		WITH 3-STATE OUTPUTS SCLS487A – MAY 2003 – REVISED JUNE 2003
•	Controlled Baseline One Assembly/Test Site, One Fabrication 	DW OR PW PACKAGE (TOP VIEW)
•	Site Extended Temperature Performance of –55°C to 125°C	DIR $\begin{bmatrix} 1 & 20 \end{bmatrix}$ V _{CC} A1 $\begin{bmatrix} 2 & 19 \end{bmatrix}$ OE
•	Enhanced Diminishing Manufacturing Sources (DMS) Support	A2 [] 3 18 [] B1 A3 [] 4 17 [] B2 A4 [] 5 16 [] B3
•	Enhanced Product-Change Notification Qualification Pedigree [†]	A5 [] 6 15]] B4 A6 [] 7 14]] B5
•	Operating Range 2-V to 5.5-V V _{CC} Latch-Up Performance Exceeds 250 mA Per JESD 17	A7 [8 13] B6 A8 [9 12] B7 GND [10 11] B8

ESD Protection Exceeds 1000 V Per MIL-STD-833, Method 3015; Exceeds 100 V Using Machine Model (C = 200 pF, R = 0)

[†] Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such gualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

description/ordering information

The SN74AHC245 octal bus transceiver is designed for asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.

This device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses effectively are isolated.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

T _A	PAC	(AGE [‡]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
55°C to 125°C	SOIC – DW	Tape and reel	SN74AHC245MDWREP	AHC245MEP
-55 C 10 125 C	TSSOP – PW	Tape and reel	SN74AHC245MPWREP	AHC245EP

ORDERING INFORMATION

[‡] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated

SN74AHC245-EP

OCTAL BUS TRANSCEIVER

SN74AHC245-EP OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS SCLS487A – MAY 2003 – REVISED JUNE 2003

FUNCTION TABLE

	(each transceiver)										
INP	UTS										
OE	DIR	OPERATION									
L	L	B data to A bus									
L	н	A data to B bus									
н	Х	Isolation									

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

To Seven Other Channels

SCLS487A - MAY 2003 - REVISED JUNE 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1): Control inputs I/O, output voltage range, V_O (see Note 1) Input clamp current, I_{IK} ($V_I < 0$): Control inputs I/O, output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{CC}$) Continuous output current, I_O ($V_O = 0$ to V_{CC}) Continuous current through V_{CC} or GND	$\begin{array}{cccc} -0.5 \ V \ to \ 7 \ V \\ -0.5 \ V \ to \ 7 \ V \\0.5 \ V \ to \ 7 \ V \\0.5 \ V \ to \ V_{CC} + 0.5 \ V \\20 \ mA \\ \pm 20 \ mA \\ \pm 25 \ mA \\ \pm 75 \ mA \end{array}$
Continuous current through V_{CC} or GND Package thermal impedance, $\theta_{1\Delta}$ (see Note 2): DW package	±75 mA 58°C/W
PW package Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT	
VCC	Supply voltage		2	5.5	V	
		$V_{CC} = 2 V$	1.5			
VIH	High-level input voltage	$V_{CC} = 3 V$	2.1		V	
		V _{CC} = 5.5 V	3.85			
		$V_{CC} = 2 V$		0.5		
VIL	Low-level input voltage	V _{CC} = 3 V		0.9	V	
		V _{CC} = 5.5 V		1.65		
VI	Input voltage	OE or DIR	0	5.5	V	
٧o	Output voltage	A or B	0	VCC	V	
		$V_{CC} = 2 V$		-50	μΑ	
ЮН	High-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		-4	m۸	
		V_{CC} = 5 V ± 0.5 V		-8	IIIA	
		$V_{CC} = 2 V$		50	μΑ	
IOL	Low-level output current	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4	~ ^	
		V_{CC} = 5 V ± 0.5 V		8	mA	
A+/A1/	V _{CC} = $3.3 \text{ V} \pm 0.3 \text{ V}$			100	n a/\/	
		V_{CC} = 5 V ± 0.5 V		20	115/V	
TA	Operating free-air temperature		-55	125	°C	

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCLS487A - MAY 2003 - REVISED JUNE 2003

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS	V _{CC} $T_A = 25^{\circ}C$ MIN MAX 2 V 1.9 2 1.9 3 V 2.9 3 2.9 4.5 V 4.4 4.5 4.4 3 V 2.58 2.48 4.5 V 3.94 3.8 2 V 0.1 0.1 3 V 2.58 2.48 4.5 V 3.94 3.8 2 V 0.1 0.1 3 V 0.1 0.1 3 V 0.36 0.5 4.5 V 0.36 0.5 4.5 V 0.1 ±1 0 V to 5.5 V ±0.1 ±1 0 V to 5.5 V ±0.1 ±1 5.5 V ±0.25 ±2.5 5.5 V 4 40 5 V 2.5 10							
F	ARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	WIIN	MAX	UNIT	
			2 V	1.9	2		1.9			
PARAMETER V_{OH} $I_{OH} = -50 \ \mu$ V_{OH} $I_{OH} = -4 \ m$ $I_{OH} = -4 \ m$ $I_{OH} = -8 \ m$ V_{OL} $I_{OL} = 50 \ \mu$ $I_{OL} = 50 \ \mu$ V_{OL} $I_{OL} = 4 \ m$ $I_{OL} = 8 \ m$ I_{I} $\overline{OE} \ or \ DIR$ $V_{I} = 5.5 \ V_{O}$ I_{OZ}^{\dagger} $V_{O} = V_{CC} \ V_{I} \ OC = V_{CC} \ V_{I} \ OC = V_{CC} \ OC$ $I_{OE} \ or \ DIR$ $V_{I} = V_{CC} \ oc$ $V_{I} = V_{CC} \ oc$ $V_{I} = V_{CC} \ oc$ C_{IO} $A \ or \ B \ inputs$ $V_{I} = V_{CC} \ oc$	I _{OH} = -50 μA	3 V	2.9	3		2.9				
		4.5 V	4.4	4.5		4.4		V		
		$I_{OH} = -4 \text{ mA}$	3 V	2.58			2.48			
		TER TEST CONDITIONS V_{CC} TA = 25°C MIN MAX $I_{OH} = -50 \mu A$ $2 \vee$ 1.9 2 1.9 2.9 1.9 $I_{OH} = -50 \mu A$ $3 \vee$ 2.9 $3 \vee$ 2.9 $4.4 \vee$ $4.5 \vee$ $4.4 \vee$ $I_{OH} = -4 mA$ $3 \vee$ $2.58 \vee$ $2.48 \vee$ $4.4 \vee$ $I_{OH} = -8 mA$ $4.5 \vee$ $3.94 \vee$ $3.8 \vee$ $I_{OL} = 50 \mu A$ $3 \vee$ $2.58 \vee$ $3.8 \vee$ $I_{OL} = 50 \mu A$ $3 \vee$ $3.9 \vee$ $3.8 \vee$ $I_{OL} = 50 \mu A$ $3 \vee$ $0.1 \vee$ $0.1 \vee$ $I_{OL} = 50 \mu A$ $3 \vee$ $0.1 \vee$ $0.1 \vee$ $I_{OL} = 50 \mu A$ $3 \vee$ $0.1 \vee$ $0.1 \vee$ $I_{OL} = 50 \mu A$ $3 \vee$ $0.1 \vee$ $0.1 \vee$ $I_{OL} = 8 mA$ $4.5 \vee$ $0.36 \vee$ $0.5 \vee$ $I_{OL} = 8 mA$ $4.5 \vee$ $0.36 \vee$ $0.5 \vee$ $I_{R} \vee$ $V_{I} = 5.5 \vee$ $0.5 \vee$ $0.$								
		2 V			0.1		0.1			
V _{OL}		I _{OL} = 50 μA	3 V			0.1		0.1	V	
			4.5 V			0.1		0.1		
		I _{OL} = 4 mA	3 V			0.36		0.5		
		I _{OL} = 8 mA	4.5 V			0.36		0.5		
	A or B inputs		5.5 V			±0.1		±1	٩	
1	OE or DIR	$V_{\rm I} = 5.5 V \text{ or GND}$	0 V to 5.5 V			±0.1		±1	μΑ	
loz†		$V_O = V_{CC}$ or GND, VI (\overline{OE}) = VIL or VIH	5.5 V			±0.25		±2.5	μΑ	
ICC		$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	5.5 V			4		40	μΑ	
Ci	OE or DIR	$V_{I} = V_{CC} \text{ or } GND$	5 V		2.5	10			pF	
C _{io}	A or B inputs	$V_I = V_{CC}$ or GND	5 V		4				pF	

[†] The parameter I_{OZ} includes the input leakage current.

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD	T _A = 2	5°C		МАХ	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN TY	P MAX			UNIT
^t PLH	A or B	B or A	$C_{1} = 15 \text{ pF}$	5.	8 8.4	1	10	20
^t PHL	AUB	BUIA	CL = 15 pr	5.	8 8.4	1	10	115
^t PZH		A or P	Ci - 15 pE	8	5 13.2	1	15.5	
^t PZL	ÛE	AUB	CL = 15 pr	8	5 13.2	1	15.5	115
^t PHZ		A or P	Ci = 15 pF	8	9 12.5	1	15.5	ns
^t PLZ	ÛE	AUB	CL = 13 pr	8	9 12.5	1	15.5	
^t PLH	A or B	B or A	0. 50 -5	8	3 11.9	1	13.5	200
^t PHL	AUB	BOIA	CL = 30 pr	8	3 11.9	1	13.5	115
^t PZH		A or P	$C_{1} = 50 \text{ pF}$	1	1 16.7	1	19	20
^t PZL	ÛE	AUB	CL = 50 pr	1	1 16.7	1	19	115
^t PHZ		A or P	$C_{1} = 50 \text{ pF}$	11.	5 15.8	1	18	
^t PLZ	UE	AUID	CL = 50 pr	11.	5 15.8	1	18	

SCLS487A - MAY 2003 - REVISED JUNE 2003

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	LOAD	Тį	ן = 25°C	;	MIN	MAY	
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	MIN	TYP	MAX	IVIIIN	MAA	UNIT
^t PLH	A or P	BorA	$C_{\rm r} = 15 \rm pF$		4	5.5	1	6.5	
^t PHL	AUID	BUIA			4	5.5	1	6.5	115
^t PZH		A or P	$C_{\rm L} = 15 \rm pF$		5.8	8.5	1	10	
^t PZL	ÛE	AUD			5.8	8.5	1	10	ns
^t PHZ		A or P	$C_{\rm L} = 15 \rm pE$		5.6	7.8	1	9.2	
^t PLZ	OE	AUD			5.6	7.8	1	9.2	115
^t PLH	A or B	BorA	$C_{\rm L} = 50 \rm pE$		5.5	7.5	1	8.5	
^t PHL	AUB	BUIA	CL = 30 pr		5.5	7.5	1	8.5	115
^t PZH		A or P	$C_{\rm L} = 50 \rm pE$		7.3	10.6	1	12	
^t PZL	OE	A or B	CL = 50 pr		7.3	10.6	1	12	115
^t PHZ		A or B	$C_{\rm L} = 50 \rm pE$		7	9.7	1	11	
^t PLZ		AUD	$C_L = 50 \text{ pr}$		7	9.7	1	11	ns

noise characteristics, V_{CC} = 5 V, C_L = 50 pF, T_A = 25°C (see Note 4)

	PARAMETER	MIN	TYP	MAX	UNIT
VOL(P)	Quiet output, maximum dynamic V _{OL}		0.9		V
VOL(V)	Quiet output, minimum dynamic VOL		-0.9		V
VOH(V)	Quiet output, minimum dynamic V _{OH}		4.3		V
VIH(D)	High-level dynamic input voltage	3.5			V
V _{IL(D)}	Low-level dynamic input voltage			1.5	V

NOTE 4: Characteristics are for surface-mount packages only.

operating characteristics, V_{CC} = 5 V, T_A = 25° C

	PARAMETER	TEST CONDITIONS	TYP	UNIT
Cpd	Power dissipation capacitance	No load, f = 1 MHz	14	pF

SCLS487A - MAY 2003 - REVISED JUNE 2003

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f \leq 3 ns, t_f \leq 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74AHC245MDWREP	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AHC245MEP	Samples
SN74AHC245MPWREP	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AHC245EP	Samples
V62/03650-01XE	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AHC245EP	Samples
V62/03650-01YE	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	AHC245MEP	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

www.ti.com

10-Jun-2014

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74AHC245-EP :

- Catalog: SN74AHC245
- Automotive: SN74AHC245-Q1
- Military: SN54AHC245

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74AHC245MDWREP	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74AHC245MPWREP	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

4-Mar-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74AHC245MDWREP	SOIC	DW	20	2000	367.0	367.0	45.0
SN74AHC245MPWREP	TSSOP	PW	20	2000	367.0	367.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications			
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive		
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications		
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers		
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps		
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy		
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial		
Interface	interface.ti.com	Medical	www.ti.com/medical		
Logic	logic.ti.com	Security	www.ti.com/security		
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense		
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video		
RFID	www.ti-rfid.com				
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com		
Wireless Connectivity	www.ti.com/wirelessconnectivity				

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru