74LVC377

Octal D-type flip-flop with data enable; positive-edge trigger Rev. 6 — 20 November 2012 Product data she

Product data sheet

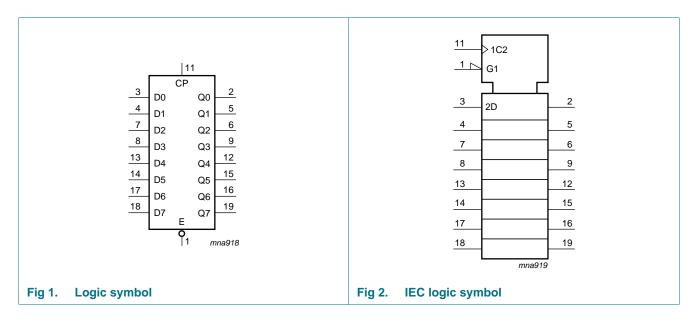
1. **General description**

The 74LVC377 has eight edge-triggered D-type flip-flops with individual inputs (D) and outputs (Q). A common clock input (CP) loads all flip-flops simultaneously when data enable input (E) is LOW. The state of each D input, one set-up time before the LOW to HIGH clock transition, is transferred to the corresponding output (Qn) of the flip-flop. Input E must be stable only one set-up time prior to the LOW to HIGH transition for predictable operation.

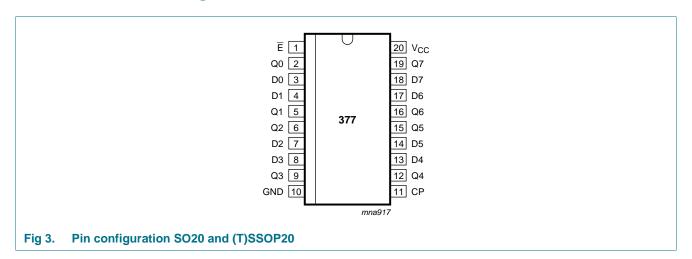
2. **Features and benefits**

- Wide supply voltage range from 1.2 V to 3.6 V
- Inputs accept voltages up to 5.5 V
- CMOS low power consumption
- Direct interface with TTL levels
- Output drive capability 50 Ω transmission lines at 125 °C
- Complies with JEDEC standard:
 - ◆ JESD8-7A (1.65 V to 1.95 V)
 - ◆ JESD8-5A (2.3 V to 2.7 V)
 - ◆ JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - ♦ HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-B exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Specified from −40 °C to +85 °C and from −40 °C to +125 °C

Ordering information 3.


Ordering information Table 1.

Type number	Package								
	Temperature range	Name	Description	Version					
74LVC377D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1					
74LVC377DB	–40 °C to +125 °C	SSOP20	plastic shrink small outline package; 20 leads; body width 5.3 mm	SOT339-1					
74LVC377PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1					


Octal D-type flip-flop with data enable; positive-edge trigger

4. Functional diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Ē	1	data enable input (active LOW)
СР	11	clock input (LOW to HIGH; edge-triggered)
D[0:7]	3, 4, 7, 8, 13, 14, 17, 18	data input

Octal D-type flip-flop with data enable; positive-edge trigger

Table 2. Pin description ?ontinued

Symbol	Pin	Description
Q[0:7]	2, 5, 6, 9, 12, 15, 16, 19	flip-flop output
GND	10	ground (0 V)
V _{CC}	20	power supply

6. Functional description

Table 3. Function table[1]

Operating mode	Control		Input	Output
	СР	E	Dn	Qn
Load 1	↑	l	h	Н
Load 0	↑	I	I	L
Hold	↑	h	X	NC
Do nothing	Χ	Н	Χ	NC

^[1] H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the LOW to HIGH CP transition

L = LOW voltage level

I = LOW voltage level one set-up time prior to the LOW to HIGH CP transition

 \uparrow = LOW to HIGH CP transition

NC = no change

X = don't care

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

					-
Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
VI	input voltage		<u>[1]</u> –0.5	+5.5	V
Vo	output voltage		<u>[2]</u> −0.5	$V_{CC} + 0.5$	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
Io	output current	$V_O = 0 V \text{ to } V_{CC}$	-	±50	mA
I _{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0 V$	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	<u>[3]</u> _	500	mW

^[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

[3] For SO20 packages: above 70 °C derate linearly with 8 mW/K. For (T)SSOP20 packages: above 60 °C derate linearly with 5.5 mW/K.

^[2] The output voltage ratings may be exceeded if the output current ratings are observed.

Octal D-type flip-flop with data enable; positive-edge trigger

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		1.65	-	3.6	V
		functional	1.2	-	-	V
V_{I}	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 1.65 \text{ V to } 2.7 \text{ V}$	0	-	20	ns/V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	0	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	35 °C	-40 °C to	o +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
V _{IH}	HIGH-level	V _{CC} = 1.2 V	1.08	-	-	1.08	-	٧
	input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	$0.65 \times V_{CC}$	-	V
		V _{CC} = 2.3 V to 2.7 V	1.7	-	-	1.7	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V
V_{IL}	LOW-level	V _{CC} = 1.2 V	-	-	0.12	-	0.12	V
	input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	-	0.7	-	0.7	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}						
output voltage	•	$I_O = -100 \mu A;$ $V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}$	$V_{CC}-0.2$	-	-	$V_{CC}-0.3$	-	V
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	1.05	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.8	-	-	1.65	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	2.05	-	V
		$I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	-	-	2.25	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.2	-	-	2.0	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}						
	output voltage	$I_O = 100 \mu A;$ $V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}$	-	-	0.2	-	0.3	V
		$I_O = 4 \text{ mA}$; $V_{CC} = 1.65 \text{ V}$	-	-	0.45	-	0.65	V
		$I_O = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.6	-	0.8	V
		$I_O = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	-	0.6	V
		$I_O = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	-	0.8	V
l _l	input leakage current	V_{CC} = 3.6 V; V_I = 5.5 V or GND	-	±0.1	±5	-	±20	μΑ

Octal D-type flip-flop with data enable; positive-edge trigger

 Table 6.
 Static characteristics ?ontinued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	-40 °C to +85 °C			+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
I _{CC}	supply current	$V_{CC} = 3.6 \text{ V}; V_I = V_{CC} \text{ or GND};$ $I_O = 0 \text{ A}$	-	0.1	10	-	40	μΑ
ΔI_{CC}	additional supply	per input pin;	-	5	500	-	5000	μΑ
	current	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V};$ $V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A}$						
C _I	input capacitance	$V_{CC} = 0 \text{ V to } 3.6 \text{ V};$ $V_{I} = \text{GND to } V_{CC}$	-	5.0	-	-	-	pF

^[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 6.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	–40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
t_{pd}	propagation	CP to Qn; see Figure 4	[2]						
	delay	V _{CC} = 1.2 V		-	15	-	-	-	ns
		V _{CC} = 1.65 V to 1.95 V		2.5	7.4	14.5	2.5	15.5	ns
		V _{CC} = 2.3 V to 2.7 V		1.8	4.4	8.5	1.8	9.1	ns
		V _{CC} = 2.7 V		1.5	4.3	7.9	1.5	10.0	ns
		V _{CC} = 3.0 V to 3.6 V		1.5	4.0	7.6	1.5	9.5	ns
t _W	pulse width	clock HIGH or LOW; see Figure 4							
		V _{CC} = 1.65 V to 1.95 V		6.0	-	-	6.0	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		5.0	-	-	5.0		ns
		V _{CC} = 2.7 V		5.0	1.6	-	5.0	-	ns
		V _{CC} = 3.0 V to 3.6 V		4.0	1.0	-	4.0	-	ns
t _{su}	set-up time	E to CP; see Figure 5							
		V _{CC} = 1.65 V to 1.95 V		5.5	-	-	5.5	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		4.5	-	-	4.5		ns
		V _{CC} = 2.7 V		4.0	0.6	-	4.0	-	ns
		V _{CC} = 3.0 V to 3.6 V		3.0	0.2	-	3.0	-	ns
		Dn to CP; see Figure 5							
		V _{CC} = 1.65 V to 1.95 V		5.5	-	-	5.5	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		4.5	-	-	4.5		ns
		V _{CC} = 2.7 V		3.0	1.0	-	3.0	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		2.0	0.7	-	2.0	-	ns

Octal D-type flip-flop with data enable; positive-edge trigger

 Table 7.
 Dynamic characteristics ?ontinued

Voltages are referenced to GND (ground = 0 V). For test circuit see <u>Figure 6</u>.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	-40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
t _h	hold time	E to CP; see Figure 5							
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		1.5	-	-	1.5	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.5	-	-	0.5		ns
		V _{CC} = 2.7 V		0.0	-1.0	-	0.0	-	ns
		V _{CC} = 3.0 V to 3.6 V		1.0	0	-	1.0	-	ns
		Dn to CP; see Figure 5							
		V _{CC} = 1.65 V to 1.95 V		1.5	-	-	1.5	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.5	-	-	0.5		ns
		V _{CC} = 2.7 V		0.0	-1.1	-	0.0	-	ns
		V _{CC} = 3.0 V to 3.6 V		0.0	-1.0	-	0.0	-	ns
f _{max}	maximum	see Figure 4							
	frequency	V _{CC} = 1.65 V to 1.95 V		80	-	-	64	-	MHz
		V _{CC} = 2.3 V to 2.7 V		100	-	-	80		MHz
		V _{CC} = 2.7 V		150	-	-	120	-	MHz
		V _{CC} = 3.0 V to 3.6 V		150	330	-	120	-	MHz
t _{sk(o)}	output skew time	V _{CC} = 3.0 V to 3.6 V	[3]	-	-	1.0	-	1.5	ns
C _{PD}	powerdissipation	per flip-flop; $V_I = GND$ to V_{CC}	[4]						
	capacitance	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-	12.1	-	-	-	pF
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	15.8	-	-	-	pF
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	19.0	-	-	-	рF

^[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V and 3.3 V respectively.

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$

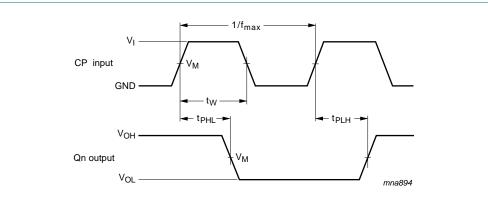
 f_i = input frequency in MHz; f_o = output frequency in MHz

 C_L = output load capacitance in pF

 V_{CC} = supply voltage in Volts

N = number of inputs switching

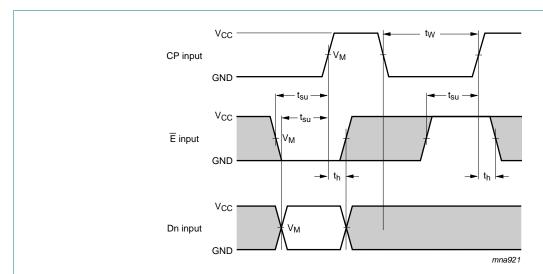
 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs


^[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

^[3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

^[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

Octal D-type flip-flop with data enable; positive-edge trigger

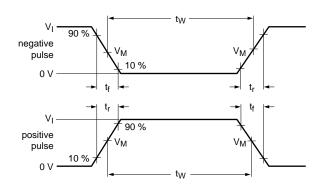

11. Waveforms

Measurement points are given in Table 8.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 4. Propagation delay clock (CP) to output (Qn), pulse width clock (CP), and maximum frequency

Measurement points are given in Table 8.


The shaded areas indicate when the input is permitted to change for predictable output performance.

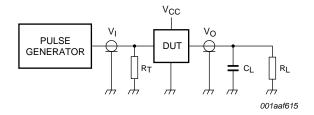

Fig 5. Data set-up and hold times of data input (Dn) and enable input (E) and pulse width of enable input (E)

Table 8. Measurement points

Supply voltage	Input	Output
V _{CC}	V _M	V _M
1.2 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
1.65 V to 1.95V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
2.3 V to 2.7 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
2.7 V	1.5 V	1.5 V
3.0 V to 3.6 V	1.5 V	1.5 V

Octal D-type flip-flop with data enable; positive-edge trigger

Test data is given in Table 9.

Definitions for test circuit:

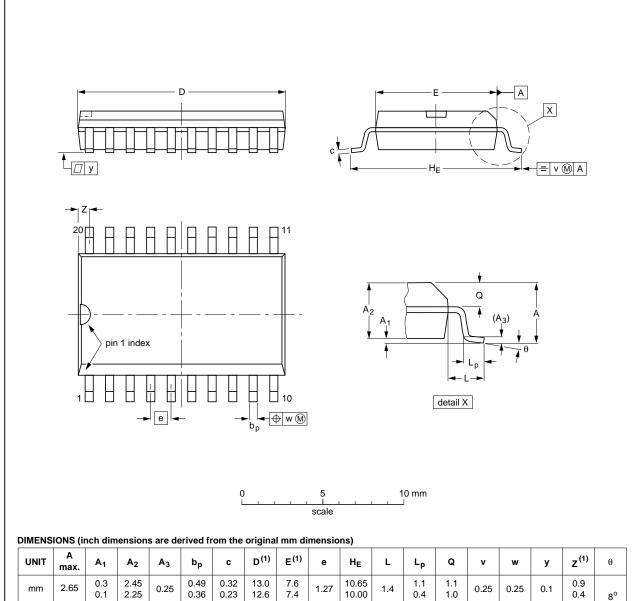
 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

Fig 6. Test circuit for switching times

Table 9. Test data


Supply voltage	Input		Load		
	V _I	t _r , t _f	C _L	R_L	
1.2 V	V _{CC}	≤ 2 ns	30 pF	1 kΩ	
1.65 V to 1.95 V	V _{CC}	≤ 2 ns	30 pF	1 kΩ	
2.3 V to 2.7 V	V _{CC}	≤ 2 ns	30 pF	500 Ω	
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	

Octal D-type flip-flop with data enable; positive-edge trigger

12. Package outline

SO20: plastic small outline package; 20 leads; body width 7.5 mm

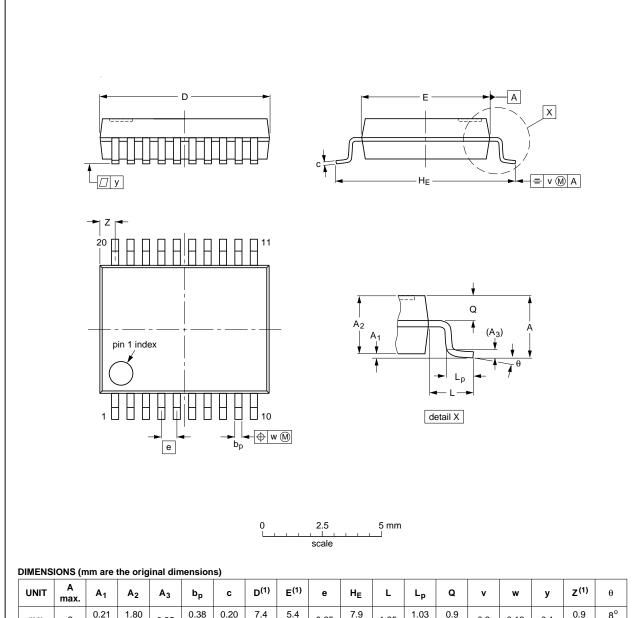
SOT163-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	C	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	٧	w	у	z ⁽¹⁾	θ
mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT163-1	075E04	MS-013				99-12-27 03-02-19	

Fig 7. Package outline SOT163-1 (SO20)


74LVC377_6

All information provided in this document is subject to legal disclaimers.

Octal D-type flip-flop with data enable; positive-edge trigger

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

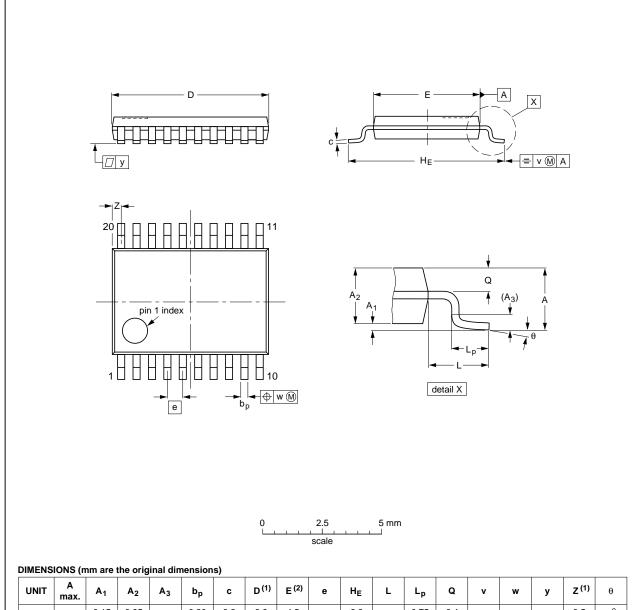
SOT339-1

 						-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	7.4 7.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.9 0.5	8° 0°

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE				
VERSION	IEC	JEDEC	JEITA		PROJECTION	ION ISSUE DATE		
SOT339-1		MO-150				99-12-27 03-02-19		


Fig 8. Package outline SOT339-1 (SSOP20)

74LVC377_6

Octal D-type flip-flop with data enable; positive-edge trigger

TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm

SOT360-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	C	D ⁽¹⁾	E ⁽²⁾	e	HE	L	Lp	Q	٧	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	6.6 6.4	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT360-1		MO-153				99-12-27 03-02-19	
					1	03-02	

Fig 9. Package outline SOT360-1 (TSSOP20)

74LVC377_6

All information provided in this document is subject to legal disclaimers.

Octal D-type flip-flop with data enable; positive-edge trigger

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC377 v.6	20121120	Product data sheet	-	74LVC377 v.5
Modifications:	 The format of of NXP Semice 		designed to comply with	n the new identity guidelines
	 Legal texts ha 	ve been adapted to the new	company name where	appropriate.
	 <u>Table 4</u>, <u>Table</u> ranges. 	5, Table 6, Table 7, Table 8,	and Table 9: values ac	dded for lower voltage
74LVC377 v.5	20050221	Product specification	-	74LVC377 v.4
74LVC377 v.4	20040528	Product specification	-	74LVC377 v.3
74LVC377 v.3	20021023	Product specification	-	74LVC377 v.2
74LVC377 v.2	19980729	Product specification	-	74LVC377 v.1
74LVC377 v.1	19990606	Product specification	-	-

Octal D-type flip-flop with data enable; positive-edge trigger

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LVC377_6

All information provided in this document is subject to legal disclaimers.

Octal D-type flip-flop with data enable; positive-edge trigger

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74LVC377

Octal D-type flip-flop with data enable; positive-edge trigger

17. Contents

Nexperia

1	General description 1
2	Features and benefits
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 2
5.1	Pinning
5.2	Pin description 2
6	Functional description 3
7	Limiting values 3
8	Recommended operating conditions 4
9	Static characteristics 4
10	Dynamic characteristics 5
11	Waveforms
12	Package outline 9
13	Abbreviations
14	Revision history 12
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks14
16	Contact information 14
17	Contents

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru