest of the system to continue to run on the slower internal oscillator or external clock source. This enables reduced power consumption, since the ARM Cortex–M3 Processor can operate at a lower frequency than the USB clock when USB is operational.

The USB interface interfaces to the ARM Cortex-M3 Processor through memory-mapped control registers and interrupts. The DMA may be used to transfer data between the USB interface and the SRAM directly.

LCD

The device provides an on-chip LCD driver capable of driving up to 112 display segments of a 1/3 bias, 1/4 duty cycle LCD display. The interface consists of four common (COM) lines and twenty-eight (28) segment (SEG) lines. The drive voltages are sourced from VLCD and consist of four voltages (0 V, 1/3 x VLCD, 2/3 x VLCD, and VLCD).

LCD Backlight

The LCD backlight driver provides an application controlled current sink. It is programmable to sink nominally between 0 mA to 10 mA. An LCD backlight may be connected between VDBL and ILV. The current passing through the LED is regulated based on the current setting set by the application.

JTAG

The device contains a dedicated JTAG port for interfacing to the ARM Cortex-M3 Processor and memories. The device implements the standard JTAG-DP protocol provided by ARM, providing compatibility with many external debugging systems.

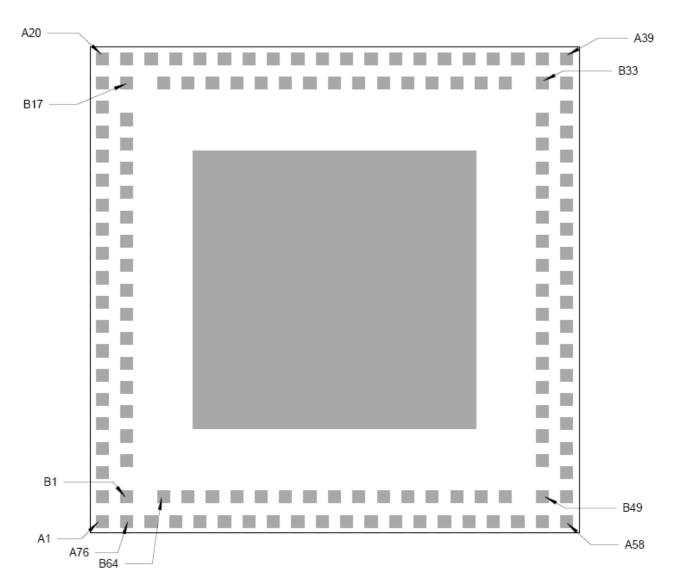


Figure 2. Pin Definition and Descriptions

Table 1. PIN DEFINITIONS

		1		Pull-up /		Function			
140 TLLGA	Pin Name (Note 6)	Type (Note 1)	Direction (Note 2)	Pull-Down (Note 3)	Pin Power Supply	Primary (Note 4)	Alternate 1	Alternate 2	Alternate 3
B4	USBDP	D	I/O	-	VDDUSB	USBDP	-	-	-
A5	USBDN	D	I/O	-	VDDUSB	USBDN	-	-	-
B44	SCL	D	I/O	PU	VDDIO0	SCL		-	-
A51	SDA	D	I/O	PU	VDDIO0	SDA	-	-	-
A48	IF0.0	D	I/O	PU	VDDIO0	SPI0_CLK	GPIO32	-	_
A53	IF0.1	D	I/O	PU	VDDIO0	SPI0_CS	GPIO33	USRCLK0	-
A57	IF0.2	D	I/O	PU	VDDIO0	SPI0_SI	GPIO34	USRCLK1	SQI_SIO[1]
A56	IF0.3	D	I/O	PU	VDDIO0	SPI0_SO	GPIO35	USRCLK2	SQI_SIO[0]
A47	IF1.0	D	I/O	PU	VDDIO0	SPI1_CLK	GPIO36	PCM_CLK	_
B39	IF1.1	D	I/O	PU	VDDIO0	SPI1_CS	GPIO37	PCM_FR	-
A52	IF1.2	D	I/O	PU	VDDIO0	SPI1_SI	GPIO38	PCM_SI	_
B45	IF1.3	D	I/O	PU	VDDIO0	SPI1_SO	GPIO39	PCM_SO	-
B48	IF2.0	D	I/O	PU	VDDIO0	UART0_TX	GPIO40	-	-
A49	IF2.1	D	I/O	PU	VDDIO0	UART0_RX	GPIO41	-	-
B41	IF3.0	D	I/O	PU	VDDIO0	UART1_TX	GPIO42	SQI_SIO[2]	-
A54	IF3.1	D	I/O	PU	VDDIO0	UART1_RX	GPIO43	SQI_SIO[3]	-
A2	IF4.0	М	I/O	PD	VDDIO1	GPIO0	COM0	-	-
A1	IF4.1	М	I/O	PD	VDDIO1	GPIO1	COM1	-	-
B1	IF4.2	М	I/O	PD	VDDIO1	GPIO2	COM2	-	-
A76	IF4.3	М	I/O	PD	VDDIO1	GPIO3	СОМЗ	-	-
B64	IF4.4	М	I/O	PD	VDDIO1	GPIO4	SEG0	-	_
A75	IF4.5	М	I/O	PD	VDDIO1	GPIO5	SEG1	-	-
B63	IF4.6	М	I/O	PD	VDDIO1	GPIO6	SEG2	-	_
A74	IF4.7	М	I/O	PD	VDDIO1	GPI07	SEG3	_	-
A72	IF4.8	М	I/O	PD	VDDIO1	GPIO8	SEG4	-	-
B61	IF4.9	М	I/O	PD	VDDIO1	GPIO9	SEG5	_	-
B60	IF4.10	М	I/O	PD	VDDIO1	GPIO10	SEG6	-	-
A70	IF4.11	М	I/O	PD	VDDIO1	GPIO11	SEG7	-	-
B59	IF4.12	М	I/O	PD	VDDIO1	GPIO12	SEG8	-	-
A69	IF4.13	М	I/O	PD	VDDIO1	GPIO13	SEG9	-	-
B58	IF4.14	М	I/O	PD	VDDIO1	GPIO14	SEG10	-	-
A68	IF4.15	М	I/O	PD	VDDIO1	GPIO15	SEG11	-	-
B57	IF4.16	М	I/O	PD	VDDIO1	GPIO16	SEG12	-	-
A67	IF4.17	М	I/O	PD	VDDIO1	GPIO17	SEG13	-	-
B56	IF4.18	М	I/O	PD	VDDIO1	GPIO18	SEG14	-	-
A66	IF4.19	М	I/O	PD	VDDIO1	GPIO19	SEG15	-	-
B55	IF4.20	М	I/O	PD	VDDIO1	GPIO20	SEG16	-	-
A65	IF4.21	М	I/O	PD	VDDIO1	GPIO21	SEG17	-	-

- Types: D Digital, M Mixed signal, A Analog, S Supply
 Direction: I Input, O Output, I/O Input or Output
 PU Pull–up, PD Pull–down. Most Pull–up and Pull–downs may be disconnected in firmware
 Primary function is the power–on default. Alternate functions may be selected in firmware
 TEST must be connected to VSS for proper device operation.

- 6. All pins with the same name must be shorted together for proper device operation
 7. IF5.0 can be used as an analog external input to programmable gain amplifiers

Table 1. PIN DEFINITIONS

Pin				Pull-up /			Function		
140 TLLGA	Pin Name (Note 6)	Type (Note 1)	Direction (Note 2)	Pull-Down (Note 3)	Pin Power Supply	Primary (Note 4)	Alternate 1	Alternate 2	Alternate 3
A64	IF4.22	М	I/O	PD	VDDIO1	GPIO22	SEG18	-	-
A63	IF4.23	М	I/O	PD	VDDIO1	GPIO23	SEG19	-	-
B53	IF4.24	М	I/O	PD	VDDIO1	GPIO24	SEG20	PWM0	_
A62	IF4.25	М	I/O	PD	VDDIO1	GPIO25	SEG21	PWM1	-
B52	IF4.26	М	I/O	PD	VDDIO1	GPIO26	SEG22	PWM2	-
A61	IF4.27	М	I/O	PD	VDDIO1	GPIO27	SEG23	PWM3	-
B51	IF4.28	М	I/O	PD	VDDIO1	GPIO28	SEG24	-	-
A60	IF4.29	М	I/O	PD	VDDIO1	GPIO29	SEG25	-	-
B50	IF4.30	М	I/O	PD	VDDIO1	GPIO30	SEG26	-	-
A59	IF4.31	М	I/O	PD	VDDIO1	GPIO31	SEG27	-	-
B47	NMI	D	ļ	PD	VDDIO0	NMI	-	-	-
A12	IF5.0 (Note 7)	М	I/O	PU	VBATA	WAKEUP0	GPIO44	-	-
B10	IF5.1	D	I/O	PU	VBATA	GPIO45	WAKEUP1	-	-
A11	IF5.2	D	I/O	PD	VBATA	GPIO46	WAKEUP2	-	-
В9	IF5.3	D	I/O	PD	VBATA	GPIO47	WAKEUP3	-	-
B42	RSTB	D	ļ	PU	VDDIO0	RSTB	-	-	-
B38	JTDI	D	ļ	PD	VDDIO0	JTDI	-	-	-
B40	JTDO	D	0	-	VDDIO0	JTDO	-	-	-
A46	JTMS	D	I	PU	VDDIO0	JTMS	-	-	-
A55	JTCK	D	ļ		VDDIO0	JTCK	-	-	-
A45	JRSTB	D	ı	PU	VDDIO0	JRSTB	-	-	-
A20	DAC0	Α	0	-	VBATA	DAC0	-	-	-
A21	DAC1	Α	0		VBATA	DAC1	-	-	-
B18	DAC2	Α	0		VBATA	DAC2	-	-	-
A29	AUX_IN0	Α	ļ	-	VBATA	AUX_IN0	-	-	-
B24	AUX_IN1	Α	ı	-	VBATA	AUX_IN1	-	-	-
A23	AUX_IN2	Α	I	-	VBATA	AUX_IN2	-	_	-
A37	AAF0	Α	I/O	-	VBATA	AAF0	-	-	-
B32	AAF1	Α	I/O	-	VBATA	AAF1	-	-	-
B17	MSW0_A	Α	I/O		VBATA	MSW0_A	-	-	-
B16	MSW0_B	Α	I/O	-	VBATA	MSW0_B	-	-	-
A19	MSW0_C	Α	I/O	-	VBATA	MSW0_C	-	-	-
A18	MSW1_A	Α	I/O	-	VBATA	MSW1_A	-	-	_
A17	MSW1_B	Α	I/O	-	VBATA	MSW1_B	-	-	-
B15	MSW1_C	Α	I/O	-	VBATA	MSW1_C	-	-	-
B14	MSW2_A	Α	I/O	-	VBATA	MSW2_A	-	-	-
B13	MSW2_B	Α	I/O	-	VBATA	MSW2_B	-	-	-
		-		. —					

- 1. Types: D Digital, M Mixed signal, A Analog, S Supply
 2. Direction: I Input, O Output, I/O Input or Output
 3. PU Pull–up, PD Pull–down. Most Pull–up and Pull–downs may be disconnected in firmware
 4. Primary function is the power–on default. Alternate functions may be selected in firmware
 5. TEST must be connected to VSS for proper device operation
 6. All pins with the same name must be shorted together for proper device operation
 7. IES 0 can be used as an applop external input to programmable gain amplifiers

- 7. IF5.0 can be used as an analog external input to programmable gain amplifiers

Table 1. PIN DEFINITIONS

Pin				Pull-up /		Function			
140 TLLGA	Pin Name (Note 6)	Type (Note 1)	Direction (Note 2)	Pull-Down (Note 3)	Pin Power Supply	Primary (Note 4)	Alternate 1	Alternate 2	Alternate 3
A16	MSW2_C	Α	I/O		VBATA	MSW2_C		-	
A15	MSW3_A	Α	I/O		VBATA	MSW3_A		-	
B12	MSW3_B	Α	I/O	-	VBATA	MSW3_B	-	-	-
A14	MSW3_C	Α	I/O		VBATA	MSW3_C		-	
A58	NC	-	-	-	-	NC	-	-	-
A8	VDBL	S	0		-	VDBL		-	
A10	VBATA	S	I	-	-	VBATA	-	-	-
B20	VBATA	S	I	-	-	VBATA	-	-	
A73	VBATA	S	I	-	-	VBAT	-	-	-
B62	VDDD	S	0	-	-	VDDD	-	-	-
A7	ILV	Α	I/O	-	VLCD	ILV	-	-	-
A44	VDDIO0	S	I	-	-	VDDIO0	-	-	-
B37	VDDI00	S	I	-	-	VDDIO0	-	-	-
A50	VDDIO0	S	I	-	-	VDDIO0	-	-	-
B43	VDDI00	S	1	-	-	VDDIO0	-	-	-
В3	VDDIO1	S	1	-	-	VDDIO1	-	-	-
B49	VDDIO1	S	1	-	-	VDDIO1	-	-	-
B54	VDDIO1	S	I		-	VDDIO1		-	
A71	VDDIO1	S	I	-	-	VDDIO1	-	-	-
A4	VDDUSB	S	I	-	-	VDDUSB	-	-	-
A38	VREF	S	0	-	-	VREF	-	-	-
A13	IREF	S	0		-	IREF		-	
A39	VADC	S	0	-	-	VADC	-	-	-
B6	VLCD0	Α	0	_	VLCD	VLCD0	-	-	-
A6	VLCD1	Α	0	-	VLCD	VLCD1	-	-	-
B5	VLCD	S	I	-	-	VLCD	-	-	-
B8	CP0	Α	0	-	VLCD	CP0	-	-	-
В7	CP1	Α	0	-	VLCD	CP1	-	-	-
A9	VCP	S	0	-	-	VCP	-	-	-
B2	USBXTAL0	Α	I/O	-	VDDIO1	USBXTAL0	-	-	-
А3	USBXTAL1	Α	I/O	-	VDDIO1	USBXTAL1	-	-	-
B19	RTCXTAL0	Α	I/O	-	VBAT	RTCXTAL0	-	-	-
A22	RTCXTAL1	Α	I/O	-	VBAT	RTCXTAL1	-	-	-
B46	EXTCLK	D	I/O	-	VDDIO0	EXTCLK	-	-	-
B25	ALT0	Α	I/O	-	VBATA	ALT0	-	-	
A30	ALT1	Α	I/O	-	VBATA	ALT1	-	-	
A31	A0_IN0	Α	I/O	-	VBATA	A0_IN0	-	-	
B26	A0_IN1	Α	I/O		VBATA	A0_IN1	-	-	-

- Types: D Digital, M Mixed signal, A Analog, S Supply
 Direction: I Input, O Output, I/O Input or Output
 PU Pull–up, PD Pull–down. Most Pull–up and Pull–downs may be disconnected in firmware
 Primary function is the power–on default. Alternate functions may be selected in firmware
 TEST must be connected to VSS for proper device operation

- 6. All pins with the same name must be shorted together for proper device operation
 7. IF5.0 can be used as an analog external input to programmable gain amplifiers

Table 1. PIN DEFINITIONS

Pin				Pull-up/		Function			
140 TLLGA	Pin Name (Note 6)	Type (Note 1)	Direction (Note 2)	Pull-Down (Note 3)	Pin Power Supply	Primary (Note 4)	Alternate 1	Alternate 2	Alternate 3
A32	A0_IN2	Α	I/O	-	VBATA	A0_IN2	-	_	-
B27	A0_IN3	Α	I/O	-	VBATA	A0_IN3	-	_	-
A33	A0_IN4	Α	I/O	-	VBATA	A0_IN4	-	-	-
B28	A0_IN5	Α	I/O	-	VBATA	A0_IN5	-	-	-
A34	A0_IN6	Α	I/O	-	VBATA	A0_IN6	-	-	-
B29	A0_IN7	Α	I/O	-	VBATA	A0_IN7	-	-	-
A35	A0_IN	Α	I	-	VBATA	A0_IN	-	-	-
A28	A1_IN	Α	I	-	VBATA	A1_IN	-	-	-
A26	A2_IN	Α	I	-	VBATA	A2_IN	-	-	-
B30	A0_REF	Α	I	-	VBATA	A0_REF	-	-	-
B22	A1_REF	Α	I	-	VBATA	A1_REF	-	_	-
A24	A2_REF	Α	I	-	VBATA	A2_REF	-	_	_
B31	A0_OUTA	Α	0	-	VBATA	A0_OUTA	-	-	-
A36	A0_OUTB	Α	0	-	VBATA	A0_OUTB	-	_	-
B23	A1_OUTA	Α	0	-	VBATA	A1_OUTA	-	-	-
A27	A1_OUTB	Α	0	-	VBATA	A1_OUTB	-	-	-
B21	A2_OUTA	Α	0	-	VBATA	A2_OUTA	-	-	-
A25	A2_OUTB	Α	0	-	VBATA	A2_OUTB	-	-	-
A43	SPST0_A	Α	I/O	-	VBATA	SPST0_A	-	-	-
B36	SPST0_B	Α	I/O	-	VBATA	SPST0_B	-	-	-
A42	SPST1_A	Α	I/O	-	VBATA	SPST1_A	-	-	-
B35	SPST1_B	Α	I/O	-	VBATA	SPST1_B	-	-	-
A41	SPST2_A	Α	I/O	-	VBATA	SPST2_A	-	-	-
B34	SPST2_B	Α	I/O	-	VBATA	SPST2_B	-	-	-
A40	SPST3_A	А	I/O	-	VBATA	SPST3_A	-	-	-
B33	SPST3_B	Α	I/O	-	VBATA	SPST3_B	-	-	-
B11	TEST (Note 5)	А	I	-	-	TEST (connect to VSS)	-	-	-
Thermal	VSS	S	-	-	-	VSS	-	-	-

- 1. Types: D Digital, M Mixed signal, A Analog, S Supply
- Direction: I Input, O Output, I/O Input or Output
 PU Pull-up, PD Pull-down. Most Pull-up and Pull-downs may be disconnected in firmware
- 4. Primary function is the power-on default. Alternate functions may be selected in firmware
- 5. TEST must be connected to VSS for proper device operation6. All pins with the same name must be shorted together for proper device operation
- 7. IF5.0 can be used as an analog external input to programmable gain amplifiers

Table 2. DETAILED PIN DESCRIPTIONS

Pin Name	Description
USBDP	USB interface positive terminal
USBDN	USB interface negative terminal
SCL	I ² C interface clock
SDA	I ² C interface data
IF0.0	Primary SPI interface clock / General purpose I/O
IF0.1	Primary SPI interface chip select / General purpose I/O / User clock output
IF0.2	Primary SPI interface data input / General purpose I/O / User clock output / SQI serial I/O 1
IF0.3	Primary SPI interface data output / General purpose I/O / User clock output / SQI serial I/O 0
IF1.0	Secondary SPI interface clock line / General purpose I/O / PCM interface clock
IF1.1	Secondary SPI interface chip select / General purpose I/O / PCM interface frame
IF1.2	Secondary SPI interface data input / General purpose I/O / PCM interface data input
IF1.3	Secondary SPI interface data output / General purpose I/O / PCM interface data output
IF2.0	Primary UART transmit line / General purpose I/O
IF2.1	Primary UART receive line / General purpose I/O
IF3.0	Secondary UART transmit line / General purpose I/O / SQI serial I/O 2
IF3.1	Secondary UART receive line / General purpose I/O / SQI serial I/O 3
IF4.0	LCD backplane drive output (COM0) / General purpose I/O
IF4.1	LCD backplane drive output (COM1) / General purpose I/O
IF4.2	LCD backplane drive output (COM2) / General purpose I/O
IF4.3	LCD backplane drive output (COM3) / General purpose I/O
IF4.4	LCD segment output / General purpose I/O
IF4.5	LCD segment output / General purpose I/O
IF4.6	LCD segment output / General purpose I/O
IF4.7	LCD segment output / General purpose I/O
IF4.8	LCD segment output / General purpose I/O
IF4.9	LCD segment output / General purpose I/O
IF4.10	LCD segment output / General purpose I/O
IF4.11	LCD segment output / General purpose I/O
IF4.12	LCD segment output / General purpose I/O
IF4.13	LCD segment output / General purpose I/O
IF4.14	LCD segment output / General purpose I/O
IF4.15	LCD segment output / General purpose I/O
IF4.16	LCD segment output / General purpose I/O
IF4.17	LCD segment output / General purpose I/O
IF4.18	LCD segment output / General purpose I/O
IF4.19	LCD segment output / General purpose I/O
IF4.20	LCD segment output / General purpose I/O
IF4.21	LCD segment output / General purpose I/O
IF4.22	LCD segment output / General purpose I/O
IF4.23	LCD segment output / General purpose I/O
IF4.24	LCD segment output / General purpose I/O / Pulse-Width Modulator 0 output
IF4.25	LCD segment output / General purpose I/O / Pulse–Width Modulator 1 output
IF4.26	LCD segment output / General purpose I/O / Pulse-Width Modulator 2 output
IF4.27	LCD segment output / General purpose I/O / Pulse-Width Modulator 3 output

Table 2. DETAILED PIN DESCRIPTIONS

Pin Name	Description
IF4.28	LCD segment output / General purpose I/O
IF4.29	LCD segment output / General purpose I/O
IF4.30	LCD segment output / General purpose I/O
IF4.31	LCD segment output / General purpose I/O
NMI	Non-maskable interrupt
IF5.0	Wakeup input 0, Falling Edge / General purpose I/O / External signal to programmable gain amplifiers
IF5.1	Wakeup input 1, Falling Edge / General purpose I/O
IF5.2	Wakeup input 2, Rising Edge / General purpose I/O
IF5.3	Wakeup input 3 Rising Edge / General purpose I/O
RSTB	Reset input
JTDI	JTAG data input
JTDO	JTAG data output
JTMS	JTAG mode select
JTCK	JTAG clock
JRSTB	JTAG reset
DAC0	Digital-to-Analog Converter 0 output
DAC1	Digital-to-Analog Converter 1 output
DAC2	Digital-to-Analog Converter 2 output
AUX_IN0	Auxiliary Input 0 – External signal input to programmable gain amplifiers
AUX_IN1	Auxiliary Input 1 – External signal input to programmable gain amplifiers
AUX_IN2	Auxiliary Input 2 - External signal input to programmable gain amplifiers
AAF0	External capacitor filter node for programmable gain amplifier 0 (Anti-aliasing)
AAF1	External capacitor filter node for programmable gain amplifier 1 (Anti-aliasing)
MSW0_A	Multi-switch 0 A terminal
MSW0_B	Multi-switch 0 B terminal
MSW0_C	Multi-switch 0 Common terminal
MSW1_A	Multi-switch 1A terminal
MSW1_B	Multi-switch 1 B terminal
MSW1_C	Multi-switch 1 Common terminal
MSW2_A	Multi-switch 2 A terminal
MSW2_B	Multi-switch 2 B terminal
MSW2_C	Multi-switch 2 Common terminal
MSW3_A	Multi-switch 3 A terminal
MSW3_B	Multi-switch 3 B terminal
MSW3_C	Multi-switch 3 Common terminal
VDBL	Output voltage from on-chip charge pump; filtering capacitor required
VBATA	Main power supply input (analog)
VBAT	Main power supply input (digital and related support blocks)
VCP	Output voltage from charge pump regulator; filtering capacitor required
VDDD	Output voltage from digital supply regulator; filtering capacitor required
ILV	Programmable current sink for LED backlight drive and intensity trimming
VDDIO0	Power supply input for digital I/O pins, excluding IF4
VDDIO1	Power supply input for IF4 mixed-signal LCD I/O pins
VREF	Output voltage from on-chip precision voltage reference; filtering capacitor required

Table 2. DETAILED PIN DESCRIPTIONS

Pin Name	Description
IREF	Output current from on–chip current reference; reference resistor (300 k Ω , low–TC) required
VADC	Output voltage from ADC power supply regulator; filtering capacitor required
VLCD0	Output voltage from LCD driver (33%); filtering capacitor required
VLCD1	Output voltage from LCD driver (66%); filtering capacitor required
VLCD	Power supply input for LCD and backlight current driver
CP0	Charge pump flyback capacitor connection
CP1	Charge pump flyback capacitor connection
VSS	Ground pin in the center of the package
USBXTAL0	48 MHz USB crystal connection
USBXTAL1	48 MHz USB crystal connection
RTCXTAL0	32.768 kHz real-time-clock crystal connection
RTCXTAL1	32.768 kHz real-time-clock crystal connection
EXTCLK	External clock I/O
ALT0	Sensor Interface 3:1 MUX Common terminal (Connection to A0_IN0, A0_IN1, A0_IN2)
ALT1	Sensor Interface 5:1 MUX Common terminal (Connection to A0_IN3, A0_IN4, A0_IN5, A0_IN6, A0_IN7)
A0_IN0	Sensor Interface 8:1 MUX 0 terminal
A0_IN1	Sensor Interface 8:1 MUX 1 terminal
A0_IN2	Sensor Interface 8:1 MUX 2 terminal
A0_IN3	Sensor Interface 8:1 MUX 3 terminal
A0_IN4	Sensor Interface 8:1 MUX 4 terminal
A0_IN5	Sensor Interface 8:1 MUX 5 terminal
A0_IN6	Sensor Interface 8:1 MUX 6 terminal
A0_IN7	Sensor Interface 8:1 MUX 7 terminal
A0_IN	Opamp A0 negative input terminal (common terminal for Sensor Interface 8:1 MUX)
A1_IN	Opamp A1 negative input terminal
A2_IN	Opamp A2 negative input terminal
A0_REF	Opamp A0 positive input terminal
A1_REF	Opamp A1 positive input terminal
A2_REF	Opamp A2 positive input terminal
A0_OUTA	Opamp A0 output (primary)
A0_OUTB	Opamp A0 output (secondary)
A1_OUTA	Opamp A1 output (primary)
A1_OUTB	Opamp A1 output (secondary)
A2_OUTA	Opamp A2 output (primary)
A2_OUTB	Opamp A2 output (secondary)
SPST0_A	Single-pole single-throw switch 0 A terminal
SPST0_B	Single-pole single-throw switch 0 B terminal
SPST1_A	Single-pole single-throw switch 1 A terminal
SPST1_B	Single-pole single-throw switch 1 B terminal
SPST2_A	Single-pole single-throw switch 2 A terminal
SPST2_B	Single-pole single-throw switch 2 B terminal
SPST3_A	Single-pole single-throw switch 3 A terminal
SPST3_B	Single-pole single-throw switch 3 B terminal
TEST	Test input; Short to VSS required

Pin Connections

The following table describes the required and recommended external connections and components. These connections and components are required to ensure proper device operation and performance.

Table 3. REQUIRED AND RECOMMENDED EXTERNAL CONNECTIONS AND COMPONENTS

Pin	External Connection or Component	Recommended Value
VDDD	Power supply filtering capacitor	C = 22 μF
VCPLDO	Power supply filtering capacitor	C = 22 μF
AAF0	Anti-aliasing filtering capacitor	C = 1 μF (for 160-320 Hz cut-off range)
AAF1	Anti-aliasing filtering capacitor	C = 1 μF (for 160-320 Hz cut-off range)
VDBL	Power supply filtering capacitor	C = 10 μF
VBATA	Battery supply filtering capacitor	C = 22 μF
VBAT	Battery supply filtering capacitor	C = 22 μF
CP0, CP1	Charge pump capacitor between CP0, CP1	C = 1 μF
VDDIO0	I/O supply filtering capacitor	C = 22 μF
VDDIO1	I/O supply filtering capacitor	C = 22 μF
VDDUSB	Battery supply filtering capacitor	C = 10 μF
RTCXTAL0, RTCXTAL1	Crystal for real-time clock (No capacitors required)	f = 32768 Hz, C = 9 pF, ESR = 70 kΩ
USBXTAL0, USBXTAL1	Crystal for USB (No capacitors required)	f = 48.0 MHz, C = 10 pF, ESR = 70 Ω
VREF	Power supply filtering capacitor	C = 22 μF
IREF	Current reference resistor	R = 300 kΩ (± 1%, TC < 100 ppm/C)
VADC	Power supply filtering capacitor	C = 22 μF
VLCD	Power supply filtering capacitor	C = 1 μF
VLCD1	LCD driver voltage filtering capacitor	C = 1 nF
VLCD0	LCD driver voltage filtering capacitor	C = 1 nF
NMI	Test point recommended	
TEST	Test pin must be connected to VSS	
Thermal	Thermal must be connected to battery VSS	
USBDP, USBDN	ESD protection for USB bus	P/N = ON Semiconductor NUP2201MR6T1G

Table 4. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Units
Input voltage on any digital pin		-0.3	3.6	V
Input voltage on any analog pin		-0.3	3.6	V
Input voltage on any supply pin		-0.3	3.6	V
Current on any digital pin			± 5	mA
Current on any analog pin			± 10	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 5. RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Тур	Max	Units
Power supply applied to VBAT	VBAT	1.8	3.3	3.5	V
Power supply applied to VBATA	VBATA	2.2	3.3	3.5	V
Internal oscillator clock frequency		1		16	MHz
Externally supplied clock frequency				16	MHz
Ambient Operating temperature range	Ta	0		50	°C
Junction temperature range	Tj	0		75	°C
Opamp differential mode voltage				± 5	mV

Table 6. ESD AND LATCH-UP CHARACTERISTICS

Parameter		Max	Units	
ESD – Human Body Model (Note 8)		VBAT pin	1250	V
	JEDEC JS-001-2010	SPST[0:3], MSW[0:2] pins	1500	
		all other pins	3000	
ESD – Charged Device Model (Note 8)	JESD22-C101-E, all pins		750	V
ESD – Machine Model (Note 8)	JESE2	250	V	
Latch-up (Note 8)	JEDEC	C STD-78, all pins	± 100	mA

^{8.} Characteristics are obtained through device qualification and characterization and not tested in production

ELECTRICAL CHARACTERISTICS

Test Conditions

Typical Values

Unless otherwise noted, Typ values specify the typical values based on design and characterization data under normal operating conditions. Normal operating conditions include a supply voltage (VBAT and VBATA) of 3.3 V and an operating temperature of 25°C. For specific blocks the details of the normal operation conditions are described in their respective sections.

Minimum and Maximum Values

Unless otherwise noted, for range parameters, Min and Max values specify the designed range or measurement range and are guaranteed by design and/or characterization. Range parameters include the term "Range" in their name.

For non-range parameters, the Min and Max values specified may be based on factory production test limits, design, or characterization data. Production test limits are specified for typical temperature and supply voltage only.

Temperature Range

A • in the Conditions field for any parameter denotes characterized over the complete operating temperature range. The Typ values listed for those parameters are guaranteed by design and/or characterization over the complete range. If present, the Min and Max values for • parameters may be based on factory production test limits, design, or characterization data.

For more information related to the performance of the device across the operating temperature range refer to the Typical Operating Conditions plots.

Normal Operating Conditions

Unless otherwise noted, normal operating conditions indicate an ambient temperature Ta = 25°C and a supply voltage VBAT = VBATA = 3.3 V. VDDD, VADC, VREF, and the Internal Oscillator are calibrated to their preset factory calibration settings and correspond to their respective Typ values. VDDIO0 and VDDIO1 are powered externally from the VDDD Digital Supply Regulator. No external loads are applied to digital I/O or analog pins. The power supply for normal operating conditions is shown in Figure 3.

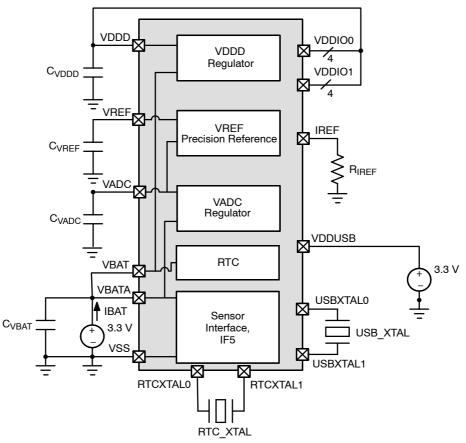


Figure 3. Normal Operating Condition Configuration

Table 7. NORMAL OPERATION CONFIGURATION

Symbol	Description	Value
C _{VREF}	VREF filtering capacitor	22 μF
C _{VDDD}	VDDD regulator filtering capacitor	22 μF
C _{VADC}	VADC regulator filtering capacitor	10 μF
C _{VBAT}	Supply filtering capacitor	22 μF
USB_XTAL	Crystal for USB	48 MHz
RTC_XTAL	Crystal for RTC	32.768 kHz
R _{IREF}	Resistor for current reference	300 kΩ

Table 8. SYSTEM (Typical operating conditions (Ta = 25°C, VBAT = VBATA = 3.3 V, VDDIO0 = VDDIO1 = VDDD, 16-bit/32-bit mixed instructions, 66% execution from flash memory, data access from SRAM, sensor interface disabled, peripherals disabled) unless otherwise noted. • denotes characterized over complete temperature range. Current consumption for individual blocks may be found in their respective sections.)

Parameter	Symbol	Condition	ons	Min	Тур	Max	Units
DC ELECTRICAL CHARACTERISTICS	•			•		•	
Main Supply Voltage Range (Note 9)	VBAT			1.8		3.6	V
Analog Supply Voltage Range (Note 10)	VBATA			2.2		3.6	V
USB Supply Voltage Range	VDDUSB			3.0		3.3	V
I/O Supply Voltage Range (Notes 11, 12)	VDDIO0, VDDIO1			1.8		3.6	V
LCD Supply Voltage Range (Note 13)	VLCD			1.8		3.6	V
Run Mode Current (Note 14) IBAT	IBAT	Typical application,	1 MHz		0.8		mA
	execution from flash, analog dis-	2 MHz		1.2		1	
		abled	4 MHz		2.1		1
	<u> </u>	8 MHz		3.8		1	
			16 MHz		7.0		1
		Typical application,	1 MHz		0.7		1
		execution from SRAM	2 MHz		1.0		1
			4 MHz		1.7		1
			8 MHz		3.0		1
			16 MHz		5.6		1
Standby Mode Current		RTC enable	d		26		μΑ
Sleep Mode Current		RTC enable	d		0.75		μΑ
		RTC disable	ed		0.15		1

^{9.} VBAT powers the VDDD regulator (for the digital core, peripherals, internal oscillator), VCP regulator (for the charge-pump)

^{10.} VBATA powers the VADC regulator, VREF, sensor interface, analog pins, and IF5 pins (wakeup)

^{11.} VDDIO0 powers I²C (SCL, SDA), IF0, IF1, IF2, IF3, NMI, RSTB, EXTCLK, JTAG

^{12.} VDDIO1 powers IF4

^{13.} VLCD powers VLCD0, VLCD1, ILV

^{14.} The current consumption in run mode depends on the complexity of the application (i.e. the number of memory accesses, type of instruction (16-bit or 32-bit), program and data storage in flash or SRAM).

Table 9. DIGITAL I/O PINS (IF0, IF1, IF2, IF3, JTAG, EXTCLK, RSTB, NMI, SCL, SDA)

(Typical operating conditions (Ta = 25°C, VDDIO0 = VDDD, Pull-up/Pull-down Enabled) unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol		Conditions	Min	Тур	Max	Units
DC ELECTRICAL CHARAC	TERISTICS	•		•	•		•
VDDIO0 Supply Voltage Range (Note 15)	VDDIO0			1.8		3.6	V
Output Low Level	V _{ol}	ار	ol = 4 mA			0.2 x VDDIO0	V
Output High Level	V_{oh}	I _{ol}	l = −4 mA	0.8 x VDDIO0			V
Input Low Level	V _{il}					0.2 x VDDIO0	V
Input High Level	V_{ih}			0.8 x VDDIO0			V
Pull-up Resistance	R_{pu}	Non-I ² C	VDDIO0 = 1.8 V		102		kΩ
			VDDIO0 = 3.3 V	34	48	74	1
		I ² C	VDDIO0 = 1.8 V		1		1
			VDDIO0 = 3.3 V		1		
Pull-down Resistance	R _{pd}	VDD	01O0 = 1.8 V		102		kΩ
		VDD	01O0 = 3.3 V	34	55	75	
Pin Capacitance	C _p				5		pF
Maximum Output Current	I _{ol} , I _{oh}					± 4	mA
Input Leakage Current	lı					± 1	μΑ

^{15.} Supply voltage may be lower during Standby Mode if VDDIO0 is connected to VDDD

Table 10. LCD I/O PINS (IF4) (Typical operating conditions (T_a = 25°C, VDDIO1 = VBAT, GPIO Mode, Pull-up / Pull-down Enabled) unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
DC ELECTRICAL CHARACTERIS	TICS		•			
VDDIO1 Supply Voltage Range	VDDIO1	GPIO Mode	1.8		3.6	V
(Note 16)		LCD Mode	VLCD		3.6	
Output Low Level	V _{ol}	I _{ol} = 4 mA			0.2 x VDDIO1	V
Output High Level	V_{oh}	I _{ol} = -4 mA	0.8 x VDDIO1			V
Input Low Level	V _{il}				0.2 x VDDIO1	V
Input High Level	V _{ih}		0.8 x VDDIO1			V
Pull-down Resistance	R_{pd}	VDDIO1 = 1.8 V		138		kΩ
		VDDIO1 = 3.3 V	34	54	75	
Pin Capacitance	C _p			5		pF
Maximum current					± 4	mA

^{16.} Supply voltage may be lower during Standby Mode if VDDIO1 is connected to VDDD

Table 11. WAKEUP I/O PINS (IF5) (Typical operating conditions (Ta = 25°C, Pull-up / Pull-down Enabled, GPIO mode) unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
DC ELECTRICAL CHARACTERISTIC	S		•		•	•
IF5 Supply Voltage Range (Note 17)	VBATA		1.8		3.6	V
Output Low Level	V _{ol}	I _{ol} = 4 mA			0.2 x VBATA	٧
Output High Level	V_{oh}	I _{ol} = -4 mA	0.7 x VBATA			V
Input Low Level	V _{il}				0.2 x VBATA	V
Input High Level	V_{ih}		0.7 x VBATA			V
Wakeup Threshold (Note 18)		For IF5.0, IF5.1			0.2 x VBATA	V
		For IF5.2, IF5.3	0.2 x VBATA			1
Pull-up Resistance	R_{pu}	VBATA = 1.8 V		102		kΩ
		VBATA = 3.3 V		42		1
Pull-down Resistance	R_{pd}	VBATA = 1.8 V		140		kΩ
		VBATA = 3.3 V	34	54	75	1
Pin Capacitance	Cp			5		pF
Maximum current					± 4	mA

^{17.} IF5 Wakeup pins are powered from VBATA

Table 12. USB I/O (USBD+, USBD-) (Typical operating conditions (Ta = 25°C, Full–speed Mode, VDDUSB = 3.3 V) unless otherwise noted. • denotes over complete temperature.)

Parameter	Symbol	Conditions		Min	Тур	Max	Units
DC & AC ELECTRICAL CHARAC	TERISTICS		•				
USB Supply Voltage	VDDUSB			3.0		3.6	V
Supply Current		Standby			0.5		μΑ
		Operating			450		
Output Low Level	V _{ol}					0.3	V
Output High Level	V_{oh}			2.8			V
Input Low Level	V _{il}					8.0	V
Input High Level	V _{ih}			2.0			V
External Pull-up Resistance (Note 19)				1.425		1.575	kΩ
Termination voltage for Pull-up				3.0		3.6	V
Slew Rate (Note 19)	T _{fr}	Rise time, C _I = 50 pF		4		20	ns
. ,	T _{ff}	Fall time, C _I = 50 pF		4		20	
Slew Rate Matching	T _{frff}	$T_{frff} = T_{fr}/T_{ff}$		90		111	%
Pin Capacitance	Cp					20	pF

^{19.} External pull-up to 3.3 V is required on D+ to enumerate as a USB 2.0 Full-speed device

^{18.} Wakeup condition for IF5.0, IF5.1 is falling edge. Wakeup condition for IF5.2, IF5.3 is rising edge. Specified threshold indicates the maximum and minimum levels for the falling and rising edge final voltages, respectively

Table 13. FLASH MEMORY

(Typical operating conditions (Ta = 25°C) unless otherwise noted. All parameters in this section are obtained through qualification and characterization and are not tested in production • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
DC ELECTRICAL CHARACTERIS	STICS					
Supply Voltage	VBAT		1.8		3.6	V
Write Endurance		On-chip ECC disabled	20000			cycles
Data Retention			100			years
Programming Time (per word)				20		μs
Erase Time		Single page	20			ms
		Entire array (Note 20)	20			1

^{20.} Erase time for the entire array is through the Mass Erase operation

Table 14. SPI

Parameter	Symbol	Conditions	Min	Тур	Max	Units
SPI clock frequency		Master mode/Slave mode			8.0	MHz
SPI clock rise and fall time				10		ns
Data input setup time		Master mode/Slave mode	5			ns
Data input hold time		Master mode/Slave mode	5			ns
Data output access time		Slave mode			50	ns
Data output disable time		Slave mode	10			ns
Data output valid time		Slave mode (after SPI_CLK edge)			20	ns
Data output valid time		Master mode (after SPI_CLK edge)			5	ns
Data output hold time		Slave mode (after SPI_CLK edge)	25			ns
Data output hold time		Master mode (after SPI_CLK edge)	10			ns

Table 15. I²C

Parameter	Symbol	Conditions	Min	Тур	Max	Units
SCL low time			5			μs
SCL high time			5			μs
SDA setup time			250			ns
SDA and SCL rise time					1000	ns
SDA and SCL fall time					300	ns
Start condition hold time			4			μs

Table 16. PCM

Parameter	Symbol	Conditions	Min	Тур	Max	Units
PCM_CLK					16	MHz
PCM_SI setup time		Before PCM_CLK edge	10			ns
PCM_SI hold time		After PCM_CLK edge	10			ns
PCM_SO data valid time		After PCM_CLK edge			50	ns

Table 17. LCD (IF4, VLCD1, VLCD0, ILV) (Typical operating conditions (Ta = 25°C, VBATA = 3.3 V, VLCD = VDDIO1 = 3.5 V), unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
DC & AC ELECTRICAL CH	ARACTERISTIC	s	•	•		•
Supply Voltage	VDDIO1, VLCD		1.8		3.6	V
LCD Driving Voltage		LCD Driving Voltage 0	VSS			V
		LCD Driving Voltage 1		0.33 x VLCD		
		LCD Driving Voltage 2		0.66 x VLCD		1
		LCD Driving Voltage 3			VLCD	1
LCD Driving Voltage Temperature Drift				< 6		ppm/°C
LCD Backlight Current	I _{lv}	Disabled		0.0	± 0.001	mA
		Setting = 1 x I _{nom}		1.1		
		Setting = 2 x I _{nom}		2.2		
		Setting = 3 x I _{nom}		3.3		1
		Setting = 4 x I _{nom}		4.4		1
		Setting = 5 x I _{nom}		5.4		1
		Setting = 6 x I _{nom}		6.4		1
		Setting = 7 x I _{nom}		7.4		1
		Setting = 8 x I _{nom}		8.4		
		Setting = 9 x I _{nom}		9.4		
		Setting = 10 x I _{nom}		10.3		1

Table 18. DACs (DAC0, DAC1, DAC2) (Typical operating conditions (Ta = 25°C, VBATA = 3.3 V, DAC0 Mode 1, Code Range = 200 to 1023), unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
DC & AC ELECTRICAL CHARACT	ERISTICS					
Supply Voltage	VBATA		2.2		3.6	V
Supply Current		Code = 200		150		μΑ
		Code = 1023		105		1
Reference Voltage		DAC0 Mode 0		VREF		V
		DAC0 Mode 1, DAC1, DAC2		2 x VREF		1
		DAC0 Mode 2		3 x VREF		1
Resolution				10		bits
Output Dynamic Range				58		dB
Output Voltage Range (Note 21)		DAC0 Mode 0	0.15		0.9	V
		DAC0 Mode 1	0.15		1.8	1
	•	DAC0 Mode 2	0.15		2.7	1
	•	DAC1	0.15		1.8	1
		DAC2	0.15		1.8	1

^{21.} VBATA must be greater than the configured output voltage

^{22.} Guaranteed monotonic from code 200 to 1023

Table 18. DACs (DAC0, DAC1, DAC2) (Typical operating conditions (Ta = 25°C, VBATA = 3.3 V, DAC0 Mode 1, Code Range = 200 to 1023), unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
DC & AC ELECTRICAL CHARAC	TERISTICS					•
Output Voltage Noise		Code = 512, BW = 0.1 to 15 Hz		25		μV RMS
		Code = 1023, BW = 0.1 to 15 Hz		35		
Offset Error		Uncalibrated		22		LSB
Offset Error Temperature Drift				0.08		LSB/°C
Gain Error		Uncalibrated		35		LSB
Gain Error Temperature Drift				120		ppm/°C
Power Supply Rejection Ratio	PSRR	DC		77		dB
		1 kHz		52		
Output Impedance		DAC0, DAC1		35		kΩ
		DAC2		0.11		
Integral Non-Linearity	INL	Code > 200		± 0.25		LSB
Differential Non-Linearity (Note 22)	DNL	Code > 200 Guaranteed monotonic		± 0.25		LSB
Maximum Sink Current		DAC0, DAC1		10		μΑ
		DAC2		10		
Maximum Source Current		DAC0, DAC1		8		μΑ
		DAC2		130		

^{21.} VBATA must be greater than the configured output voltage

Table 19. INTERNAL OSCILLATOR (Typical operating conditions (Ta = 25°C, VBAT = 3.3 V, Frequency = 3.0 MHz), unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions		Min	Тур	Max	Units
DC & AC ELECTRICAL CHARAC	TERISTICS						_
Supply Voltage	VBAT			1.8		3.6	V
Frequency Range (Note 23)	f	Calibrated		1.0	3.0	16.0	MHz
Frequency Step Size (Note 24)		Calibrated			1.0		MHz
Frequency Accuracy		Calibrated		± 2			%
Frequency Temperature Drift			•		60		ppm/°C
Jitter (Note 25)					50		ps
Power Supply Rejection Ratio	PSRR	DC			50		dB

^{23.} Internal oscillator is calibrated during production test to all integer frequencies in the frequency range

^{22.} Guaranteed monotonic from code 200 to 1023

^{24.} Finer frequency steps are possible. For more information, contact ON Semiconductor

^{25.} Peak-to-peak jitter

Table 20. REAL-TIME CLOCK (Typical operating conditions (Ta = 25°C, VBAT = 3.3 V), unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
DC & AC ELECTRICAL CHARAC	CTERISTICS					
Supply Voltage	VBAT		1.8		3.6	V
Supply Current				0.60		μΑ
Frequency (Note 26)	f			32768		Hz
Duty Cycle				50		%

^{26.} Exact frequency is dependent on selected crystal and PCB

Table 21. USB CLOCK (Typical operating conditions (Ta = 25°C, VBAT = 3.3 V), unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions		Min	Тур	Max	Units
DC & AC ELECTRICAL CHARACT	TERISTICS		-		-	-	•
Supply Voltage	VBAT			1.8		3.6	V
Frequency (Note 27)	f				48		MHz
Duty Cycle					50		%

^{27.} Exact frequency is dependent on selected crystal and PCB

Table 22. SWITCHES (SPST0, SPST1, SPST2, SPST3, ALT0, ALT1, MSW0, MSW1, MSW2, MSW3, IN0, IN1, IN2, IN3, IN4, IN5, IN6, IN7, A0_OUT[A,B], A1_OUT[A,B], A2_OUT[A,B]) (Measured at Ta = 25°C. All other conditions are typical (VBATA = VBAT = 3.3 V), unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions	N	Vlin	Тур	Max	Units
DC & AC ELECTRICAL CHARAC	TERISTICS		•		<u> </u>		•
Supply Voltage	VBATA		2	2.2		3.6	V
On-Resistance	R _{on}				8	10	Ω
Input Voltage Range	V _{in}		٧	/SS		VBATA	V
Open Switch Leakage		SPST0, SPST1, SPST2, SPST3, MSW0, MSW1, MSW2				< 100	pА
		A0_OUT[A,B], A1_OUT[A,B], A2_OUT[A,B]				< 100	
		Input MUX (IN0:IN7) Source applied to INx, leakage measured at A0_IN				< 100	
		ALT0 Source Applied to A0_IN0, Leakage measured on ALT0				< 100	
		ALT1 Source Applied to A0_IN3, Leakage measured on ALT1				< 100	
Continuous Current (per switch)						± 10	mA

Table 23. POWER SUPERVISOR (Typical operating conditions (Ta = 25°C), unless otherwise noted. • denotes characterized over complete temperature range. Power supervisor is only enabled during initial battery insertion and run mode. The power supervisor is disabled during sleep mode and standby mode.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
DC & AC ELECTRICAL CHARACTE	RISTICS					
VBAT Reset Threshold		Falling		1.5		V
VDDD Reset Threshold	VDDD _{th0}	Rising		1.75		V
	VDDD _{th1}	Falling		1.65		
Wakeup Time (Note 28)		From battery insertion		0.5		ms
	·	From sleep mode		0.5		
	·	From standby mode		0.5		
Enter Sleep Mode Time		From run mode		1		ms
Enter Standby Mode Time		From run mode		1		ms

^{28.} Wakeup time is measured starting from the moment the VDDD voltage exceeds the VDDD reset threshold (rising) until the execution of the first user instruction in flash. The actual wakeup time will be affected by the number of entries in the NVIC table for the application.

Table 24. VDDD DIGITAL SUPPLY REGULATOR (Typical operating conditions (Ta = 25°C, VBAT = 3.3 V), unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions		Min	Тур	Max	Units
DC & AC ELECTRICAL CHARAC	TERISTICS						
Supply Voltage	VBAT			1.8		3.6	V
Output Voltage	VDDD	Run mode	•	1.8	1.85	1.9	V
		Standby mode, Iload = 1 mA			1.10		V
Load regulation		Resistive load	•		1		mV/mA
Power Supply Rejection Ratio	PSRR	DC			50		dB
		1 kHz			45		1

Table 25. VADC ANALOG SUPPLY REGULATOR (Typical operating conditions (Ta = 25°C, VBATA = 3.3 V, No load), unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions		Min	Тур	Max	Units
DC & AC ELECTRICAL CHARAC	TERISTICS					•	
Supply Voltage	VBATA			2.2		3.6	V
Supply Current (Note 29)		Enabled			2		μΑ
Output Voltage	V _{ADC}		•	1.80	1.85	1.9	V
Load regulation		Resistive load	•		2		mV/mA
Power Supply Rejection Ratio	PSRR	DC			70		dB
		1 kHz			65		1
Start-up time		Within 0.1% of final value			500		μsec

^{29.} Total current of enabled VREF and VADC

Table 26. VCP CHARGE PUMP SUPPLY REGULATOR (Typical operating conditions (Ta = 25°C, VBAT = 3.3 V, No load), unless otherwise noted. • denotes characterized over complete temperature range)

Parameter	Symbol	Conditions		Min	Тур	Max	Units
DC & AC ELECTRICAL CHARAC	TERISTICS						
Supply Voltage	VBAT			1.8		3.6	V
Output Voltage	VCP			1.74	1.80	1.92	V
Load regulation		Resistive load, 125 kHz, I _{load} = 0 to 25 mA	•		2		mV/mA
Power Supply Rejection Ratio	PSRR	DC			60		dB
		1 kHz			60		
Start-up time		Within 0.1% of final value			500		μsec

Table 27. VDBL CHARGE PUMP (Typical operating conditions (Ta = 25°C, VBATA = 3.3 V, No load, CP_CLK = 125 kHz), unless otherwise noted. • denotes characterized over complete temperature range)

Parameter	Symbol	Conditions		Min	Тур	Max	Units
DC & AC ELECTRICAL CHARAC	TERISTICS				•	•	
Supply Voltage	VBAT			1.8		3.6	V
Supply Current		Enabled			200		μΑ
Output Voltage	VDBL			3.4	3.5	3.6	V
Load regulation (Note 30)		Resistive load	•		4		mV/mA
Output Ripple		I _{load} = 10 mA, 125 kHz			23		mV pk-pk
Output Noise		BW = 0.1 to 15 Hz			75		μV RMS
Power Supply Rejection Ratio	PSRR	DC			55		dB
		1 kHz			40		
Start-up time		Within 0.1% of final value			1000		μsec

^{30.}Load regulation is non-linear across loads. Stated value is extrapolated from best-fit linear curve to measured data. See Typical Characteristics plot for more information.

Table 28. VREF PRECISION VOLTAGE REFERENCE (Typical operating conditions (Ta = 25° C, VBATA = 3.3 V, No load), unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions		Min	Тур	Max	Units
DC & AC ELECTRICAL CHARACT	ERISTICS		'		•	•	•
Supply Voltage	VBATA			2.2		3.6	V
Supply Current (Note 31)		Enabled			2		μΑ
Output Voltage	VREF	Ta = 25°C		0.898	0.900	0.902	V
Output Voltage Temperature Drift		Ta = 15 to 35°C			< 50		ppm/°C
		Ta = 5 to 45°C			< 50		1
		Ta = 0 to 50°C	•		50		1
Load regulation (Note 32)		Resistive load	•		2		mV/mA
Output Noise		BW = 0.1 to 15 Hz			35		μV RMS
Power Supply Rejection Ratio	PSRR	DC			85		dB
		1 kHz			75		1
Start-up time		Within 0.1% of final value			700		μsec

^{31.} Total current of enabled VREF and VADC

Table 29. OPAMPS (A0, A1, A2) (Typical operating conditions (Ta = 25°C, VBATA = 3.3 V, Unity gain, V_{CM} = VBATA/2) unless otherwise noted. • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions		Min	Тур	Max	Units
DC ELECTRICAL CHARACTERIS	STICS					-	
Supply Voltage	VBATA			2.2		3.6	V
Supply Current (per opamp)		Enabled			12		μΑ
Input Offset Voltage	V _{IO}	V _{CM} < VBATA – 0.85 V			± 1		mV
		V _{CM} < VBATA – 0.70 V			± 2		1
Input Offset Temperature Drift		V _{CM} = VBATA – 0.8 V	•		2		μV/°C
Input Bias Current	Ι _Β					< 100	pА
Input Offset Current	I _{IO}					< 100	pА
Input Common Mode Voltage Range		For CMRR > 75 dB		0		VBATA - 0.7	V
Common Mode Rejection Ratio	CMRR	0.1 V < V _{CM} < VBATA – 0.85 V			100		dB
		0 V < V _{CM} < VBATA - 0.7 V			< 100		1
Power Supply Rejection Ratio	PSRR	DC			87		dB
		1 kHz			70		1
Output Sink Current					10		μΑ
Output Short Circuit Current	Io				1		mA
AC ELECTRICAL CHARACTERIS	STICS					-	
Output Noise		BW = 0.1 to 15 Hz			1.5		μV RMS
Slew Rate	SR	Rising, CI = 30 pF, Vac = 350 mV RMS			90		mV/μs
		Falling, CI = 30 pF, Vac = 350 mV RMS			70		
Gain Bandwidth Product	GBW	CI = 50 pF, Vac = 200 mV RMS			30		kHz
Phase Margin					60		Deg

^{32.} Tested to a maximum current load of 2 mA

Table 30. ADCs (PGA0 and ADC0, PGA1 and ADC1)

(Typical operating conditions unless otherwise noted (Ta = 25° C, VBATA = 3.3 V, Unity gain, VREF= 0.9 V, V_{CM} = VBATA/2, A = 0.9 V, B = VSS, Gain = 0 dB, MCLK = 1.5 MHz, Data Rate = 1 ksps). • denotes characterized over complete temperature range. PGA0 only supports PGA Mode (0,0). Noise measurement bandwidth is 0.1 Hz to 15 Hz. Cut-off = 160 Hz (AAF cap = 1 μ F).)

Parameter	Symbol	Conditions		Min	Тур	Max	Units
DC ELECTRICAL CHARACTERIS	STICS						
Supply Voltage	VBATA			2.2		3.6	V
Supply Current (per channel)		PGA and ADC Enabled			165		μΑ
ADC Resolution					16		bits
Data Rate		For specified performance			1000		sps
Input Voltage Range (Notes 33, 34)	V_A, V_B	Mode 0		0		VBATA - 1.0	V
		Mode 1		1.00		VBATA - 0.05	
		Mode 2		0		VBATA - 0.05	
Output Voltage Range (Note 35)				0		VADC	V
Output Code Range (Note 36)		Mode = Unsigned Integer		0000	7FFF	FFFF	LSB
		Mode = 2's Complement		8000	0000	7FFF	(Hex)
Reference Voltage					VREF		V
Gain Range			•	0		36	dB
Gain Step Size					6		dB
Gain Error (Note 37)		Uncalibrated			524		LSB
		Calibrated			< 1		
Gain Error Temperature Drift					TBD		LSB/°C
Offset Error (Note 38)		A = B = VSS			1800		LSB
		Calibrated			< 1		
Offset Error Temperature Drift		A = B = VSS			TBD		LSB/°C
Aliasing Filter Cut-off Frequency Range		A = V _{AC}		160		320	Hz
Integral Nonlinearity (Note 39)	INL	0.1 V < A < VADC - 0.1 V, B = VSS			TBD		LSB
Differential Nonlinearity	DNL	0.1 V < A < VADC - 0.1 V, B = VSS			± 1		LSB
Common Mode Rejection Ratio	CMRR	VSS < A, B < VBATA – 1.0 V, A = B			TBD		dB
Power Supply Rejection Ratio	PSRR	DC			60		dB
		1 kHz			60		
Input Current		Inputs A & B				< 100	pА
Dynamic Range (Note 40)		Data Rate = 10 sps			TBD		dB
		Data Rate = 125 sps			TBD		
		Data Rate = 1000 sps			TBD		
Decimation Filter Settling Time		Decimation Ratio = 1			6.2		ms
		Decimation Ratio = 10			62		
		Decimation Ratio = 100			620		
Line Frequency Rejection		Decimation Ratio > 12			110		dB

- 33. Applies to PGA inputs A and B; Modes for inputs A and B may be configured independently
- 34. PGA0 can only be configured as Mode (0, 0)
- 35. Output voltage is the voltage seen by the ADC
- 36. Typical represents code for an input of VREF
- 37. Gain error is the cumulative gain error of the PGA and ADC
- 38. Offset error is the cumulative offset error of the PGA and ADC
- 39. Calculated using best-fit curve method
- 40. Data rate adjustments for dynamic range improvement are done through the decimation filter setting
- 41. Cut-off frequency is the -3 dB attenuation for small signals. Assumes AAF cap = 1 μ F

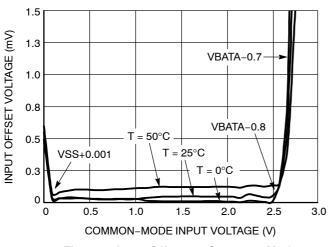
Table 31. PGA0 VOLTAGE COMPARATOR

(Typical operating conditions unless otherwise noted (Ta = 25°C, VBATA = 3.3 V). • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units			
DC ELECTRICAL CHARACTERISTICS									
Supply Voltage	VBATA		2.2		3.6	V			
Detection thresholds		Setting = 40 mV		40		mV			
		Setting = 80 mV		80					
		Setting = 120 mV		120					
Detection Time (Note 42)				< 3		μs			

^{42.} Time from voltage level exceeding threshold to assertion of interrupt

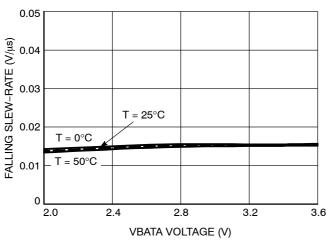
Table 32. TEMPERATURE SENSOR


(Typical operating conditions unless otherwise noted (VBATA = 3.3 V). • denotes characterized over complete temperature range.)

Parameter	Symbol	Conditions		Min	Тур	Max	Units		
DC ELECTRICAL CHARACTERISTICS									
Supply Voltage	VBATA			2.2		3.6	V		
Temperature Sense Range				0		50	°C		
Temperature Sense Accuracy (Note 43)		0 < Ta < 50			± 1.5		°C		
		10 < Ta < 40			± 1.0				
		15 < Ta < 35			± 0.8				

^{43.} Accuracy after factory calibration

TYPICAL OPERATING CHARACTERISTICS (Opamps)


(T_A = 25°C and VBATA = 3.3 V, unless otherwise noted)

0.10 RISING SLEW-RATE (V/μs) 0.09 T = 50°C $T = 0^{\circ}C$ 0.08 T = 25°C 0.07 0.06 0.05 2.0 2.4 2.8 3.2 3.6 VBATA VOLTAGE (V)

Figure 4. Input Offset vs. Common-Mode Voltage

Figure 5. Rising Slewrate vs. Supply Voltage

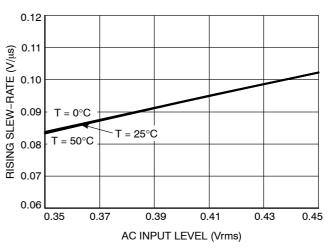
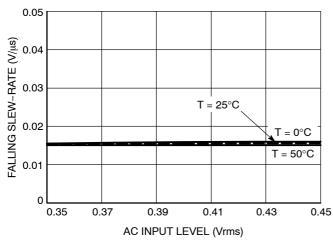



Figure 6. Falling Slewrate vs. Supply Voltage

Figure 7. Rising Slewrate vs. Input Level

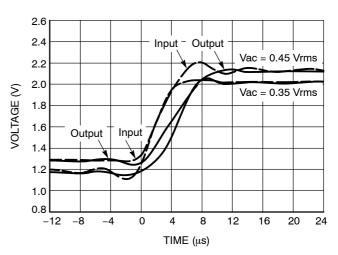


Figure 8. Falling Slewrate vs. Input Level

Figure 9. Time vs. Voltage Output for Input Step

TYPICAL OPERATING CHARACTERISTICS (VREF Precision Reference)

 $(T_A = 25^{\circ}C \text{ and VBATA} = 3.3 \text{ V, unless otherwise noted})$

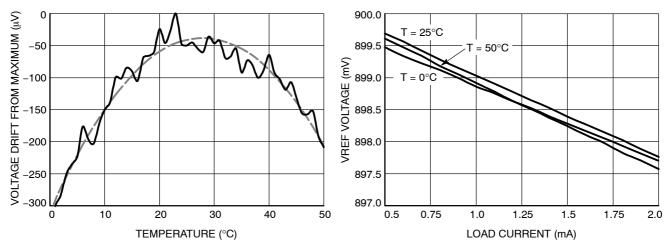


Figure 10. VREF vs. Temperature

Figure 11. VREF vs. Load

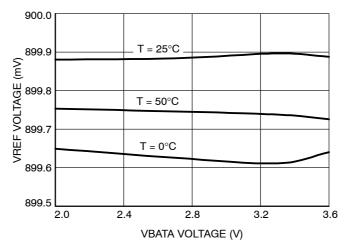


Figure 12. VREF vs. Supply Voltage

TYPICAL OPERATING CHARACTERISTICS (ADCs)

(T_A = 25°C and VBATA = 3.3 V, unless otherwise noted)

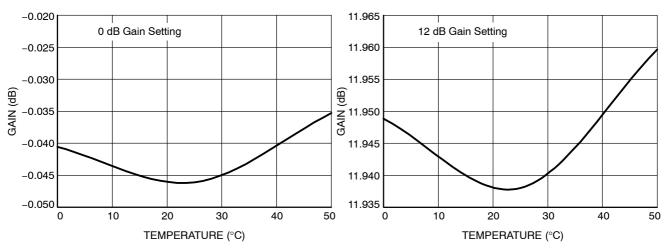


Figure 13. Gain vs. Temperature (0 dB)

Figure 14. Gain vs. Temperature (12 dB)

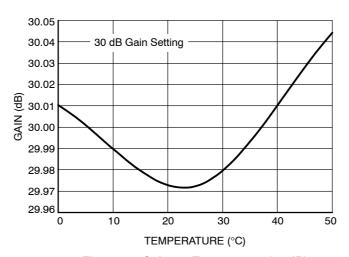


Figure 15. Gain vs. Temperature (30 dB)

TYPICAL OPERATING CHARACTERISTICS (DACs)

(T_A = 25°C and VBATA = 3.3 V, unless otherwise noted)

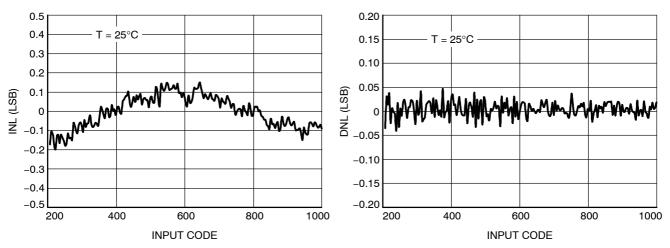


Figure 16. DAC INL vs. Input Code

Figure 17. DAC DNL vs. Input Code

Figure 18. DAC Low Code Behavior

TYPICAL OPERATING CHARACTERISTICS (Temperature Sensor)

 $(T_A = 25^{\circ}C \text{ and VBATA} = 3.3 \text{ V, unless otherwise noted})$

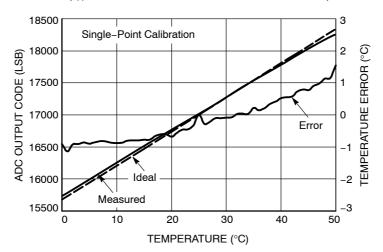


Figure 19. Temperature Sensor vs. Temperature

TYPICAL OPERATING CHARACTERISTICS (Switches)

(T_A = 25°C and VBATA = 3.3 V, unless otherwise noted)

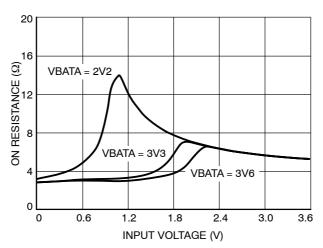
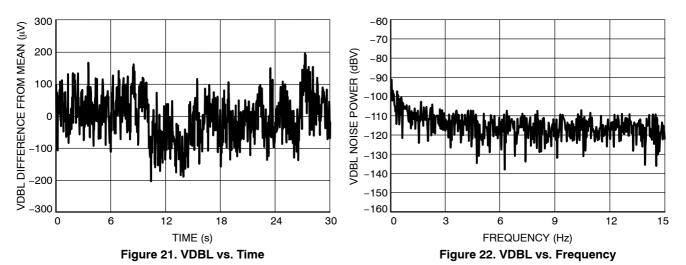



Figure 20. On Resistance vs. Input Voltage

TYPICAL OPERATING CHARACTERISTICS (VDBL Charge Pump)

 $(T_A = 25^{\circ}C \text{ and VBATA} = 3.3 \text{ V, unless otherwise noted})$

Detailed Function Descriptions Powering

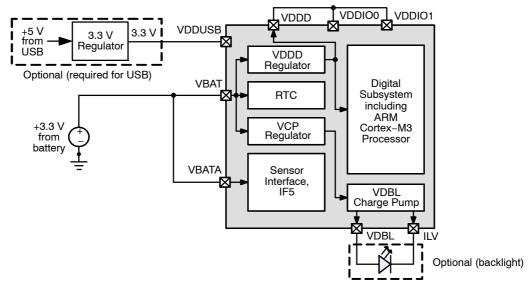


Figure 23. Typical Powering Configuration

In the typical powering configuration the regulators, RTC, and the sensor interface (including VADC and VREF) are powered directly by the battery. The operating voltage ranges and related parameters of sensor interface

components including the opamps, PGAs, DACs, and switches are limited by the actual voltage level of the battery. As the battery voltage changes over its life time the operating ranges will change accordingly.

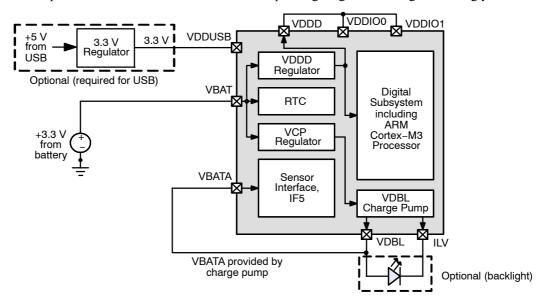


Figure 24. Extended Powering Configuration

In the extended powering configuration the regulators and RTC are powered directly by the battery. The sensor interface (including VADC and VREF) is supplied by the on–chip charge pump. This is implemented by connecting the VDBL pin to the VBATA pins externally. Since the VCP regulator and charge pump are powered from VBAT, the operating voltage for the sensor interface will be the VDBL voltage. The operating voltage ranges and related parameters of the sensor interface components including the opamps, PGAs, DACs, and switches are limited by the fixed voltage level of the VDBL.

As the battery voltage changes over its life time the operating ranges will remain fixed as long as the battery voltage is sufficient to operate the charge pump.

The external wakeup pins (IF5) are powered from VBATA. To ensure proper powering of the wakeup pins when in sleep mode and standby mode, an external diode must be connected between the battery and VBATA pins. This results in a suitable supply voltage on VBATA when the charge pump is disabled.

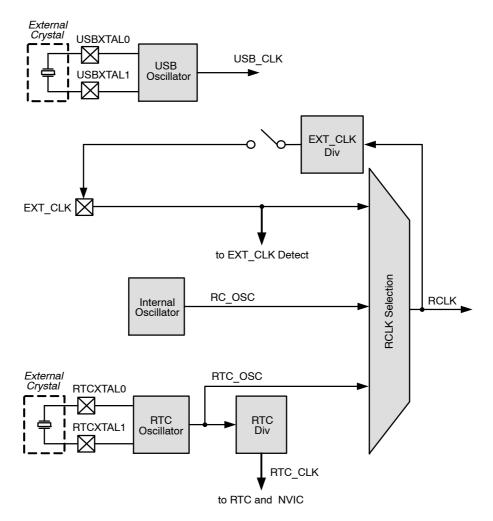


Figure 25. Clocking

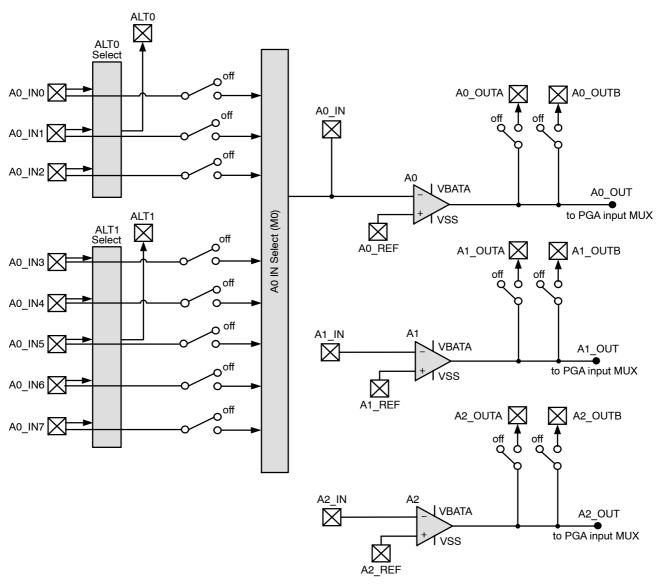


Figure 26. Sensor Interface

The external sensor interface consists of multiplexers, opamps, and switches.

The device contains an 8:1 analog MUX which allows up to eight sensors to be connected to the negative terminal of opamp A0. The inputs to the MUX are A0_IN0 through A0_IN7. The device contains two alternate multiplexers ALT0 and ALT1. ALT0 is a 3:1 analog MUX allowing A0_IN0 through A0_IN2 to be connected to the ALT0 pin. ALT1 is a 5:1 analog MUX allow A0_IN3 through A0_IN7 to be connected to the ALT1 pin. When signals are connected to ALT0 or ALT1, they may also optionally be connected to the negative terminal of opamp A0.

The MUXs feature low-impedance paths for connected channels and high isolation of unconnected channels. The switches are implemented using specialized transistors ensuring ultra low leakage into the signal path from the power supplies, voltage references, and other system blocks.

The three on-chip opamps A0, A1, and A2 support a nominal common-mode input range from 0 V to VBATA – 0.7 V. The output swings to a maximum of VBATA–50 mV. The opamps are designed to have a very high power supply rejection ratio and are thus able to reject variations in the battery supply. This allows for a low noise interface to the sensor which is effectively isolated from any voltage ripple or spikes that may appear on the power supply.

The opamps support feedback resistors up to 5 M Ω in a transimpedance (TIA) configuration without compromising stability.

The device contains four single-pole single-throw (SPST) switches. When the switch is closed the resulting channel features very low impedance allowing for nearly transparent routing of voltage and current signals. The voltage headroom for the channel is related to the analog supply voltage, VBATA. The SPSTs are designed to avoid trapped charge when the switch state changes from closed to open.

Dual PGAs +ADCs

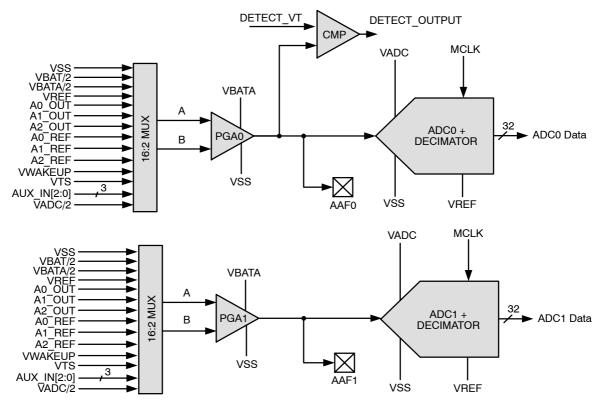


Figure 27. Dual PGAs +ADCs

The device contains two independent input channels each with a 16-bit Analog-to-Digital Converter (ADC), Programmable Gain Amplifier (PGA), and signal multiplexer (MUX). The MUX selects from a range of internal and external signals used for system operation, or signals connected to the external sensor interface. The inputs to the MUX include:

- VSS Ground
- VBAT/2 Battery voltage divided by 2
- VBATA/2 Battery voltage for sensor interface divided by 2
- VREF Precision voltage reference
- VADC/2 VADC Analog Supply Regulator voltage divided by 2
- A0 OUT Output of opamp A0
- A1_OUT Output of opamp A1
- A2 OUT Output of opamp A2
- A0_REF Positive terminal input of opamp A0
- A1 REF Positive terminal input of opamp A1
- A2_REF Positive terminal input of opamp A2
- VWAKEUP Voltage from IF5.0
- VTS Temperature sensor voltage reading
- AUX IN0 Auxiliary input 0
- AUX IN1 Auxiliary input 1
- AUX IN2 Auxiliary input 2

The MUX selects two of the inputs for Va and Vb (the inputs to PGA Input A and PGA Input B, respectively). The output of the PGA is the differential voltage between Va and Vb with a selectable gain applied.

In many sensor configurations it is desirable to select Va as the output of an opamp, and Vb as the corresponding positive terminal input of the same opamp. The output of the PGA in this configuration is the difference in voltage between the opamp positive terminal input and output which is directly related to the sensor impedance and external feedback resistor value. The Vb bias voltage is subtraced off resulting in a net differential voltage of 0 V when the sensor impedance is high.

The PGA is equipped with an anti-aliasing filter. An internal resistance coupled with an external capacitor applied to the AAF pin creates a first order low-pass filter. The -3 dB cut-off frequency is programmable to allow for flexible bandwidth of the PGA output. The bandwidth may be adjusted by reconfiguring the internal resistance and selecting the appropriate AAF capacitor.

The ADC has a resolution of 16-bits with an input voltage range between 0 V and 1.8 V. The ADC operates by oversampling the PGA output voltage to reduce noise and to obtain superior linearity. The reference voltage for conversions is the on-chip VREF Precision Voltage Reference at 0.9 V. The selection of the number format is configured by the application. The output number format of the ADC can be mapped in two ways:

- 1. 2's Complement A 0 V input corresponds to 0x8000, and a maximum input results in 0x7FFF.
- 2. Unsigned A 0 V input corresponds to 0x0000, and a maximum input results in 0xFFFF.

The nominal ADC data rate is 1000 samples/second for a system clock of 3.0 MHz and an MCLK divisor of 1. The ADC sampling is periodic. Samples are provided at the same period regardless of the voltage level. Faster data rates are obtained by reconfiguring the ADC clock and configuration. Lower data rates are obtained through decimation of the base rate. The hardware-based decimation filters are implemented using cascaded, programmable low-pass filters of variable length. This architecture enables the application to sample data at any desired rate including rates down to 10 samples/second. The filters are designed to provide more than 100 dB rejection of common line frequencies (50/60 Hz) at this rate.

Reducing the ADC data rate through the decimation filter provides an increase in the Signal-to-Noise ratio by reducing the number of noise bits. This results in an increase in the signal dynamic range.

Triple DACs

Reconfiguring the ADC clock to obtain faster data rates requires careful selection of the PGA AAF capacitor to ensure adequate filtering and signal bandwidth.

The PGA + ADC feature low gain and offset temperature drifts making them ideal for systems where calibration may be performed at a single known temperature but the operating condition may vary. The digital output of the ADC is connected to a hardware gain and offset correction unit. The absolute gain and offset of the signal chain may be calibrated using external known voltages or voltages based on VREF. The calibration factors are configured in the gain and offset correction unit. All subsequent samples are automatically adjusted by these factors.

PGA0 includes a voltage detect comparator with programmable thresholds. When the comparator is enabled a signal is provided to the ARM Cortex-M3 Processor that indicates when the PGA0 output voltage exceeds the threshold. The application may use the signal to enable the ADC or other system blocks to perform a sensor measurement. This results in lower overall current consumption since the ADC may be disabled while waiting for a specific voltage level to occur.

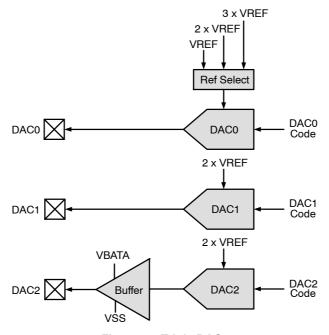


Figure 28. Triple DACs

Three Digital-to-Analog Converters (DACs) are available. Each DAC is implemented using a current steering network to minimum power consumption. The DACs have 10-bits of resolution. The reference voltage is selectable on DAC0 and fixed on DAC1 and DAC2. The effective voltage per LSB is determined by the reference voltage. The DAC outputs are buffered to ensure sufficient drive capability of the reference terminal of the on-chip opamps and auxiliary analog inputs.

DAC0 provides the highest level of reference voltage flexibility by allowing the dynamic range of the converter to be mapped into three ranges: 1 x VREF, 2 x VREF, and 3 x VREF. The first range, VREF, provides maximum voltage resolution per LSB. The second range, 2 x VREF, provides a compromise between resolution per LSB and output voltage range. The third range, 3 x VREF, provides a lowest resolution per LSB but the largest output range.

DAC1 and DAC2 have a fixed output dynamic range of VSS to 2*VREF.

DAC0 and DAC1 are buffered using weak, low power output buffers. The maximum current drawn from these buffers is sufficient to drive the on-chip opamp inputs. Loads should not be connected directly to the DAC0 and DAC1 outputs to avoid undesired voltage sag.

DAC2 is buffered using a strong drive output buffer. Low impedance loads down to $10 \text{ k}\Omega$ may be connected directly to the DAC2 outputs without significant voltage sag.

Temperature Sensor

The temperature sensor utilizes the change in diode voltage drops over two internal transistors to create a proportional temperature output. This voltage (VTS) is fed to an ADC through one of the PGAs where it is sampled and a digital code value is provided to the ARM Cortex–M3 processor. The temperature sensor is factory calibrated at 25°C using a one–point calibration. The calibration value is stored in the flash.

Analog Wakeup Pin

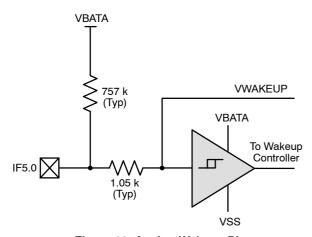
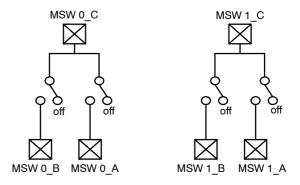



Figure 29. Analog Wakeup Pin

The analog wakeup pin (IF5.0) is a basic wakeup pin with the added functionality to measure external impedance. This feature is suitable for applications where the wakeup condition may also have encoded information in the form of impedance. After exiting from sleep or standby modes, the system may inject a small current through the impedance via IF5.0 and measure the corresponding proportional voltage. The voltage may be measured through the VWAKEUP0 signal on the PGA and sampled through the ADC.

In run mode, IF5.0 may operate as a GPIO pin. By assigning an interrupt to IF5.0 the application can detect if the wakeup condition was removed during operation.

Multi-Switches

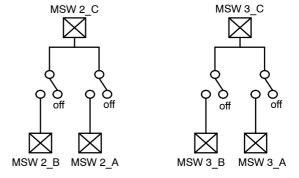


Figure 30. Multi-Switches

The device contains four multi-switches (MSWs) Each MSW may be configured into one of four modes:

- 1. Port A connected to Port C
- 2. Port B connected to Port C
- 3. Port A & Port B connected to Port C
- 4. Nothing connected to Port C

When two ports are connected the resulting channel features very low impedance allowing for nearly transparent routing of voltage and current signals. The voltage headroom for the channel is related to the analog supply voltage, VBATA.

The MSWs may each be configured to operate in Pulse–Width Modulation (PWM) mode. In this mode, the low impedance of the channel makes it possible to directly drive transducers (including loud speakers) or other actuators such as motors, without the need for an external driver. The PWM operation is driven by a dedicated clock. The clock frequency and PWM duty cycle is configurable.

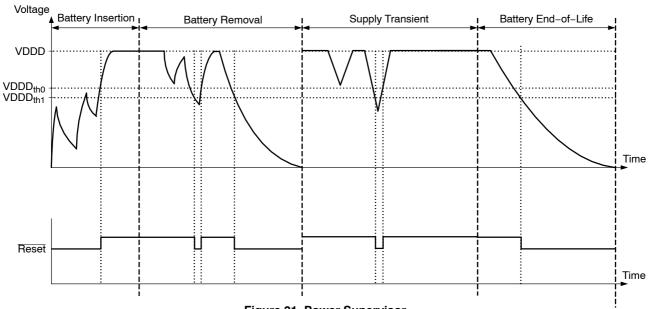


Figure 31. Power Supervisor

Operating Modes

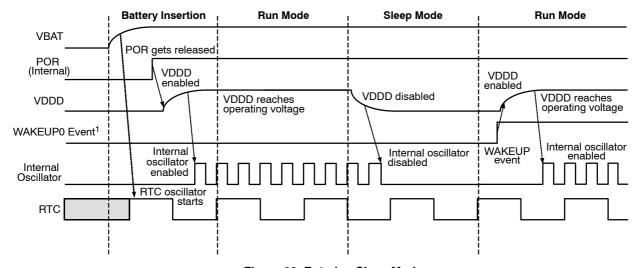


Figure 32. Entering Sleep Mode

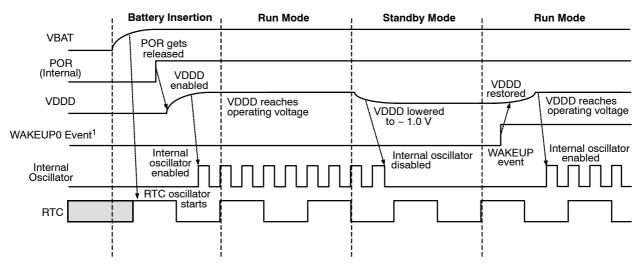


Figure 33. Entering Standby Mode

Example Application Diagrams PUSH BUTTON PUSH BUTTON **R**THERM **R**TEMP **VREF** VSS VSS ESD5 VSS ★ ESD4 $\mathsf{R}_{\mathsf{IREF}}$ VSS WAKEUP1 AUX IN2 **IREF** vss **VREF** Wakeup Controller $\mathsf{C}_{\mathsf{VREF}}$ Brown-Out **VDDD** GPIO32 **VDBL** Protection Circuitry VDDI00 C_{BACKLIGHT} VDDIO1 Shared **VLCD** GPIO and VSS **VDBL** COM/SEG pins $C_{LCD} \overline{\underline{I}}$ COM[0:3] LCD Display VSS VLCD1 ARM Cortex M 3 **VDBL** (up to 112 SEG[0:27] C_{LCD1} + Charge Pump segments) Processor Voltage VSS VLCD0 System C_{LCD0} ± **VDDD** VSS **VDDD VADC** E2 SCL Digital and I/O Regulated **EEPROM** I²C Port C_{VADC} SDA Voltage vss VLCD0, VLCD1 **VDBL** vss **RTC** CP0 LCD Driver 48 kB SRAM C_{VDBL} Voltages RTCXTAL0 Real-Time Clock C_PUMP 256 kB Flash VSS **VADC** CP 🖨 RTC_XTAL Regulated Oscillator VCP Voltage RTCXTAL1 USBXTAL0 Internal **VBAT** Oscillator **VREF** Temperature Reference Sensor 📥 USB_XTAL USB Voltage **VBATA** Oscillator C_{VBAT} USBXTAL1 Control Register File VSS Strip Detection WAKEUP0 **VWAKEUP** (Strip Impedance **★** ESD3 Measurement) VSS A0 OUTA **VBATA** A0_IN0 C_{AAF0} **VBATA** 16-bit FSD0 A0_IN1 ADC0 RCAL M VSS A0_IN2..IN7 PGA0 Ü R_{FB} vss A0_OUT **VSS** A0 IN VSS VSS -VDDD/2 -VBATA/2 -Test Strip A0 REF work DAC0 counter VREF A0_OUT DAC₀ reference 📥 ESD1 A1 OUTA A1_OUT VSS A2_OUT **VBATA** A0_REF A1_REF A1 IN 16:2 Α1 VSS Mux A1_REF A2 REF A1_OUT VWAKEUP VTS AUX_IN2 ESD2 **TEST VSS** RSTB vss **VDDD** AUX_IN0 AUX_IN1 VSS VADC/2

Figure 34. Glucose Meter Application

Table 33.

Symbol	Description	Suggested Part Number(s)	Recom- mended Value	Unit	Toler- ance
C _{VREF}	VREF filtering capacitor	0805 Taiyo Yuden JMK21213J226MG-T	22	μF	± 20%
C _{VDDD}	VDDD regulator filtering capacitor	0805 Panasonic ECJ-2FB0J226M	22	μF	± 20%
C _{LCD}	VLCD filtering capacitor	0603 Taiyo Yuden LMK107B7105KA-T	1	μF	± 10%
C _{LCD1}	VLCD1 filtering capacitor	0402 Panasonic ECJ-0EB1H102K	1	nF	± 10%
C _{LCD0}	VLCD0 filtering capacitor	0402 Panasonic ECJ-0EB1H102K	1	nF	± 10%
C _{VADC}	VADC regulator filtering capacitor	0805 Taiyo Yuden JMK21213J226MG-T	22	μF	± 20%
C_{VDBL}	Charge pump output filtering capacitor	0603 Taiyo Yuden JMK107BJ106MA-T	10	μF	± 20%
C _{PUMP}	Charge pump capacitor	0603 Taiyo Yuden LMK107B7105KA-T	1	μF	± 10%
C _{VCP}	Charge pump regulated output filtering capacitor	0805 Taiyo Yuden JMK21213J226MG-T	22	μF	± 20%
C _{VBAT}	VBAT supply filtering capacitor	0805 Taiyo Yuden JMK21213J226MG-T	22	μF	± 20%
R _{FB}	Feedback resistor for transimpedance amplifier	Application specific			
R _{CAL}	Calibration resistor for transimpedance amplifier	Application specific			
C _{AAF0}	Anti-aliasing filter capacitor	0603 Taiyo Yuden LMK107B7105KA-T	1	μF	± 10%
C _{BACKLIGHT}	LED Backlight capacitor	0603 Taiyo Yuden LMK107B7105KA-T	1	μF	± 20%
USB_XTAL	USB Crystal (optional – only required for USB operation)	Abracon ABM10-48.000MHZ-E20-T NDK1612AA-48.000M	48	MHz	± 20 ppm
RTC_XTAL	RTC Crystal	ABRACON ABS07-32.768KHZ-9-T	32.768	kHz	± 20 ppm
E2	EEPROM (optional)	CAT24C16 16 kbit EEPROM CAT24C32 32 kbit EEPROM CAT24C64 64 kbit EEPROM CAT24C128 128 kbit EEPROM CAT24C256 256 kbit EEPROM			
R _{TEMP}	Fixed value resistor for external temperature sensing	Panasonic ERJ-3EKF2003V	200	kΩ	± 1%
R _{THERM}	Thermistor for external temperature sensing	Application specific			
R _{IREF}	Resistor for current reference	Vishay Dale CRCW0402300KFKED	300	kΩ	± 1%
ESD0	ESD Protection Diode	ON Semiconductor ESD9L3.3ST5G 15 kV (IEC 61000-4-2)			
ESD1	ESD Protection Diode	ON Semiconductor ESD9L3.3ST5G 15 kV IEC 61000-4-2)			
ESD2	ESD Protection Diode	ON Semiconductor ESD9L3.3ST5G 15 kV (IEC 61000-4-2)			
ESD3	ESD Protection Diode	ON Semiconductor ESD9L3.3ST5G 15 kV (IEC 61000-4-2)			
ESD4	ESD Protection Diode	ON Semiconductor ESD9L3.3ST5G 15 kV (IEC 61000-4-2)			
ESD5	ESD Protection Diode	ON Semiconductor ESD9L3.3ST5G 15 kV (IEC 61000-4-2)			

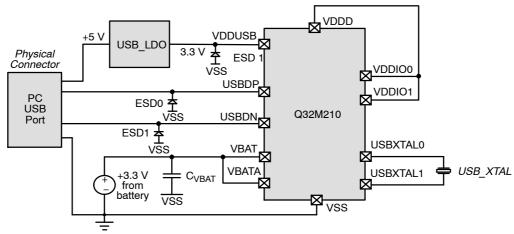


Figure 35. USB Application

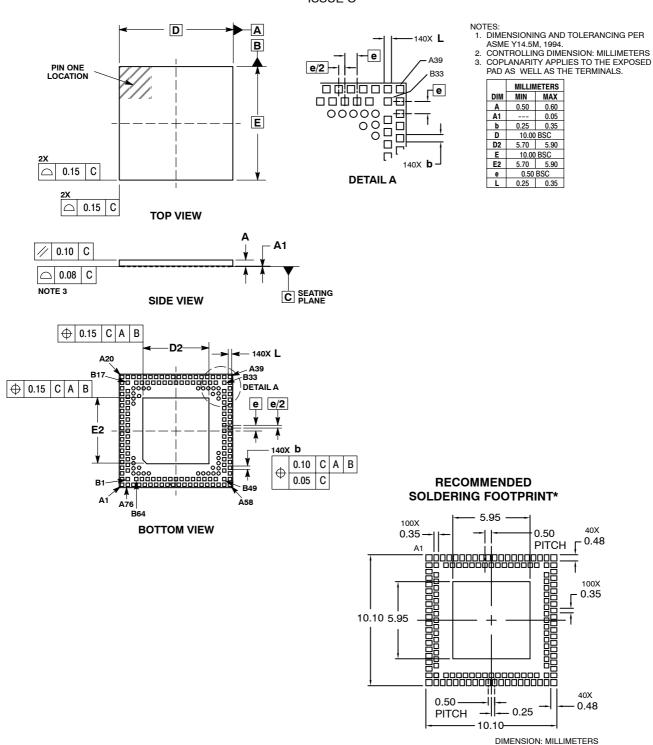
Table 34. USB APPLICATION CONFIGURATION

Symbol	Description	Suggest Part Number	Recommended Value	Unit	Toler- ance
ESD0	USB ESD protection	ON Semiconductor NUP2201MR6T1 transient voltage suppressor			
ESD1	ESD Protection Diode	ON Semiconductor ESD9L3.3ST5G 15 kV (IEC 61000-4-2)			
USB_LDO	Low-dropout Regulator	ON Semiconductor NCV8560 - 3.3 V, 150 mA, LDO Regulator			
C _{VBAT}	VBAT supply filtering capacitor	0805 Taiyo Yuden JMK21213J226MG-T	22	μF	± 20%
USB_XTAL	USB Crystal	Abracon ABM10-48.000MHZ-E20-T NDK1612AA-48.000M	48	MHz	± 20 ppm

Software Development Support

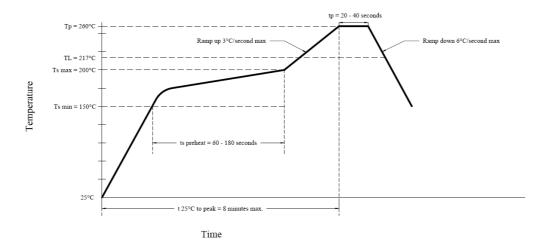
Software development support for Q32M210 is provided in the Q32 Evaluation and Development Kit (EDK). The EDK is a full software development system built on an industry-standard development tool environment with customized components, system libraries, documentation, and sample code to support specialized application development. The EDK is included with the Evaluation and Development Board (with on-board JTAG) suitable for prototype software development and for evaluating Q32M210 with the supplied sample applications.

Out of the box, the EDK leverages IAR Embedded Workbench[®] for ARM as the baseline development and debug environment. The EDK installer can be used with any licensed version of the tools, or with the EWARM Kick Start Kit[™] software release (included) for evaluation purposes.


The EDK contains sample source code demonstrating many of the on-board peripherals including I2C master and slave, UART, SPI, PCM, EEPROM access, Flash with CRC, analog subsystem, operating modes, and basic USB. Also included are USB HID (Human Interface Device) and MSC (Mass Storage Class) sample binaries leveraging the $\mu\text{C}/\text{USB}^{\text{M}}$ software stack product from partner Micrium.

EDK documentation includes a Programmer's Guide, Hardware Reference which explains the Q32M210 hardware and configuration, Firmware Reference which details the supporting system firmware includes and libraries, the Evaluation and Development Board Manual which provides information for evaluation and prototyping using the accompanying development board, and ARM reference manuals.

PACKAGE DIMENSIONS


TLLGA140 10x10, 0.5P, Dual-Row, Staggered-Pad

CASE 513AL-01 ISSUE O

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Reflow Information

Table 35. TAPE & REEL INFORMATION

Units Per Reel	3000		
Carrier Tape Width	24 mm		
Pocket Pitch	16 mm		
Cover tape	Sumitomo 21 mm		
Device orientation on tape	Upper left		

Table 36. ORDERING INFORMATION

Part Number	Package	Shipping Configuration
Q32M210F08ALNA	140 TLLGA	3000 / Tape & Reel

ESD Handling

CAUTION: ESD sensitive device. Permanent damage may occur on devices subjected to high–energy electrostatic discharges. Proper ESD precautions in handling, packaging and testing are recommended to avoid performance degradation or loss of functionality.

Company or Product Inquiries

For more information about ON Semiconductor's products or services visit our web site at http://onsemi.com.

ARM is the registered trademark and Cortex is the trademark of ARM limited in the EU and other countries.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlitt@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru