Push-Pull Output Sub-Microamp Comparators

Features

- Low Quiescent Current: 600 nA/comparator (typ.)
- Rail-to-Rail Input: V_{SS} 0.3V to V_{DD} + 0.3V
- · CMOS/TTL-Compatible Output
- Propagation Delay: 4 µs (typ., 100 mV Overdrive)
- · Wide Supply Voltage Range: 1.6V to 5.5V
- · Available in Single, Dual and Quad
- Single available in SOT-23-5, SC-70-5 * packages
- Chip Select (CS) with MCP6543
- · Low Switching Current
- Internal Hysteresis: 3.3 mV (typ.)
- · Temperature Ranges:
 - Industrial: -40°C to +85°C
 - Extended: -40°C to +125°C

Typical Applications

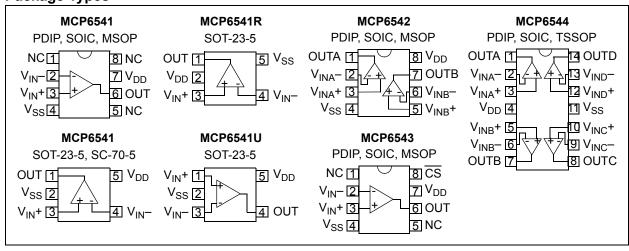
- · Laptop Computers
- · Mobile Phones
- · Metering Systems
- · Hand-held Electronics
- · RC Timers
- · Alarm and Monitoring Circuits
- · Windowed Comparators
- Multi-vibrators

Related Devices

• Open-Drain Output: MCP6546/7/8/9

Description

The Microchip Technology Inc. MCP6541/1R/1U/2/3/4 family of comparators is offered in single (MCP6541, MCP6541R, MCP6541U), single with Chip Select (CS) (MCP6543), dual (MCP6542) and quad (MCP6544) configurations. The outputs are push-pull (CMOS/TTL-compatible) and are capable of driving heavy DC or capacitive loads.


These comparators are optimized for low power, single-supply operation with greater than rail-to-rail input operation. The push-pull output of the MCP6541/ 1R/1U/2/3/4 family supports rail-to-rail output swing and interfaces with TTL/CMOS logic. The internal input hysteresis eliminates output switching due to internal input noise voltage, reducing current draw. The output limits supply current surges and dynamic power consumption while switching. This product family operates with a single-supply voltage as low as 1.6V and draws less than 1 μ A/comparator of quiescent current.

The related MCP6546/7/8/9 family of comparators from Microchip has an open-drain output. Used with a pull-up resistor, these devices can be used as level-shifters for any desired voltage up to 10V and in wired-OR logic.

* SC-70-5 E-Temp parts not available at this release of the data sheet.

MCP6541U SOT-23-5 is E-Temp only.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

V _{DD} - V _{SS}	7.0V
Current at Analog Input Pin (V _{IN} +, V _{IN}	±2 mA
Analog Input (V _{IN}) ††V _{SS} - 1	.0V to V _{DD} + 1.0V
All other Inputs and Outputs V_{SS} - 0	.3V to V _{DD} + 0.3V
Difference Input voltage	V _{DD} - V _{SS}
Output Short-Circuit Current	continuous
Current at Input Pins	±2 mA
Current at Output and Supply Pins	±30 mA
Storage temperature	65°C to +150°C
Maximum Junction Temperature (T _J)	+150°C
ESD protection on all pins (HBM;MM)	4 kV; 400V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† See Section 4.1.2 "Input Voltage and Current Limits"

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V_{DD} = +1.6V to +5.5V, V_{SS} = GND, T_A = +25°C, V_{IN} + = V_{DD} /2, V_{IN} - = V_{SS} , and R_I = 100 kΩ to V_{DD} /2 (Refer to Figure 1-3).

$V_{\rm IN}^- = V_{\rm SS}$, and $R_{\rm L} = 100~{\rm k}\Omega$ to $V_{\rm DD}/2$ (Refer to Figure 1-3).								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
Power Supply								
Supply Voltage	V_{DD}	1.6	_	5.5	V			
Quiescent Current per comparator	ΙQ	0.3	0.6	1.0	μΑ	I _{OUT} = 0		
Input								
Input Voltage Range	V_{CMR}	V _{SS} -0.3	1	V _{DD} +0.3	V			
Common Mode Rejection Ratio	CMRR	55	70	_	dB	V_{DD} = 5V, V_{CM} = -0.3V to 5.3V		
Common Mode Rejection Ratio	CMRR	50	65	_	dB	V_{DD} = 5V, V_{CM} = 2.5V to 5.3V		
Common Mode Rejection Ratio	CMRR	55	70	_	dB	V_{DD} = 5V, V_{CM} = -0.3V to 2.5V		
Power Supply Rejection Ratio	PSRR	63	80	_	dB	V _{CM} = V _{SS}		
Input Offset Voltage	Vos	-7.0	±1.5	+7.0	mV	V _{CM} = V _{SS} (Note 1)		
Drift with Temperature	$\Delta V_{OS}/\Delta T_{A}$	_	±3	_	μV/°C	$T_A = -40$ °C to +125°C, $V_{CM} = V_{SS}$		
Input Hysteresis Voltage	V _{HYST}	1.5	3.3	6.5	mV	V _{CM} = V _{SS} (Note 1)		
Linear Temp. Co. (Note 2)	TC ₁	_	6.7	_	μV/°C	$T_A = -40$ °C to +125°C, $V_{CM} = V_{SS}$		
Quadratic Temp. Co. (Note 2)	TC ₂	_	-0.035	_	μV/°C ²	$T_A = -40$ °C to +125°C, $V_{CM} = V_{SS}$		
Input Bias Current	Ι _Β	_	1	_	pА	V _{CM} = V _{SS}		
At Temperature (I-Temp parts)	Ι _Β	_	25	100	pА	$T_A = +85^{\circ}C, V_{CM} = V_{SS}$ (Note 3)		
At Temperature (E-Temp parts)	Ι _Β	_	1200	5000	pА	$T_A = +125^{\circ}C, V_{CM} = V_{SS}$ (Note 3)		
Input Offset Current	I _{OS}	_	±1	_	pA	$V_{CM} = V_{SS}$		
Common Mode Input Impedance	Z _{CM}		10 ¹³ 4	_	Ω pF			
Differential Input Impedance	Z _{DIFF}	_	10 ¹³ 2	_	Ω pF			

Note 1: The input offset voltage is the center (average) of the input-referred trip points. The input hysteresis is the difference between the input-referred trip points.

- 2: V_{HYST} at different temperatures is estimated using V_{HYST} (T_A) = V_{HYST} + (T_A 25°C) TC_1 + (T_A 25°C)² TC_2 .
- 3: Input bias current at temperature is not tested for SC-70-5 package.
- 4: Limit the output current to Absolute Maximum Rating of 30 mA.

DC CHARACTERISTICS (CONTINUED)

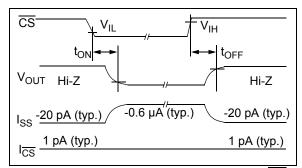
Electrical Specifications: Unless otherwise indicated, V_{DD} = +1.6V to +5.5V, V_{SS} = GND, T_A = +25°C, V_{IN} + = V_{DD} /2, V_{IN} - = V_{SS} , and R_L = 100 kΩ to V_{DD} /2 (Refer to Figure 1-3).

11 1 00 E	00 ·		,			
Parameters	Sym	Min	Тур	Max	Units	Conditions
Push-Pull Output						
High-Level Output Voltage	V _{OH}	V _{DD} -0.2	_	_	V	I _{OUT} = -2 mA, V _{DD} = 5V
Low-Level Output Voltage	V _{OL}	_	_	V _{SS} +0.2	V	I _{OUT} = 2 mA, V _{DD} = 5V
Short-Circuit Current	I _{SC}	_	-2.5, +1.5	_	mA	V _{DD} = 1.6V (Note 4)
	I _{SC}	_	±30	_	mA	V _{DD} = 5.5V (Note 4)

- Note 1: The input offset voltage is the center (average) of the input-referred trip points. The input hysteresis is the difference between the input-referred trip points.
 - 2: V_{HYST} at different temperatures is estimated using V_{HYST} (T_A) = V_{HYST} + (T_A 25°C) TC_1 + (T_A 25°C) TC_2 .
 - 3: Input bias current at temperature is not tested for SC-70-5 package.
 - 4: Limit the output current to Absolute Maximum Rating of 30 mA.

AC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V_{DD} = +1.6V to +5.5V, V_{SS} = GND, T_A = +25°C, V_{IN} + = V_{DD} /2, Step = 200 mV, Overdrive = 100 mV, and C_L = 36 pF (Refer to Figure 1-2 and Figure 1-3).


Parameters	Sym	Min	Тур	Max	Units	Conditions		
Rise Time	t _R	_	0.85	_	μs			
Fall Time	t _F	_	0.85	_	μs			
Propagation Delay (High-to-Low)	t _{PHL}	_	4	8	μs			
Propagation Delay (Low-to-High)	t _{PLH}	_	4	8	μs			
Propagation Delay Skew	t _{PDS}	_	±0.2	_	μs	(Note 1)		
Maximum Toggle Frequency	f _{MAX}	_	160	_	kHz	V _{DD} = 1.6V		
	f _{MAX}	_	120	_	kHz	V _{DD} = 5.5V		
Input Noise Voltage	E _{ni}	_	200	_	μV _{P-P}	10 Hz to 100 kHz		

Note 1: Propagation Delay Skew is defined as: $t_{PDS} = t_{PLH} - t_{PHL}$.

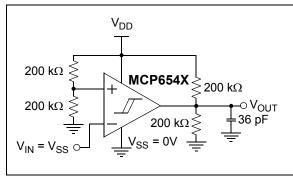
MCP6543 CHIP SELECT (CS) CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V_{DD} = +1.6V to +5.5V, V_{SS} = GND, T_A = +25°C, V_{IN} + = V_{DD} /2, V_{IN} - = V_{SS} , and C_L = 36 pF (Refer to Figures 1-1 and 1-3).

and CL- 30 pr (Relet to rigules 1-1 and 1-3).									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
CS Low Specifications									
CS Logic Threshold, Low	V _{IL}	V_{SS}	_	0.2 V _{DD}	V				
CS Input Current, Low	I _{CSL}	_	5.0	_	pA	CS = V _{SS}			
CS High Specifications									
CS Logic Threshold, High	V _{IH}	0.8 V _{DD}	_	V_{DD}	V				
CS Input Current, High	I _{CSH}	_	1	_	pА	CS = V _{DD}			
CS Input High, V _{DD} Current	I _{DD}	_	18	_	pА	CS = V _{DD}			
CS Input High, GND Current	I _{SS}	_	-20	_	pА	CS = V _{DD}			
Comparator Output Leakage	I _{O(LEAK)}	_	1	_	pА	$V_{OUT} = V_{DD}, \overline{CS} = V_{DD}$			
CS Dynamic Specifications					•				
CS Low to Comparator Output Low Turn-on Time	t _{ON}	_	2	50	ms	$\overline{\text{CS}}$ = 0.2 V _{DD} to V _{OUT} = V _{DD} /2, V _{IN} -= V _{DD}			
CS High to Comparator Output High Z Turn-off Time	t _{OFF}	_	10	_	μs	$\overline{\text{CS}}$ = 0.8 V _{DD} to V _{OUT} = V _{DD} /2, V _{IN} -= V _{DD}			
CS Hysteresis	V _{CS_HYST}	_	0.6	_	V	V _{DD} = 5V			

FIGURE 1-1: Timing Diagram for the $\overline{\text{CS}}$ Pin on the MCP6543.

FIGURE 1-2: Propagation Delay Timing Diagram.


TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, V_{DD} = +1.6V to +5.5V and V_{SS} = GND.									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
Temperature Ranges									
Specified Temperature Range	T_A	-40	_	+85	°C				
Operating Temperature Range	T_A	-40	_	+125	°C	Note			
Storage Temperature Range	T_A	-65	_	+150	°C				
Thermal Package Resistances									
Thermal Resistance, 5L-SC-70	θ_{JA}	_	331	_	°C/W				
Thermal Resistance, 5L-SOT-23	$\theta_{\sf JA}$	_	256	_	°C/W				
Thermal Resistance, 8L-PDIP	$\theta_{\sf JA}$	_	85	_	°C/W				
Thermal Resistance, 8L-SOIC	θ_{JA}	_	163	_	°C/W				
Thermal Resistance, 8L-MSOP	$\theta_{\sf JA}$	_	206	_	°C/W				
Thermal Resistance, 14L-PDIP	$\theta_{\sf JA}$	_	70	_	°C/W				
Thermal Resistance, 14L-SOIC	θ_{JA}	_	120	_	°C/W				
Thermal Resistance, 14L-TSSOP	$\theta_{\sf JA}$	_	100	_	°C/W				

Note: The MCP6541/1R/1U/2/3/4 I-Temp parts operate over this extended temperature range, but with reduced performance. In any case, the Junction Temperature (T_J) must not exceed the Absolute Maximum specification of +150°C.

1.1 Test Circuit Configuration

This test circuit configuration is used to determine the AC and DC specifications.

FIGURE 1-3: AC and DC Test Circuit for the Push-Pull Output Comparators.

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

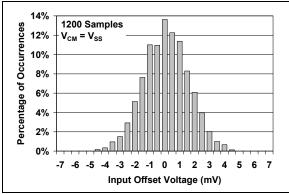
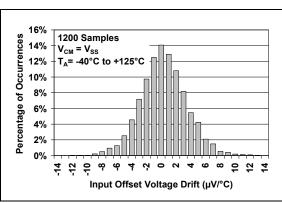
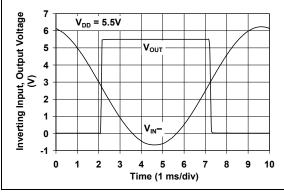
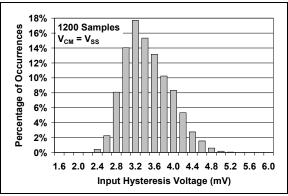
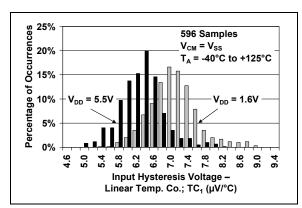
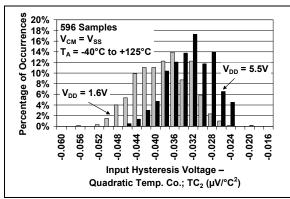
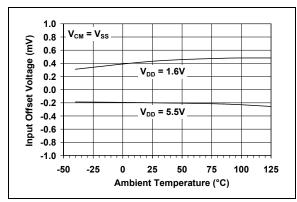



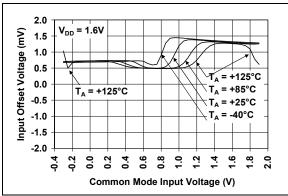
FIGURE 2-1: Input Offset Voltage at $V_{CM} = V_{SS}$.

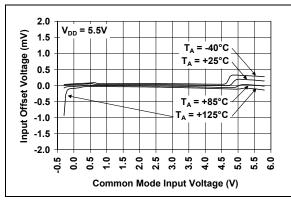
FIGURE 2-2: Input Offset Voltage Drift at $V_{CM} = V_{SS}$.

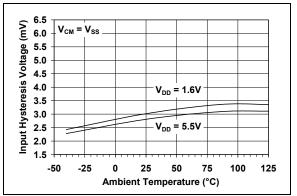




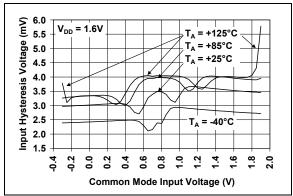

FIGURE 2-3: The MCP6541/1R/1U/2/3/4 comparators show no phase reversal.

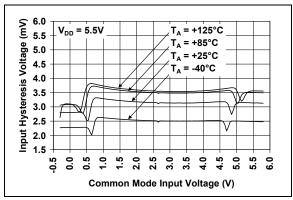

FIGURE 2-4: Input Hysteresis Voltage at $V_{CM} = V_{SS}$.

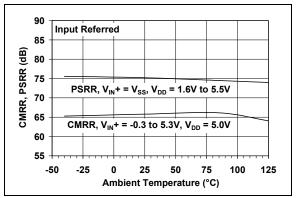

FIGURE 2-5: Input Hysteresis Voltage Linear Temp. Co. (TC_1) at $V_{CM} = V_{SS}$.

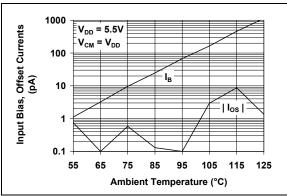

FIGURE 2-6: Input Hysteresis Voltage Quadratic Temp. Co. (TC_2) at $V_{CM} = V_{SS}$.


FIGURE 2-7: Input Offset Voltage vs. Ambient Temperature at $V_{CM} = V_{SS}$.


FIGURE 2-8: Input Offset Voltage vs. Common Mode Input Voltage at $V_{DD} = 1.6V$.


FIGURE 2-9: Input Offset Voltage vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.


FIGURE 2-10: Input Hysteresis Voltage vs. Ambient Temperature at $V_{CM} = V_{SS}$.


FIGURE 2-11: Input Hysteresis Voltage vs. Common Mode Input Voltage at $V_{DD} = 1.6V$.

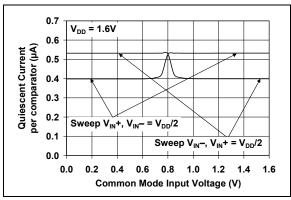
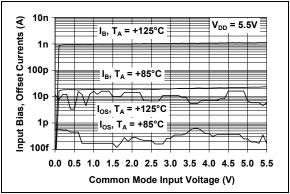
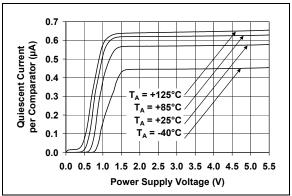
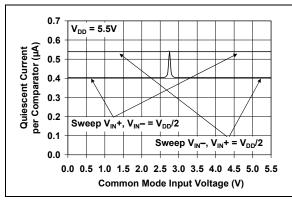
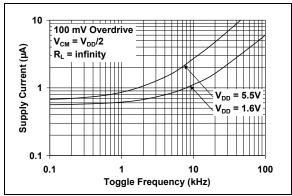

FIGURE 2-12: Input Hysteresis Voltage vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.

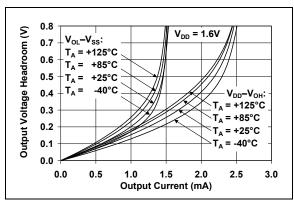
FIGURE 2-13: CMRR,PSRR vs. Ambient Temperature.

FIGURE 2-14: Input Bias Current, Input Offset Current vs. Ambient Temperature.

FIGURE 2-15: Quiescent Current vs. Common Mode Input Voltage at $V_{DD} = 1.6V$.


FIGURE 2-16: Input Bias Current, Input Offset Current vs. Common Mode Input Voltage.


FIGURE 2-17: Quiescent Current vs. Power Supply Voltage.

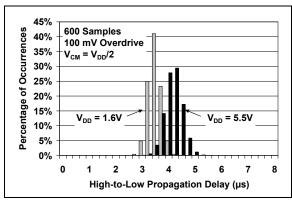

FIGURE 2-18: Quiescent Current vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.

FIGURE 2-19: Supply Current vs. Toggle Frequency.

FIGURE 2-20: Output Voltage Headroom vs. Output Current at $V_{DD} = 1.6V$.

FIGURE 2-21: High-to-Low Propagation Delay.

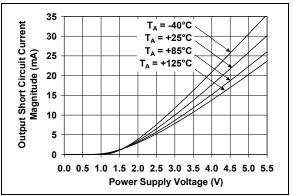
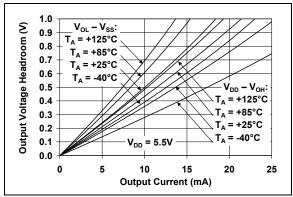



FIGURE 2-22: Output Short Circuit Current Magnitude vs. Power Supply Voltage.

FIGURE 2-23: Output Voltage Headroom vs. Output Current at $V_{DD} = 5.5V$.

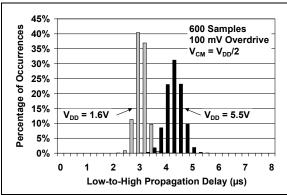
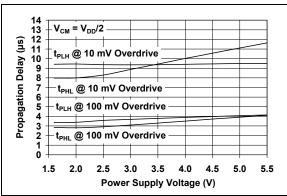
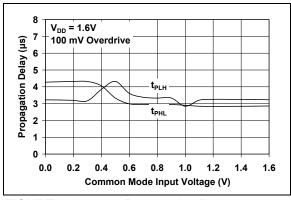
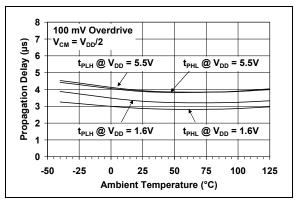
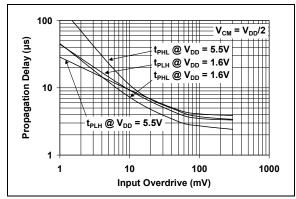


FIGURE 2-24: Low-to-High Propagation Delay.

FIGURE 2-25: Propagation Delay Skew.


FIGURE 2-26: Propagation Delay vs. Power Supply Voltage.

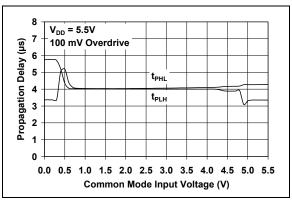
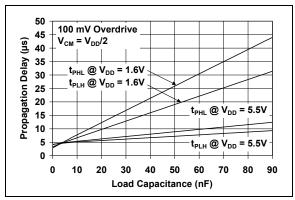
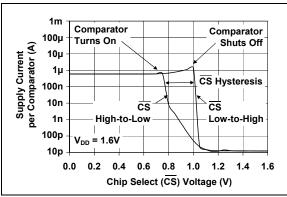
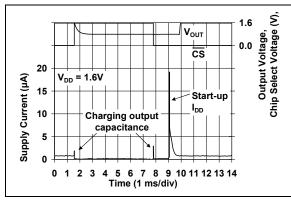
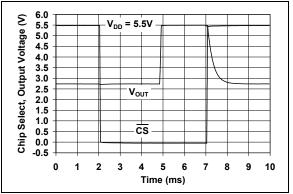

FIGURE 2-27: Propagation Delay vs. Common Mode Input Voltage at $V_{DD} = 1.6V$.

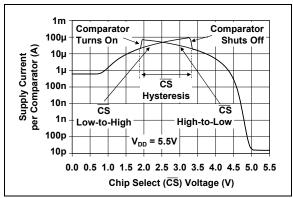
FIGURE 2-28: Propagation Delay vs. Ambient Temperature.

FIGURE 2-29: Propagation Delay vs. Input Overdrive.

FIGURE 2-30: Propagation Delay vs. Common Mode Input Voltage at $V_{DD} = 5.5V$.


FIGURE 2-31: Propagation Delay vs. Load Capacitance.


FIGURE 2-32: Supply Current (shoot through current) vs. Chip Select (\overline{CS}) Voltage at $V_{DD} = 1.6V$ (MCP6543 only).

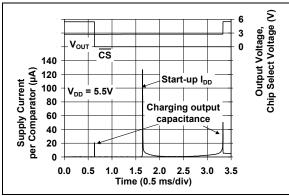

FIGURE 2-33: Sup<u>ply</u> Current (charging current) vs. Chip Select (CS) pulse at $V_{DD} = 1.6V$ (MCP6543 only).

FIGURE 2-34: Chip Select (\overline{CS}) Step Response (MCP6543 only).

FIGURE 2-35: Supply Current (shoot through current) vs. Chip Select (\overline{CS}) Voltage at $V_{DD} = 5.5V$ (MCP6543 only).

FIGURE 2-36: Supply Current (charging current) vs. Chip Select (CS) pulse at $V_{DD} = 5.5V$ (MCP6543 only).

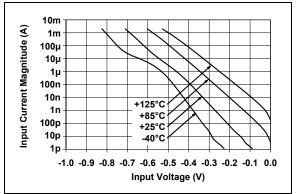


FIGURE 2-37: Input Bias Current vs. Input Voltage.

3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

MCP6541 PDIP, SOIC,	MCP6541 SOT-23-5,	MCP6541R	MCP6541U	MCP6542	MCP6543	MCP6544		
MSOP	SC-70-5	MC	МС	MC	ЭМ	МС	Symbol	Description
6	1	1	4	1	6	1	OUT, OUTA	Digital Output (comparator A)
2	4	4	3	2	2	2	V _{IN} -, V _{INA} -	Inverting Input (comparator A)
3	3	3	1	3	3	3	V_{IN} +, V_{INA} +	Non-inverting Input (comparator A)
7	5	2	5	8	7	4	V_{DD}	Positive Power Supply
_	_			5		5	V _{INB} +	Non-inverting Input (comparator B)
_	_			6		6	V _{INB} -	Inverting Input (comparator B)
_	_			7	_	7	OUTB	Digital Output (comparator B)
_	_				_	8	OUTC	Digital Output (comparator C)
_	_		_	_	_	9	V _{INC} -	Inverting Input (comparator C)
_	_					10	V _{INC} +	Non-inverting Input (comparator C)
4	2	5	2	4	4	11	V_{SS}	Negative Power Supply
_	_		_	_	_	12	V _{IND} +	Non-inverting Input (comparator D)
_	_				_	13	V _{IND} -	Inverting Input (comparator D)
_	_				_	14	OUTD	Digital Output (comparator D)
			_	_	8		CS	Chip Select
1, 5, 8	_	_	_	_	1, 5	_	NC	No Internal Connection

3.1 Analog Inputs

The comparator non-inverting and inverting inputs are high-impedance CMOS inputs with low bias currents.

3.2 CS Digital Input

This is a CMOS, Schmitt-triggered input that places the part into a low power mode of operation.

3.3 Digital Outputs

The comparator outputs are CMOS, push-pull digital outputs. They are designed to be compatible with CMOS and TTL logic and are capable of driving heavy DC or capacitive loads.

3.4 Power Supply (V_{SS} and V_{DD})

The positive power supply pin (V_{DD}) is 1.6V to 5.5V higher than the negative power supply pin (V_{SS}). For normal operation, the other pins are at voltages between V_{SS} and V_{DD} .

Typically, these parts are used in a single (positive) supply configuration. In this case, V_{SS} is connected to ground and V_{DD} is connected to the supply. V_{DD} will need a local bypass capacitor (typically 0.01 μF to 0.1 μF) within 2 mm of the V_{DD} pin. These can share a bulk capacitor with nearby analog parts (within 100 mm), but it is not required.

4.0 APPLICATIONS INFORMATION

The MCP6541/1R/1U/2/3/4 family of push-pull output comparators are fabricated on Microchip's state-of-theart CMOS process. They are suitable for a wide range of applications requiring very low power consumption.

4.1 Comparator Inputs

4.1.1 PHASE REVERSAL

The MCP6541/1R/1U/2/3/4 comparator family uses CMOS transistors at the input. They are designed to prevent phase inversion when the input pins exceed the supply voltages. Figure 2-3 shows an input voltage exceeding both supplies with no resulting phase inversion.

4.1.2 INPUT VOLTAGE AND CURRENT LIMITS

The ESD protection on the inputs can be depicted as shown in Figure 4-1. This structure was chosen to protect the input transistors, and to minimize input bias current (IB). The input ESD diodes clamp the inputs when they try to go more than one diode drop below $V_{SS}.$ They also clamp any voltages that go too far above $V_{DD};$ their breakdown voltage is high enough to allow normal operation, and low enough to bypass ESD events within the specified limits.

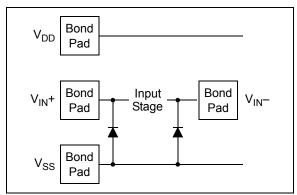


FIGURE 4-1: Simplified Analog Input ESD Structures.

In order to prevent damage and/or improper operation of these amplifiers, the circuits they are in must limit the currents (and voltages) at the V_{IN}^{+} and V_{IN}^{-} pins (see Absolute Maximum Ratings \dagger at the beginning of Section 1.0 "Electrical Characteristics"). Figure 4-3 shows the recommended approach to protecting these inputs. The internal ESD diodes prevent the input pins $(V_{IN}^{+}$ and $V_{IN}^{-})$ from going too far below ground, and the resistors R_1 and R_2 limit the possible current drawn out of the input pin. Diodes D_1 and D_2 prevent the input pin $(V_{IN}^{+}$ and $V_{IN}^{-})$ from going too far above V_{DD}^{-} . When implemented as shown, resistors R_1 and R_2 also limit the current through D_1 and D_2 .

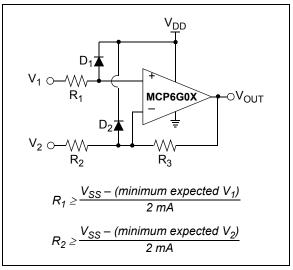


FIGURE 4-2: Protecting the Analog Inputs.

It is also possible to connect the diodes to the left of the resistors R_1 and $\mathsf{R}_2.$ In this case, the currents through the diodes D_1 and D_2 need to be limited by some other mechanism. The resistor then serves as in-rush current limiter; the DC current into the input pins (V_{IN}+ and V_{IN}-) should be very small.

A significant amount of current can flow out of the inputs when the common mode voltage (V_{CM}) is below ground (V_{SS}); see Figure 2-37. Applications that are high impedance may need to limit the useable voltage range.

4.1.3 NORMAL OPERATION

The input stage of this family of devices uses two differential input stages in parallel: one operates at low input voltages and the other at high input voltages. With this topology, the input voltage is 0.3V above V_{DD} and 0.3V below $V_{SS}.$ Therefore, the input offset voltage is measured at both V_{SS} - 0.3V and V_{DD} + 0.3V to ensure proper operation.

The MCP6541/1R/1U/2/3/4 family has internally-set hysteresis that is small enough to maintain input offset accuracy (<7 mV) and large enough to eliminate output chattering caused by the comparator's own input noise voltage (200 μ V_{D-D}). Figure 4-3 depicts this behavior.

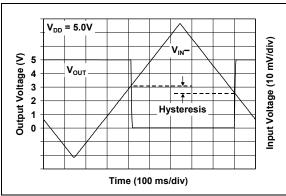


FIGURE 4-3: The MCP6541/1R/1U/2/3/4 comparators' internal hysteresis eliminates output chatter caused by input noise voltage.

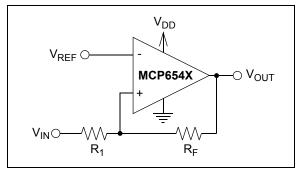
4.2 Push-Pull Output

The push-pull output is designed to be compatible with CMOS and TTL logic, while the output transistors are configured to give rail-to-rail output performance. They are driven with circuitry that minimizes any switching current (shoot-through current from supply-to-supply) when the output is transitioned from high-to-low, or from low-to-high (see Figures 2-15, 2-18, 2-32 through 2-36 for more information).

4.3 MCP6543 Chip Select (CS)

The MCP6543 is a single comparator with Chip Select (\overline{CS}). When \overline{CS} is pulled high, the total current consumption drops to 20 pA (typ.); 1 pA (typ.) flows through the \overline{CS} pin, 1 pA (typ.) flows through the output pin and 18 pA (typ.) flows through the V_{DD} pin, as shown in Figure 1-1. When this happens, the comparator output is put into a high-impedance state. By pulling \overline{CS} low, the comparator is enabled. If the \overline{CS} pin is left floating, the comparator will not operate properly. Figure 1-1 shows the output voltage and supply current response to a \overline{CS} pulse.

The internal \overline{CS} circuitry is designed to minimize glitches when cycling the \overline{CS} pin. This helps conserve power, which is especially important in battery-powered applications.


4.4 Externally Set Hysteresis

Greater flexibility in selecting hysteresis (or input trip points) is achieved by using external resistors.

Input offset voltage (V_{OS}) is the center (average) of the (input-referred) low-high and high-low trip points. Input hysteresis voltage (V_{HYST}) is the difference between the same trip points. Hysteresis reduces output chattering when one input is slowly moving past the other and thus reduces dynamic supply current. It also helps in systems where it is best not to cycle between states too frequently (e.g., air conditioner thermostatic control).

4.4.1 NON-INVERTING CIRCUIT

Figure 4-4 shows a non-inverting circuit for singlesupply applications using just two resistors. The resulting hysteresis diagram is shown in Figure 4-5.

FIGURE 4-4: Non-inverting circuit with hysteresis for single-supply.

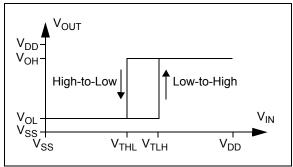


FIGURE 4-5: Hysteresis Diagram for the Non-Inverting Circuit.

The trip points for Figures 4-4 and 4-5 are:

EQUATION 4-1:

$$V_{TLH} = V_{REF} \left(1 + \frac{R_I}{R_F} \right) - V_{OL} \left(\frac{R_I}{R_F} \right)$$

$$V_{THL} = V_{REF} \left(1 + \frac{R_I}{R_F} \right) - V_{OH} \left(\frac{R_I}{R_F} \right)$$

 V_{TLH} = trip voltage from low to high V_{THL} = trip voltage from high to low

4.4.2 INVERTING CIRCUIT

Figure 4-6 shows an inverting circuit for single-supply using three resistors. The resulting hysteresis diagram is shown in Figure 4-7.

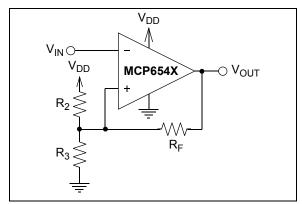


FIGURE 4-6: Hysteresis.

Inverting Circuit With

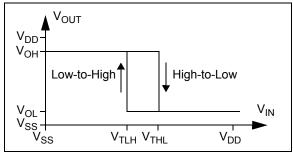


FIGURE 4-7: Hysteresis Diagram for the Inverting Circuit.

In order to determine the trip voltages (V_{THL} and V_{TLH}) for the circuit shown in Figure 4-6, R_2 and R_3 can be simplified to the Thevenin equivalent circuit with respect to V_{DD} , as shown in Figure 4-8.

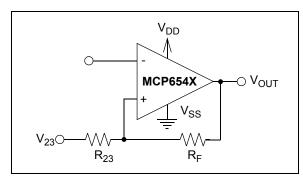


FIGURE 4-8:

Thevenin Equivalent Circuit.

Where:

$$R_{23} = \frac{R_2 R_3}{R_2 + R_3}$$

$$V_{23} = \frac{R_3}{R_2 + R_3} \times V_{DD}$$

Using this simplified circuit, the trip voltage can be calculated using the following equation:

EQUATION 4-2:

$$\begin{split} V_{THL} &= V_{OH} \bigg(\frac{R_{23}}{R_{23} + R_F} \bigg) + V_{23} \bigg(\frac{R_F}{R_{23} + R_F} \bigg) \\ V_{TLH} &= V_{OL} \bigg(\frac{R_{23}}{R_{23} + R_F} \bigg) + V_{23} \bigg(\frac{R_F}{R_{23} + R_F} \bigg) \end{split}$$

 V_{TLH} = trip voltage from low to high

 V_{THL} = trip voltage from high to low

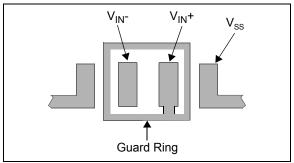
Figure 2-20 and Figure 2-23 can be used to determine typical values for V_{OH} and V_{OL} .

4.5 Bypass Capacitors

With this family of comparators, the power supply pin (V_{DD} for single supply) should have a local bypass capacitor (i.e., 0.01 μF to 0.1 μF) within 2 mm for good edge rate performance.

4.6 Capacitive Loads

Reasonable capacitive loads (e.g., logic gates) have little impact on propagation delay (see Figure 2-31). The supply current increases with increasing toggle frequency (Figure 2-19), especially with higher capacitive loads.


4.7 Battery Life

In order to maximize battery life in portable applications, use large resistors and small capacitive loads. Avoid toggling the output more than necessary. Do not use Chip Select (CS) frequently to conserve start-up power. Capacitive loads will draw additional power at start-up.

4.8 PCB Surface Leakage

In applications where low input bias current is critical, PCB (Printed Circuit Board) surface leakage effects need to be considered. Surface leakage is caused by humidity, dust or other contamination on the board. Under low humidity conditions, a typical resistance between nearby traces is $10^{12}\Omega$. A 5V difference would cause 5 pA of current to flow. This is greater than the MCP6541/1R/1U/2/3/4 family's bias current at 25°C (1 pA, typ.).

The easiest way to reduce surface leakage is to use a guard ring around sensitive pins (or traces). The guard ring is biased at the same voltage as the sensitive pin. An example of this type of layout is shown in Figure 4-9.

FIGURE 4-9: Example Guard Ring Layout for Inverting Circuit.

- 1. Inverting Configuration (Figures 4-6 and 4-9):
 - a. Connect the guard ring to the non-inverting input pin (V_{IN} +). This biases the guard ring to the same reference voltage as the comparator (e.g., $V_{DD}/2$ or ground).
 - b. Connect the inverting pin $(V_{IN}-)$ to the input pad without touching the guard ring.
- 2. Non-inverting Configuration (Figure 4-4):
 - a. Connect the non-inverting pin $(V_{IN}+)$ to the input pad without touching the guard ring.
 - b. Connect the guard ring to the inverting input pin (V_{IN}–).

4.9 Unused Comparators

An unused amplifier in a quad package (MCP6544) should be configured as shown in Figure 4-10. This circuit prevents the output from toggling and causing crosstalk. It uses the minimum number of components and draws minimal current (see Figure 2-15 and Figure 2-18).

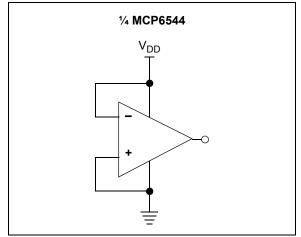


FIGURE 4-10: Unused Comparators.

4.10 Typical Applications

4.10.1 PRECISE COMPARATOR

Some applications require higher DC precision. An easy way to solve this problem is to use an amplifier (such as the MCP6041) to gain-up the input signal before it reaches the comparator. Figure 4-11 shows an example of this approach.

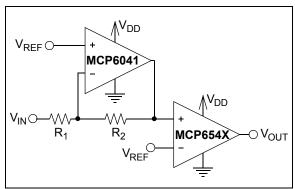


FIGURE 4-11: Precise Inverting Comparator.

4.10.2 WINDOWED COMPARATOR

Figure 4-12 shows one approach to designing a windowed comparator. The AND gate produces a logic '1' when the input voltage is between V_{RB} and V_{RT} (where $V_{RT} > V_{RB}$).

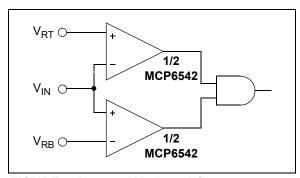


FIGURE 4-12: Windowed Comparator.

4.10.3 BISTABLE MULTI-VIBRATOR

A simple bistable multi-vibrator design is shown in Figure 4-13. V_{REF} needs to be between the power supplies (V_{SS} = GND and $V_{DD})$ to achieve oscillation. The output duty cycle changes with V_{REF}

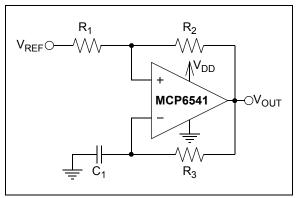
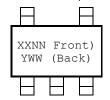
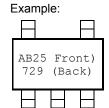
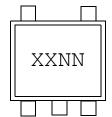



FIGURE 4-13: Bistable Multi-vibrator.

5.0 PACKAGING INFORMATION

5.1 Package Marking Information

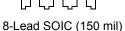

5-Lead SC-70 (MCP6541)

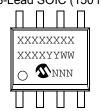

Device	I-Temp Code	E-Temp Code
MCP6541U	ABNN	Note 2

Note 1: I-Temp parts prior to March 2005 are marked "ABN"

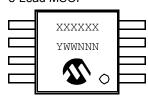
2: SC-70-5 E-Temp parts not available at this release of this data sheet.

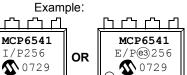
5-Lead SOT-23 (MCP6541, MCP6541R, MCP6541U)

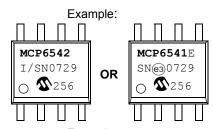

Device	I-Temp Code	E-Temp Code			
MCP6541	ABNN	GTNN			
MCP6541R	AGNN	GUNN			
MCP6541U	_	ATNN			
Note: Applies to 5-Lead SOT-23					

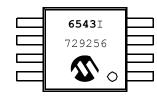

AB25

Example:


8-Lead PDIP (300 mil)



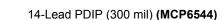



8-Lead MSOP

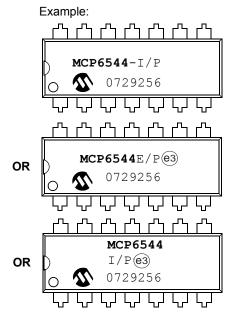
Example:

Legend: XX...X Customer-specific information

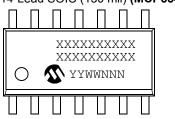
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

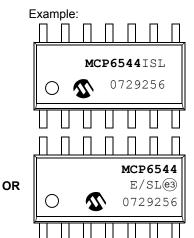

NNN Alphanumeric traceability code

(e3) Pb-free JEDEC designator for Matte Tin (Sn)


This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

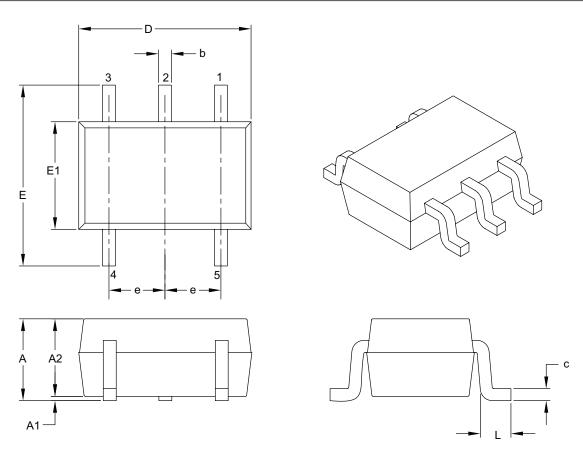
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.


Package Marking Information (Continued)



14-Lead SOIC (150 mil) (MCP6544)

14-Lead TSSOP (MCP6544)



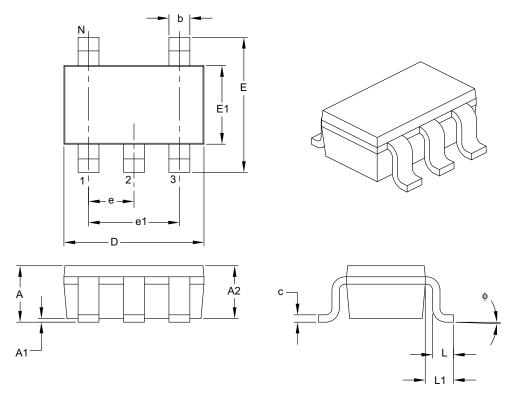
Example:

5-Lead Plastic Small Outline Transistor (LT) [SC70]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		5		
Pitch	е		0.65 BSC		
Overall Height	A	0.80	_	1.10	
Molded Package Thickness	A2	0.80	_	1.00	
Standoff	A1	0.00	_	0.10	
Overall Width	E	1.80	2.10	2.40	
Molded Package Width	E1	1.15	1.25	1.35	
Overall Length	D	1.80	2.00	2.25	
Foot Length	L	0.10	0.20	0.46	
Lead Thickness	С	0.08	_	0.26	
Lead Width	b	0.15	-	0.40	

Notes:


- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

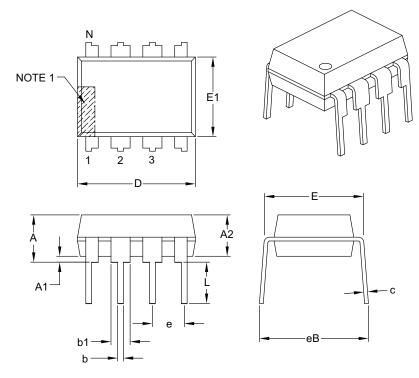
Microchip Technology Drawing C04-061B

5-Lead Plastic Small Outline Transistor (OT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
]	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		5		
Lead Pitch	е		0.95 BSC		
Outside Lead Pitch	e1		1.90 BSC		
Overall Height	A	0.90	_	1.45	
Molded Package Thickness	A2	0.89	_	1.30	
Standoff	A1	0.00	_	0.15	
Overall Width	E	2.20	_	3.20	
Molded Package Width	E1	1.30	_	1.80	
Overall Length	D	2.70	_	3.10	
Foot Length	L	0.10	_	0.60	
Footprint	L1	0.35	_	0.80	
Foot Angle	ф	0°	_	30°	
Lead Thickness	С	0.08	_	0.26	
Lead Width	b	0.20	_	0.51	

Notes


- 1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
- 2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

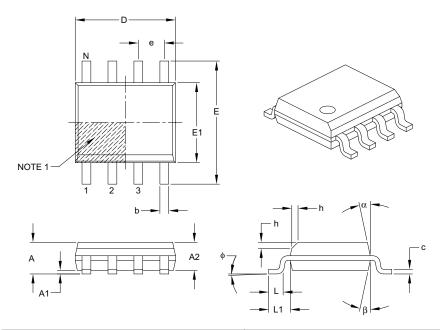
Microchip Technology Drawing C04-091B

8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		8		
Pitch	е		.100 BSC		
Top to Seating Plane	A	-	_	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	_	_	
Shoulder to Shoulder Width	E	.290	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.348	.365	.400	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	_	.430	

Notes:


- 1. Pin 1 visual index feature may vary, but must be located with the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

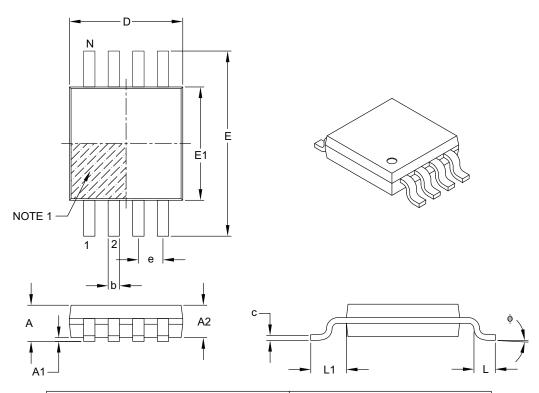
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N	8		
Pitch	е	1.27 BSC		
Overall Height	A	_	_	1.75
Molded Package Thickness	A2	1.25	_	_
Standoff §	A1	0.10	_	0.25
Overall Width	E	6.00 BSC		
Molded Package Width	E1	3.90 BSC		
Overall Length	D	4.90 BSC		
Chamfer (optional)	h	0.25 – 0.50		
Foot Length	L	0.40	_	1.27
Footprint	L1	1.04 REF		
Foot Angle	ф	0°	_	8°
Lead Thickness	С	0.17	-	0.25
Lead Width	b	0.31	_	0.51
Mold Draft Angle Top	α	5°	_	15°
Mold Draft Angle Bottom	β	5°	_	15°


Notes:

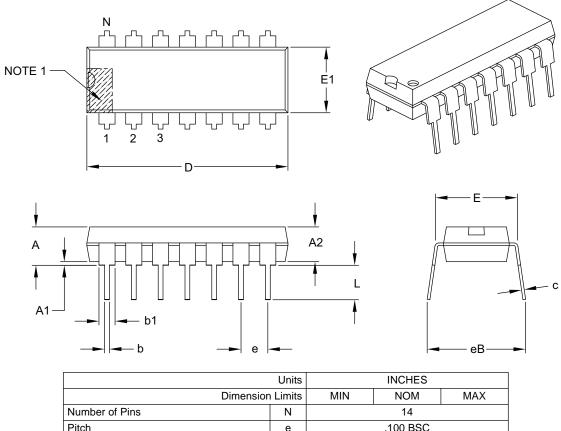
- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-057B

8-Lead Plastic Micro Small Outline Package (MS) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimen	sion Limits	MIN	NOM	MAX	
Number of Pins	N	8			
Pitch	е	0.65 BSC			
Overall Height	Α	1.10			
Molded Package Thickness	A2	0.75	0.85	0.95	
Standoff	A1	0.00	_	0.15	
Overall Width	E	4.90 BSC			
Molded Package Width	E1	3.00 BSC			
Overall Length	D	3.00 BSC			
Foot Length	L	0.40	0.60	0.80	
Footprint	L1	0.95 REF			
Foot Angle	ф	0°	_	8°	
Lead Thickness	С	0.08	_	0.23	
Lead Width	b	0.22	_	0.40	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

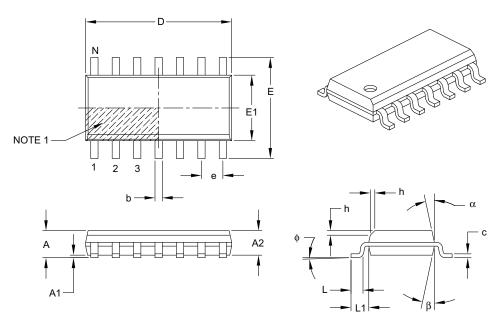
Microchip Technology Drawing C04-111B

14-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	N	14			
Pitch	е		.100 BSC		
Top to Seating Plane	Α	_	_	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	_	I	
Shoulder to Shoulder Width	E	.290	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.735	.750	.775	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	_	.430	

Notes:


- 1. Pin 1 visual index feature may vary, but must be located with the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-005B

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	14			
Pitch	е		1.27 BSC		
Overall Height	A	-	_	1.75	
Molded Package Thickness	A2	1.25 – –			
Standoff §	A1	0.10 – 0.25			
Overall Width	E	6.00 BSC			
Molded Package Width	E1	3.90 BSC			
Overall Length	D	8.65 BSC			
Chamfer (optional)	h	0.25 – 0.50			
Foot Length	L	0.40	_	1.27	
Footprint	L1	1.04 REF			
Foot Angle	ф	0°	_	8°	
Lead Thickness	С	0.17	_	0.25	
Lead Width	b	0.31	_	0.51	
Mold Draft Angle Top	α	5° – 15°			
Mold Draft Angle Bottom	β	5°	_	15°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-065B

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX	
Number of Pins	N	14			
Pitch	е	0.65 BSC			
Overall Height	Α	_	_	1.20	
Molded Package Thickness	A2	0.80	1.00	1.05	
Standoff	A1	0.05	_	0.15	
Overall Width	Е	6.40 BSC			
Molded Package Width	E1	4.30 4.40 4.50			
Molded Package Length	D	4.90	5.00	5.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0°	_	8°	
Lead Thickness	С	0.09	_	0.20	
Lead Width	b	0.19	_	0.30	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B

APPENDIX A: REVISION HISTORY

Revision F (September 2007)

- Corrected polarity of MCP6541U SOT-23-5 pin out diagram on front page.
- Section 5.1 "Package Marking Information": Updated package outline drawings per marcom.

Revision E (September 2006)

The following is the list of modifications:

- Added MCP6541U pinout for the SOT-23-5 package.
- Clarified Absolute Maximum Analog Input Voltage and Current Specifications.
- Added applications writeups on unused comparators.
- 4. Added disclaimer to package outline drawings.

Revision D (May 2006)

The following is the list of modifications:

- 1. Added E-temp parts.
- Changed V_{HYST} temperature specification to linear and quadratic temperature coefficients.
- 3. Changed specifications and plots for E-Temp.
- 4. Added Section 3.0 Pin Descriptions
- Corrected package marking (See Section 5.1 "Package Marking Information")
- 6. Added Appendix A: Revision History.

Revision C (September 2003)

Revision B (November 2002)

Revision A (March 2002)

· Original Release of this Document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NOX /XX			Exa	Examples:			
	 perature Pad ange	 ckage	a)	MCP6541T-I/LT:	Tape and Reel, Industrial Temperature, 5LD SC-70.		
Device:	MCP6541: MCP6541T:	Single Comparator Single Comparator (Tape and Reel)	b)	MCP6541T-I/OT:	Tape and Reel, Industrial Temperature, 5LD SOT-23.		
	MCP6541RT:	(SC-70, SOT-23, SOIC, MSOP) Single Comparator (Rotated - Tape and	c)	MCP6541-E/P:	Extended Temperature, 8LD PDIP.		
	MCP6541UT:	Reel) (SOT-23 only) Single Comparator (Tape and Reel) (SOT-23-5 is E-Temp only) Dual Comparator	d)	MCP6541RT-I/OT			
	MCP6542T:	Dual Comparator (Tape and Reel for SOIC and MSOP)	e)	MCP6541-E/SN:	Extended Temperature, 8LD SOIC.		
	MCP6543: MCP6543T: MCP6544: MCP6544T:	Single Comparator with CS Single Comparator with CS (Tape and Reel for SOIC and MSOP) Quad Comparator Quad Comparator	f)	MCP6541UT-E/O			
		(Tape and Reel for SOIC and TSSOP)	a)	MCP6542-I/MS:	Industrial Temperature, 8LD MSOP.		
Temperature Range:	I = -40°C E* = -40°C t * SC-70-5 E-Te		b)	MCP6542T-I/MS:	Tape and Reel, Industrial Temperature, 8LD MSOP.		
Package:	data sheet.	Package (SC-70), 5-lead	c)	MCP6542-I/P:	Industrial Temperature, 8LD PDIP.		
OT = Plastic MS = Plastic P = Plastic	Small Outline Transistor (SOT-23), 5-lead MSOP, 8-lead DIP (300 mil Body), 8-lead, 14-lead SOIC (150 mil Body), 8-lead	d)	MCP6542-E/SN:	Extended Temperature, 8LD SOIC.			
		SOIC (150 mil Body), 14-lead (MCP6544) TSSOP (4.4mm Body), 14-lead (MCP6544)	a)	MCP6543-I/SN:	Industrial Temperature, 8LD SOIC.		
			b)	MCP6543T-I/SN:	Tape and Reel, Industrial Temperature, 8LD SOIC.		
			c)	MCP6543-I/P:	Industrial Temperature, 8LD PDIP.		
			d)	MCP6543-E/SN:	Extended Temperature, 8LD SOIC.		
			a)	MCP6544T-I/SL:	Tape and Reel, Industrial Temperature, 14LD SOIC.		
			b)	MCP6544T-E/SL:	Tape and Reel, Extended Temperature, 14LD SOIC.		
			c)	MCP6544-I/P:	Industrial Temperature, 14LD PDIP.		
			d)	MCP6544T-E/ST:	Tape and Reel, Extended Temperature, 14LD TSSOP.		

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, Keeloq, Keeloq logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario, Canada

Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200

Fax: 852-2401-3431
China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533

Fax: 86-21-5407-5066 China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660

Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166

Fax: 81-45-471-6122 Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila Tel: 63-2-634-9065

Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870

Fax: 65-6334-8850 Taiwan - Hsin Chu

Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340 Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

06/25/07

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip: MCP6541T-E/LT

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru