

3.2Gbps Precision, 1:2 LVDS Fanout Buffer with Internal Termination and Fail Safe Input

General Description

The SY58608U is a 2.5V, high-speed, fully differential 1:2 LVDS fanout buffer optimized to provide two identical output copies with less than 20ps of skew and less than $10p_{PP}$ total jitter. The SY58608U can process clock signals as fast as 2GHz or data patterns up to 3.2Gbps.

The differential input includes Micrel's unique, 3-pin input termination architecture that interfaces to LVPECL, LVDS or CML differential signals, (AC- or DC-coupled) as small as 100mV ($200mV_{PP}$) without any level-shifting or termination resistor networks in the signal path. For AC-coupled input interface applications, an integrated voltage reference (V_{REF-AC}) is provided to bias the V_T pin. The outputs are 325mV LVDS, with rise/fall times guaranteed to be less than 100ps.

The SY58608U operates from a 2.5V \pm 5% supply and is guaranteed over the full industrial temperature range (-40°C to +85°C). For applications that require CML or LVPECL outputs, consider Micrel's SY58606U and SY58607U, 1:2 fanout buffers with 400mV and 800mV output swings respectively. The SY58608U is part of Micrel's high-speed, Precision Edge[®] product line.

Data sheets and support documentation can be found on Micrel's web site at: <u>www.micrel.com</u>.

Functional Block Diagram

Precision Edge[®]

Features

- Precision 1:2, 325mV LVDS fanout buffer
- Guaranteed AC performance over temperature and voltage:
 - DC-to > 3.2Gbps throughput
 - <300ps propagation delay (IN-to-Q)
 - <20ps within-device skew
 - <100ps rise/fall times</p>
- · Fail Safe Input
 - Prevents outputs from oscillating when input is invalid
- Ultra-low jitter design
 - <1ps_{RMS} cycle-to-cycle jitter
 - <10ps_{PP} total jitter
 - <1ps_{RMS} random jitter
 - <10ps_{PP} deterministic jitter
- High-speed LVDS outputs
- 2.5V ±5% power supply operation
- Industrial temperature range: –40°C to +85°C
- Available in 16-pin (3mm x 3mm) MLF[®] package

Applications

- All SONET clock and data distribution
- Fibre Channel clock and data distribution
- · Gigabit Ethernet clock and data distribution
- Backplane distribution

Markets

- DataCom
- Telecom
- Storage
- ATE
- Test and Measurement

Precision Edge is a registered trademark of Micrel, Inc. MLF and *Micro*LeadFrame are registered trademarks of Amkor Technology

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY58608UMG	MLF-16	Industrial	608U with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY58608UMGTR ⁽²⁾	MLF-16	Industrial	608U with Pb-Free bar-line indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC Electricals only.

2. Tape and Reel.

Pin Configuration

16-Pin MLF[®] (MLF-16)

Pin Description

Pin Number	Pin Name	Pin Function	
1, 4	IN, /IN	Differential Inputs: This input pair is the differential signal input to the device. Input accepts DC-coupled differential signals as small as $100mV$ ($200mV_{PP}$). Each pin of this pair internally terminates with 50Ω to the VT pin. If the input swing falls below a certain threshold (typical $30mV$), the Fail Safe Input (FSI) feature will guarantee a stable output by latching the outputs to its last valid state. See "Input Interface Applications" section for more details.	
2	VT	nput Termination Center-Tap: Each input terminates to this pin. The VT pin provides a center-tap for each input (IN, /IN) to a termination network for maximum nterface flexibility. See "Input Interface Applications" section.	
3	VREF-AC	Reference Voltage: This output bias to V_{CC} -1.2V. It is used for AC-coupling inputs IN and /IN. Connect VREF-AC directly to the VT pin. Bypass with 0.01µF low ESR capacitor to V_{CC} . Maximum sink/source current is ±1.5mA. See "Input Interface Applications" section for more details.	
5, 8,13, 16	VCC	Positive Power Supply: Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors as close to the VCC pins as possible.	
6, 7, 14, 15	GND,	Ground. Exposed pad must be connected to a ground plane that is the same	
	Exposed pad	potential as the ground pin.	
9, 10	/Q1, Q1	LVDS Differential Output Pairs: Differential buffered output copy of the input signal.	
11, 12	/Q0, Q0	The output swing is typically 325mV. Normally terminated 100Ω across the output pairs (Q and /Q). See "LVDS Output Termination" section.	

Absolute Maximum Ratings⁽¹⁾

Supply Voltage (V _{CC})	–0.5V to +4.0V
Input Voltage (V _{IN})	
LVDS Output Current (IOUT)	±10mA
Input Current	
Source or Sink Current on (IN, /I	N) ±50mA
Current (V _{REF})	
Source or sink current on VREF-AG	2 ⁽⁴⁾ ±1.5mA
Maximum Operating Junction Tempe	erature125°C
Lead Temperature (soldering, 20sec	.)260°C
Storage Temperature (T _s)	–65°C to +150°C

Operating Ratings⁽²⁾

Supply Voltage (V _{IN})	+2.375V to +2.635V
Ambient Temperature (T _A)	–40°C to +85°C
Package Thermal Resistance ⁽³⁾	
MLF®	
Still-air (θ _{JA})	60°C/W
Junction-to-board (ψ_{JB})	

DC Electrical Characteristics⁽⁵⁾

 $T_A = -40^{\circ}C$ to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Мах	Units	
V _{CC}	Power Supply Voltage Range	er Supply Voltage Range		2.5	2.625	V	
Icc	Power Supply Current	No load, max. V _{CC}		55	75	mA	
$R_{\text{DIFF}_{IN}}$	Differential Input Resistance (IN-to-/IN)	Input Resistance 90 100		100	110	Ω	
VIH	Input HIGH Voltage (IN, /IN)	IN, /IN	, /IN 1.2 V _{CC}		V		
VIL	Input LOW Voltage (IN, /IN)	IN, /IN	0	0 V _{IH} -0.1		V	
V _{IN}	Input Voltage Swing (IN, /IN)	see Figure 3a, Note 6	0.1 1.7		V		
$V_{\text{DIFF}_\text{IN}}$	Differential Input Voltage Swing (IN - /IN)	nput Voltage Swing see Figure 3b 0.2				V	
$V_{\text{IN}_{\text{FSI}}}$	Input Voltage Threshold that Triggers FSI			30	100	mV	
V_{REF-AC}	Output Reference Voltage		V _{CC} -1.3	V _{CC} -1.2	V _{cc} -1.1	V	
IN to V_{T}	Voltage from Input to V_T				1.28	V	

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

- 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- 3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. ψ_{JB} and θ_{JA} values are determined for a 4-layer board in still-air number, unless otherwise stated.
- 4. Due to the limited drive capability, use for input of the same package only.
- 5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
- 6. $V_{I\!N}$ (max) is specified when V_T is floating.

LVDS Outputs DC Electrical Characteristics⁽⁷⁾

 V_{CC} = +2.5V ±5%, R_L = 100 Ω across the output pairs; T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Мах	Units
V _{OUT}	Output Voltage Swing	See Figure 3a	250	325		mV
$V_{\text{DIFF}_\text{OUT}}$	Differential Output Voltage Swing	See Figure 3b	500	650		mV
V _{OCM}	Output Common Mode Voltage		1.125	1.20	1.275	V
ΔV_{OCM}	Change in Common Mode Voltage		-50		50	mV

Notes:

7. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics⁽⁸⁾

 V_{CC} = +2.5V ±5%, R_L = 100 Ω across the output pairs, Input t_r/t_f: ≤300ps; T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Paramet	ter	Condition		Min	Тур	Max	Units
f _{MAX}	Maximur	m Frequency	NRZ Data		3.2	4.25		Gbps
			V _{OUT} > 200mV	Clock	2	3		GHz
t _{PD}	Propaga	tion Delay IN-to-Q	V _{IN} : 100mV-200mV		170	280	420	ps
			V _{IN} : 200mV-800mV		130	200	300	ps
t _{Skew}	Within D	evice Skew	Note 9			5	20	ps
	Part-to-F	Part Skew	Note 10				135	ps
t _{Jitter}	Data	Random Jitter	Note 11				1	ps _{RMS}
		Deterministic Jitter	Note 12				10	ps _{PP}
	Clock	Cycle-to-Cycle Jitter	Note 13				1	ps _{RMS}
		Total Jitter	Note 14				10	ps _{PP}
t _{r,} t _f	Output F (20% to	Rise/Fall Time 80%)	At full output swing.		35	60	100	ps
	Duty Cycle		Differential I/O		47		53	%

Notes:

8. These high-speed parameters are Guaranteed by design and characterization.

9. Within-device skew is measured between two different outputs under identical input transitions.

10. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and no skew at the edges at the respective inputs.

11. Random jitter is measured with a K28.7 pattern, measured at \leq f_{MAX}.

12. Deterministic jitter is measured at 2.5Gbps with both K28.5 and 2²³–1 PRBS pattern.

13. Cycle-to-cycle jitter definition: the variation period between adjacent cycles over a random sample of adjacent cycle pairs. $t_{JITTER_CC} = T_n - T_{n+1}$, where T is the time between rising edges of the output signal.

14. Total jitter definition: with an ideal clock input frequency of ≤ f_{MAX} (device), no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value.

Functional Description

Fail-Safe Input (FSI)

The input includes a special fail-safe circuit to sense the amplitude of the input signal and to latch the outputs when there is no input signal present, or when the amplitude of the input signal drops sufficiently below $100 \text{mV}_{\text{PK}}$ ($200 \text{mV}_{\text{PP}}$), typically 30mV_{PK} . Maximum frequency of SY58608U is limited by the FSI function.

Input Clock Failure Case

If the input clock fails to a floating, static, or extremely low signal swing such that the differential voltage across the input pair is less than 100mV, the FSI function will eliminate a metastable condition and latch the outputs to the last valid state. No ringing and no indeterminate state will occur at the output under these conditions. The output recovers to normal operation once the input signal returns to a valid state with a differential voltage ≥100mV.

Note that the FSI function will not prevent duty cycle distortion in case of a slowly deteriorating (but still toggling) input signal. Due to the FSI function, the propagation delay will depend on rise and fall time of the input signal and on its amplitude. Refer to "Typical Characteristics" for detailed information.

Timing Diagrams

Figure 1b. Fail Safe Feature

6

Typical Characteristics

 V_{CC} = 2.5V, GND = 0V, V_{IN} = 100mV, R_L = 100 Ω across the output pairs, T_A = 25°C, unless otherwise stated.

Functional Characteristics

 V_{CC} = 2.5V, GND = 0V, V_{IN} = 250mV, Data Pattern: 2²³-1, R_L = 100 Ω across the outputs, T_A = 25°C, unless otherwise stated.

8

Functional Characteristics (continued)

 V_{CC} = 2.5V, GND = 0V, V_{IN} = 250mV, R_L = 100 Ω across the outputs, T_A = 25°C, unless otherwise stated.

TIME (120ps/div.)

Input Stage

Figure 3a. Single-Ended Swing

Figure 3b. Differential Swing

Figure 3c. LVDS Differential Measurement

Figure 3d. LVDS Common Mode Measurement

Input Interface Applications

Figure 4a. CML Interface (DC-Coupled)

Figure 4b. CML Interface (AC-Coupled)

Figure 4c. LVPECL Interface (DC-Coupled)

Figure 4d. LVPECL Interface (AC-Coupled)

Figure 4e. LVDS Interface (DC-Coupled)

Related Product and Support Documents

Part Number	Function	Data Sheet Link
SY58606U	4.25Gbps Precision, 1:2 CML Fanout Buffer with Internal Termination and Fail Safe Input	http://www.micrel.com/page.do?page=/product- info/products/sy58606u.shtml
SY58607U	3.2Gbps Precision, 1:2 LVPECL Fanout Buffer with Internal Termination and Fail Safe Input	http://www.micrel.com/page.do?page=/product- info/products/sy58607u.shtml
HBW Solutions	New Products and Termination Application Notes	http://www.micrel.com/product-info/products/sy89830u.shtml

Package Information

16-Pin (3mm x 3mm) MLF[®] (MLF-16)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru