

1 A low-side gate driver

Datasheet - production data

Features

- Low-side MOSFET driver
- 1 A sink and 0.8 A source capability
- · External reference for input threshold
- Wide supply voltage range (10 V ÷ 18 V)
- Input and output pull-down resistors
- Short propagation delays
- Input and output UVLO
- Wide operating temperature range: -40 °C to 125 °C
- SOT23-5 package

Applications

- SMPS
- Digital lighting
- Wireless battery chargers
- · Digitally controlled MOSFETs

Description

The PM8841 is a high frequency single channel low-side MOSFET driver specifically designed to work with digital power conversion microcontrollers, such as the STMicroelectronics STLUX™ family of products.

The PM8841 output can sink 1 A and source 0.8 A.

The input levels of the driver are derived by the voltage present at the IN_TH pin (between 2 V and 5.5 V). This pin is typically connected at the same voltage of the microcontroller supply voltage.

The PM8841 device includes both input and output pull-down resistors.

UVLO circuitry for input and output stages is present preventing the IC from driving the external MOSFET in unsafe condition.

Table 1. Device summary

Order code	Package
PM8841D	SOT23-5

PM8841

Contents

1	Bloc	K diagram	3
2	Pin (connection	4
3	Max	imum ratings	5
4	Elec	trical characteristics	6
5	Турі	cal applications	8
6	Арр	lication guidelines1	0
	6.1	Power supply1	0
	6.2	Layout suggestions	0
	6.3	Driving switches	1
	6.4	Power dissipation	1
7	Pacl	kage information	2
	7.1	SOT23-5 package information	3
8	Revi	sion history	4

Block diagram PM8841

Block diagram 1

UVLO UVLO_TH 🕁 оит IN 🖄 Level shifter GND AM03796

Figure 1. PM8841D block diagram

Pin connection PM8841

2 Pin connection

Figure 2. Pin connection

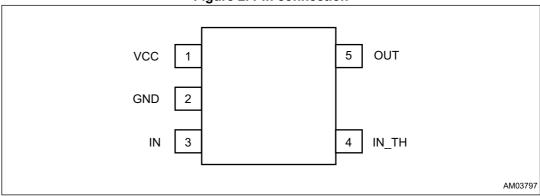


Table 2. Pin description

Symbol	Pin	Description		
VCC	1	IC power supply. A voltage comprised between 10 V and 18 V can be connected between this pin and GND to supply the IC.		
GND	2	Reference voltage connection.		
IN	3	Digital input signal for driver. It is internally pulled down to GND with a 100 k Ω (typ.) equivalent resistor.		
IN_TH	4	Input for the IN pin's threshold definition: a voltage can be applied obtaining the values for VIH and VIL.		
OUT	5	MOSFET gate drive sourcing / sinking output controlled by the IN pin. A pull-down equivalent resistor [50 k Ω (typ.)] is present.		

PM8841 Maximum ratings

3 Maximum ratings

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction to ambient (2-layer FR4 PCB, T _A = 27 °C natural convection)	250	°C/W
R _{thJC}	Thermal resistance junction to case	130	°C/W
T _{MAX}	Maximum junction temperature	150	°C
T _{STG}	Storage temperature range	-40 to 150	°C
T_J	Junction temperature range	-40 to 150	°C
T _A	Operating ambient temperature range	-40 to 125	°C

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit	Note
V	Maximum IC supply voltage		V	IN unconnected, IN_TH = 3.3 V
V _{VCC,max}	Max. negative allowed voltage	- 0.3	V	-
V	Max. positive voltage at IN_TH pin	5.5	V	-
V _{IN_TH,max}	Max. negative allowed voltage	- 0.3	V	-
Maximum voltage at IN pin		5.5	V	-
$V_{\rm IN,max}$	Max. negative allowed voltage	- 0.3	V	-
I _{OUT,rms}	Maximum RMS output current	100	mA	-

Electrical characteristics PM8841

4 Electrical characteristics

(V_{CC} = 12 V, V_{IN_TH} = 3.3 V, TJ = -40 \div 125 °C, unless otherwise specified)

Table 5. Electrical characteristics

Symbol	Pin	Parameter	Test condition	Min.	Тур.	Max.	Unit	
IC SUPPLY								
V _{CC}	VCC	Operating range	-	11	-	18	V	
V _{CC,on}	VCC	Turn-on threshold	-	9	10	11	V	
V _{UVLO,hyst}	VCC	UVLO hysteresis	-	0.5	1	-	V	
I _{ST-UP}	VCC	Start-up current	V _{CC} = V _{CC,on} - 0.5 V	-	-	40	μΑ	
I _{CC,0}	VCC	Static supply current	IN = 0 V	-	-	40	μΑ	
I _{CC,op}	VCC	Operating supply current	See Figure 4 and Figure 5	-	-	-	-	
IN_TH	•			•		•		
V _{IN_TH}	IN_TH	Operating range	-	2	-	5.5	V	
V _{IN_TH,UV}	IN_TH	IN_TH UVLO	IN_TH short with IN, rising edge	-	1.5	-	V	
I _{IN_TH}	IN_TH	IN_TH pin bias current ⁽¹⁾	-	-	-	40	μΑ	
INPUT				•				
V _{IH} /V _{IN_TH}	IN	Relative input high level threshold	(2)	36	-	58	%	
V _{IL} /V _{IN_TH}	IN	Relative input low level threshold	(2)	25	-	46	%	
V _{IN_Hyst}	IN	Hysteresis	-	7	-	25	%	
IIN	IN	IN pin bias current	VIN = 5 V	-	50	-	μΑ	
R _{INPD}	IN	Input pull-down resistance	VIN = V _{IN_TH}	-	100	-	kΩ	
T _{D_LH}	IN	IN to GD propagation delay	IN low to high, no load	-	-	30	ns	
T _{D_HL}	IN	IN to GD propagation delay	IN high to low, no load	-	-	30	ns	
OUTPUT								
V	OUT	OUT pin high level	Isrc = 100 mA, T _J = 25 °C	-	11.4	-	V	
V _{OUT,H}	001	OOT piir night level	Isrc = 100 mA, T_J = -40 ÷ 125 °C ⁽¹⁾	-	11.4	-	\ \ \	
V	OUT	OUT pip low lovel	Isnk = 100 mA, T _J = 25 °C	-	0.53	-	V	
V _{OUT,L}	001	OUT pin low level	Isnk = 100 mA, $T_J = -40 \div 125 ^{\circ}C^{(1)}$	-	0.53	-] v	
I _{SRC}	OUT	Source current ⁽¹⁾	V _{OUT} = V _{CC} / 2	-	940	-	mA	
I _{SNK}	OUT	Sink current ⁽¹⁾	V _{OUT} = V _{CC} / 2	-	1.1	-	Α	
t _R	OUT	Rise time	C _{OUT} = 470 pF	-	-	20	ns	
t _F	OUT	Fall time	C _{OUT} = 470 pF	-	-	20	ns	
R _{GPD}	OUT	Pull-down resistor	-	-	50	-	kΩ	

^{1.} Not tested in production.

6/15

DocID027119 Rev 2

^{2.} Overlapping prevent by hysteresis $V_{\mbox{\scriptsize IN_Hyst}}$

Figure 3. Timings

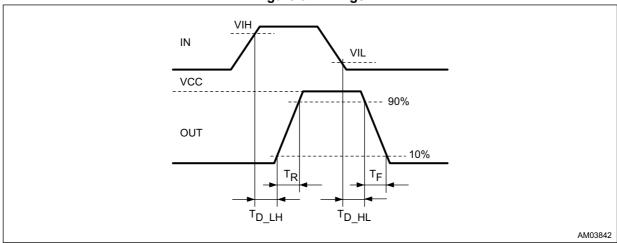


Figure 4. Operating supply current (no load)

Figure 5. Operating supply current (C_{OUT} = 470 pF)

Figure 6. V_{CC} power dissipation (PD) when no load is applied

Typical applications PM8841

5 Typical applications

Figure 7. Test circuit

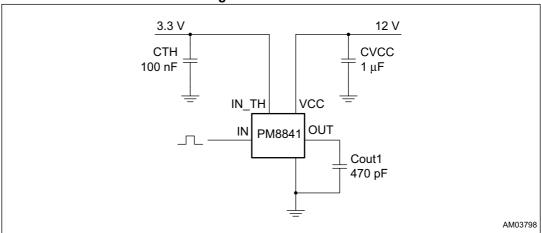
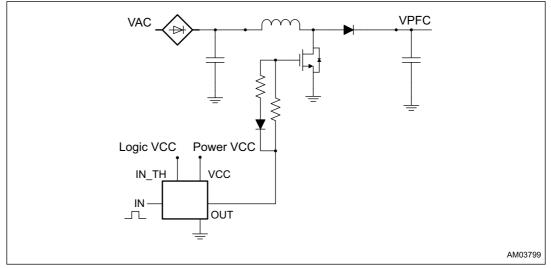
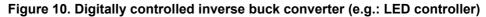
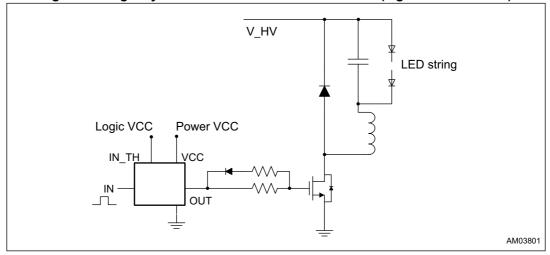



Figure 8. Digitally controlled PFC boost converter

VAC

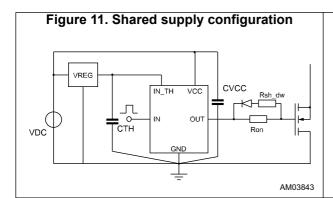

Logic VCC

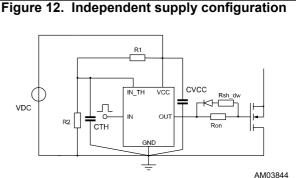

IN_TH

OUT

AM03800

Figure 9. Digitally controlled flyback converter


6 Application guidelines


6.1 Power supply

The PM8841 driver is intended to drive power MOSFETs used in power conversion topologies at high speed. The accurate supply voltage definition guarantees an effective driving in every condition. The voltage present at the IN_TH pin is used for the threshold definition. It could be the same voltage used to supply the device providing the signal applied to the IN pin, or it can be derived by the VCC pin, eventually using a voltage divider. It is mainly suggested to provide IN_TH voltage starting from VCC voltage.

For example, in *Figure 11*, an auxiliary, unregulated, voltage can be used to be connected to both PM8841 VCC pin and the input of a linear regulator that provides a well regulated supply voltage for logic circuitry. The same low voltage is then provided to the IN_TH pin of the PM8841.

If the IN_TH is derived directly by VCC pin, the structure illustrated in *Figure 12* can be used

It is mandatory to properly connect a 100 nF ceramic cap as close as possible to the VCC pin to bypass the current's spikes absorbed by VCC during the gate charging.

Also IN_TH voltage should be filtered with a ceramic capacitor (10 nF to 100 nF), especially when long traces are used to supply it; when derived by VCC a lighter filtering is allowed.

6.2 Layout suggestions

The small package of the PM8841 allows to place it very close to the gate of the driven MOSFET: this reduces the risk of injecting high frequency noise produced by the driving current running between the OUT pin and the MOSFET's gate pin.

10/15 DocID027119 Rev 2

6.3 Driving switches

The IN pin truth table is reported in Table 6.

Table 6. PM8841 truth table

IN	PM8841
High	High
Low	Low

Differential MOSFET's driving strength is seldom necessary in topologies such as flybacks or boost controlled in the peak current mode. A lower driving current is used to turn on the MOSFET in order to reduce the EMI produced by the Miller capacitance activation, while a stronger turn-off action is suggested to minimize the turn-off delay and, consequently the deviation between theoretical and practical behaviors.

The same asymmetrical driving strength is required when the IGBT switch is used: in fact the driving strength control is mandatory to avoid latch-up phenomena intrinsically related with this kind of the switch. The asymmetrical driving can be realized using a diode and resistance as illustrated in typical application diagrams (refer to the PM8851 device when accurate control of the asymmetrical driving current is required).

When low switching frequencies are required and propagation delays can be compensated, it is possible to drive contemporary the IN pin and the IN_TH pin to exploit the relevant UVLO threshold of the device (typ. 1.5 V) using the PM8841 as a fixed threshold device without any external component: care has to be taken to consider an additional propagation delay (typ. 300 ns) after the falling edge of the input signal.

6.4 Power dissipation

Overall power dissipation can be evaluated considering two main contributions: the device related consumption (PD) and the gate driving power demand (PG):

Equation 1

$$P_{Tot} = P_D + P_G$$

The device power consumption can be found in *Figure 6 on page 7*: it represents the power required by the device to supply internal structures and pull-downs resistors.

The gate driving power dissipation is the power required to deliver to and from the MOSFET's gate the required gate charge:

Equation 2

$$P_G = Q_g \times V_{gs} \times f_{sw}$$


The ${\rm Q}_g$ value can be found depicted into the MOSFET's datasheet for any applied ${\rm V}_{gs}$: ${\rm V}_{gs}$ can considered equal to VCC.

Package information PM8841

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

PM8841 Package information

7.1 SOT23-5 package information

FOOTPRINT

1.20

3.50 2.30 + 0.95 + 1.10

Figure 13. SOT23-5 package outline

Table 7. SOT23-5 package mechanical data

Symbol	Dimensions (mm)		Dimensions (inches)			Note	
Symbol	Тур.	Min.	Max.	Тур.	Min.	Max.	Note
А	-	0.90	1.45	-	0.035	0.057	-
A1	-	0.00	0.15	-	0.000	0.006	-
A2	-	0.90	1.30	-	0.035	0.051	-
b	-	0.30	0.50	-	0.012	0.020	-
С	-	0.09	0.20	-	0.004	0.008	-
D	-	2.80	3.05	-	0.11	0.12	-
Е	-	1.50	1.75	-	0.059	0.069	-
е	0.95	-	-	0.037	-	-	-
Н	-	2.60	3.00	-	0.102	0.118	-
L	-	0.30	0.60	-	0.012	0.024	-
θ	-	0	10	-	0	10	Degrees

Revision history PM8841

8 Revision history

Table 8. Document revision history

Date	Revision	Changes
29-Oct-2014	1	Initial release.
15-Nov-2018	2	Updated <i>Table 5 on page 6</i> . Updated <i>Figure 13 on page 13</i> . Minor modifications throughout document.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru