

Vishay

RoHS

COMPLIANT

160 x 128 Graphic LCD

MECHANICAL DATA							
ITEM	STANDARD VALUE	UNIT					
Module Dimension	129.0 x 102.0 x 16.5 (max.)						
Viewing Area	101.0 x 82.0						
Dot Size	0.56 x 0.56						
Dot Pitch	0.60 x 0.60	mm					
Mounting Hole	122.0 x 95.0						
Character Size	N/a						

FEATURES

- Type: Graphic
- Display format: 160 x 128 dots
- Built-in controller: RA6963
- Duty cycle: 1/128
- + 5 V power supply
- Optional N.V.
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

ABSOLUTE MAXIMUM RATINGS								
ITEM	SYMBOL	STAN	ALUE	UNIT				
	STIMIDUL	MIN.	TYP.	MAX.				
Power Supply	V_{DD} to V_{SS}	4.75	5.0	5.25	v			
Input Voltage	VI	V_{SS}	-	V_{DD}				

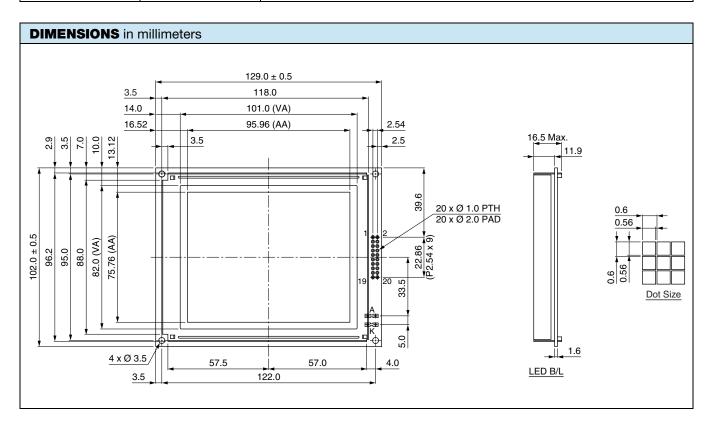
Note

• V_{SS} = 0 V, V_{DD} = 5.0 V

ELECTRICAL CHARACTE	ELECTRICAL CHARACTERISTICS									
17514	0/4/201		STA	STANDARD VALUE						
ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT				
	V _{DD}	L level	V _{DD} - 2.2	-	V _{DD}	V				
Input Voltage	V _{IO}	H level	0	-	0.8	V				
Supply Current	I _{DD}	$V_{DD} = +5 V$	-	45	50	mA				
		- 20 °C	-	-	-					
Recommended LC Driving		0 °C	-	-	22.1	V				
Voltage for Normal Temperature	V_{DD} to V_0	25 °C	-	19.2	-					
Version Module		50 °C	16.8	-	-					
		70 °C	-	-	-					
CCFL Forward Voltage	V _F	25 °C	-	-	-	V _{RMS}				
CCFL Forward Current	IF	25 °C	-	-	-	mA				
LED Forward Voltage	V _F	25 °C	-	-	-	V				
LED Forward Current	I _F	25 °C	-	-	-	mA				

OPTION	OPTIONS										
PROCESS COLOR					BACKLIGHT						
TN	STN Gray	STN Yellow	STN Blue	FSTN B&W	STN Color	None	LED	EL	CCFL		
	х	х	х	х		х	х	х	х		

For detailed information, please see the "Product Numbering System" document.


Revision: 11-Dec-12

Vishay

INTERFACE PIN FUNCTION							
PIN NO.	SYMBOL	FUNCTION					
1	FG	Frame ground					
2	V _{SS}	Ground (0 V)					
3	V _{DD}	Power supply for logic (+ 5 V)					
4	V _{ADJ}	Power supply for LCD contrast adjustment					
5	V _{EE}	Negative voltage output					
6	WR	Data write, write data into RA6963 when $\overline{WR} = L$					
7	RD	Data read, read data from RA6963 when $RD = L$					
8	CE	Chip enable the controller RA6963					
9	C/D	WR = L, C/D = H: Command write, C/D = L: Data write RD = L, C/D = H: Status read, C/D = L: Data read					
10	HALT	Clock operating stop signal					
11	RESET	Reset signal					
12	DB0	Data bus line					
13	DB1	Data bus line					
14	DB2	Data bus line					
15	DB3	Data bus line					
16	DB4	Data bus line					
17	DB5	Data bus line					
18	DB6	Data bus line					
19	DB7	Data bus line					
20	NC	No connection					

Revision: 11-Dec-12

2

Document Number: 37469

For technical questions, contact: <u>displays@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay

1. Module Classification Information

LCI	D -16	60 H	H 128	B	- <i>T</i>	F	K	-VZ
0	2	3	4	5	6	0	8	9
1.	Brand : Visha	y Intertech	nology, Inc.					
2.	Horizontal Fo	rmat: 160) columns					
3.	Display Type	$: N \rightarrow Char$	acter Type, H→ Gi	raphic Ty	ре			
4.	Vertical Forma	at: 128 L	ines					
5.	Model serials	no.: B						
6.	Backlight	$N \rightarrow Withc$	out backlight	A→	LED, Am	lber		
	Type :	B→ EL, B	lue green	R→	LED, Red	1		
		D→ EL, G	reen	0 →	LED, Ora	inge		
		W→ EL, V	White	G→	LED, Gre	een		
		F→ CCFL	, White	T→	LED, Wh	ite		
		Y→ LED,	Yellow Green					
7.	LCD Mode :	B→ TN Pe	ositive, Gray	T→	FSTN Ne	gative		
		N→ TN N	egative,					
		G→ STN I	Positive, Gray					
		Y→ STN	Positive, Yellow G	ireen				
		M→ STN	Negative, Blue					
		F→ FSTN	Positive					
8.	LCD	A→ Refle	ctive, N.T, 6:00	Н→	Transflec	tive, W.T	.,6:00	
	Polarizer Type/	D→ Refle	ctive, N.T, 12:00	K→	Transflec	tive, W.T	.,12:00	
	Type/ Temperature	G→ Refle	ctive, W. T, 6:00	C→	Transmiss	sive, N.T	,6:00	
	range/ View	J→ Reflec	tive, W. T, 12:00	F→	Transmiss	sive, N.T.	,12:00	
	direction	B→ Trans	flective, N.T,6:00	I→ 7	Transmiss	ive, W. T	, 6:00	
		E→ Transt	flective, N.T.12:00) L→	Transmiss	sive, W.T	,12:00	
9.	Special Code	V: built-in	Negative Voltage	Z:ICN	NT7086			

Compliant with the ROHS Directions and regulations

For technical questions, contact: <u>displays@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay

2. Precautions in use of LCD Modules

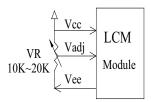
- (1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2) Don't make extra holes on the printed circuit board, modify its shape or change the components of

LCD module.

- (3) Don't disassemble the LCM.
- (4) Don't operate it above the absolute maximum rating.
- (5) Don't drop, bend or twist LCM.
- (6) Soldering: only to the I/O terminals.
- (7) Storage: please storage in anti-static electricity container and clean environment.
- (8). Supplier has the right to change the passive components
- (9). Supplier has the right to change the PCB Rev.

3. General Specification

		T			
ITEM	STANDARD VALUE	UNIT			
Number of Dots	160 ×128				
Module dimension	129.0×102.0×16.5(MAX)	mm			
View area	101.0×82.0	mm			
Active area	95.96 x 76.76	mm			
Dot size	0.56×0.56	mm			
Dot pitch	0.60 ×0.60	mm			
LCD type	FSTN Positive, Transflective (In LCD production, It will occur slightly color difference. We can only guarantee the same color in the same batch.)				
Duty	1/128				
View direction	12 o'clock				
Backlight	LED, White				

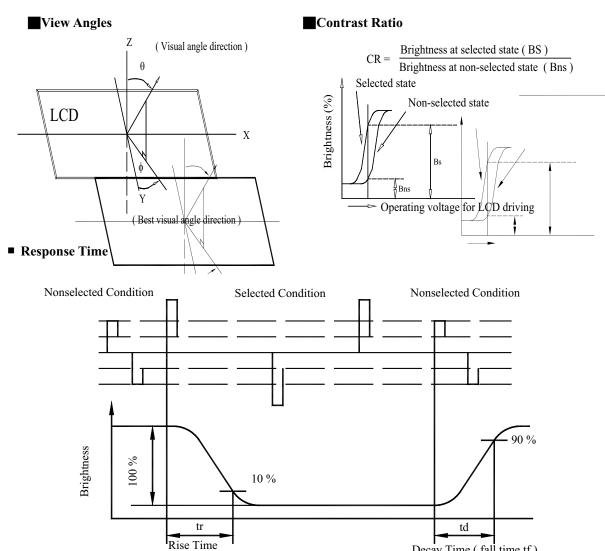

4. Absolute Maximum Ratings

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT
Operating Temperature	T _{OP}	-20	-	+70	°C
Storage Temperature	T _{ST}	-30	-	+80	°C
Input Voltage	VI	V _{SS}	-	V _{DD}	V
Supply Voltage For Logic	Vcc-V _{SS}	-0.3	-	+7	V
Supply Voltage For LCD	V_{CC} - V_{EE}	0	-	28	V

5. Electrical Characteristics

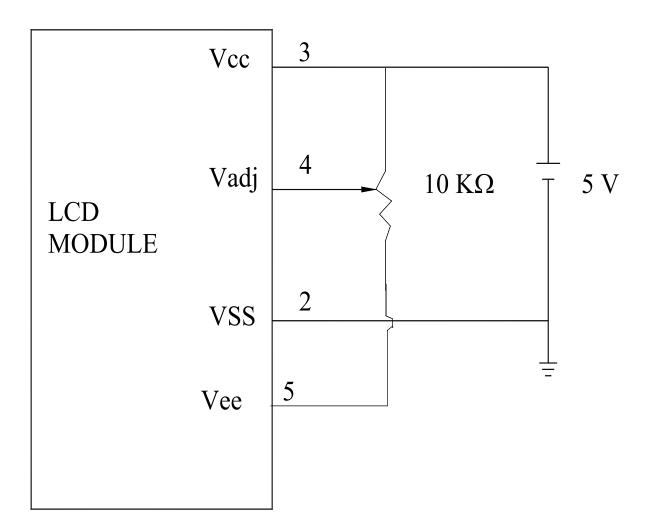
ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage For Logic	V_{DD} - V_{SS}	-	4.75	5.0	5.25	V
Supply Voltage For LCD		Ta=0°C	-	-	22.1	V
*Note	V_{DD} - V_0	Ta=25°C	-	19.2	-	V
		Ta=50°C	16.8	-	-	V
Input High Volt.	V_{IH}	-	V _{DD} -2.2	-	V_{DD}	V
Input Low Volt.	V_{IL}	-	0	-	0.8	V
Output High Volt.	V_{OH}	-	V _{DD} -0.3	-	V_{DD}	V
Output Low Volt.	V _{OL}	-	0	-	0.3	V
Supply Current	I _{DD}	V _{DD} =5V	-	42	50	mA

* Note: Please design the VOP adjustment circuit on customer's main board


For technical questions, contact: <u>displays@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

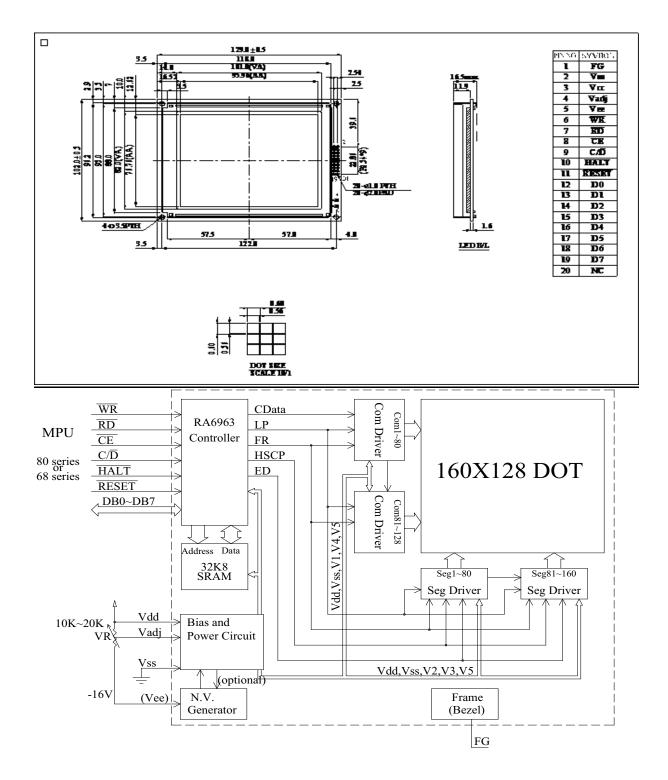
6. Optical Characteristics

ITEM	SYMBAL	CONDITION	MIN.	TYP.	MAX.	UNIT
	(V)θ	CR≧ 2	30		60	deg
View Angle	(H) φ	CR≧ 2	-45		45	deg
Contrast Ratio	CR	-		5		-
Response Time	T rise	-		200	300	ms
	T fall	-		200	300	ms


Definitions 6.1

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

7. Power Supply for LCD Module and Contrast Adjust



VDD-V0: LCD Operating Voltage

For technical questions, contact: <u>displays@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

8.Outline dimension & block diagram

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Revision: 11-Dec-12

For technical questions, contact: <u>displays@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

9

LCD-160H128B-TFK-VZ

Vishay

Document Number: 37469

9.Interface Pin Function

Pin No.	Symbol	Level	Description	
1	FG		Frame ground	
2	Vss	0V	Ground	
3	VDD	5.0V	Power supply for logic	
4	Vadj		Power supply for LCD contrast adjustment	
5	Vee		Negative voltage Output	
6	/WR	L	Data write. Write data into RA6963 when $/WR = L$	
7	/RD	L	Data read. Read data from RA6963 when RD = L	
8	/CE	L	Chip enable the controller RA6963	
9	C/D	H/L	WR=L, C/D=H : Command Write C/D=L: Data write	
			RD=L, C/D=H : Status Read C/D=L: Data read	
10	/HALT	L	Clock operating stop signal	
11	/RESET	L	Reset signal	
12	DB0	H/L	Data bus line	
13	DB1	H/L	Data bus line	
14	DB2	H/L	Data bus line	
15	DB3	H/L	Data bus line	
16	DB4	H/L	Data bus line	
17	DB5	H/L	Data bus line	
18	DB6	H/L	Data bus line	
19	DB7	H/L	Data bus line	
20	NC		NC	

10.Display control instruction

10.1 Communications with MPU

•Status Read

A status check must be performed before data is read or written.

Status Check

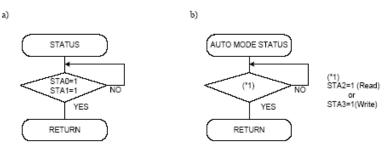
The Status of RA6963 can be read from the data lines.

-			-	
RD	WR	CS	C/D	SD[7:0]
L	Н	L	Н	Status Word

The RA6963 status word format is as follows:

MSB							LSB
SD7	SD6	SD5	SD4	SD3	SD2	SD1	SD0
STA7	STA6	STA5	STA4	STA3	STA2	STA1	STA0
-							

STA0	Check command execution capability	0: Disable 1: Enable
STA1	Check data read/write capability	0: Disable 1: Enable
STA2	Check Auto mode data read capability	0: Disable 1: Enable
STA3	Check Auto mode data write capability	0: Disable 1: Enable
STA4	Not used	
STA5	Check controller operation capability	0: Disable 1: Enable
STA6	Error flag. Used for Screen copy commands.	0: No error 1: Error
STA7	Check the blink condition	0: Display off 1: Normal display


Note 1: It is necessary to check STA0 and STA1 at the same time.

There is a possibility of erroneous operation due to a hardware interrupt. Note 2: For most modes STA0 /STA1 are used as a status check.

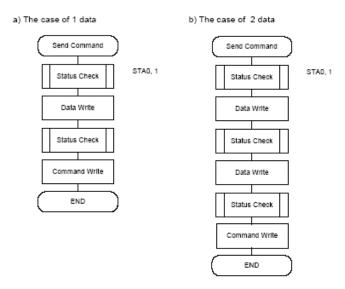
Note 3: STA2 and STA3 are valid in Auto mode; STA0 and STA1 are invalid.

Vishay

Status Checking Flow

Note 4: When using the MSB=0 command, a Status Read must be performed.

If a status check is not carried out, the RA6963 cannot operate normally, even after a delay time.


The hardware interrupt occurs during the address calculation period (at the end of each line).

If a MSB=0 command is sent to the RA6963 during this period, the RA6963 enters Wait status.

If a status check is not carried out in this state before the next command is sent, there is the possibility that command or data will not be received.

• Setting Data

When using the RA6963, first set the data, then set the command. *Procedure for Sending a Command*

Note: When sending more than two data, the last datum (or last two data) is valid.

Vishay

Revision: 11-Dec-12

• Command Definitions

Command	Code	D1	D2	Function
Registers Setting	00100001	X address	Y address	Set cursor pointer
	00100010	Data	00h	Set Offset Register
	00100100	Low address	High address	Set Address pointer
Set Control Word	01000000	Low address	High address	Set Text Home Address
	01000001	Columns	00h	Set Text Area
	01000010	Low address	High address	Set Graphic Home Address
	01000011	Columns	00h	Set Graphic Area
Mode Set	1000X000			OR mode
	1000X001			EXOR mode
	1000X011			AND mode
	1000X100			Text Attribute mode
	10000XXX			Internal CG ROM mode
	10001XXX			External CG RAM mode
Display Mode	10010000			Display off
	1001XX10			Cursor on, blink off
	1001XX11			Cursor on, blink on
	100101XX			Text on, graphic off
	100110XX			Text off, graphic on
	100111XX			Text on, graphic on
Cursor Pattern Select	10100000			1-line cursor
	10100001			2-line cursor
	10100010			3-line cursor
	10100011			4-line cursor
	10100100			5-line cursor
	10100101			6-line cursor
	10100110			7-line cursor
	10100111			8-line cursor
Data Read/Write	11000000	Data		Data Write and Increment ADP
	11000001			Data Read and Increment ADP
	11000010	Data		Data Write and Decrement ADP
	11000011			Data Read and Decrement ADP
	11000100	Data		Data Write and Non-variable ADP
	11000101			Data Read and Non-variable ADP
Data auto Read/Write	10110000			Set Data Auto Write
	10110001			Set Data Auto Read
	10110010			Auto Reset
Screen Peek	11100000			Screen Peek
Screen Copy	11101000			Screen Copy
Bit Set/Reset	11110XXX			Bit Reset
	11111XXX			Bit Set
	1111X000			Bit 0 (LSB)
	1111X001			Bit 1
	1111X010			Bit 2
	1111X011			Bit 3
	1111X100			Bit 4
	1111X101			Bit 5
	1111X110			Bit 6
	1111X111			Bit 7 (MSB)

For technical questions, contact: <u>displays@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

Screen Reverse	11010000	Data	Data (Don'ť care) (Note)	Whole screen reverse Data Bit 0 0 : Normal 1 : Reverse
Blink Time	01010000	Data	Data (Don't' care) (Note)	If Frame = 60Hz Data Bit 2:0 000 : 0.066s 001 : 0.25s 010 : 0.5s (Default) 011 : 0.75s 100 : 1s 101 : 1.25s 110 : 1.5s 111 : 2s
Cursor Auto Moving	01100000	Data	Data (Don't' care) (Note)	Data Bit 0 0 : Disable.(Default) 1 : Enable.
CGROM Font Select	01110000	Data	Data (Don't' care) (Note)	Data Bit 1:0 00 : Do not care.(Default) 01 : Do not care. 10 : CGROM Font-01. 11 : CGROM Font-02.

Note : In these functions, it must be sent two data before sending the command, but the contents of the second datum (D2) can be any values.

10.2 Setting Registers

Setting Registers	5	- 14010 - 0		
Code	Hex.	Function	D1	D2
00100001	21h	Set Cursor Pointer	X-Adrs	Y-Adrs
00100010	22h	Set Offset Register	Data	00h
00100100	24h	Set Address Pointer	Low Adrs	High Adrs

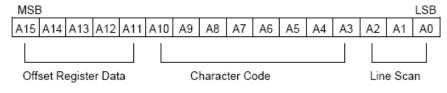
• Set Cursor Pointer

The X-Adrs and Y-Adrs specify the position of the cursor. The cursor position can only be moved by this command. Data read /write from the MPU never changes the cursor pointer. X-Adrs and Y-Adrs are specified as follows.

- X-Adrs 00h to 4Fh (lower 7 bits are valid)
- Y-Adrs 00h to 1Fh (lower 5 bits are valid)
- a) Single-Scan X-Adrs 00h to 4Fh

b) Dual-Scan X-Adrs 00h to 4Fh

Y-Adrs	00h	to	0Fh	


Y-Adrs 00h to 0Fh Upper Screen Y-Adrs 10h to 1Fh Lower Screen

• Set Offset Register

The offset register is used to determine the external character generator RAM area. The RA6963 has a 16-bit address bus as follows:

RA6963 assign External character generator, when character code set 80h to FFh in using Internal character generator. Character code 00h to 80h assign External character generator, when External generator mode

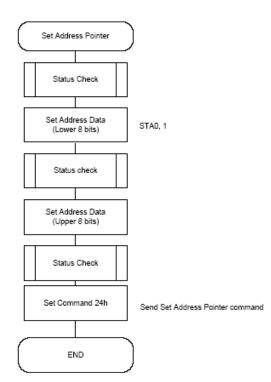
The senior five bits define the start address in external memory of the CG RAM area. The next eight bits represent the character code of the character. In internal CG ROM mode, character Codes 00h to 7Fh represent the predefined "internal" CG ROM characters, and codes 80h to FFh Represent the user's own "external" characters. In external CG RAM mode, all 256 codes from 00h to FFh can be used to represent the user's own characters. The three least significant bits indicate one of the eight rows of eight dots that define the character's shape.

The Relationship between Display RAM Address and Offset Register

Offset Regis 0000 0000 0000	0 1	ta		CG RA	0800	ddress () to 07FF) to 0FFF) to 17FF	h h	End)	
1110 1110 1111 1111	1 0				E800 F000) to E7FF) to EFFF) to F7FF) to FFFF	h h		
(Example 1) Offset Regist Character Co Character Ge	de	r RAN	/I Star	t Address	02h 80h 0001 1	0100 4	0000 0	0000 0	h
					+ 1 1 1 1 1 1 1	ldress) 400h 401h 402h 403h 403h 405h 406h	(Data) 1Eh 11h 11h 1Eh 14h 12h 11h		

1407h

00h


	(RAM Data)	(Character)
	21h	A
ABγ DEζ GH	22h	в
	83h	11h
	24h	D
	25h	E
	86h	14h
	27h	G
Display Character	28h	н

The " γ " and " ζ " are displayed by character generator RAM.

• Set Address Pointer

The Set Address Pointer command is used to indicate the start address for writing to (or reading from) External RAM.

The Flowchart for Set Address Pointer Command

10.3 Set Control Word

Code	Hex.	Function	D1	D2
01000000	40h	Set Text Home Address	Low Address	High Address
01000001	41h	Set Text Area	Columns	00h
01000010	42h	Set Graphic Home Address	Low Address	High Address
01000011	43h	Set Graphic Area	Columns	00h

The home address and column size are defined by this command.

• Set Text Home Address

The starting address in the external display RAM for text display is defined by this command. The text home address indicates the leftmost and uppermost position.

The Relationship between Display RAM Address and Display Position

TH		TH + CL
TH + TA		TH + TA + CL
(TH + TA) + TA		TH + 2TA + CL
(TH + 2TA) + TA		TH + 3TA + CL
:	:	:
:	:	:
:	:	:
:	:	:
TH + (n-1) TA		TH + (n-1) TA + CL

TH: Text home address

TA: Text area number (columns)

CL: Columns are fixed by hardware (pin-programmable).

(Example)

Text Home Address	: 0000h
Text Area	: 0020h
MD2=H, MD3=H	: 32 Columns
DUAL =H, MDS=L, MD0=L, MD1=H	: 4 Lines

0000h	0001h	 001Eh	001Fh
0020h	0021h	 003Eh	002Fh
0040h	0041h	 005Eh	005Fh
0060h	0061h	 007Eh	007Fh

• Set Graphic Home Address

The starting address of the external display RAM used for graphic display is defined by this Command. The graphic home address indicates the leftmost and uppermost position. *The Relationship between External Display RAM Address and Display Position*

GH		GH + CL
GH + GA		GH + GA + CL
(GH + GA) + GA		GH + 2GA + CL
(GH + 2GA) + GA		GH + 3GA + CL
:	:	:
:	:	:
:	:	:
:	:	:
GH + (n-1) GA		GH + (n-1) GA + CL

GH: Graphic Home Address

GA: Graphic Area Number (columns)

CL: Columns are fixed by hardware (pin-programmable).

(Example)

(Example)				
Graphic Home Address			: 0000h	
Graphi	c Area		: 0020h	
MD2=F	I, MD3=H		: 32 columns	
DUAL :	=H, MDS=L, MD0)=H, MD1=H	: 2 lines	
0000h	0001h		001Eh	001Fh
0020h	0021h		003Eh	003Fh
0040h	0041h		005Eh	005Fh
0060h	0061h		007Eh	007Fh
0080h	0081h		009Eh	009Fh
00A0h	00A1h		00BEh	00BFh
00C0h	00C1h		00DEh	00DFh
00E0h	00E1h		00FEh	00FFh
0100h	0101h		011Eh	011Fh
0120h	0121h		013Eh	013Fh
0140h	0141h		015Eh	015Fh
0160h	0161h		017Eh	017Fh
0180h	0181h		019Eh	019Fh
01A0h	01A1h		01BEh	01BFh
01C0h	01C1h		01DEh	01DFh
01E0h	01E1h		01FEh	01FFh

• Set Text Area

The display columns are defined by the hardware setting. This command can be used adjust the columns of the display.

(Example)

LCD Size	: 20 columns, 4 lines
Text Home Address	: 0000h
Text Area	: 0014h
MD2=H, MD3=H	: 32 columns
DUAL =H , MDS =L, MD0= L, MD1=H	: 4 lines

0000	0001		0013	0014	 001F
0014	0015		0027	0028	 0033
0028	0029		003B	003C	 0047
003C	003D		004F	0050	 005B
	→ LC	D -			

• Set Graphic Area

The display columns are defined by the hardware setting. This command can be used to adjust the columns of the graphic display.

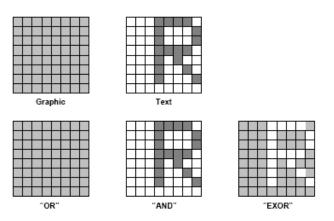
(Example)

LCD S	ize		: 20 colu	mns, 2 lines		
Graph	ic Home Add	: 0000h				
Graph	Graphic Area					
MD2=	H, MD3=H	: 32 colu	mns			
DUAL	=H, MDS=L	: 2 lines				
0000	0001		0013	0014		0

0000	0001		0013	0014	 001F
0014	0015		0027	0028	 0033
0028	0029		003B	003C	 0047
003C	003D		004F	0050	 005B
0050	0051		0063	0064	 006F
0064	0065		0077	0078	 0083
0078	0079		008B	008C	 0097
008C	008D		009F	00A0	 00AB
00A0	00A1		00B3	00B4	 00BF
00B4	00B5		00C7	00C8	 00D3
00C8	00C9		00DB	00DC	 00E7
00DC	00DD		00EF	00F0	 00FD
00F0	00F1		0103	0104	 011F
0104	0105		0127	0128	 0123
0128	0129		013B	013C	 0147
013C	013D		014F	0150	 015B
	→ ı	.cd 🔶			

If the graphic area setting is set to match the desired number of columns on the LCD, the addressing scheme will be automatically modified so that the start address of each line equals the end address of the previous line +1.

10.4 Mode Set


Code	Function	Operand
1000X000	OR Mode	_
1000X001	EXOR Mode	_
1000X011	AND Mode	_
1000X100	Text Attribute Mode	_
10000XXX	Internal Character Generator Mode	_
10001XXX	External Character Generator Mode	_

X: Invalid

The display mode is defined by this command. The display mode does not change until the next command is sent. The logical OR, EXOR, AND of text or graphic display can be displayed.

In internal Character Generator mode, character codes 00h to 7Fh are assigned to the built-in Character generator ROM. The character codes 80h to FFh are automatically assigned to the external character generator RAM.

(Example)

Note: Attribute functions can only be applied to text display, since the attribute data is placed in the graphic RAM area.

Attribute Function

The attribute operations are Reverse display, Character blink, bold and Inhibit. The attribute data is written into the graphic area, which was defined by the Set Control word command. Only text display is possible in Attribute Function mode; graphic display is automatically disabled. However, the Display Mode command must be used to turn both Text and Graphic on that in order to for the Attribute function available.

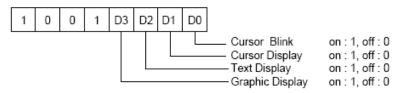
The attribute data for each character in the text area is written to the same address in the graphic area.

The Attribute function is defined as follows.

www.vishay.com

Vishay

Attribute RAM 1byte							
х	х	Х	х	d3	d2	d1	d0


X: Invalid

< Table 6-15 >						
d3	d2	d1	d0	Function		
0	0	0	0	Normal Display		
0	1	0	1	Reverse Display		
0	0	1	1	Inhibit Display		
1	0	0	0	Blink of Normal Display		
1	1	0	1	Blink of Reverse Display		
1	0	1	1	Blink of Inhibit Display		
0	1	1	1	Bold Display		
1	1	1	1	Blink of Bold Display		

10.5 Display Mode

Code	Function	Operand
10010000	Display off	_
1001XX10	Cursor on, Blink off	—
1001XX11	Cursor on, Blink on	—
100101XX	Text on, Graphic off	—
100110XX	Text off, Graphic on	—
100111XX	Text on, Graphic on	

X: Invalid

Note: It is necessary to turn on "Text Display" and "Graphic Display" in the following cases. a) Combination of text /graphic display

b) Attribute function

10.6 Cursor Pattern Select

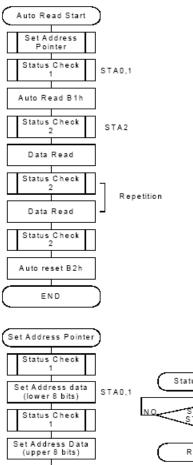
Code	Function	Operand
10100000	1-line cursor	—
10100001	2-line cursor	_
10100010	3-line cursor	_
10100011	4-line cursor	_
10100100	5-line cursor	_
10100101	6-line cursor	_
10100110	7-line cursor	_
10100111	8-line cursor	_

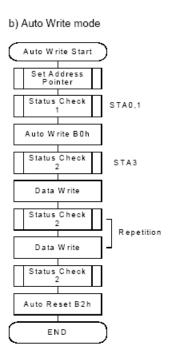
When cursor display is ON, this command selects the cursor pattern in the range 1 line to 8 lines. The cursor address is defined by the Cursor pointer Set command.

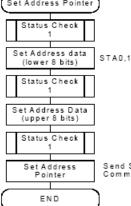
10.7 Data Auto Read/Write

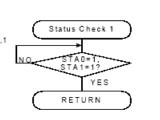
Code	Hex.	Function	Operand
10110000	B0h	Set Data Auto Write	—
10110001	B1h	Set Data Auto Read	_
10110010	B2h	Auto Reset	_

This command is convenient for sending a full screen of data from the external display RAM. After Setting Auto mode, a Data Write (or Read) command does not need sent between each datum. A Data Auto Write (or Read) command must be sent after a Set Address Pointer command. After this Command, the address pointer is automatically incremented by 1 after each datum. In Auto mode, the RA6963 cannot accept any other commands.


The Auto Reset command must be sent to the RA6963 after all data has been sent, to clear Auto Mode.

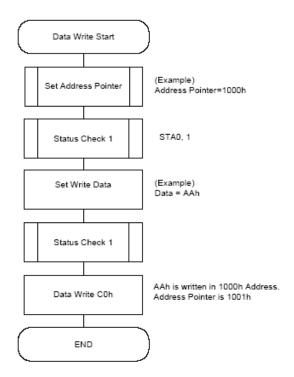

Note: A Status Check for Auto Mode STA2, STA3 should be checked between sending of each datum. Auto Reset should be performed after checking STA3=1 (STA2=1). Refer to the following flowchart.




Vishay

a) Auto Read mode

For technical questions, contact: <u>displays@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

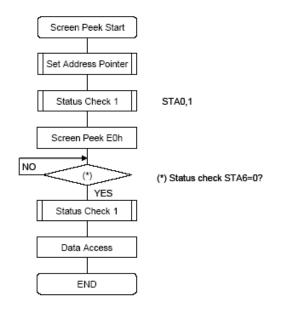

10.8 Data Read/Write

Code	Hex.	Function	Operand
11000000	COh	Data Write and Increment ADP	Data
11000001	C1h	Data Read and Increment ADP	_
11000010	C2h	Data Write and Decrement ADP	Data
11000011	C3h	Data Write and Decrement ADP	_
11000100	C4h	Data Write and Non-variable ADP	Data
11000101	C5h	Data Read and Non-variable ADP	_

This command is used for writing data from the MPU to external display RAM, and reading data from external display RAM. Data Write / Data Read should be executed after setting address using Set Address Pointer command, The address pointer can be automatically incremented or decremented using this command.

Note: This command is necessary for each 1-byte datum.

Refer to the following flowchart.


10.9 Screen Peek

Code	Hex.	Function	Operand
11100000	E0h	Screen Peek	_

This command is used to transfer 1 byte of displayed data to the data stack; this byte can be read from the MPU by data access. The logical combination of text and graphic display data on the LCD screen can be read by this command.

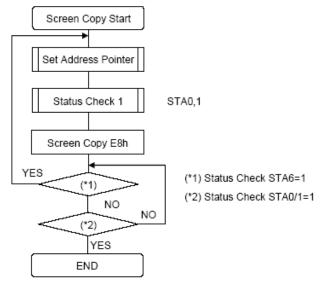
The status (STA6) should be checked just after the Screen Peek command. If the address Determined by the Set Address Pointer command is not in the graphic area, this command is ignored and a status flag (STA6) is set.

Refer to the following flowchart.

Note: This command is available when hardware column number and software column number are the same. Hardware column number is related to MD2 and MD3 setting. Software column number is related to Set Text Area and Set Graphic Area command.

10-10 Screen Copy

Code	Hex.	Function Operand	
11101000	E8h	Screen Copy	—


This command copies a single raster line of data to the graphic area.

The start point must be set using the Set Address Pointer command.

Note 1: If the attribute function is being used, this command is not available. (With Attribute data is graphic area data.)

Note 2: With Dual-Scan, this command cannot be used (because the RA6963 cannot separate the upper screen data and lower screen data).

Refer to the following flowchart.

Note: This command is available when hardware column number is the same. Hardware column number is related to MD2 and MD3 setting. Software column number is related to Set Text Area and Set Graphic Area command.

10-11 Bit Set/Reset

Code	Function	Operand
11110XXX	Bit Reset	_
11111XXX	Bit Set	_
1111X000	Bit 0 (LSB)	_
1111X001	Bit 1	_
1111X010	Bit 2	_
1111X011	Bit 3	_
1111X100	Bit 4	_
1111X101	Bit 5	_
1111X110	Bit 6	_
1111X111	Bit 7 (MSB)	_

X: Invalid

This command used to set or reset a bit of the byte specified by the address pointer. Only one bit can be set / reset at time.

10-12 Screen Reverse

Code	Hex.		Function				D	1		D2
11010000	D0h	Dh Enable/Disable the		ne who	le	Da	Data		-	
11010000	Don	screen reversing								
Screen Reverse Selection (D1)										
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	х	х	х	х	х	х	x	0/1		

Bit0 = 0: Normally display.

Bit0 = 1: Reverse the whole screen.

This command (D0h) is used to reverse the displayed data of the whole screen. When this function is enabled, the displayed data on the LCD are reversed to show reversing pattern.

10-13 Blink Time

Code	Hex.	Function	D1	D2
01010000	50h	Adjust the blink time for the blink functions of the RA6963	Data (Bit2~Bit0)	Do not care (Note)

Note : In this function, it must be sent two data before sending the command, but the contents of the second datum (D2) can be any values.

Bit 2	Bit 1	Bit 0	Blink Time(If f _R =60Hz)
0	0	0	0.066 sec.
0	0	1	0.25 sec.
0	1	0	0.5 sec.
0	1	1	0.75 sec.
1	0	0	1 sec.
1	0	1	1.25 sec.
1	1	0	1.5 sec.
1	1	1	2 sec.

Blink Time Selection (D1)

The blink time of the blink functions are adjusted by this command (50h). For example, if the frequency of the frame equals 60Hz, the blink time can be adjusted from 0.066 second to 2 second by using software selections. The selections are listed in the Table 6-26.

Vishay

10-14 Cursor Auto Moving

Code	Hex.	Function	D1	D2
01100000	60h	Enable/Disable the automatic cursor movement	Data (Bit0)	Do not care (Note)

Note : In this function, it must be sent two data before sending the command, but the contents of the second datum (D2) can be any values.

Cursor Auto Moving Selection (D1)							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
х	х	х	х	х	х	х	0/1

Bit0 = 0: Disable.

Bit0 = 1: Enable.

The RA6963 provides a unique function for the automatic cursor movement. After writing (reading) each displayed datum, the cursor pointer is automatically increased/decreased by one in the Cursor Auto-Moving mode.

10-15 CGROM Font Select

1

Code	Hex.	Function	D1	D2
01110000	70h	Change the Character Font Map	Data (Bit1~Bit0)	Do not care (Note)

Note : In this function, it must be sent two data before sending the command, but the contents of the second datum (D2) can be any values.

CGROM Font Selection (D1)					
Bit 1	Bit 0	CGROM Font			
0	0	Do not care(Default)			
0	1	Do not care			
1	0	CGROM Font-01.			

CGROM Font-02

This command (70h) is a convenient function for selecting the Character Font Map. The user can get more built-in characters from CGROM Font-01 or CGROM Font-02, which is determined by software selections. The selections are listed in the Table 6-30.

1

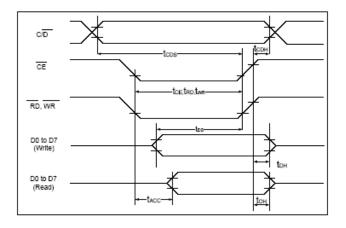
Vishay

10-16 Character Font Map

	CGROM Font - 01																
LSB	0	1	2	3	4	5	6	7	8	9	А	в	С	D	Е	F	
0				Ħ	4		8			2	*						
1	Ø	1	2	3	4	5	6	T	B	9							
2	a	F	B		I	E	F			I	J	ĸ					
3	P	۵	R				L		8	Y							±±
4			b	C		æ	f	9		1	Ĵ	k		m			
5	P		r			LI.		L.						3			
6	P	U	ê				2	C					1				
7	Ė	æ	Æ	å		ċ	Û	ü		Ö		¢					
LSI	ROM B 0	Font 1	2 - 02	3	4	5	6	7	γ e	3 9	9 /	4 E	3	с	D	E	F
MSB 0				1	•	6 5		8	2	Ć	3	*					
1	E			2	5	1	5		7)	8	9						
2				3 (I	J	K		M	H	
3		1] 	2 2		T L			4	8	Y	Z		¥	1	**	
4			.	9 -				7		ſ		T		Ð		3	
5			1.	ŕr	1	C 7			F	9	7		;	.	R	TZ	
6			F 1						8	8	J	n		2		T,	-
7										ļ				ņ			

The RA6963 has two part number - RA6963L2NA and RA6963L2NB. The RA6963L2NA is compatible to T6963C(code 0101) and the default font is Figure 6-13 as above. The RA6963L2NB is compatible to T6963C(code 0201) and the default font is Figure 6-14 as above.

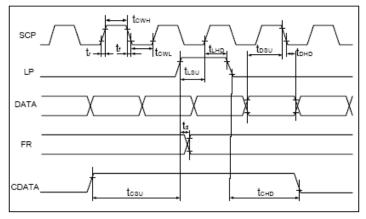
Although RA6963 provide an extra internal command for MCU to select both font of above, but you do not need to change the software to select the font that if you chose the right part number.


10-17 RA6963 vs. T6963C

ltem	Description	RAiO RA6963	Toshiba T6963C	Note
1	CGROM Font Select	Yes		RA6963 provides two CGROMs – Font-01 and Font-02
2	Blink Time Selection	Yes		RA6963 provides eight selections for blinking.
3	Cursor Auto Move	Yes		
4	Whole Screen Reverse	Yes		
5	Bold Text and Blink	Yes		RA6963 provides Bold Text feature.
6	Package	LQFP- 67Pin	LQFP- 67Pin	

11. Timing Characteristics

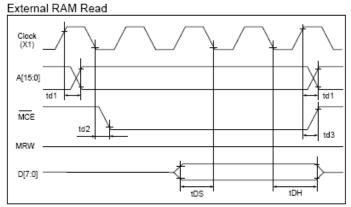
MPU Interface Timing


(VDD=+5V±5%,GND=0V,Ta= -20 to +70°C)

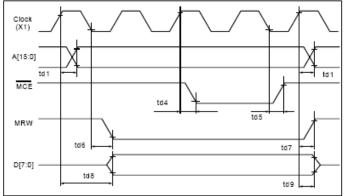
ltem	Symbol	Test Conditions	Min.	Max.	Unit
C/ D Set Up Time	t _{CDS}		100		ns
C/ D Hold Time	t _{CDH}		10		ns
CE, RD, WR Pulse Width	t _{CE} , t _{RD} , t _{WR}		80		ns
Data Set Up Time	t _{DS}		80		ns
Data Hold Time	t _{DH}		40		ns
Access Time	t _{ACC}			150	ns
Output Hold Time	t _{OH}		10	50	ns

Vishay

Driver Interface Timing



(VDD=+5V±5%,GND=0V,Ta= -20 to +70 $^\circ \rm C$)


ltem	Symbol	Test Conditions	Min.	Max.	Unit
Operating Frequency	f _{SCP}	Ta = -20~70℃		9	MHz
SCP Pulse Width	t _{CWH} , t _{CWL}		150		ns
SCP Rise/Fall Time	t _r ,t _f			30	ns
LP Setup Time	t _{LSU}		150	290	ns
LP Hold Time	t _{LHD}		5	40	ns
Data Setup Time	t _{DSU}		170		ns
Data Hold Time	t _{DHD}		80		ns
FR Delay Time	t _d		0	90	ns
CDATA Setup Time	tcsu		450	850	ns
CDATA Hold Time	t _{сно}		450	950	ns

External Memory Interface

External RAM Write

(VDD=+5V±5%,GND=0V,Ta= -20 to +70 $^\circ C$)

ltem	Symbol	Test Conditions	Min.	Max.	Unit
Address Delay Time	t _{d1}			250	ns
MCE Fall Delay Time(Read)	t _{d2}			180	ns
MCE Rise Delay Time(Read)	t _{d3}			180	ns
Data Setup Time	t _{DS}				ns
Data Hold Time	t _{DH}				ns
MCE Fall Delay Time(Write)	t _{d4}			200	ns
MCE Rise Delay Time(Write)	t _{d5}			200	ns
MRW Fall Delay Time	t _{d6}			180	ns
MRW Rise Delay Time	t _{d7}			180	ns
Data Stable Time	t _{d8}			450	ns
Data Hold Time	t _{d9}			200	ns

Vishay

For technical questions, contact: <u>displays@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

12.<u>RELIABILITY</u>

Content of Reliability Test (wide temperature, -20°C~70°C)

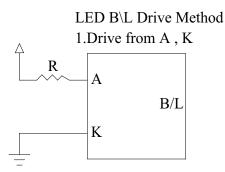
	Environmental Test		
Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80°C 200hrs	2
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	-30°C 200hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70℃ 200hrs	
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 200hrs	1
High Temperature/ Humidity Operation	The module should be allowed to stand at 60 $^{\circ}$ C,90%RH max For 96hrs under no-load condition excluding the polarizer, Then taking it out and drying it at normal temperature. The sample should be allowed stand the following 10 cycles of operation -20 °C 25 °C 70 °C	60°C ,90%RH 96hrs	1,2
Thermal shock resistance	30min 5min 30min 1 cycle	-20°C/70°C 10 cycles	
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude : 1.5mm Vibration Frequency : 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	3
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=800V,RS=1.5kΩ CS=100pF 1 time	

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal

Temperature and humidity after remove from the test chamber.

Note3: Vibration test will be conducted to the product itself without putting it in a container.


13.Backlight Information

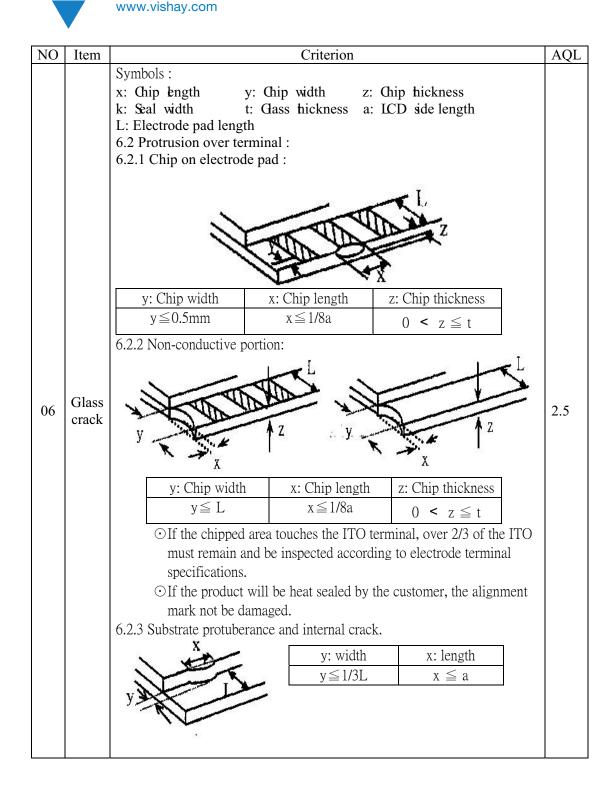
Specification

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNIT	TEST CONDITION
Supply Current	ILED	115.2	128	200	mA	V=3.5V
Supply Voltage	V	3.4	3.5	3.6	V	-
Reverse Voltage	VR	—	-	5	V	-
Luminous Intensity	IV	240	300	_	CD/M ²	ILED=128
Chromaticity Coordinate	X	_	0.300	_	nm	-
Chromaticity Coordinate	Y	_	0.310	_	nm	-
LED Life Time (For Reference only)	_	_	50K	_	Hr.	ILED≦128 25℃,50-60%RH, (Note 1)
Color	White	1	_1			1

Note: The LED of B/L is drive by current only, drive voltage is for reference only. drive voltage can make driving current under safety area (current between minimum and maximum).

Note 1:50K hours is only an estimate for reference.

14. Inspection specification


NO	Item			Criterion		AQL	
01	Electrical Testing	1.2 Missing char 1.3 Display malf 1.4 No function 1.5 Current cons 1.6 LCD viewing 1.7 Mixed produ	 1.1 Missing vertical, horizontal segment, segment contrast defect. 1.2 Missing character , dot or icon. 1.3 Display malfunction. 1.4 No function or no display. 1.5 Current consumption exceeds product specifications. 1.6 LCD viewing angle defect. 1.7 Mixed product types. 1.8 Contrast defect. 				
02	Black or white spots on LCD (display only)	three white o	 2.1 White and black spots on display ≤0.25mm, no more than three white or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3mm 				
03	LCD black spots, white spots, contamination (non-display)	3.1 Round type : Φ=(x + y)/ X 3.2 Line type : (/ W	Y Y As followi Length	SIZE Φ ≤ 0. 0.10 < Φ ≤ 0.	20 2	2.5	
		→ L ₩	L≦3.0 L≦2.5	$0.02 < W \le 0.03$ $0.03 < W \le 0.05$ 0.05 < W	2	2.5	
04	Polarizer bubbles	If bubbles are vis judge using black specifications, no to find, must che specify direction	k spot ot easy ock in	Size Φ $\Phi \le 0.20$ $0.20 < \Phi \le 0.50$ $0.50 < \Phi \le 1.00$ $1.00 < \Phi$ Total Q TY	2	2.5	

Document Number: 37469

SHAY. www.vishay.com

Vishay

NO	Item		Criterion		AQL
05	Scratches	Follow NO.3 LCD bla	ack spots, white spots	s, contamination	
		Symbols Define: x: Chip Ength	y: Chip width z t: Glass thickness a th:	:: Chip hickness 1: LCD side length	
		z: Chip thickness	y: Chip width	x: Chip length	
	Chinard	Z. Chip the Kiless Z≦1/2t	Not over viewing area	x. Chip lengti x≦1/8a	
06	Chipped glass	$1/2t < z \leq 2t$	Not exceed 1/3k	x≦1/8a	2.5
		⊙If there are 2 or mor 6.1.2 Corner crack:	e chips, x is total lengt	th of each chip.	
		z: Chip thickness	y: Chip width	x: Chip length	
		Z≦1/2t	Not over viewing area	x≦1/8a	
		$1/2t < z \leq 2t$	Not exceed 1/3k	x≦1/8a	
		\odot If there are 2 or mor	e chips, x is the total le	ength of each chip.	

For technical questions, contact: <u>displays@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay

NO	Item	Criterion	AQL
07	Cracked glass	The LCD with extensive crack is not acceptable.	2.5
08	Backlight elements	 8.1 Illumination source flickers when lit. 8.2 Spots or scratched that appear when lit must be judged. Using LCD spot, lines and contamination standards. 8.3 Backlight doesn't light or color wrong. 	0.65 2.5 0.65
09	Bezel	9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination.9.2 Bezel must comply with job specifications.	2.5 0.65
10	РСВ, СОВ	 10.1 COB seal may not have pinholes larger than 0.2mm or contamination. 10.2 COB seal surface may not have pinholes through to the IC. 10.3 The height of the COB should not exceed the height indicated in the assembly diagram. 10.4 There may not be more than 2mm of sealant outside the seal area on the PCB. And there should be no more than three places. 10.5 No oxidation or contamination PCB terminals. 10.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts, missing parts or excess parts. 10.7 The jumper on the PCB should conform to the product characteristic chart. 10.8 If solder gets on bezel tab pads, LED pad, zebra pad or screw hold pad, make sure it is smoothed down. 10.9 The Scraping testing standard for Copper Coating of PCB 	2.5 2.5 0.65 2.5 2.5 0.65 0.65 2.5 2.5 2.5
11	Soldering	Y X * Y<=2mm ² 11.1 No un-melted solder paste may be present on the PCB. 11.2 No cold solder joints, missing solder connections, oxidation or icicle. 11.3 No residue or solder balls on PCB. 11.4 No short circuits in components on PCB.	2.5 2.5 2.5 0.65

NO	Item	Criterion	AQL
12	General appearance	 12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP. 12.2 No cracks on interface pin (OLB) of TCP. 12.3 No contamination, solder residue or solder balls on product. 12.4 The IC on the TCP may not be damaged, circuits. 12.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it cause the interface pin to sever. 12.6 The residual rosin or tin oil of soldering (component or chip component) is not burned into brown or black color. 12.7 Sealant on top of the ITO circuit has not hardened. 12.9 LCD pin loose or missing pins. 12.10 Product packaging must the same as specified on packaging specification sheet. 12.11 Product dimension and structure must conform to product specification sheet. 	2.5 0.65 2.5 2.5 2.5 2.5 2.5 0.65 0.65 0.65 0.65

Vishay

15. Material List of Components for RoHS

1. Declaration that all of or part of products (with the mark "H" in code), including, but not limited to, the LCM, accessories or packages, manufactured and/or delivered to your company (including your subsidiaries and affiliated company) directly or indirectly by our company (including our subsidiaries or affiliated companies) do not intentionally contain any of the substances listed in all applicable EU directives and regulations, including the following substances.

Exhibit A: The Harmful Material List

Material	(Cd)	(Pb)	(Hg)	(Cr6+)	PBBs	PBDEs		
Limited Value	100 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm		
Above lin	Above limited value is set up according to RoHS.							

2. Process for RoHS requirement :

(1) Use the Sn/Ag/Cu soldering surface; the surface of Pb-free solder is rougher than we used before.

(2) Heat-resistance temp. :

Reflow: 250C, 30 seconds Max.;

Connector soldering wave or hand soldering : 320C, 10 seconds max.

(3) Temp. curve of reflow, max. Temp. : 235±5C ;

Recommended customer's soldering temp. of connector : 280C, 3 seconds.

16. Storage

- 1. Place the panel or module in the temperature 25°C±5°C and the humidity below 65% RH
- 2. Do not place the module near organics solvents or corrosive gases.
- 3. Do not crush, shake, or jolt the module.

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru