
HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM

LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018

Features

- True Dual-Ported memory cells which allow simultaneous access of the same memory location
- High-speed access
 - Commercial: 15/20/25/35/55ns (max.)
 - Industrial: 20/25ns (max.)
- Low-power operation
- IDT7027S Active: 750mW (typ.) Standby: 5mW (typ.)
- IDT7027L
 Active: 750mW (typ.)
 Standby: 1mW (typ.)
- Separate upper-byte and lower-byte control for bus matching capability.
- Dual chip enables allow for depth expansion without external logic

- IDT7027 easily expands data bus width to 32 bits or more using the Master/Slave select when cascading more than one device
- M/S = VIH for BUSY output flag on Master, M/S = VIL for BUSY input on Slave
- Busy and Interrupt Flags
- On-chip port arbitration logic
- Full on-chip hardware support of semaphore signaling between ports
- Fully asynchronous operation from either port
- TTL-compatible, single 5V (±10%) power supply
- Available in 100-pin Thin Quad Flatpack (TQFP) and 108-pin Ceramic Pin Grid Array (PGA)
- Industrial temperature range (-40°C to +85°C) is available for selected speeds
- Green parts available, see ordering information

Functional Block Diagram

NOTES:

1. $\overline{\text{BUSY}}$ is an input as a Slave (M/ $\overline{\text{S}}$ =VIL) and an output as a Master (M/ $\overline{\text{S}}$ =VIH).

2. BUSY and INT are non-tri-state totem-pole outputs (push-pull).

JUNE 2018

Description

The IDT7027 is a high-speed 32K x 16 Dual-Port Static RAM, designed to be used as a stand-alone 512K-bit Dual-Port RAM or as a combination MASTER/SLAVE Dual-Port RAM for 32-bit-or-more word systems. Using the IDTMASTER/SLAVE Dual-Port RAM approach in 32-bit or wider memory system applications results in full-speed, error-free operation without the need for additional discrete logic.

The device provides two independent ports with separate control,

address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. An automatic power down feature controlled by the chip enables (\overline{CE}_0 and CE_1) permits the on-chip circuitry of each port to enter a very low standby power mode.

Fabricated using CMOS high-performance technology, these devices typically operate on only 750mW of power. The IDT7027 is packaged in a 100-pin Thin Quad Flatpack (TQFP) and a 108-pin ceramic Pin Grid Array (PGA).

INDEX BUSY A8R A3R A4L 4 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 A9L ⊐ A9R ⊐ A10R A10L 2 74 A11R A11L C 3 73 A12L □ 4 A12R 72 A13L □ A13R 5 71 A14R A14L 🗆 6 70 ٦ NC ⊏ NC 7 69 NC ⊏ ⊐ NC 8 68 NC □ 9 NC 67 10 LBR 66 IDT7027PF **UB**R 11 65 PN100⁽⁴⁾ CEOL -CEOR 12 64 CE1L C CE1R 13 63 100-Pin TQFP SEML C 14 SEMR 62 Top View⁽⁵⁾ Vcc ⊏ 15 61 GND R/₩L ⊏ ⊐ R/WR 16 60 **OE**R 17 59 GND C 18 58 GND GND C GND 19 57 I/O15L □ 20 56 I/O15R I/O14L C 21 55 I/O14R I/O13L C 22 54 ⊐ I/O13R I/O12L □ 23 53 ☐ I/O12R I/O11L □ 24 52 □ I/O11R I/O10L 25 51 □ I/O10R 50 3199 drw 02 1/09L 1/08L Vcc 1/07L 1/07L 1/03L 1/03L 1/03R 1/00L 1/00L 1/00R 1/03R 1/06R 1/06R 1/06R 1/06R 1/06R

Pin Configurations^(1,2,3)

- 1. All Vcc pins must be connected to power supply.
- 2. All GND pins must be connected to ground supply.
- 3. Package body is approximately 14mm x 14mm x 1.4mm.
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

Pin Configurations^(1,2,3) (con't.)

12	81 A10R	80 A11R	77 A14R	74 NC	72 UBR	69 SEMR	68 GND	65 GND	63 NC	60 I/O13R	57 I/O10R	54 NC
	84	83	78	76	73	70	67	64	61	59	56	53
11	A7R	A8R	A13R	NC	LBR	CE1R	R/₩R	GND	I/O14R	I/O12R	I/O9R	NC
10	87 A4R	86 A5R	82 A9R	79 A12R	75 NC	71 CE0R	66 OER	62 I/O15R	58 I/O11R	55 NC	51 I/O8R	50 I/O7R
10				AIZR	NC	OLUK	OLK	I/OTSR	I/OTIR			
09	90 A1R	88 A3R	85 A6R							52 NC	49 Vcc	47 I/O5R
	92	91	89							48	46	45
08	ĪNTR	Aor	A2R							I/O6R	I/O4R	I/O3R
07	95 GND	94 M/S	93 BUSYR			IDT7		44 I/O2R	43 I/O1R	42 I/O0R		
06	96 BUSYL	97 INTL	98 NC			G10 108-Pi		39 I/O1L	40 I/Ool	41 GND		
	99	100	102			Top V	Iew ⁽³⁾			35	37	38
05	Aol	A1L	АзL							I/O4L	I/O2L	GND
	101	103	106							31	34	36
04	A2L	A4L	A7L							Vcc	I/O5L	I/O3L
03	104 A5L	105 A6L	1 A10L	4 A13L	⁸ NC	12 CE1L	17 GND	21 I/O14L	25 I/O10L	28 NC	³² I/O7L	33 I/O6L
02	107 A8L	2 A11L	5 A14L	7 NC	10 UBL	13 SEML	16 OEL	19 GND	22 I/O13L	24 I/O11L	29 NC	30 I/O8L
	108	3	6	9	11	14	15	18	20	23	26	27
01	A9L	A12L	NC	LBL	CEOL	Vcc	R/WL	NC	I/O15L	I/O12L	I/O9L	NC
1	A	В	С	D	E	F	G	Н	J	К	L	М
/ NDEX	(:	3199drw 0

NOTES:

- All Vcc pins must be connected to power supply.
 All GND pins must be connected to ground supply.
 Package body is approximately 1.21 in x 1.21 in x .16 in.
 This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

Pin Names

Left Port	Right Port	Names		
CEOL, CE1L	\overline{CE}_{0R} , CE1R	Chip Enables		
R/WL	R/WR	Read/Write Enable		
ŌĒL	ŌĒr	Output Enable		
Aol - A14L	Aor - A14r	Address		
I/Ool - I/O15l	VO0r - VO15r	Data Input/Output		
SEML	SEM R	Semaphore Enable		
ŪBL	ŪBR	Upper Byte Select		
LBL	LB R	Lower Byte Select		
ĪNTL	Ī NT R	Interrupt Flag		
BUSYL	BUS YR	Busy Flag		
M	I/S	Master or Slave Select		
V	сс	Power		
G	ND	Ground		

Truth Table I - Chip Enable

CE		CE1	Mode		
	ViL		Port Selected (TTL Active)		
L	<u><</u> 0.2V	<u>></u> Vcc - 0.2V	Port Selected (CMOS Active)		
	Vн	Х	Port Deselected (TTL Inactive)		
	Х	V⊫	Port Deselected (TTL Inactive)		
Н	<u>></u> Vcc - 0.2V	Х	Port Deselected (CMOS Inactive)		
	Х	<u><</u> 0.2V	Port Deselected (CMOS Inactive)		

NOTES:

1. Chip Enable references are shown above with the actual \overline{CE}_0 and CE_1 levels, \overline{CE} is a reference only.

2. Port "A" and "B" references are located where \overline{CE} is used.

3. "H" = VIH and "L" = VIL.

Truth Table II – Non-Contention Read/Write Control

		Inpu	uts ⁽¹⁾			Out	puts	
CE ⁽²⁾	R∕₩	ŌĒ	ŪB	LΒ	SEM	I/O 8-15	I/O0-7	Mode
Н	Х	Х	Х	Х	Н	High-Z	High-Z	Deselected: Power-Down
Х	Х	Х	Н	Н	Н	High-Z	High-Z	Both Bytes Deselected
L	L	Х	L	Н	Н	DATAIN	High-Z	Write to Upper Byte Only
L	L	Х	Н	L	Н	High-Z	DATAIN	Write to Lower Byte Only
L	L	Х	L	L	Н	DATAIN	DATAIN	Write to Both Bytes
L	Н	L	L	Н	Н	DATAOUT	High-Z	Read Upper Byte Only
L	Н	L	Н	L	Н	High-Z	DATAOUT	Read Lower Byte Only
L	Н	L	L	L	Н	DATAOUT	DATAOUT	Read Both Bytes
Х	Х	Н	Х	Х	Х	High-Z	High-Z	Outputs Disabled

NOTES:

1. AOL — A14L \neq AOR — A14R.

2. Refer to Chip Enable Truth Table.

Truth Table III - Semaphore Read/Write Control

		Inpu	uts ⁽¹⁾			Out	puts	
CE ⁽²⁾	R∕₩	ŌĒ	ŪB	LB	SEM	I/O8-15	I/O0-7	Mode
Н	Н	L	Х	Х	L	DATAOUT	DATAOUT	Read Data in Semaphore Flag
Х	Н	L	Н	Н	L	DATAOUT	DATAOUT	Read Data in Semaphore Flag
Н	\uparrow	Х	Х	Х	L	DATAIN	DATAIN	Write I/Oo into Semaphore Flag
Х	\uparrow	Х	Н	Н	L	DATAIN	DATAIN	Write I/Oo into Semaphore Flag
L	Х	Х	L	Х	L			Not Allowed
L	Х	Х	Х	L	L			Not Allowed

NOTES:

1. There are eight semaphore flags written to via I/Oo and read from all the I/Os (I/Oo –I/O15). These eight semaphore flags are addressed by Ao-A2. 2. Refer to Chip Enable Truth Table.

3199 tbl 04

3199 tbl 03

3199 tbl 02

Industrial and Commercial Temperature Ranges

Absolute Maximum Ratings^(1,3)

Symbol	Rating	Commercial & Industrial	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Tbias	Temperature Under Bias	-55 to +125	٥C
Tstg	Storage Temperature	-65 to +150	٥C
Ιουτ	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

3199 tbl 05

DC Electrical Characteristics Over the Operating

2. VTERMmust not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq VCC + 10%

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Мах.	Unit			
Vcc	Supply Voltage	4.5	5.0	5.5	V			
GND	Ground	0	0	0	V			
Vih	Input High Voltage	2.2	_	6.0 ⁽²⁾	V			
VIL	Input Low Voltage	-0.5 ⁽¹⁾		0.8	V			
	3199 tbl 07							

NOTES:

1. VIL \geq -1.5V for pulse width less than 10ns.

2. VTERM must not exceed Vcc + 10%.

Maximum Operating Temperature and Supply Voltage⁽¹⁾

Grade	Ambient Temperature	GND	Vcc
Commercial	0°C to +70°C	0V	5.0V <u>+</u> 10%
Industrial	-40°C to +85°C	0V	5.0V <u>+</u> 10%
NOTE			3199 tbl 06

NOTE:

1. This is the parameter TA. This is the "instant on" case temperature.

Capacitance⁽¹⁾

$(TA = +25^{\circ}C, f = 1.0mhz) TQFP ONLY$

Symbol	Parameter	Conditions	Мах.	Unit
Cin	Input Capacitance	VIN = 0V	9	pF
Cout ⁽²⁾	Output Capacitance	Vout = 0V	10	pF
				3199 tbl 08

NOTES:

1. This parameter is determined by device characterization but is not production tested.

2. Cout also references Ci/o.

		Voltage Range (Vcc =	0	0%)			
			702	27S	702	27L	
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Мах.	Unit
LL	Input Leakage Current ⁽¹⁾	Vcc = 5.5V, VIN = 0V to Vcc	—	10	-	5	μA
llo	Output Leakage Current	$\overline{CE} = VIH$, Vout = 0V to Vcc	_	10	_	5	μA
Vol	Output Low Voltage	Iol = 4mA	_	0.4	_	0.4	V
Vон	Output High Voltage	Юн = -4mA	2.4	_	2.4		V

NOTE:

1. At Vcc ≤ 2.0V, input leakages are undefined.

3199 tbl 09

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range^(1,6) (Vcc = 5.0V ± 10%)

					7027X15 Com'l Only		7027X20 Com'l & Ind		7027X25 Com'l & Ind		
Symbol	Parameter	Test Condition	Versior	I	Typ. ⁽²⁾	Max.	Тур. ⁽²⁾	Мах.	Тур. ⁽²⁾	Мах.	Unit
Icc	Dynamic Operating Current (Both Ports Active)	\overline{CE} = VIL, Outputs Disabled SEM = VIH f = fMAX ⁽³⁾	COM'L	S L	205 200	365 325	190 180	325 285	180 170	305 265	mA
		1 = IMAX**	IND	S L	_		 180	 335	170 —	70 345 40 85 40 60 10 100 005 200	
ISB1	ISB1 Standby Current (Both Ports - TTL Level Inputs)	$\overline{CE}_{L} = \overline{CE}_{R} = V_{H}$ $\overline{SEM}_{R} = \overline{SEM}_{L} = V_{H}$	COM'L	S L	65 65	110 90	50 50	90 70	40 40		mA
	inputs)	$f = fMAX^{(3)}$	IND	S L			 50	 85	40		
ISB2	Standby Current (One Port - TTL Level Inputs)	\overline{CE} "A" = VIL and \overline{CE} "B" = VIH ⁽⁵⁾ Active Port Outputs Disabled, f=fMAX ⁽³⁾	COM'L	S L	130 130	245 215	115 115	215 185	105 105		mA
	inputs)	$\frac{1 = 100AX^{(4)}}{SEMR} = \overline{SEML} = VIH$	IND	S L			 115	 220	105 —	om'l Amax. 305 265 345 85 60 100 200	
ISB3	Full Standby Current (Both Ports - All CMOS	Both Ports $\overline{CE}L$ and $\overline{CER} \ge VCC - 0.2V$ $VIN \ge VCC - 0.2V$ or	COM'L	S L	1.0 0.2	15 5	1.0 0.2	15 5	1.0 0.2		mA
	$V_{\rm IN} < 0$	$\frac{VIN \ge VCC + 0.2V \text{ of }}{VIN \le 0.2V, \text{ f } = 0^{(4)}}$ SEMR = SEML \ge VCC - 0.2V	IND	S L			 0.2	 10	1.0		
ISB4	(One Port - All CMOS $\overline{CE}^{"B"} \ge VCC - 0.2V^{(5)}$	$CE"B" \ge VCC - 0.2V^{(3)}$	COM'L	S L	120 120	220 190	110 110	190 160	100 100		mA
	Level Inputs)	$\label{eq:second} \begin{split} \overline{SEMR} &= \overline{SEML} \ge VCC \cdot 0.2V\\ VIN \ge VCC \cdot 0.2V \text{ or } VIN \le 0.2V\\ Active Port Outputs Disabled\\ f = fMAX^{(3)} \end{split}$	IND	S L			 110	 195	100 —		

						7X35 I Only		7X55 I Only	
Symbol	Parameter	Test Condition	Versi	on	Typ. ⁽²⁾	Мах.	Тур. ⁽²⁾	Max.	Unit
ICC	Dynamic Operating Current (Both Ports Active)	\overline{CE} = VIL, Outputs Disabled SEM = VIH f = fMaX ⁽⁶⁾	COM'L	S L	160 160	295 255	150 150	270 230	m
		$T = TMAX^{(i)}$	IND	S L					
ISB1	Standby Current (Both Ports - TTL Level	$\label{eq:cell} \begin{split} \overline{CE}L &= \overline{CE}R = VH\\ \overline{SEMR} &= \overline{SEML} = VH \end{split}$	COM'L	S L	30 30	85 60	20 20	85 60	n
	Inputs)		IND	S L					
ISB2 Standby Current (One Port - TTL Level Active Port Outputs Disabled, Inputs) SEMR = SEML = VH	(One Port - TTL Level	Active Port Outputs Disabled,	COM'L	S L	95 95	185 155	85 85	165 135	r
	IND	S L			_				
ISB3	Full Standby Current (Both Ports - All CMOS	Both Ports \overline{CE}_L and $\overline{CE}_R \ge V_{CC} - 0.2V$ $V_{N} > V_{CC} - 0.2V$ or	COM'L	S L	1.0 0.2	15 5	1.0 0.2	15 5	r
	Level Inputs)	$\frac{ViN \ge VCC - 0.2V \text{ of }}{ViN \le 0.2V, f = 0^{(4)}}$ SEMR = SEML \ge VCC - 0.2V	IND	S L					
ISB4	Full Standby Current (One Port - All CMOS Level Inputs)	$\frac{\overline{C}\overline{E}^{*}A^{*}}{\overline{C}\overline{E}^{*}B^{*}} \geq \frac{0.2V \text{ and}}{VCC} - 0.2V^{(5)}$	COM'L	S L	90 90	160 135	80 80	135 110	r
Level inputs)	Level ripus)	$\begin{array}{l} \overline{\text{SEMR}} = \overline{\text{SEML}} \geq V \text{Cc} - 0.2V \\ V \text{IN} \geq V \text{Cc} - 0.2V \\ \text{Active Port Outputs Disabled} \\ f = \text{fmax}^{(6)} \end{array}$	IND	S L	_	_	_	_	

NOTES:

1. 'X' in part numbers indicates power rating (S or L).

2. Vcc = 5V, TA = +25°C, and are not production tested. Icccc = 120mA (Typ.)

3. At f = fMax, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/ trc, and using "AC Test Conditions" of input levels of GND to 3V.

4. f = 0 means no address or control lines change.

5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".

6. Refer to Chip Enable Truth Table.

AC Test Conditions

dInput Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1 and 2

3199 tbl 11

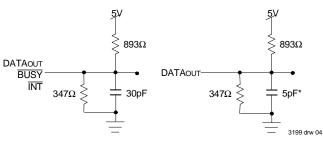


Figure 1. AC Output Test Load

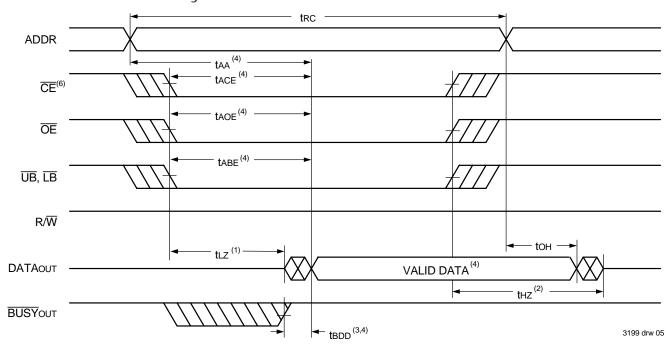
Figure 2. Output Test Load (for tLz, tHz, twz, tow) *Including scope and jig.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Ranges⁽⁴⁾

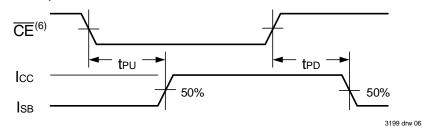
		7027X15 Com'l Only		7027X20 Com'l & Ind		7027X25 Com'l & Ind		7027X35 Com'l Only		7027X55 Com'l Only		
Symbol	Parameter	Min.	Мах.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CY	CLE											
trc	Read Cycle Time	15	_	20	_	25	_	35		55		ns
taa	Address Access Time		15	_	20		25		35	_	55	ns
t ACE	Chip Enable Access Time ⁽⁴⁾	_	15	_	20		25		35		55	ns
taoe	Output Enable Access Time		10		12		13		20		30	ns
tон	Output Hold from Address Change	3		3	_	3		3		3		ns
tLZ	Output Low-Z Time ^(1,2)	3	_	3	_	3		3		3		ns
tHZ	Output High-Z Time ^(1,2)	—	10		12		15		15		25	ns
t₽U	Chip Enable to Power Up Time ^(2,5)	0		0	_	0	_	0		0		ns
tPD	Chip Disable to Power Down Time ^(2,5)		15		20		25		35		50	ns
tsop	Semaphore Flag Update Pulse (\overline{OE} or \overline{SEM})	10		10		12		15		15	-	ns
tsaa	Semaphore Address Access Time		15		20		25		35		55	ns

3199 tbl 12

NOTES:.


1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).

2. This parameter is guaranteed by device characterization, but is not production tested. 3. To access RAM, $\overline{CE} = V_{IL}$ and $\overline{SEM} = V_{IH}$. To access semaphore, $\overline{CE} = V_{IH}$ and $\overline{SEM} = V_{IL}$.


4. 'X' in part numbers indicates power rating (S or L).

5. Refer to Chip Enable Truth Table.

Waveform of Read Cycles⁽⁵⁾

Timing of Power-Up Power-Down

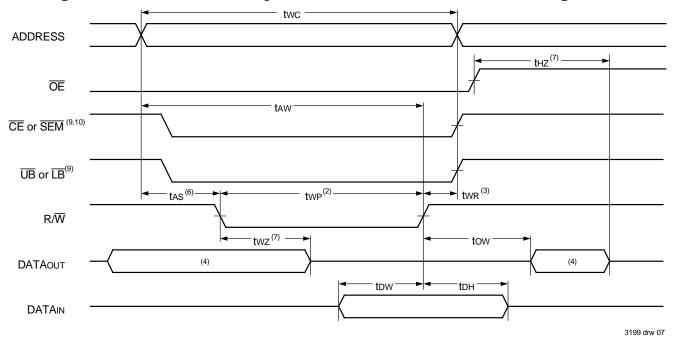
- 1. Timing depends on which signal is asserted last, \overline{CE} , \overline{OE} , \overline{LB} , or \overline{UB} .
- 2. Timing depends on which signal is de-asserted first \overline{CE} , \overline{OE} , \overline{LB} , or \overline{UB} .
- 3. tbdb delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no relation to valid output data.
- 4. Start of valid data depends on which timing becomes effective last taoe, tace, tace, tac or tBDD.
- 5. $\overline{\text{SEM}} = \text{VIH}.$
- 6. Refer to Chip Enable Truth Table.

AC Electrical Characteristics Over the Operating Temperature and Supply Voltage⁽⁵⁾

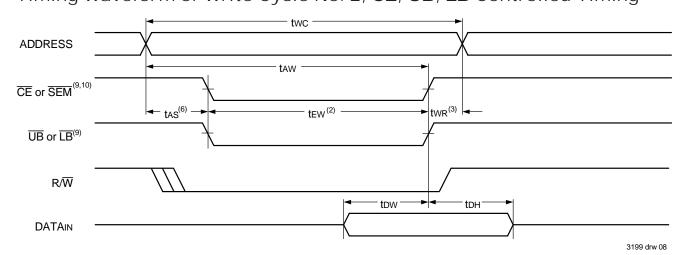
Parameter te Cycle Time p Enable to End-of-Write ⁽³⁾ dress Valid to End-of-Write dress Set-up Time ⁽³⁾	Min. 15 12 12 0	Max.	Min. 20 15	Max.	Min. 25 20	Max.	Min . 35	Max. —	Min . 55	Мах.	Unit ns
p Enable to End-of-Write ⁽³⁾ dress Valid to End-of-Write dress Set-up Time ⁽³⁾	12 12		15				35	_	55		ns
p Enable to End-of-Write ⁽³⁾ dress Valid to End-of-Write dress Set-up Time ⁽³⁾	12 12		15				35		55		ns
dress Valid to End-of-Write dress Set-up Time ⁽³⁾	12		-		20						
dress Set-up Time ⁽³⁾	-		10				30		45	_	ns
•	0		15		20	_	30	_	45	-	ns
	-		0	-	0	_	0	_	0	-	ns
te Pulse Width	12		15	_	20		25		40	_	ns
te Recovery Time	0		0	_	0	—	0	_	0		ns
a Valid to End-of-Write	10		15	_	15	—	15	_	30		ns
put High-Z Time ^(1,2)		10	_	12		15		15		25	ns
a Hold Time ⁽⁵⁾	0		0		0	—	0	_	0		ns
te Enable to Output in High-Z ^(1,2)		10	_	12		15		15		25	ns
put Active from End-of-Write ^(1,2,5)	0		0		0	—	0	_	0		ns
M Flag Write to Read Time	5		5		5	—	5	_	5		ns
M Flag Contention Window	5		5	_	5		5		5		ns
p a te	ut High-Z Time ^(1,2) Hold Time ⁽⁵⁾ e Enable to Output in High-Z ^(1,2) ut Active from End-of-Write ^(1,2,5) I Flag Write to Read Time	ut High-Z Time ^(1,2) — Hold Time ⁽⁵⁾ 0 e Enable to Output in High-Z ^(1,2) — ut Active from End-of-Write ^(1,2,5) 0 I Flag Write to Read Time 5	ut High-Z Time $^{(1,2)}$ —10Hold Time $^{(5)}$ 0—e Enable to Output in High- $Z^{(1,2)}$ —10ut Active from End-of-Write $^{(1,2,5)}$ 0—I Flag Write to Read Time5—	ut High-Z Time ^(1,2) 10 Hold Time ⁽⁵⁾ 0 0 e Enable to Output in High-Z ^(1,2) 10 ut Active from End-of-Write ^(1,2,5) 0 0 I Flag Write to Read Time 5 5	ut High-Z Time ^(1,2) — 10 — 12 Hold Time ⁽⁵⁾ 0 — 0 — e Enable to Output in High-Z ^(1,2) — 10 — 12 ut Active from End-of-Write ^(1,2,5) 0 — 0 — I Flag Write to Read Time 5 — 5 —	ut High-Z Time ^(1,2) 10 12 Hold Time ⁽⁵⁾ 0 0 0 e Enable to Output in High-Z ^(1,2) 10 12 ut Active from End-of-Write ^(1,2,5) 0 0 0 I Flag Write to Read Time 5 5 5	ut High-Z Time ^(1,2) 10 12 15 Hold Time ⁽⁵⁾ 0 0 0 e Enable to Output in High-Z ^(1,2) 10 12 15 ut Active from End-of-Write ^(1,2,5) 0 0 10 10 I Flag Write to Read Time 5 5 5 5	ut High-Z Time ^(1,2) 10 12 15 Hold Time ⁽⁵⁾ 0 0 0 0 e Enable to Output in High-Z ^(1,2) 10 12 15 ut Active from End-of-Write ^(1,2,5) 0 0 0 0 I Flag Write to Read Time 5 5 5 5	ut High-Z Time ^(1,2) 10 12 15 15 Hold Time ⁽⁵⁾ 0 0 0 0 15 15 e Enable to Output in High-Z ^(1,2) 10 12 15 15 ut Active from End-of-Write ^(1,2,5) 0 0 0 15 15 I Flag Write to Read Time 5 5 5 5 5	ut High-Z Time ^(1,2) 10 12 15 15 Hold Time ⁽⁵⁾ 0 0 0 0 0 0 e Enable to Output in High-Z ^(1,2) 10 12 15 0 ut Active from End-of-Write ^(1,2,5) 0 0 0 0 0 I Flag Write to Read Time 5 5 5 5 5	ut High-Z Time ^(1,2) 10 12 15 25 Hold Time ⁽⁵⁾ 0 0 0 0 25 e Enable to Output in High-Z ^(1,2) 10 12 15 0 ut Active from End-of-Write ^(1,2,5) 0 0 0 0 25 I Flag Write to Read Time 5 5 5 5 5 5

NOTES:

1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).

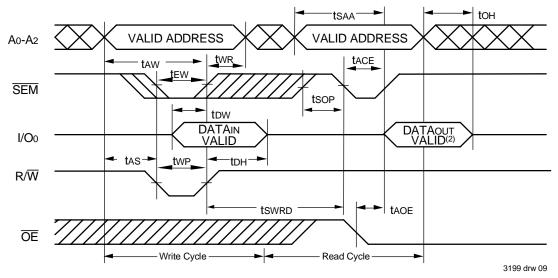

2. This parameter is guaranteed by device characterization, but is not production tested. 3. To access RAM \overrightarrow{CE} = VIL and \overrightarrow{SEM} = VIL. To access semaphore, \overrightarrow{CE} = VIH and \overrightarrow{SEM} = VIL. Either condition must be valid for the entire tew time. Refer to Chip Enable Truth Table.

4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tow values will vary over voltage and temperature, the actual tDH will always be smaller than the actual tow.


5. 'X' in part numbers indicates power rating (S or L).

Industrial and Commercial Temperature Ranges

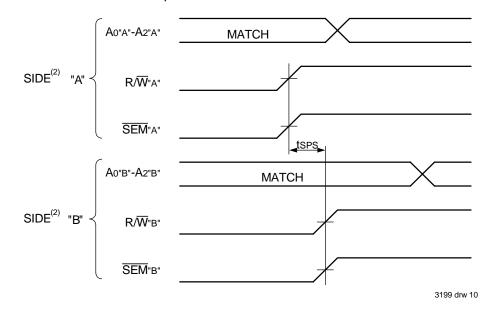
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing^(1,5,8)



Timing Waveform of Write Cycle No. 2, **CE**, **UB**, **LB** Controlled Timing^(1,5)

- 1. R/\overline{W} or \overline{CE} or \overline{UB} and $\overline{LB} = V_{IH}$ during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of a CE = VIL and a R/W = VIL for memory array writing cycle.
- 3. twr is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.
- 4. During this period, the I/O pins are in the output state and input signals must not be applied.
- 5. If the CE or SEM = VIL transition occurs simultaneously with or after the RW = VIL transition, the outputs remain in the High-impedance state.
- 6. Timing depends on which enable signal is asserted last, \overline{CE} or R/\overline{W} .
- 7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure 2).
- 8. If $\overline{OE} = V_{IL}$ during R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If $\overline{OE} = V_{IH}$ during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
- 9. To access RAM, \overline{CE} = VIL and \overline{SEM} = VIH. To access semaphore, \overline{CE} = VIH and \overline{SEM} = VIL. tew must be met for either condition.
- 10. Refer to Chip Enable Truth Table.

Timing Waveform of Semaphore Read after Write Timing, Either Side⁽¹⁾



NOTES:

1. \overline{CE} = VIH or \overline{UB} and \overline{LB} = VIH for the duration of the above timing (both write and read cycle), refer to Chip Enable Truth Table.

2. "DATAOUT VALID" represents all I/O's (I/Oo-I/O15) equal to the semaphore value.

Timing Waveform of Semaphore Write Contention^(1,3,4)

- 1. DOR = DOL = VIL, $\overline{CE}R = \overline{CE}L = VIH$, or both $\overline{UB} \& \overline{LB} = VIH$ (refer to Chip Enable Truth Table).
- 2. All timing is the same for left and right ports. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 3. This parameter is measured from R/W⁻A" or SEM⁻A" going HIGH to R/W⁻B" or SEM⁻B" going HIGH.
- 4. If tsps is not satisfied, there is no guarantee which side will be granted the semaphore flag.

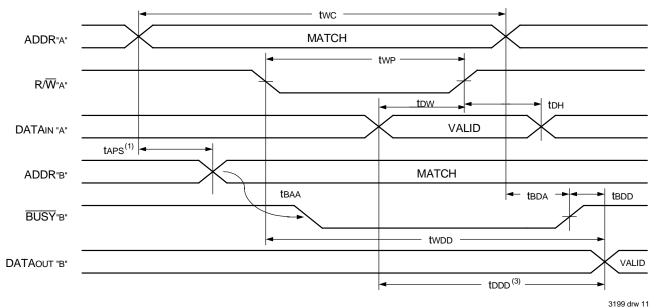
AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁶⁾

	Parameter		7027X15 Com'l Only		7027X20 Com'l & Ind		7027X25 Com'l & Ind		7027X35 Com'l Only		7027X55 Com'l Only	
Symbol			Max.	Min.	Max.	Min.	Мах.	Min.	Max.	Min.	Max.	Unit
BUSY TIN	ліng (M/S=Viн)											-
tbaa	BUSY Access Time from Address Match		15		20		20		20		45	ns
tBDA	BUSY Disable Time from Address Not Matched		15		20	_	20		20		40	ns
t BAC	BUSY Access Time from Chip Enable Low		15		20		20		20		40	ns
tBDC	BUSY Access Time from Chip Enable High		15		17	_	17		20		35	ns
taps	Arbitration Priority Set-up Time ⁽²⁾	5		5		5		5		5		ns
tBDD	BUSY Disable to Valid Data ⁽³⁾		15		20		25		35		55	ns
twн	Write Hold After BUSY ⁽⁵⁾	12		15		17		25		25		ns
BUSY TIN	ning (m/\$=vil)											
twв	BUSY Input to Write ⁽⁴⁾	0		0		0		0		0		ns
twн	Write Hold After BUSY ⁽⁵⁾	12		15		17		25		25		ns
PORT-TO	- Port delay timing											
twdd	Write Pulse to Data Delay ⁽¹⁾		30		45		50		60		80	ns
todd	Write Data Valid to Read Data Delay ⁽¹⁾		25		30		35		45		65	ns

NOTES:

1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and $\overline{\text{BUSY}}$ (M/S = VIH)".

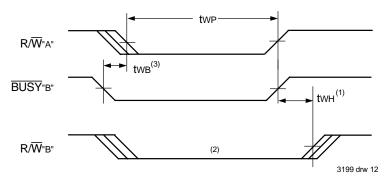
2. To ensure that the earlier of the two ports wins.


3. tBDD is a calculated parameter and is the greater of 0, twDD - twp (actual), or tDDD - tDw (actual).

4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".

5. To ensure that a write cycle is completed on port "B" after contention on port "A".

6. 'X' in part numbers indicates power rating (S or L).


Timing Waveform of Write with Port-to-Port Read and $\overline{\text{BUSY}}$ (M/ $\overline{\text{S}}$ = VIH)^(2,4,5)

NOTES:

- 1. To ensure that the earlier of the two ports wins. taps is ignored for $M/\overline{S} = V_{IL}$ (slave).
- 2. $\overline{CE}_{L} = \overline{CE}_{R} = V_{IL}$ (refer to Chip Enable Truth Table).
- 3. $\overline{OE} = V_{IL}$ for the reading port.
- 4. If $M/\overline{S} = V_{IL}$ (slave), \overline{BUSY} is an input. Then for this example $\overline{BUSY}^*A^* = V_{IH}$ and \overline{BUSY}^*B^* input is shown above.
- 5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".

Timing Waveform of Write with **BUSY** (M/S = VIL)

- 1. twn must be met for both BUSY input (SLAVE) and output (MASTER).
- 2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.
- 3. twb is only for the "Slave" version.

High-Speed 32K x 16 Dual-Port Static RAM

Industrial and Commercial Temperature Ranges

Waveform of **BUSY** Arbitration Controlled by **CE** Timing (M/**S** = VIH)^(1,3) ADDR*A* and *B* $\overline{CE}*A*$ $\overline{CE}*B*$ $\overline{CE}*B*$ $\overline{BUSY}*B*$

Waveform of **BUSY** Arbitration Cycle Controlled by Address Match Timing $(M/S = VIH)^{(1)}$

ADDR"A" ADDRESS "N" ADDR"B" MATCHING ADDRESS "N" tBAA tBUSY"B" 3199 drw 14

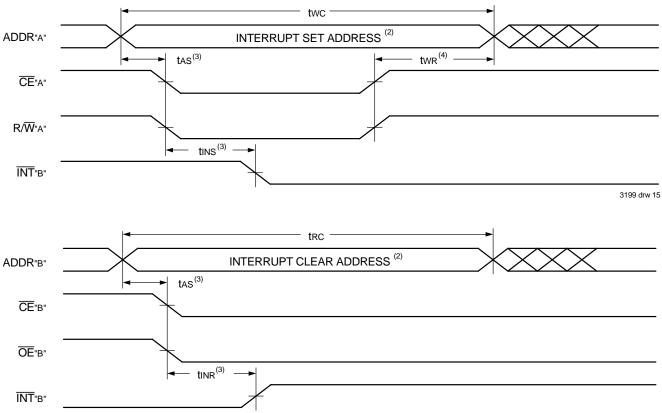
NOTES:

IDT7027S/L

1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".

2. If taps is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.

3. Refer to Chip Enable Truth Table.


AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽¹⁾

			7027X15 Com'l Onl			7027X20 Com'l & Ind		7027X25 Com'l & Ind		7027X35 Com'l Only		7027X55 Com'l Only		
Symbol	Parameter	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Max.	Unit		
INTERRUP	T TIMING	-												
tas	Address Set-up Time	0		0	_	0		0	_	0		ns		
twr	Write Recovery Time	0	_	0	_	0	-	0	-	0	_	ns		
tins	Interrupt Set Time		15	_	20	_	20	_	25		40	ns		
tinr	Interrupt Reset Time		15	_	20		20	_	25	_	40	ns		
												3199 tbl 15		

NOTES:

1. 'X' in part numbers indicates power rating (S or L).

Waveform of Interrupt Timing^(1,5)

3199 drw 16

NOTES:

1. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".

2. See the Interrupt Truth Table IV.

- 3. Timing depends on which enable signal (\overline{CE} or R/\overline{W}) is asserted last.
- 4. Timing depends on which enable signal $(\overline{CE} \text{ or } R/\overline{W})$ is de-asserted first.
- 5. Refer to Chip Enable Truth Table.

	Right Port						Left Port							
Function	ĪNTR	A14R-A0R	OE R	CER	R/WR	ĪNTL	A14L-A0L	OEL	ĒĒ∟	R/₩L				
Set Right INTR Flag	L ⁽²⁾	Х	Х	Х	Х	Х	7FFF	Х	L	L				
Reset Right INTR Flag	H ⁽³⁾	7FFF	L	L	Х	Х	Х	Х	Х	Х				
Set Left INTL Flag	Х	7FFE	Х	L	L	L ⁽³⁾	Х	Х	Х	Х				
Reset Left INTL Flag	Х	Х	Х	Х	Х	H ⁽²⁾	7FFE	L	L	Х				
2100 #1 1/														

Truth Table IV — Interrupt Flag^(1,4)

NOTES:

1. Assumes $\overline{\text{BUSY}}_{L} = \overline{\text{BUSY}}_{R} = V_{IH}$.

2. If $\overline{\text{BUSY}}_{L} = V_{IL}$, then no change.

3. If $\overline{\text{BUSY}}_{R} = V_{IL}$, then no change.

4. Refer to Chip Enable Truth Table.

3199 tbl 16

Truth Table V — Address Bus Arbitration⁽⁴⁾

	In	puts			
Ē	ĊĒr	Aol-A14L Aor-A14r	BUSYL ⁽¹⁾	BUSYR ⁽¹⁾	Function
Х	Х	NO MATCH	Н	Н	Normal
Н	Х	MATCH	Н	Н	Normal
Х	Н	MATCH	Н	Н	Normal
L	L	MATCH	(2)	(2)	Write Inhibit ⁽³⁾

NOTES:

3199 tbl 17

1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT7027 are push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.

2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address and enable inputs of this port. If taps is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.

3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of the actual logic level on the pin. Writes to the right port are internally ignored when BUSYR outputs are driving LOW regardless of the actual logic level on the pin.

4. Refer to Chip Enable Truth Table.

Truth Table VI — Example of Semaphore Procurement Sequence^(1,2,3)

Functions	Do - D15 Left	Do - D15 Right	Status
No Action	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Right Port Writes "0" to Semaphore	0	1	No change. Right side has no write access to semaphore
Left Port Writes "1" to Semaphore	1	0	Right port obtains semaphore token
Left Port Writes "0" to Semaphore	1	0	No change. Left port has no write access to semaphore
Right Port Writes "1" to Semaphore	0	1	Left port obtains semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free
Right Port Writes "0" to Semaphore	1	0	Right port has semaphore token
Right Port Writes "1" to Semaphore	1	1	Semaphore free
Left Port Writes "0" to Semaphore	0	1	Left port has semaphore token
Left Port Writes "1" to Semaphore	1	1	Semaphore free

NOTES:

1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7027.

2. There are eight semaphore flags written to via I/Oo and read from all the I/O's (I/Oo-I/O15). These eight semaphores are addressed by Ao-A2.

3. CE = VIH, SEM = VIL, to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.

Functional Description

The IDT7027 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT7027 has an automatic power down feature controlled by \overline{CE}_0 and CE1. The \overline{CE}_0 and CE1 control the on-chip power down circuitry that permits the respective port to go into a standby mode when not selected ($\overline{CE} = VIH$). When a port is enabled, access to the entire memory array is permitted.

Interrupts

If the user chooses the interrupt function, a memory location (mail box or message center) is assigned to each port. The left port interrupt flag

 (\overline{INTL}) is asserted when the right port writes to memory location 7FFE (HEX), where a write is defined as $\overline{CER} = R/\overline{WR} = VIL$ per Truth Table IV. The left port clears the interrupt through access of address location 7FFE when $\overline{CEL} = \overline{OEL} = VIL$, R/\overline{W} is a "don't care". Likewise, the right port interruptflag (\overline{INTR}) is asserted when the left port writes to memory location 7FFF (HEX) and to clear the interruptflag (\overline{INTR}), the right port must read the memory location 7FFF. The message (16 bits) at 7FFE or 7FFF is user-defined since it is an addressable SRAM location. If the interrupt function is not used, address locations 7FFE and 7FFF are not used as mail-boxes by ignoring the interrupt, but as part of the random access memory. Refer to Truth Table IV for the interrupt operation.

3199 tbl 18

Industrial and Commercial Temperature Ranges

Busy Logic

Busy Logic provides a hardware indication that both ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is "Busy". The $\overline{\text{BUSY}}$ pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a $\overline{\text{BUSY}}$ indication, the write signal is gated internally to prevent the write from proceeding.

The use of BUSY logic is not required or desirable for all applications. In some cases it may be useful to logically OR the BUSY outputs together and use any BUSY indication as an interrupt source to flag the event of an illegal or illogical operation. If the write inhibit function of busy logic is not desirable, the BUSY logic can be disabled by placing the part in slave mode with the M/S pin. Once in slave mode the BUSY pin operates solely as a write inhibit input pin. Normal operation can be programmed by tying the BUSY pins HIGH. If desired, unintended write operations can be prevented to a port by tying the BUSY pin for that port LOW.

The BUSY outputs on the IDT7027 RAM in master mode, are pushpull type outputs and do not require pull up resistors to operate. If these RAMs are being expanded in depth, then the BUSY indication for the resulting array requires the use of an external AND gate.

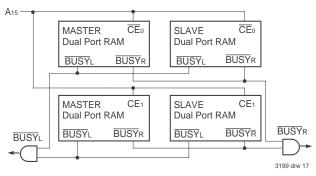


Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7027 RAMs.

Width Expansion with Busy Logic Master/Slave Arrays

When expanding an IDT7027 RAM array in width while using \overline{BUSY} logic, one master part is used to decide which side of the RAM array will receive a \overline{BUSY} indication, and to output that indication. Any number of slaves to be addressed in the same address range as the master, use the \overline{BUSY} signal as a write inhibit signal. Thus on the IDT7027 RAM the \overline{BUSY} pin is an output if the part is used as a Master (M/S pin = VIH), and the \overline{BUSY} pin is an input if the part used as a Slave (M/S pin = VIL) as shown in Figure 3.

If two or more master parts were used when expanding in width, a split decision could result with one master indicating **BUSY** on one side of the array and another master indicating **BUSY** on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word.

The BUSY arbitration, on a master, is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a BUSY flag to be output from the master before the actual write pulse can be initiated with either the R/W signal or the byte enables. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave.

Semaphores

The IDT7027 is a fast Dual-Port 32K x 16 CMOS Static RAM with an additional 8 address locations dedicated to binary semaphore flags. These flags allow either processor on the left or right side of the Dual-Port SRAM to claim a privilege over the other processor for functions defined by the system designer's software. As an example, the semaphore can be used by one processor to inhibit the other from accessing a portion of the Dual-Port SRAM or any other shared resource.

The Dual-Port SRAM features a fast access time, and both ports are completely independent of each other. This means that the activity on the left port in no way slows the access time of the right port. Both ports are identical in function to standard CMOS Static RAM and can be read from, orwritten to, at the same time with the only possible conflict arising from the simultaneous writing of, or a simultaneous READ/WRITE of, a non-semaphore location. Semaphores are protected against such ambiguous situations and may be used by the system program to avoid any conflicts in the non-semaphore portion of the Dual-Port SRAM. These devices have an automatic power-down feature controlled by \overline{CE} the Dual-Port SRAM enable, and SEM, the semaphore enable. The CE and SEM pins control on-chip power down circuitry that permits the respective port to go into standby mode when not selected. This is the condition which is shown in Truth Table II where \overline{CE} and $\overline{SEM} = VIH$.

Systems which can best use the IDT7027 contain multiple processors or controllers and are typically very high-speed systems which are software controlled or software intensive. These systems can benefit from a performance increase offered by the IDT7027's hardware semaphores, which provide a lockout mechanism without requiring complex programming.

Software handshaking between processors offers the maximum in system flexibility by permitting shared resources to be allocated in varying configurations. The IDT7027 does not use its semaphore flags to control any resources through hardware, thus allowing the system designer total flexibility in system architecture.

An advantage of using semaphores rather than the more common methods of hardware arbitration is that wait states are never incurred in either processor. This can prove to be a major advantage in very highspeed systems.

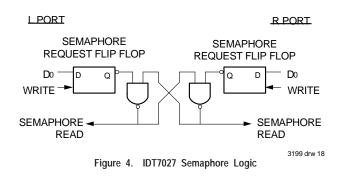
How the Semaphore Flags Work

The semaphore logic is a set of eight latches which are independent of the Dual-Port SRAM. These latches can be used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphores provide a hardware assist for a use assignment method called "Token Passing Allocation." In this method, the state of a semaphore latch is used as a token indicating that shared resource is in use. If the left processor wants to use this resource, it requests the token by setting the latch. This processor then verifies its success in setting the latch by reading it. If it was successful, it proceeds to assume control over the shared resource. If it was not successful in setting the latch, it determines that the right side processor has set the latch first, has the token and is using the shared resource. The left processor can then either repeatedly request that semaphore's status or remove its request for that semaphore to

Industrial and Commercial Temperature Ranges

perform another task and occasionally attempt again to gain control of the token via the set and test sequence. Once the right side has relinquished the token, the left side should succeed in gaining control.

The semaphore flags are active low. A token is requested by writing a zero into a semaphore latch and is released when the same side writes a one to that latch.

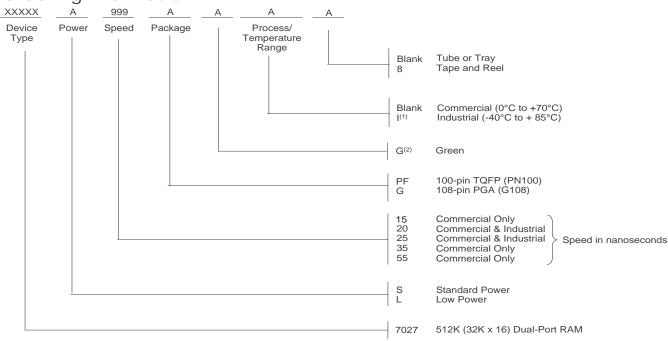

The eight semaphore flags reside within the IDT7027 in a separate memory space from the Dual-Port SRAM. This address space is accessed by placing a low input on the \overline{SEM} pin (which acts as a chip select for the semaphore flags) and using the other control pins (Address, \overline{OE} , and R/\overline{W}) as they would be used in accessing a standard Static RAM. Each of the flags has a unique address which can be accessed by either side through address pins A0 – A2. When accessing the semaphores, none of the other address pins has any effect.

When writing to a semaphore, only data pin Do is used. If a LOW level is written into an unused semaphore location, that flag will be set to a zero on that side and a one on the other side (see Truth Table VI). That semaphore can now only be modified by the side showing the zero. When a one is written into the same location from the same side, the flag will be set to a one for both sides (unless a semaphore request from the other side is pending) and then can be written to by both sides. The fact that the side which is able to write a zero into a semaphore subsequently locks out writes from the other side is what makes semaphore flags useful in interprocessor communications. (A thorough discussion on the use of this feature follows shortly.) A zero written into the same location from the other side will be stored in the semaphore request latch for that side until the semaphore is freed by the first side.

When a semaphore flag is read, its value is spread into all data bits so that a flag that is a one reads as a one in all data bits and a flag containing a zero reads as all zeros. The read value is latched into one side's output register when that side's semaphore select (SEM) and output enable (\overline{OE}) signals go active. This serves to disallow the semaphore from changing state in the middle of a read cycle due to a write cycle from the other side. Because of this latch, a repeated read of a semaphore in a test loop must cause either signal (SEM or \overline{OE}) to go inactive or the output will never change.

A sequence WRITE/READ must be used by the semaphore in order to guarantee that no system level contention will occur. A processor requests access to shared resources by attempting to write a zero into a semaphore location. If the semaphore is already in use, the semaphore request latch will contain a zero, yet the semaphore flag will appear as one, a fact which the processor will verify by the subsequent read (see Truth Table VI). As an example, assume a processor writes a zero to the left port at a free semaphore location. On a subsequent read, the processor will verify that it has written successfully to that location and will assume control over the resource in question. Meanwhile, if a processor on the right side attempts to write a zero to the same semaphore flag it will fail, as will be verified by the fact that a one will be read from that semaphore on the right side during subsequent read. Had a sequence of READ/WRITE been used instead, system contention problems could have occurred during the gap between the read and write cycles.

It is important to note that a failed semaphore request must be followed by either repeated reads or by writing a one into the same location. The reason for this is easily understood by looking at the simple logic diagram of the semaphore flag in Figure 4. Two semaphore request latches feed into a semaphore flag. Whichever latch is first to present a zero to the


semaphore flag will force its side of the semaphore flag LOW and the other side HIGH. This condition will continue until a one is written to the same semaphore request latch. Should the other side's semaphore request latch have been written to a zero in the meantime, the semaphore flag will flip over to the other side as soon as a one is written into the first side's request latch. The second side's flag will now stay LOW until its semaphore request latch is written to a one. From this it is easy to understand that, if a semaphore is requested and the processor which requested it no longer needs the resource, the entire system can hang up until a one is written into that semaphore request latch.

The critical case of semaphore timing is when both sides request a single token by attempting to write a zero into it at the same time. The semaphore logic is specially designed to resolve this problem. If simultaneous requests are made, the logic guarantees that only one side receives the token. If one side is earlier than the other in making the request, the first side to make the request will receive the token. If both requests arrive at the same time, the assignment will be arbitrarily made to one port or the other.

One caution that should be noted when using semaphores is that semaphores alone do not guarantee that access to a resource is secure. As with any powerful programming technique, if semaphores are misused or misinterpreted, a software error can easily happen.

Initialization of the semaphores is not automatic and must be handled via the initialization program at power-up. Since any semaphore request flag which contains a zero must be reset to a one, all semaphores on both sides should have a one written into them at initialization from both sides to assure that they will be free when needed.

Ordering Information

3199 drw 19

NOTES:

1. Contact your local sales office for industrial temp range for other speeds, packages and powers.

2. Green parts available. For specific speeds, packages and powers contact your local sales office

LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice - PDN# SP-17-02

Datasheet Document History

01/15/99:	Initiated datasheet document history
	Converted to new format
	Cosmetic and typographical corrections
	Pages 2 and 3 Added additional notes to pin configurations
05/19/99:	Pages 4 and 16 Fixed typographical errors
06/03/99:	Changed drawing format
	Page 1 Corrected DSC number
11/10/99:	Replaced IDT logo
05/22/00:	Page 5 Increased storage temperature parameter
	Clarified TA parameter
	Page 6 DC Electrical parameters-changed wording from "open" to "disabled"
	Changed ±200mV to 0mV in notes
07/23/04:	Page 2 & 3 Added date revision for pin configurations
	Page 5 Updated Capacitance table
	Page 6 Added 15ns commercial speed grade to the DC Electrical Characteristics
	Added 20ns Industrial temp for low power to DC Electrical Characteristics
	Removed military temp range for 25/35/55 ns from DC Electrical Characteristics
	Page 7, 9, 12 & 14 Added 15ns commercial speed grade to AC Electrical Characteristics
	Added 20ns Industrial temp for low power to AC Electrical Characteristics for Read, Write, Busy and Interrupt
	Removed military temp range for 25/35/55 ns from AC Electrical Characteristics
	Page 19 Added Commercial speed grade for 15ns and Industrial temp to 20ns in ordering information
	Page 1 & 19 Replaced old тм logo with new тм logo
01/29/09:	Page 19 Removed "IDT" from orderable part number

Datasheet Document History (con't)

08/04/15:	Page 1 In Features: Added text: "Green parts available, see ordering information"
	Page 2 Removed IDT in reference to fabrication
	Page 2 & 5 Removed all of the military information
	Page 2 & 3 Removed date from all of the pin configurations 100-pin TQFP & 108-pin PGA configurations
	Page 2, 3 & 17 The package code PN100-1 and G108-1 changed to PN100 and G108 respectively to
	match standard package codes
	Page 7 Added annotation for footnote 5 to Chip Enable & Chip Disable Parameters in the AC Elec Chars table
	Page 17 Removed overbar for CE1 in figure 3
	Page 19 Added T&R and Green, removed military temp range and updated footnotes for ordering information
06/08/18:	Product Discontinuation Notice - PDN# SP-17-02
	Last time buy expires June 15, 2018

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: 408-284-2794 DualPortHelp@idt.com

 $The {\rm IDT} logo is a registered trademark of Integrated Device {\rm Technology, Inc.}$

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology):

<u>7027L25PFI</u> 7027L20PFGI 7027S25G 7027L15PF8 7027S20PF8 7027L15PFG8 7027S35G 7027S55G 7027L55PF8 7027L20PF8 7027S15PF 7027L20PF 7027L20PFGI8 7027S25PFI8 7027L20PFI8 7027L15PFG 7027L25PF 7027S25PFI 7027L35PF8 7027L25PF8 7027S35PF8 7027L35PF 7027L55PF 7027L20PFI 7027S55PF 7027L15PF 7027S25PF8 7027S25PF8 7027S25PF 7027S55PF8 7027S15PF8 7027L25G 7027L55G 7027L35G 7027S35PF

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru