

S-5741 B Series

125°C OPERATION HIGH-WITHSTAND VOLTAGE HIGH-SPEED BIPOLAR HALL EFFECT LATCH IC

© ABLIC Inc., 2016-2017

www.ablic.com

Rev.1.0_02

This IC, developed by CMOS technology, is a bipolar Hall effect latch IC with high-withstand voltage, high-speed detection and high-accuracy magnetic characteristics.

The output voltage changes when this IC detects the intensity level of magnetic flux density and a polarity change. Using this IC with a magnet makes it possible to detect the rotation status in various devices. This IC includes an output current limit circuit.

High-density mounting is possible by using the small SOT-23-3S package.

Due to its high-accuracy magnetic characteristics, this IC can make operation's dispersion in the system combined with magnet smaller.

ABLIC Inc. offers a "magnetic simulation service" that provides the ideal combination of magnets and our Hall effect ICs for customer systems. Our magnetic simulation service will reduce prototype production, development period and development costs. In addition, it will contribute to optimization of parts to realize high cost performance. For more information regarding our magnetic simulation service, contact our sales office.

Features

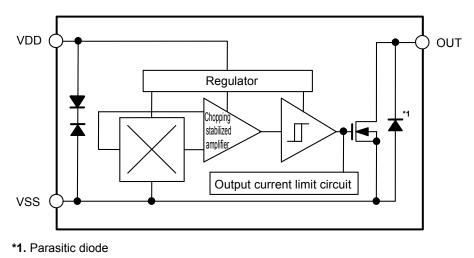
- Pole detection:
- Output logic^{*1}:
- Output form^{*1}:
- Magnetic sensitivity^{*1}:
- Chopping frequency:
- Output delay time:
- Power supply voltage range:
- Built-in regulator
- Built-in output current limit circuit
- Operation temperature range:
- Lead-free (Sn 100%), halogen-free

***1.** The option can be selected.

Applications

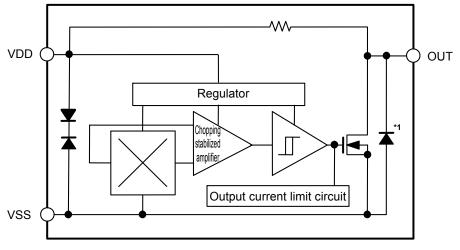
- Home appliance
- DC brushless motor
- Housing equipment
- Industrial equipment

Package


• SOT-23-3S

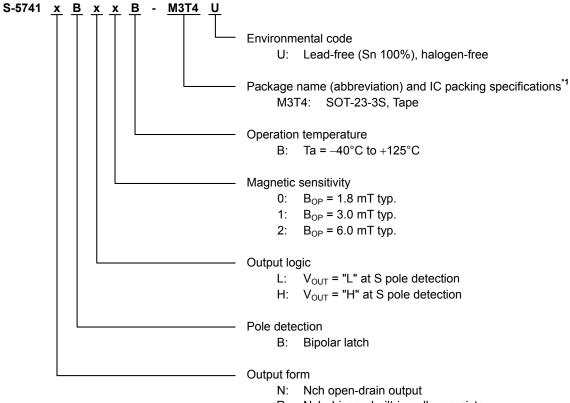
Bipolar latch V_{OUT} = "L" at S pole detection V_{OUT} = "H" at S pole detection Nch open-drain output Nch driver + built-in pull-up resistor B_{OP} = 1.8 mT typ. B_{OP} = 3.0 mT typ. B_{OP} = 6.0 mT typ. f_C = 500 kHz typ. t_D = 8.0 µs typ. V_{DD} = 3.5 V to 26.0 V

Ta = -40° C to $+125^{\circ}$ C


Block Diagrams

1. Nch open-drain output product

2. Nch driver + built-in pull-up resistor product



*1. Parasitic diode

Figure 2

Product Name Structure

1. Product name

R: Nch driver + built-in pull-up resistor

*1. Refer to the tape drawing.

2. Package

Table 1 Package Drawing Codes	
-------------------------------	--

Package Name	Dimension	Таре	Reel	
SOT-23-3S			MP003-D-R-SD	

125°C OPERATION HIGH-WITHSTAND VOLTAGE HIGH-SPEED BIPOLAR HALL EFFECT LATCH IC S-5741 B Series Rev.1.0_02

3. Product name list

Table 2								
Product Name ^{*1}	Output Form	Pole Detection	Output logic	Magnetic Sensitivity (B _{OP})				
S-5741NBL0B-M3T4U	Nch open-drain output	Bipolar latch	V _{OUT} = "L" at S pole detection	1.8 mT typ.				
S-5741NBL1B-M3T4U	Nch open-drain output	Bipolar latch	V _{OUT} = "L" at S pole detection	3.0 mT typ.				
S-5741NBL2B-M3T4U	Nch open-drain output	Bipolar latch	V _{OUT} = "L" at S pole detection	6.0 mT typ.				
S-5741RBL0B-M3T4U	Nch driver + built-in pull-up resistor	Bipolar latch	V _{OUT} = "L" at S pole detection	1.8 mT typ.				
S-5741RBL1B-M3T4U	Nch driver + built-in pull-up resistor	Bipolar latch	V _{OUT} = "L" at S pole detection	3.0 mT typ.				
S-5741RBL2B-M3T4U	Nch driver + built-in pull-up resistor	Bipolar latch	V _{OUT} = "L" at S pole detection	6.0 mT typ.				
S-5741RBH0B-M3T4U	Nch driver + built-in pull-up resistor	Bipolar latch	V _{OUT} = "H" at S pole detection	1.8 mT typ.				
S-5741RBH1B-M3T4U	Nch driver + built-in pull-up resistor	Bipolar latch	V _{OUT} = "H" at S pole detection	3.0 mT typ.				

Remark Please contact our sales office for products other than the above.

Pin Configuration

1. SOT-23-3S

Top view

	Table 5								
Pin No.	Symbol	Description							
1	VSS	GND pin							
2	VDD	Power supply pin							
3	OUT	Output pin							

Table 3

Figure 3

■ Absolute Maximum Ratings

Table 4

(Ta = +25°C	unless	otherwise	specified)
(1a - +2) = 0	unicss		specified

	Item	Symbol	Absolute Maximum Rating	Unit
Power supply vo	Itage	V _{DD}	$V_{\text{SS}} - 0.3$ to $V_{\text{SS}} + 28.0$	V
Output current		I _{OUT}	20	mA
Nch open-drain output product		V	$V_{SS}{-}0.3$ to $V_{SS}{+}28.0$	V
Output voltage	Nch driver + built-in pull-up resistor product	V _{OUT}	$V_{SS}-0.3$ to $V_{DD}+0.3$	V
Operation ambient temperature		T _{opr}	-40 to +125	°C
Storage tempera	ture	T _{stg}	-40 to +150	°C

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

■ Thermal Resistance Value

Table 5								
Item	Symbol	Conditi	on	Min.	Тур.	Max.	Unit	
Junction-to-ambient thermal resistance ^{*1}			Board A	_	200	-	°C/W	
	θ_{JA}		Board B	_	165	I	°C/W	
		SOT-23-3S	Board C	_	_	-	°C/W	
			Board D	_	_	-	°C/W	
			Board E	_	_	-	°C/W	

*1. Test environment: compliance with JEDEC STANDARD JESD51-2A

Remark Refer to "**■ Power Dissipation**" and **"Test Board**" for details.

125°C OPERATION HIGH-WITHSTAND VOLTAGE HIGH-SPEED BIPOLAR HALL EFFECT LATCH IC S-5741 B Series Rev.1.0_02

Table 6

Electrical Characteristics

		(Ta = +25°C, V _{DD} = 12.0 V,	V _{SS} = 0	V unles	s other	wise sp	ecified)
Item	Symbol	Condition		Тур.	Max.	Unit	Test Circuit
Power supply voltage	V_{DD}	_	3.5	12.0	26.0	V	-
Current concurrentian		Nch open-drain output product Average value	-	3.0	4.0	mA	1
Current consumption	I _{DD}	Nch driver + built-in pull-up resistor product Average value, V _{OUT} = "H"	_	3.0	4.0	mA	1
Output voltage	N	Nch open-drain output product Output transistor Nch, V _{OUT} = "L", I _{OUT} = 10 mA	_	_	0.4	V	2
Output voltage		Nch driver + built-in pull-up resistor product Output transistor Nch, V _{OUT} = "L", I _{OUT} = 10 mA	_	_	0.5	V	2
Output drop voltage	V _D	Nch driver + built-in pull-up resistor product V_{OUT} = "H", V_{D} = $V_{DD} - V_{OUT}$		_	20	mV	2
Leakage current	I _{LEAK}	Nch open-drain output product Output transistor Nch, V _{OUT} = "H" = 26.0 V		_	10	μA	3
Output limit current	I _{OM}	V _{OUT} = 12.0 V	22	-	70	mA	3
Output delay time	t _D	-	-	8.0	-	μS	_
Chopping frequency	f _C	_	-	500	-	kHz	-
Start up time	t _{PON}	-	-	20	-	μS	4
		Nch open-drain output product C = 20 pF, R = 820 Ω	-	_	2.0	μs	5
Output rise time		Nch driver + built-in pull-up resistor product C = 20 pF	-	_	6.0	μs	5
Output fall time	t _F	C = 20 pF, R = 820 Ω	-	-	2.0	μS	5
Pull-up resistor	R_L	Nch driver + built-in pull-up resistor product	7	10	13	kΩ	-

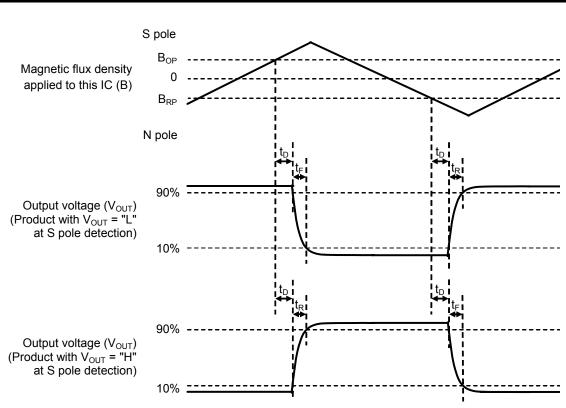


Figure 4 Operation Timing

Magnetic Characteristics

1. Product with $B_{OP} = 1.8 \text{ mT typ.}$

(Ta = $+25^{\circ}$ C, V_{DD} = 12.0 V, V_{SS} = 0 V unless otherwise specified) Item Symbol Condition Min. Тур. Max. Unit Test Circuit Operation point*1 S pole B_{OP} 0.3 1.8 3.3 mT 4 _ Release point^{*2} N pole -3.3 -1.8 mΤ 4 B_{RP} _ -0.3 Hysteresis width 4 B_{HYS} $B_{HYS} = B_{OP} - B_{RP}$ 3.6 mΤ

Table 7

2. Product with $B_{OP} = 3.0 \text{ mT typ.}$

Table 8

			(Ta = +25	°C, V _{DD} = 1	2.0 V, V _{SS}	= 0 V unle	ss other	wise specified)
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point ^{*1}	S pole	B _{OP}	-	1.5	3.0	4.5	mT	4
Release point ^{*2}	N pole	B _{RP}	_	-4.5	-3.0	-1.5	mT	4
Hysteresis width*3		B _{HYS}	B_{HYS} = $B_{OP} - B_{RP}$	_	6.0	_	mT	4

3. Product with $B_{OP} = 6.0 \text{ mT typ.}$

Table 9

			(1a = +25	°C, V _{DD} = 1	2.0 V, V _{SS}	= 0 V unle	ss other	wise specified)
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point ^{*1}	S pole	B _{OP}	-	3.0	6.0	9.0	mT	4
Release point ^{*2}	N pole	B _{RP}	-	-9.0	-6.0	-3.0	mT	4
Hysteresis width*3		B _{HYS}	$B_{HYS} = B_{OP} - B_{RP}$	-	12.0	-	mT	4

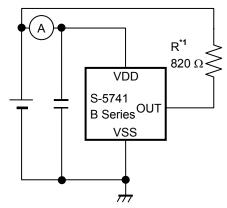
*1. B_{OP}: Operation point

 B_{OP} is the value of magnetic flux density when the output voltage (V_{OUT}) changes after the magnetic flux density applied to this IC by the magnet (S pole) is increased (by moving the magnet closer).

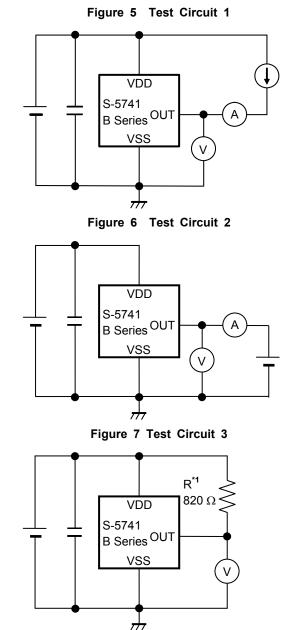
V_{OUT} retains the status until a magnetic flux density of the N pole higher than B_{RP} is applied.

*2. B_{RP}: Release point

 B_{RP} is the value of magnetic flux density when the output voltage (V_{OUT}) changes after the magnetic flux density applied to this IC by the magnet (N pole) is increased (by moving the magnet closer).

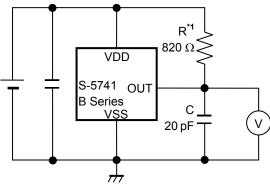

 V_{OUT} retains the status until a magnetic flux density of the S pole higher than B_{OP} is applied.

*3. B_{HYS}: Hysteresis width


 B_{HYS} is the difference of magnetic flux density between B_{OP} and B_{RP} .

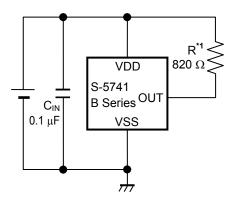
Remark The unit of magnetic flux density mT can be converted by using the formula 1 mT = 10 Gauss.

Test Circuits



*1. Resistor (R) is unnecessary for Nch driver + built-in pull-up resistor product.

*1. Resistor (R) is unnecessary for Nch driver + built-in pull-up resistor product.


Figure 8 Test Circuit 4

*1. Resistor (R) is unnecessary for Nch driver + built-in pull-up resistor product.

Standard Circuit

*1. Resistor (R) is unnecessary for Nch driver + built-in pull-up resistor product.

Figure 10

Caution The above connection diagram and constant will not guarantee successful operation. Perform thorough evaluation using the actual application to set the constant.

Operation

1. Direction of applied magnetic flux

This IC detects the magnetic flux density which is vertical to the marking surface. **Figure 11** shows the direction in which magnetic flux is being applied.

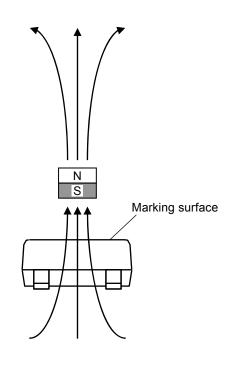


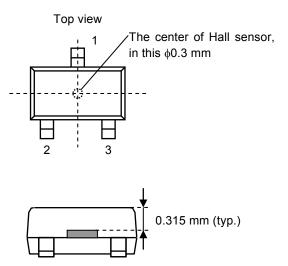
Figure 11

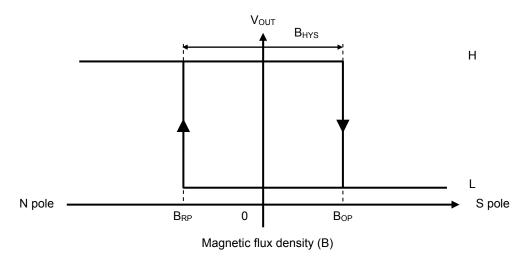
2. Position of Hall sensor

Figure 12 shows the position of Hall sensor.

The center of this Hall sensor is located in the area indicated by a circle, which is in the center of a package as described below.

The following also shows the distance (typ. value) between the marking surface and the chip surface of a package.




Figure 12

3. Basic operation

This IC changes the output voltage (V_{OUT}) according to the level of the magnetic flux density and a polarity change (N pole or S pole) applied by a magnet.

3.1 Product with V_{OUT} = "L" at S pole detection

When the magnetic flux density of the S pole perpendicular to the marking surface exceeds the operation point (B_{OP}) after the S pole of a magnet is moved closer to the marking surface of this IC, V_{OUT} changes from "H" to "L". When the N pole of a magnet is moved closer to the marking surface of this IC and the magnetic flux density of the N pole is higher than the release point (B_{RP}), V_{OUT} changes from "L" to "H". In case of $B_{RP} < B < B_{OP}$, V_{OUT} retains the status. **Figure 13** shows the relationship between the magnetic flux density and V_{OUT} .

3. 2 Product with V_{OUT} = "H" at S pole detection

When the magnetic flux density of the S pole perpendicular to the marking surface exceeds B_{OP} after the S pole of a magnet is moved closer to the marking surface of this IC, V_{OUT} changes from "L" to "H". When the N pole of a magnet is moved closer to the marking surface of this IC and the magnetic flux density of the N pole is higher than B_{RP} , V_{OUT} changes from "H" to "L". In case of $B_{RP} < B < B_{OP}$, V_{OUT} retains the status. **Figure 14** shows the relationship between the magnetic flux density and V_{OUT} .

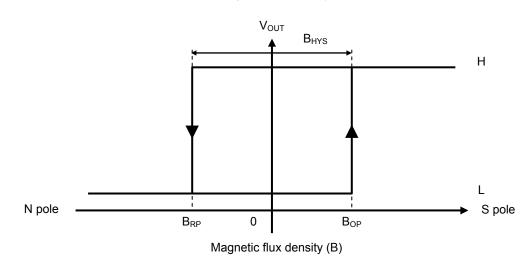
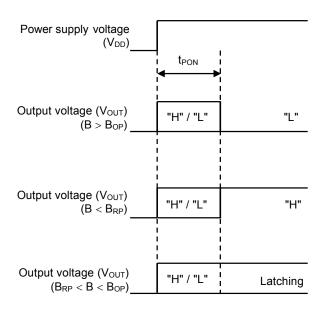


Figure 14

4. Timing chart

Figure 15 shows the operation timing at power-on.

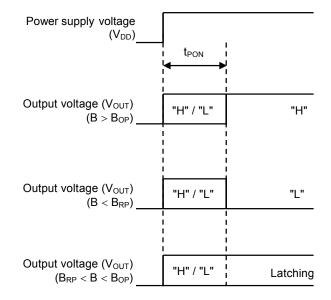

The initial output voltage at rising of power supply voltage (V_{DD}) is either "H" or "L".

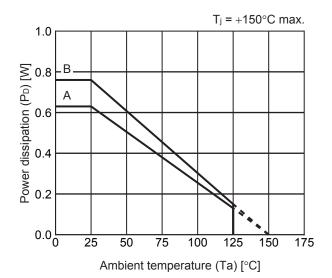
In case of $B > B_{OP}$ (operation point) or $B < B_{RP}$ (release point) at the time when the start up time (t_{PON}) is passed after rising of V_{DD}, this IC outputs V_{OUT} according to the applied magnetic flux density.

In case of $B_{RP} < B < B_{OP}$ at the time when t_{PON} is passed after rising of V_{DD} , this IC maintains the initial output voltage.

Product with V_{OUT} = "L" at S pole detection

Product with V_{OUT} = "H" at S pole detection




Figure 15

Precautions

- If the impedance of the power supply is high, the IC may malfunction due to a supply voltage drop caused by feedthrough current. Take care with the pattern wiring to ensure that the impedance of the power supply is low.
- Note that the IC may malfunction if the power supply voltage rapidly changes. When the IC is used under the environment where the power supply voltage rapidly changes, it is recommended to judge the output voltage of the IC by reading it multiple times.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- Although this IC has a built-in output current limit circuit, it may suffer physical damage such as product deterioration under the environment where the absolute maximum ratings are exceeded.
- The application conditions for the power supply voltage, the pull-up voltage, and the pull-up resistor should not exceed the power dissipation.
- Large stress on this IC may affect on the magnetic characteristics. Avoid large stress which is caused by the handling during or after mounting the IC on a board.
- ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.

Power Dissipation

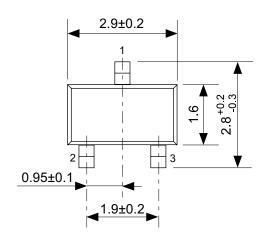
SOT-23-3S

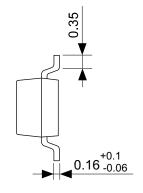
Board	Power Dissipation (P _D)
А	0.63 W
В	0.76 W
С	_
D	_
E	_

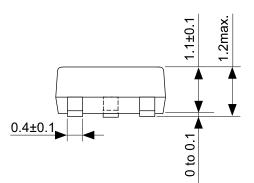
SOT-23-3/3S/5/6 Test Board

) IC Mount Area

(1) Board A

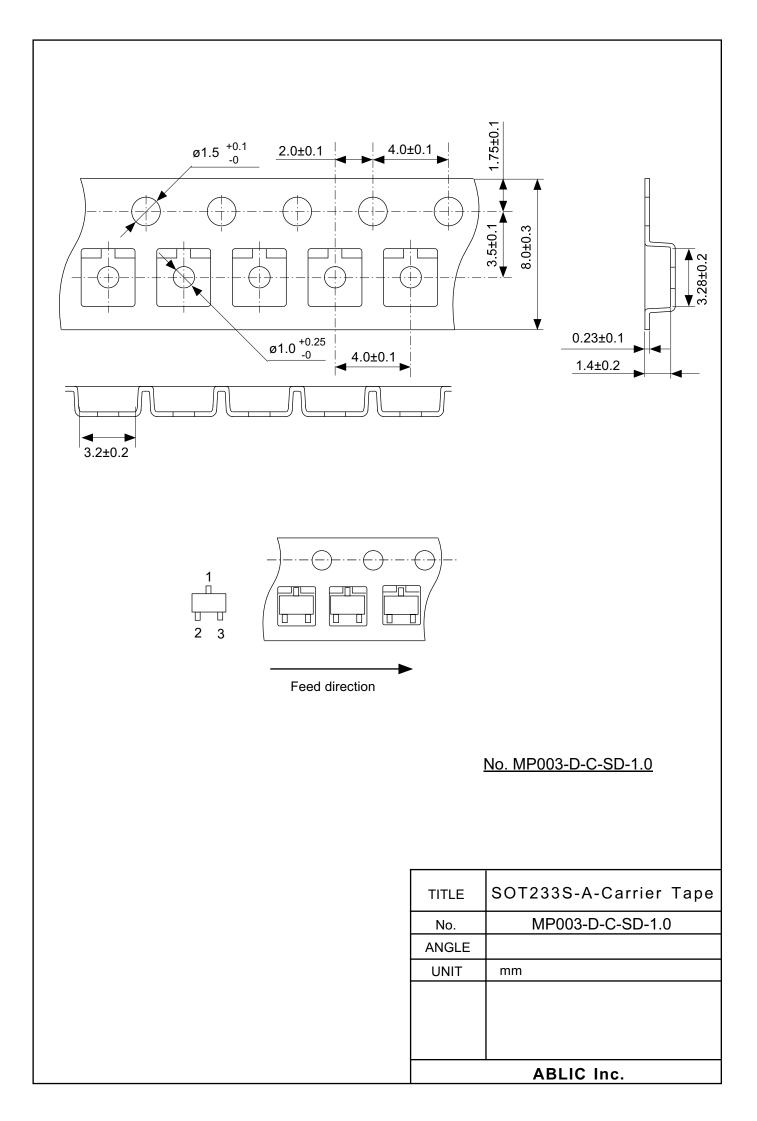

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		2
	1	Land pattern and wiring for testing: t0.070
Copper foil layer [mm]	2	-
	3	-
	4	74.2 x 74.2 x t0.070
Thermal via		-

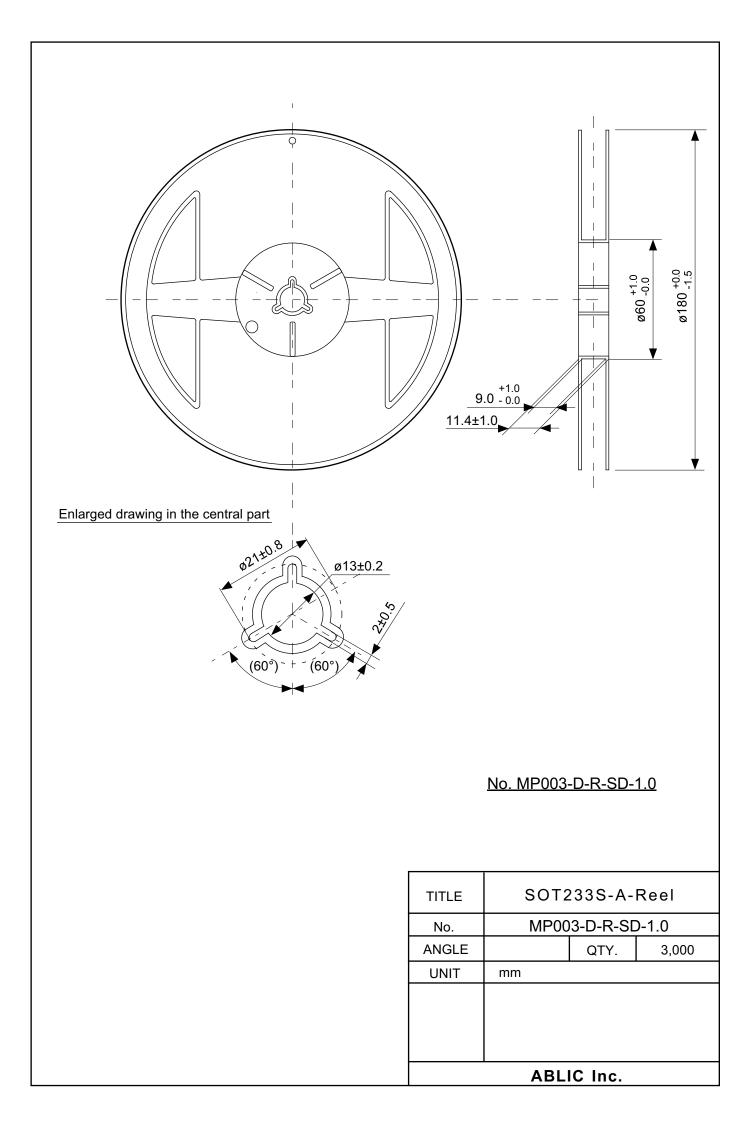

(2) Board B



Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070
	2	74.2 x 74.2 x t0.035
	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

No. SOT23x-A-Board-SD-2.0





No. MP003-D-P-SD-1.1

TITLE	SOT233S-A-PKG Dimensions	
No.	MP003-D-P-SD-1.1	
ANGLE	\oplus	
UNIT	mm	
ABLIC Inc.		

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.
- 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.
- 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.
- 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.
- 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.

The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility.

- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc.
- 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative.
- 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.

2.4-2019.07

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ABLIC: <u>S-5741NBH1B-M3T4U</u>

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru