JUNE 2007

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER

GENERAL DESCRIPTION

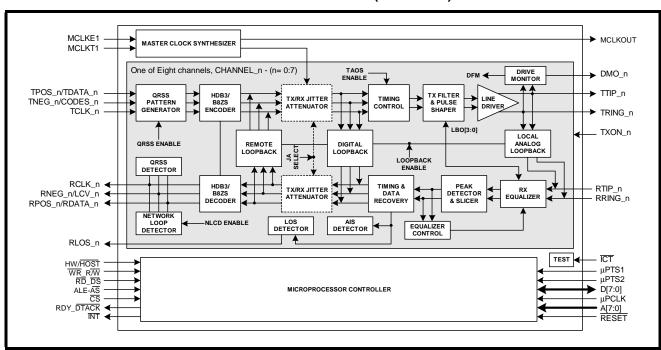
The XRT83SL38 is a fully integrated Octal (eight channel) short-haul line interface unit for T1 (1.544Mbps) 100Ω , E1 (2.048Mbps) 75Ω or 120Ω , or J1 110Ω applications.

In T1 applications, the XRT83SL38 can generate five transmit pulse shapes to meet the short-haul Digital Cross-Connect (DSX-1) template requirements. It also provides programmable transmit generators for each channel that can be used for performance output pulse shaping allowing improvement over a wide variety of conditions (The arbitrary pulse generators are available in both T1 and E1 modes).

The XRT83SL38 provides both a parallel **Host** microprocessor interface as well as a **Hardware** mode for programming and control.

Both the B8ZS and HDB3 encoding and decoding functions are selectable as well as AMI. An on-chip crystal-less jitter attenuator with a 32 or 64 bit FIFO can be placed either in the receive or the transmit path with loop bandwidths of less than 3Hz. The

XRT83SL38 provides a variety of loop-back and diagnostic features as well as transmit driver short circuit detection and receive loss of signal monitoring. It supports internal impedance matching for $75\Omega,\,100\Omega,\,110\Omega$ and 120Ω for both transmitter and receiver. In the absence of the power supply, the transmit outputs and receive inputs are tri-stated allowing for redundancy applications. The chip includes an integrated programmable clock multiplier that can synthesize T1 or E1 master clocks from a variety of external clock sources.


REV. 1.0.2

APPLICATIONS

- T1 Digital Cross-Connects (DSX-1)
- ISDN Primary Rate Interface
- CSU/DSU E1/T1/J1 Interface
- T1/E1/J1 LAN/WAN Routers
- Public switching Systems and PBX Interfaces
- T1/E1/J1 Multiplexer and Channel Banks

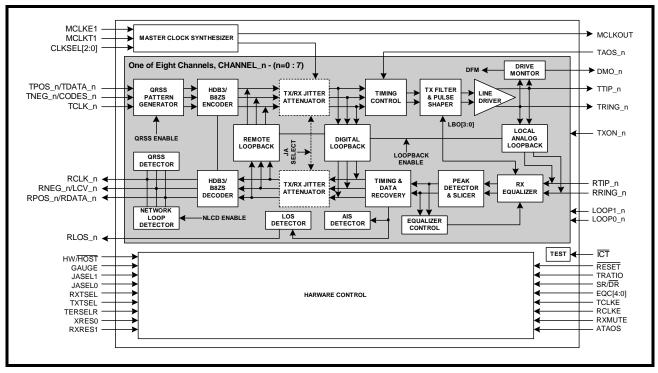

Features (See Page 2)

FIGURE 1. BLOCK DIAGRAM OF THE XRT83SL38 T1/E1/J1 LIU (HOST MODE)

RFV 102

FIGURE 2. BLOCK DIAGRAM OF THE XRT83SL38 T1/E1/J1 LIU (HARDWARE MODE)

FEATURES

- Fully integrated eight channel short-haul transceivers for E1,T1 or J1 applications
- Programable Transmit Pulse Shaper for E1,T1 or J1 short-haul interfaces
- Five fixed transmit pulse settings for T1 short-haul applications plus a fully programmable waveform generator for transmit output pulse shaping available for both T1 and E1 modes
- Selectable receiver sensitivity from 0 to 36dB cable loss
- Receive monitor mode handles 0 to 29dB resistive attenuation along with 0 to 6dB of cable attenuation for E1 and 0 to 3dB of cable attenuation for T1 modes
- Supports 75 Ω and 120 Ω (E1), 100 Ω (T1) and 110 Ω (J1) applications
- Internal and/or external impedance matching for 75 Ω , 100 Ω , 110 Ω and 120 Ω
- Tri-State transmit output and receive input capability for redundancy applications
- Provides High Impedance for Tx and Rx during power off
- Transmit return loss meets or exceeds ETSI 300-166 standard
- On-chip digital clock recovery circuit for high input jitter tolerance
- Crystal-less digital jitter attenuator with 32-bit or 64-bit FIFO selectable either in transmit or receive path
- On-chip frequency multiplier generates T1 or E1 Master clocks from variety of external clock sources
- High receiver interference immunity
- On-chip transmit short-circuit protection and limiting, and driver fail monitor output (DMO)
- Receive loss of signal (RLOS) output
- On-chip HDB3/B8ZS/AMI encoder/decoder functions
- QRSS pattern generator and detection for testing and monitoring

- Error and Bipolar Violation Insertion and Detection
- Receiver Line Attenuation Indication Output in 1dB steps
- Network Loop-Code Detection for automatic Loop-Back Activation/Deactivation
- Transmit All Ones (TAOS) and In-Band Network Loop Up and Down code generators
- Supports Local Analog, Remote, Digital and Dual Loop-Back Modes
- Meets or exceeds T1 and E1 short-haul network access specifications in ITU G.703, G.775, G.736 and G.823; TR-TSY-000499; ANSI T1.403 and T1.408; ETSI 300-166 and AT&T Pub 62411
- Supports both Hardware and Host (parallel Microprocessor) interface for programming
- Programmable Interrupt
- Low power dissipation
- Logic inputs accept either 3.3V or 5V levels
- Single 3.3V Supply Operation
- 225 ball BGA package
- -40°C to +85°C Temperature Range

ORDERING INFORMATION

PART NUMBER	PACKAGE	OPERATING TEMPERATURE RANGE
XRT83SL38IB	225 Ball BGA	-40°C to +85°C

REV. 1.0.2

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

RRING_3 RRING_7 RRING_6 RVDD_7 RTIP_3 GAUGE NC12 NC3 NC4 NC11 NC9 RTIP 9 BIAS BIAS RGND_ RGND RGND RGND_ JVDV. DGND 17 AGND_ AVDD_ TCLK_6 RCLK_2 TTIP_7 RCLK_7 RVDDD RXON TRING TGND TGND N Ę Ę PR R TRING_6 J D TVDD_ DGND TCLK_3 TPOS_3 TPOS_7 DMO_7 TNEG_7 XON_4 LXON_0 TNEG_2 TXON_7 DMO_3 D_NOXT **RXMUTE** CT 2 TERSELO TERSEL1 A[4] 4[3] 4[6] 4[5] DVDD_PDR DVDD_PDR HOST RXRES1 A[1] 4[2] **KRT83SL38 225 Ball BGA** ≱ (Top View) R H. R [2] DVDD DGND_ DVDD PDR R DGND_[D[4] DGND RM DS [0] SS [7] D[5] RD, WR TAOS_0 $RDY_{\overline{\ }}$ TCLK_5 DMO_0 RVDD TCLK_0 TVDD_0 DMO_1 TTIP_1 GNDPLL DR RLOS_ TVDD RNEG TPOS DVDD SR RCLK_0 TGND_0 /DDPLL_1 TCLK_4 RGND_1 RVDD_5 TCLK_1 GNDPLL RCLK_ TGND TGND RLOS_ DR TRING_O RGND_0 TGND_1 RVDD_4 RNEG_1 RRING_0 **ACLKOUT** MCLKE1 RTIP_4 RTIP_1 RRING NC2 <u>S</u> RTIP NC7 RTIP

TABLE OF CONTENTS

GENERAL DESCRIPTION	1
APPLICATIONS	
Figure 1. Block Diagram of the XRT83SL38 T1/E1/J1 LIU (Host Mode)	1
Figure 2. Block Diagram of the XRT83SL38 T1/E1/J1 LIU (Hardware Mode)	2
FEATURES	2
ORDERING INFORMATION	3
TABLE OF CONTENTS	
PIN DESCRIPTION BY FUNCTION	6
Receive Sections	
Transmitter Sections	
MICROPROCESSOR INTERFACE	
JITTER ATTENUATOR	
CLOCK SYNTHESIZER	
ALARM FUNCTIONS/REDUNDANCY SUPPORT	
POWER AND GROUND	
PINS ONLY AVAILABLE IN BGA PACKAGE	
FUNCTIONAL DESCRIPTION	
Master Clock Generator	
Figure 3. Two Input Clock Source	
Figure 4. One Input Clock Source	
TABLE 1: MASTER CLOCK GENERATOR	
RECEIVER	
RECEIVER INPUT	
RECEIVE MONITOR MODE	
RECEIVER LOSS OF SIGNAL (RLOS)	
Figure 5. Simplified Diagram of -15dB T1/E1 Short Haul Mode and RLOS Condition	
Figure 6. Simplified Diagram of -29dB T1/E1 Gain Mode and RLOS Condition	
Receive HDB3/B8ZS Decoder	
RECOVERED CLOCK (RCLK) SAMPLING EDGE	
Figure 7. Receive Clock and Output Data Timing	
JITTER ATTENUATOR	
GAPPED CLOCK (JA MUST BE ENABLED IN THE TRANSMIT PATH)	
TABLE 2: MAXIMUM GAP WIDTH FOR MULTIPLEXER/MAPPER APPLICATIONS	
ARBITRARY PULSE GENERATOR FOR T1 AND E1	28
Figure 8. Arbitrary Pulse Segment Assignment	28
TRANSMITTER	28
DIGITAL DATA FORMAT	28
TRANSMIT CLOCK (TCLK) SAMPLING EDGE	28
Figure 9. Transmit Clock and Input Data Timing	29
TRANSMIT HDB3/B8ZS ENCODER	
TABLE 3: EXAMPLES OF HDB3 ENCODING	29
TABLE 4: EXAMPLES OF B8ZS ENCODING	
Driver Failure Monitor (DMO)	
TRANSMIT PULSE SHAPER & LINE BUILD OUT (LBO) CIRCUIT	
TABLE 5: RECEIVE EQUALIZER CONTROL AND TRANSMIT LINE BUILD-OUT SETTINGS	
TRANSMIT AND RECEIVE TERMINATIONS	31
RECEIVER (CHANNELS 0 - 7)	
Internal Receive Termination Mode	31
TABLE 6: RECEIVE TERMINATION CONTROL	
Figure 10. Simplified Diagram for the Internal Receive and Transmit Termination Mode	
TABLE 7: RECEIVE TERMINATIONS	
Figure 11. Simplified Diagram for T1 in the External Termination Mode (RXTSEL= 0)	33

Experience Our Connectivity...

Experience <i>Our</i>	Connectivity.
OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR R	EV. 1.0.2
Figure 12. Simplified Diagram for E1 in External Termination Mode (RXTSEL= 0)	34
TRANSMITTER (Channels 0 - 7)	34
Transmit Termination Mode	
TABLE 8: TRANSMIT TERMINATION CONTROL	
TABLE 9: TERMINATION SELECT CONTROL	
External Transmit Termination Mode	
TABLE 10: TRANSMIT TERMINATION CONTROL	
TABLE 11: TRANSMIT TERMINATIONS	
REDUNDANCY APPLICATIONS	
TYPICAL REDUNDANCY SCHEMES	
Figure 13. Simplified Block Diagram of the Transmit Section for 1:1 & 1+1 Redundancy	
Figure 14. Simplified Block Diagram - Receive Section for 1:1 and 1+1 Redundancy	
Figure 15. Simplified Block Diagram - Transmit Section for N+1 Redundancy	
Figure 16. Simplified Block Diagram - Receive Section for N+1 Redundancy	
PATTERN TRANSMIT AND DETECT FUNCTION	40
TABLE 12: PATTERN TRANSMISSION CONTROL	
TRANSMIT ALL ONES (TAOS)	
NETWORK LOOP CODE DETECTION AND TRANSMISSION	
TABLE 13: LOOP-CODE DETECTION CONTROL	
TRANSMIT AND DETECT QUASI-RANDOM SIGNAL SOURCE (TDQRSS)	
LOOP-BACK MODES	
TABLE 14: LOOP-BACK CONTROL IN HARDWARE MODE	
TABLE 15: LOOP-BACK CONTROL IN HOST MODE	
LOCAL ANALOG LOOP-BACK (ALOOP)	
Figure 17. Local Analog Loop-back signal flow	
REMOTE LOOP-BACK (RLOOP)	43
Figure 18. Remote Loop-back mode with jitter attenuator selected in receive path	
Figure 19. Remote Loop-back mode with jitter attenuator selected in Transmit path	
DIGITAL LOOP-BACK (DLOOP)	
Figure 20. Digital Loop-back mode with jitter attenuator selected in Transmit path	
DUAL LOOP-BACK	
Figure 21. Signal flow in Dual loop-back mode	45
MICROPROCESSOR PARALLEL INTERFACE	
TABLE 16: MICROPROCESSOR INTERFACE SIGNAL DESCRIPTION	
MICROPROCESSOR REGISTER TABLES	
TABLE 17: MICROPROCESSOR REGISTER ADDRESS	
TABLE 18: MICROPROCESSOR REGISTER BIT DESCRIPTION	
MICROPROCESSOR REGISTER DESCRIPTIONS	
TABLE 19: MICROPROCESSOR REGISTER #0, BIT DESCRIPTION	
TABLE 20: MICROPROCESSOR REGISTER #1, BIT DESCRIPTION	
TABLE 21: MICROPROCESSOR REGISTER #2, BIT DESCRIPTION	
TABLE 22: MICROPROCESSOR REGISTER #3, BIT DESCRIPTION	
TABLE 23: MICROPROCESSOR REGISTER #4, BIT DESCRIPTION	
TABLE 24: MICROPROCESSOR REGISTER #5, BIT DESCRIPTION	
TABLE 25: MICROPROCESSOR REGISTER #6, BIT DESCRIPTION	
TABLE 26: MICROPROCESSOR REGISTER #7, BIT DESCRIPTION	
TABLE 27: MICROPROCESSOR REGISTER #8, BIT DESCRIPTION	
TABLE 28: MICROPROCESSOR REGISTER #9, BIT DESCRIPTION	
TABLE 29: MICROPROCESSOR REGISTER #3, BIT DESCRIPTION	
TABLE 29: MICROPROCESSOR REGISTER #10, Bit Description	
TABLE 30: MICROPROCESSOR REGISTER #11, Bit Description	
TABLE 31: MICROPROCESSOR REGISTER #12, Bit Description	
TABLE 33: MICROPROCESSOR REGISTER #13, BIT DESCRIPTION	
TABLE 33: MICROPROCESSOR REGISTER #14, BIT DESCRIPTION	
TABLE 35: MICROPROCESSOR REGISTER #13, BIT DESCRIPTION	
TABLE 99. MILOTOF TOOLSOON TREGISTEN #120, DIT DESCRIPTION	07

CLOCK SELECT REGISTER	68
Figure 22. Register 0x81h Sub Registers	. 68
TABLE 36: MICROPROCESSOR REGISTER #129, BIT DESCRIPTION	. 69
TABLE 37: MICROPROCESSOR REGISTER #130, BIT DESCRIPTION	. 70
TABLE 38: MICROPROCESSOR REGISTER #131, BIT DESCRIPTION	. 72
TABLE 39: MICROPROCESSOR REGISTER #192, BIT DESCRIPTION	
ELECTRICAL CHARACTERISTICS	74
Table 40: Absolute Maximum Ratings	
TABLE 41: DC DIGITAL INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS	. 74
TABLE 42: XRT83SL38 POWER CONSUMPTION	. 74
TABLE 43: E1 RECEIVER ELECTRICAL CHARACTERISTICS	. <i>7</i> 5
TABLE 44: T1 RECEIVER ELECTRICAL CHARACTERISTICS	_
TABLE 45: E1 TRANSMIT RETURN LOSS REQUIREMENT	_
TABLE 46: E1 TRANSMITTER ELECTRICAL CHARACTERISTICS	
TABLE 47: T1 TRANSMITTER ELECTRICAL CHARACTERISTICS	
Figure 23. ITU G.703 Pulse Template	
TABLE 48: TRANSMIT PULSE MASK SPECIFICATION	
Figure 24. DSX-1 Pulse Template (normalized amplitude)	. 7 9
TABLE 49: DSX1 INTERFACE ISOLATED PULSE MASK AND CORNER POINTS	
Table 50: AC Electrical Characteristics	
Figure 25. Transmit Clock and Input Data Timing	
Figure 26. Receive Clock and Output Data Timing	
MICROPROCESSOR INTERFACE I/O TIMING	
Intel Interface Timing - Asynchronous	
Figure 27. Intel Asynchronous Programmed I/O Interface Timing	
TABLE 51: ASYNCHRONOUS MODE 1 - INTEL 8051 AND 80188 INTERFACE TIMING	
Motorola Asychronous Interface Timing	
Figure 28. Motorola 68K Asynchronous Programmed I/O Interface Timing	
TABLE 52: ASYNCHRONOUS - MOTOROLA 68K - INTERFACE TIMING SPECIFICATION	
Figure 29. Microprocessor Interface Timing - Reset Pulse Width	
225 BALL PLASTIC BALL GRID ARRAY (BOTTOM VIEW)	
(19.0 x 19.0 x 1.0MM)	
ORDERING INFORMATION	. 85 88
R E VI.31/ JIV.3	an

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

PIN DESCRIPTION BY FUNCTION

RECEIVE SECTIONS

SIGNAL NAME	LEAD#	TYPE	DESCRIPTION
RLOS_0	C3	0	Receiver Loss of Signal for Channel_ 0:
			This output signal goes "High" for at least one RCLK_0 cycle to indicate loss of signal at the receive 0 input. RLOS will remain "High" for the entire duration of the Loss of Signal detected by the receiver logic.
			SEE"RECEIVER LOSS OF SIGNAL (RLOS)" ON PAGE 25.
RLOS_1	H4		Receiver Loss of Signal for Channel _1
RLOS_2	H15		Receiver Loss of Signal for Channel _2
RLOS_3	A16		Receiver Loss of Signal for Channel _3
RLOS_4	V3		Receiver Loss of Signal for Channel _4
RLOS_5	L2		Receiver Loss of Signal for Channel_ 5
RLOS_6	J15		Receiver Loss of Signal for Channel _6
RLOS_7	T15		Receiver Loss of Signal for Channel _7
RCLK_0	В3	0	Receiver Clock Output for Channel _0
RCLK_1	Н3		Receiver Clock Output for Channel _1
RCLK_2	H16		Receiver Clock Output for Channel _2
RCLK_3	A17		Receiver Clock Output for Channel _3
RCLK_4	U3		Receiver Clock Output for Channel _4
RCLK_5	L3		Receiver Clock Output for Channel _5
RCLK_6	M15		Receiver Clock Output for Channel _6
RCLK_7	U16		Receiver Clock Output for Channel _7
RNEG_0	A2	0	Receiver Negative Data Output for Channel_0 - Dual-Rail mode
			This signal is the receive negative-rail output data.
LCV_0	A2		Line Code Violation Output for Channel_0 - Single-Rail mode
			This signal goes "High" for one RCLK_0 cycle to indicate a code violation is detected in the received data of Channel _0. If AMI coding is selected, every bipolar violation received will cause this pin to go "High".
RNEG_1	H2		Receiver Negative Data Output for Channel _1
LCV_1			Line Code Violation Output for Channel _1
RNEG_2	H18		Receiver Negative Data Output for Channel _2
LCV_2			Line Code Violation Output for Channel _2
RNEG_3	B16		Receiver Negative Data Output for Channel _3
LCV_3			Line Code Violation Output for Channel _3
RNEG_4	T4		Receiver Negative Data Output for Channel _4
LCV_4			Line Code Violation Output for Channel _4
RNEG_5	M4		Receiver Negative Data Output for Channel _5
LCV_5			Line Code Violation Output for Channel _5
RNEG_6	M16		Receiver Negative Data Output for Channel _6
LCV_6			Line Code Violation Output for Channel _6
RNEG_7	V17		Receiver Negative Data Output for Channel _7
LCV_7			Line Code Violation Output for Channel _7

SIGNAL NAME	LEAD#	ТҮРЕ	DESCRIPTION	
RPOS_0	B2	0	Receiver Positive Data Output for Channel _0 - Dual-Rail mode	
			This signal is the receive positive-rail output data sent to the Framer.	
			Receiver NRZ Data Output for Channel _0 - Single-Rail mode	
RDATA_0	B2		This signal is the receive output data.	
			Receiver Positive Data Output for Channel _1	
RPOS_1	G2		Receiver NRZ Data Output for Channel _1	
RDATA_1			Receiver Positive Data Output for Channel _2	
RPOS_2	D15		Receiver NRZ Data Output for Channel _2	
RDATA_2			Receiver Positive Data Output for Channel _3	
RPOS_3	B17		Receiver NRZ Data Output for Channel _3	
RDATA_3			Receiver Positive Data Output for Channel _4	
RPOS_4	U2		Receiver NRZ Data Output for Channel _4	
RDATA_4			Receiver Positive Data Output for Channel _5	
RPOS_5	М3		Receiver NRZ Data Output for Channel _5	
RDATA_5			Receiver Positive Data Output for Channel _6	
RPOS_6	L17		Receiver NRZ Data Output for Channel 6	
RDATA_6			Receiver Positive Data Output for Channel _7	
RPOS_7	T17		Receiver NRZ Data Output for Channel _7	
RDATA_7				
RTIP 0	C1	ı	Receiver Differential Tip Input for Channel _0	
o	01	•	Positive differential receive input from the line	
RTIP_1	G1		Receiver Differential Tip Input for Channel _1	
RTIP_2	G18		Receiver Differential Tip Input for Channel _2	
RTIP_3	C18		Receiver Differential Tip Input for Channel _3	
RTIP_4	U1		Receiver Differential Tip Input for Channel _4	
RTIP_5	L1		Receiver Differential Tip Input for Channel _5	
RTIP_6	L18		Receiver Differential Tip Input for Channel _6	
RTIP_7	T18		Receiver Differential Tip Input for Channel _7	
RRING_0	D1	ı	Receiver Differential Ring Input for Channel _0	
KKII40_0	Di	'	Negative differential receive input from the line	
RRING_1	F1		Receiver Differential Ring Input for Channel _1	
RRING_2	F18		Receiver Differential Ring Input for Channel _2	
RRING_3	D18		Receiver Differential Ring Input for Channel _3	
RRING_4	T1		Receiver Differential Ring Input for Channel _4	
RRING_5	M1		Receiver Differential Ring Input for Channel _5	
RRING_6	M18		Receiver Differential Ring Input for Channel _6	
RRING_7	R18		Receiver Differential Ring Input for Channel _7	
RXMUTE	T10	ı		
KAWUTE	T12	'	Receive Data Muting When a LOS condition occurs, the outputs RPOS_n/RNEG_n will be muted, (forced to	
			ground) to prevent data chattering.	
			Tie this pin "Low" to disable the muting function.	
			Notes:	
			1. This pin is internally pulled "High" with a 50k Ω resistor.	
			2. In Hardware mode , all receive channels share the same RXMUTE control	
			function.	

Our	Conr	nectivity	
R	FV	1.02	

SIGNAL NAME	LEAD #	TYPE		Des	SCRIPTION	
RXRES1 RXRES0	R10 V10	I	Receive External Resistor Control Pins - Hardware mode Receive External Resistor Control Pin 1: Receive External Resistor Control Pin 0: These pins determine the value of the external Receive fixed resistor according to the following table:			
			RXRES1	RXRES0	Required Fixed External RX Resistor	
			0	0	No External Fixed Resistor	
			0	1	240Ω	
			1	0	210Ω	
			1	1	150Ω	
			Note: These pins are in	nternally pulled "I	Low" with a 50k Ω resistor.	
RCLKE µPTS1	J16	I	Receive Clock Edge - Hardware mode Set this pin "High" to sample RPOS_N/RNEG_n on the falling edge of RCLK_n. With this pin tied "Low", output data are updated on the rising edge of RCLK_n. Microprocessor Type Select Input pin 1 - Host mode This pin along with μPTS2 (pin 128) is used to select the microprocessor type. SEE"MICROPROCESSOR TYPE SELECT INPUT PINS - HOST MODE:" ON PAGE 13. Note: This pin is internally pulled "Low" with a 50kΩ resistor.			

TRANSMITTER SECTIONS

SIGNAL NAME	LEAD#	Түре	DESCRIPTION
TCLKE	L15		Transmit Clock Edge - Hardware mode
			Set this pin "High" to sample transmit input data on the rising edge of TCLK_n. With this pin tied "Low", input data are sampled on the falling edge of TCLK_n.
			Microprocessor Type Select Input pin 2 - Host mode
μPTS2	L15		This pin along with µPTS1 (pin 133) selects the microprocessor type. SEE"MICRO-PROCESSOR TYPE SELECT INPUT PINS - HOST MODE:" ON PAGE 13.
			Note: This pin is internally pulled "Low" with a $50k\Omega$ resistor.
TTIP_0	E3	0	Transmitter Tip Output for Channel _0
			Positive differential transmit output to the line.
TTIP_1	G4		Transmitter Tip Output for Channel _1
TTIP_2	F17		Transmitter Tip Output for Channel _2
TTIP_3	C16		Transmitter Tip Output for Channel _3
TTIP_4	R2		Transmitter Tip Output for Channel _4
TTIP_5	N2		Transmitter Tip Output for Channel _5
TTIP_6	N16		Transmitter Tip Output for Channel _6
TTIP_7	P16		Transmitter Tip Output for Channel _7

SIGNAL NAME	LEAD #	Түре	DESCRIPTION
TRING_0	E2	0	Transmitter Ring Output for Channel _0
			Negative differential transmit output to the line.
TRING_1	F3		Transmitter Ring Output for Channel _1
TRING_2	F15		Transmitter Ring Output for Channel _2
TRING_3	E16		Transmitter Ring Output for Channel _3
TRING_4	P2		Transmitter Ring Output for Channel _4
TRING_5	N4		Transmitter Ring Output for Channel _5
TRING_6	R15		Transmitter Ring Output for Channel _6
TRING_7	P17		Transmitter Ring Output for Channel _7
TPOS_0	C5	I	Transmitter Positive Data Input for Channel _0 - Dual-Rail mode
			This signal is the positive-rail input data for transmitter 0.
TDATA_0			Transmitter 0 Data Input - Single-Rail mode
			This pin is used as the NRZ input data for transmitter 0.
TPOS_1	A4		Transmitter Positive Data Input for Channel _1
TDATA_1			Transmitter 1 Data Input
TPOS_2	B14		Transmitter Positive Data Input for Channel _2
TDATA_2			Transmitter 2 Data Input
TPOS_3	D14		Transmitter Positive Data Input for Channel _3
TDATA_3			Transmitter 3 Data Input
TPOS_4	V4		Transmitter Positive Data Input for Channel _4
TDATA_4			Transmitter 4 Data Input
TPOS_5	U5		Transmitter Positive Data Input for Channel _5
TDATA_5			Transmitter 5 Data Input
TPOS_6	V15		Transmitter Positive Data Input for Channel _6
TDATA_6			Transmitter 6 Data Input
TPOS_7	T14		Transmitter Positive Data Input for Channel _7
TDATA_7			Transmitter 7 Data Input
			Note: Internally pulled "Low" with a 50k Ω resistor for each channel.

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

SIGNAL NAME	LEAD #	TYPE	DESCRIPTION
TNEG_0	C4	I	Transmitter Negative NRZ Data Input for Channel _0 Dual-Rail mode This signal is the negative-rail input data for transmitter 0. Single-Rail mode This pin can be left unconnected.
CODES_0	C4		Coding Select for Channel _0 - Hardware mode and Single-Rail mode Connecting this pin "Low" enables HDB3 in E1 or B8ZS in T1 encoding and decoding for Channel _0. Connecting this pin "High" selects AMI data format.
TNEG_1 CODES_1	B5		Transmitter Negative NRZ Data Input for Channel _1 Coding Select for Channel _1
TNEG_2 CODES_2	D13		Transmitter Negative NRZ Data Input for Channel _2 Coding Select for Channel _2
TNEG_3 CODES_3	B15		Transmitter Negative NRZ Data Input for Channel _3 Coding Select for Channel _3
TNEG_4 CODES_4	U4		Transmitter Negative NRZ Data Input for Channel _4 Coding Select for Channel _4
TNEG_5 CODES_5	V5		Transmitter Negative NRZ Data Input for Channel _5 Coding Select for Channel _5
TNEG_6 CODES 6	U14		Transmitter Negative NRZ Data Input for Channel _6 Coding Select for Channel _6
TNEG_7 CODES_7	R14		Transmitter Negative NRZ Data Input for Channel _7 Coding Select for Channel _7 Note: Internally pulled "Low" with a 50kΩ resistor for each channel.
TCLK_0	B4	ı	Transmitter Clock Input for Channel _0 - Host mode and Hardware mode E1 rate at 2.048MHz ± 50ppm. T1 rate at 1.544MHz ± 32ppm. During normal operation TCLK_0 is used for sampling input data at TPOS_0/ TDATA_0 and TNEG_0/CODES_0 while MCLK is used as the timing reference for the transmit pulse shaping circuit. Transmitter Clock Input for Channel _1
TCLK_1 TCLK_2 TCLK_3 TCLK_4 TCLK_5 TCLK_6 TCLK_7	A3 A15 C14 T3 T5 V16 U15		Transmitter Clock Input for Channel _2 Transmitter Clock Input for Channel _3 Transmitter Clock Input for Channel _4 Transmitter Clock Input for Channel _5 Transmitter Clock Input for Channel _6 Transmitter Clock Input for Channel _7 NOTE: Internally pulled "Low" with a 50kΩ resistor for all channels.

SIGNAL NAME	LEAD #	Түре	DESCRIPTION
TAOS_0	D6	I	Transmit All Ones for Channel _0 - Hardware mode
			Setting this pin "High" enables the transmission of an "All Ones" Pattern from Channel
			_0. A "Low" level stops the transmission of the "All Ones" Pattern.
			Transmit All Ones for Channel _1
TAOS_1	В6		Transmit All Ones for Channel _2
TAOS_2	A5		Transmit All Ones for Channel _3
TAOS_3	C6		Transmit All Ones for Channel _4
TAOS_4	T6		Transmit All Ones for Channel _5
TAOS_5	U6		Transmit All Ones for Channel _6
TAOS_6	V6		Transmit All Ones for Channel _7
TAOS_7	R6		NOTE: Internally pulled "Low" with a $50k\Omega$ resistor for all channels.
TXON_0	A13	I	Transmitter Turn On for Channel _0
			Hardware mode
			Setting this pin "High" turns on the Transmit and Receive Sections of Channel _0. When TXON_0 = "0" then TTIP_0 and TRING_0 driver outputs will be tri-stated.
			In Host mode
			The TXON_n bits in the channel control registers turn each channel Transmit and
			Receive section ON or OFF. However, control of the on/off function can be transferred to the Hardware pins by setting the TXONCNTL bit (bit 7) to "1" in the register at address hex 0x82.
			Transmitter Turn On for Channel _1
			Transmitter Turn On for Channel _2
			Transmitter Turn On for Channel _3
			Transmitter Turn On for Channel _4
			Transmitter Turn On for Channel _5
TXON_1	D12		Transmitter Turn On for Channel _6
TXON_2	C12		Transmitter Turn On for Channel _7
TXON_3	B12		NOTE: Internally pulled "Low" with a $50k\Omega$ resistor for all channels.
TXON_4	V13		
TXON_5	U13		
TXON_6	R12		
TXON_7	R13		

XRT83SL38

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

MICROPROCESSOR INTERFACE

SIGNAL NAME	LEAD#	Түре	DESCRIPTION
HW_HOST	T10	I	Mode Control Input
			This pin selects Hardware or Host mode . Leave this pin unconnected or tie "High" to select Hardware mode .
			For Host mode , this pin must be tied "Low".
			Note: Internally pulled "High" with a $50k\Omega$ resistor.
WR_R/W	D7	I	Write Input (Read/Write) - Host mode: Intel bus timing: A "Low" pulse on WR selects a write operation when CS pin is "Low".
			Motorola bus timing: A "High" pulse on R/W selects a read operation and a "Low" pulse on R/W selects a write operation when CS is "Low".
EQC0	D7		Equalizer Control Input pin 0 - Hardware mode Pins EQC0, EQC1, EQC2, EQC3 and EQC4 select the Receive Equalizer and Transmitter Line Build Out. SEE"RECEIVE EQUALIZER CONTROL AND TRANSMIT LINE BUILD-OUT SETTINGS" ON PAGE 30. Note: Internally pulled "Low" with a $50k\Omega$ resistor.
RD DS	C7	ı	Read Input (Data Strobe) - Host mode
EQC1	C7		Intel bus timing: A "Low" pulse on RD selects a read operation when the CS pin is "Low". Motorola bus timing: A "Low" pulse on DS indicates a read or write operation when the CS pin is "Low". Equalizer Control Input pin 1 - Hardware mode Pins EQC0, EQC1, EQC2, EQC3 and EQC4 select the Receive Equalizer and Transmitter Line Build Out. SEE"RECEIVE EQUALIZER CONTROL AND TRANSMIT LINE BUILD-OUT SETTINGS" ON PAGE 30. Note: Internally pulled "Low" with a 50kΩ resistor.
ALE_AS	A7	I	Address Latch Input (Address Strobe) - Host mode Intel bus timing: The address inputs are latched into the internal register on the falling edge of ALE.
EQC2	A7		Motorola bus timing: The address inputs are latched into the internal register on the falling edge of AS. Equalizer Control Input pin 2 - Hardware mode Pins EQC0, EQC1, EQC2, EQC3 and EQC4 select the Receive Equalizer and Transmitter Line Build Out. SEE"RECEIVE EQUALIZER CONTROL AND TRANSMIT LINE BUILD-OUT SETTINGS" ON PAGE 30. Note: Internally pulled "Low" with a 50kΩ resistor.
cs	B7	I	Chip Select Input - Host mode:
EQC3	В7		This signal must be "Low" in order to access the parallel port. Equalizer Control Input pin 3 - Hardware mode: Pins EQC0, EQC1, EQC2, EQC3 and EQC4 select the Receive Equalizer and Transmitter Line Build Out. SEE " RECEIVE EQUALIZER CONTROL AND TRANS-MIT LINE BUILD-OUT SETTINGS " ON PAGE 30 . Note: Internally pulled "Low" with a $50k\Omega$ resistor.

SIGNAL NAME	LEAD#	Түре				DESCRIPTION		
RDY_DTACK	A6	0	Ready Ou	Ready Output (Data Transfer Acknowledge Output) - Host mode				
EQC4	A6	I	or write op Motorola a read or v Equalizer Pins EQCo mitter Line MIT LINE	Intel bus timing: RDY is asserted "High" to indicate the device has completed a read or write operation. Motorola bus timing: DTACK is asserted "Low" to indicate the device has completed a read or write cycle. Equalizer Control Input pin 4 - Hardware mode Pins EQC0, EQC1, EQC2, EQC3 and EQC4 select the Receive Equalizer and Transmitter Line Build Out. SEE"RECEIVE EQUALIZER CONTROL AND TRANSMIT LINE BUILD-OUT SETTINGS" ON PAGE 30. Note: Internally pulled "Low" with a 50kΩ resistor.				
			=	_	-	out Pins - Host Mode:		
μPTS1	J16	I	=	_	/pe Select In			
μPTS2	L15		Micropro	cessor Ty	pe Select In	out Bit 2		
				ιPTS2	μPTS1	"P. Type]	
			P		· ·	μР Туре		
				0	0	68HC11, 8051, 80C188 (async.)		
				0	1	Motorola 68K (async.)		
				1	0	Intel x86 (sync.)		
				1	1	Motorola 860 (sync.)		
RCLKE TCLKE	J16 L15		SEE"RE Transmit	CEIVE C Clock Ed ANSMIT	ge - Hardwai CLOCK ED	E - HARDWARE MODE" ON PA		
			Microprod	cessor Re	ead/Write Da	ta Bus Pins - Host mode		
D[7]	T7	I/O	Data Bus					
D[6]	U7		Data Bus	-				
D[5]	V7		Data Bus					
D[4]	V8		Data Bus	_				
D[3]	V9		Data Bus					
D[2]	U8		Data Bus	•				
D[1]	U9		Data Bus					
D[0] LOOP1_4	R7 T7		Data Bus	-	l Dina Dita [4	:0] Channel_[7:4] - Hardware Mod	•	
LOOP1_4 LOOP0_4	U7		-			vhich Loop-Back mode is selected pe		
LOOP0_4 LOOP1_5	V7					L PINS, BITS [1:0] CHANNEL_[
LOOP0_5	V8		PAGE 18			, , , , , , , , , , , , , , , , , , , ,	-	
LOOP1_6	V9		NOTE: Inte	ernally pu	ılled "Low" wit	h a 50k Ω resistor for all channels.		
LOOP0_6	U8							
LOOP1_7	U9							
LOOP0_7	R7							

REV. 1.0.2

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

SIGNAL NAME	LEAD#	Түре	DESCRIPTION
			Microprocessor Interface Address Bus Pins - Host mode:
A[7]	A12	I	Microprocessor Interface Address Bus[7]
A[6]	B11		Microprocessor Interface Address Bus[6]
A[5]	C11		Microprocessor Interface Address Bus[5]
A[4]	D11		Microprocessor Interface Address Bus[4]
A[3]	A11		Microprocessor Interface Address Bus[3]
A[2]	B10		Microprocessor Interface Address Bus[2]
A[1]	A10		Microprocessor Interface Address Bus[1]
A[0]	C10		Microprocessor Interface Address Bus[0]
			Loop-back Control Pins, Bits [1:0] Channel_[3:0]
LOOP1_3	A12		In Hardware mode, pins 67-74 and 173-180 control which Loop-Back mode is
LOOP0_3	B11		selected per channel. SEE"LOOP-BACK CONTROL PINS, BITS [1:0]
LOOP1_2	C11		CHANNEL_[7:0]" ON PAGE 18.
LOOP0_2	D11		Note: These pins are internally pulled "Low" with a $50k\Omega$ resistor.
LOOP1_1	A11		
LOOP0_1	B10		
LOOP1_0	A10		
LOOP0_0	C10		
μPCLK	T13	ı	Microprocessor Clock Input - Host Mode:
			Input clock for synchronous microprocessor operation. Maximum clock rate is 54 MHz.
			Note: This pin is internally pulled "Low" with a $50k\Omega$ resistor for asynchronous microprocessor interface when no clock is present.
ATAOS	T13		Automatic Transmit "All Ones" - Hardware mode
			This pin functions as an Automatic Transmit "All Ones". SEE"AUTOMATIC TRANSMIT "ALL ONES" PATTERN - HARDWARE MODE" ON PAGE 17.
INT	L16	0	Interrupt Output - Host mode
			This pin goes "Low" to indicate an alarm condition has occurred within the device. Interrupt generation can be globally disabled by setting the GIE bit to a "0" in the command control register.
TRATIO	L16	1	Transmitter Transformer Ratio Select - Hardware mode
	•	-	The function of this pin is to select the transmitter transformer ratio. SEE"TRANS-MITTER TRANSFORMER RATIO SELECT - HARDWARE MODE" ON PAGE 17.
			Note: This pin is an open drain output and requires an external 10k Ω pull-up resistor.

JITTER ATTENUATOR

SIGNAL NAME	LEAD#	Түре		DESCRIPTION						
JASEL0 JASEL1	A14 B13	I	Jitter Jitter JASE	Ditter Attenuator Select Pins Hardware Mode Ditter Attenuator select Bit 0 Ditter Attenuator select Bit 1 DASEL[1:0] pins are used to place the jitter attenuator in the transmit path, the receive path or to disable it.						
				JASEL1	JASEL0	JA Path	JA B	W Hz	FIFO Size	
				JASELI	JASELU	JA Palli	T1	E1	FIFO SIZE	
				0	0	Disabled				
				0	1	Transmit	3	10	32/32	
				1 0 Receive 3 10 32/32						
				1	1	Receive	3	1.5	64/64	
			NOTE	: These p	oins are inte	rnally pulled "	Low" with	n 50kΩ re	esistors.	

CLOCK SYNTHESIZER

SIGNAL NAME	LEAD#	Түре	DESCRIPTION
MCLKOUT	H1	0	Synthesized Master Clock Output This signal is the output of the Master Clock Synthesizer PLL which is at T1 or E1 rate based upon the mode of operation.
MCLKT1	K1	ı	 T1 Master Clock Input This signal is an independent 1.544MHz clock for T1 systems with accuracy better than ±50ppm and duty cycle within 40% to 60%. MCLKT1 is used in the T1 mode. Notes: All channels of the XRT83L38 must be operated at the same clock rate, either T1, E1 or J1. See pin 26 description for further explanation for the usage of this pin. Internally pulled "Low" with a 50kΩ resistor.
MCLKE1	J1	1	E1 Master Clock Input A 2.048MHz clock for with an accuracy of better than ±50ppm and a duty cycle of 40% to 60% can be provided at this pin. In systems that have only one master clock source available (E1 or T1), that clock should be connected to both MCLKE1 and MCLKT1 inputs for proper operation. Notes: 1. All channels of the XRT83L38 must be operated at the same clock rate, either T1, E1 or J1. 2. Internally pulled "Low" with a 50kΩ resistor.

REV. 1.0.2

Signal Name	LEAD#	Түре		DESCRIPTION						
CLKSEL0 CLKSEL1 CLKSEL2	A8 B8 C8	I	Clock Select inputs for Master Clock Synthesizer - Hardware mode CLKSEL[2:0] are input signals to a programmable frequency synthesizer that can be used to generate a master clock from an external accurate clock source according to the table below. In Hardware mode, the MCLKRATE control signal is generated from the state of EQC[4:0] inputs. In Host mode, the state of these pins are ignored and the master frequency PLL is controlled by the corresponding interface bits. See Table 36 register address 10000001							
			MCLKE1 kHz	MCLKT1 kHz	CLKSEL2	CLKSEL1	CLKSEL0	MCLKRATE	CLKOUT/ kHz	
			2048	2048	0	0	0	0	2048	
			2048	2048	0	0	0	1	1544	
			2048	1544	0	0	0	0	2048	
			1544	1544	0	0	1	1	1544	
			1544	1544	0	0	1	0	2048	
			2048	1544	0	0	1	1	1544	
			8	Х	0	1	0	0	2048	
			8	Х	0	1	0	1	1544	
			16	Х	0	1	1	0	2048	
			16	Х	0	1	1	1	1544	
			56	Х	1	0	0	0	2048	
			56	Х	1	0	0	1	1544	
			64	Х	1	0	1	0	2048	
			64	Х	1	0	1	1	1544	
			128	Х	1	1	0	0	2048	
			128	Х	1	1	0	1	1544	
			256	Х	1	1	1	0	2048	
			256	Х	1	1	1	1	1544	
			NOTE: Th	ese pins a	re internall	y pulled "L	ow" with a	50k $Ω$ resist	or.	

ALARM FUNCTIONS/REDUNDANCY SUPPORT

Channel _0, or no transmit output pulse is detected for more than 128 TCLI	SIGNAL NAME	LEAD#	Түре	DESCRIPTION
DMO_0	GAUGE	J18	I	_
Note: Internally pulled "Low" with a 50kΩ resistor.				
DMO_0 D5 O Driver Failure Monitor Channel _0:				
This pin transitions "High" if a short circuit condition is detected in the transr Channel _0, or no transmit output pulse is detected for more than 128 TCLI Driver Failure Monitor Channel _1 Driver Failure Monitor Channel _1 Driver Failure Monitor Channel _3 DMO_3	DMO 0	DE	_	F .
DMO_2 C15 DMO_3 C13 DMO_4 R5 DMO_5 P4 DMO_6 U17 DMO_7 V14 ATAOS T13 I Automatic Transmit "All Ones" Pattern - Hardware Mode A "High" level on this pin enables the automatic transmission of an "All One tern from the transmitter of any channel that the receiver of that channel ha an LOS condition. A "Low" level on this pin disables this function. Note: All channels share the same ATAOS control function. Microprocessor Clock Input - Host mode SEE"MICROPROCESSOR CLOCK INPUT - HOST MODE:" ON P NOTE: This pin is internally pulled "Low" for asynchronous microprocess when no clock is present. TRATIO L16 I Transmitter Transformer Ratio Select - Hardware mode In external termination mode (TXTSEL = 0), setting this pin "High" selects former ratio of 1:2 for the transmitter. A "Low" on this pin sets the transmitter former ratio to 1:2.45. In the internal termination mode the transmitter tra ratio is permanently set to 1:2 and the state of this pin is ignored. INT L16 O This pin is asserted "Low" to indicate an alarm condition. SEE"INTERRUIP PUT - HOST MODE" ON PAGE 14. NOTE: This pin is an open drain output and requires an external 10kΩ pull- RESET T8 I Hardware Reset (Active "Low"): When this pin is tited "Low" for more than 10μs, the device is put in the rese Exar recommends initiating a Hardware reset upon power up. NOTE: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rai	DIVIO_U	DS		This pin transitions "High" if a short circuit condition is detected in the transmit driver of Channel _0, or no transmit output pulse is detected for more than 128 TCLK_0 cycles. Driver Failure Monitor Channel _1
DMO_3 C13 DMO_4 R5 DMO_5 P4 DMO_6 U17 DMO_7 V14 ATAOS T13 I Automatic Transmit "All Ones" Pattern - Hardware Mode A "High" level on this pin enables the automatic transmission of an "All One tern from the transmitter of any channel that the receiver of that channel ha an LOS condition. A "Low" level on this pin disables this function. Note: All channels share the same ATAOS control function. Microprocessor Clock Input - HOST MODE:" ON P NOTE: This pin is internally pulled "Low" for asynchronous microprocess when no clock is present. TRATIO L16 I Transmitter Transformer Ratio Select - Hardware mode In external termination mode (TXTSEL = 0), setting this pin "High" selects former ratio to 1:2.45. In the internal termination mode the transmitter transmitter of 1:2 for the transmitter. A "Low" on this pin is sets the transmitte former ratio to 1:2.45. In the internal termination mode the transmitter transmitter of 1:2 for the transmitter. A "Low" on this pin is ginored. INT L16 O This pin is asserted "Low" to indicate an alarm condition. SEE"INTERRUIP PUT - HOST MODE" ON PAGE 14. NOTE: This pin is asserted "Low" for indicate an alarm condition. SEE"INTERRUIP PUT - HOST MODE" ON PAGE 14. NOTE: This pin is an open drain output and requires an external 10kΩ pull-Rai and the state of this pin the rese Exar recommends initiating a Hardware reset upon power up. NOTE: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail	DMO_1	D4		-
Driver Failure Monitor Channel _5 DMO_5	_			
DMO_5 DMO_6 DMO_7				
DMO_6 DMO_7				-
DMO_7				
ATAOS T13 I Automatic Transmit "All Ones" Pattern - Hardware Mode A "High" level on this pin enables the automatic transmission of an "All One term from the transmitter of any channel that the receiver of that channel had an LOS condition. A "Low" level on this pin disables this function. Note: All channels share the same ATAOS control function. Microprocessor Clock Input - Host mode SEE"MICROPROCESSOR CLOCK INPUT - HOST MODE:" ON P NOTE: This pin is internally pulled "Low" for asynchronous microprocess when no clock is present. TRATIO L16 I Transmitter Transformer Ratio Select - Hardware mode In external termination mode (TXTSEL = 0), setting this pin "High" selects former ratio of 1:2 for the transmitter. A "Low" on this pin sets the transmitter former ratio is permanently set to 1:2 and the state of this pin is ignored. INT L16 O This pin is asserted "Low" to indicate an alarm condition. SEE"INTERRUIT PUT - HOST MODE" ON PAGE 14. NOTE: This pin is an open drain output and requires an external 10kΩ pull- RESET T8 I Hardware Reset (Active "Low"): When this pin is tied "Low" for more than 10μs, the device is put in the rese Exar recommends initiating a Hardware reset upon power up. NOTE: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail		_		Driver Failure Monitor Channel _/
A "High" level on this pin enables the automatic transmission of an "All One tern from the transmitter of any channel that the receiver of that channel ha an LOS condition. A "Low" level on this pin disables this function. Note: All channels share the same ATAOS control function. Microprocessor Clock Input - Host mode SEE"MICROPROCESSOR CLOCK INPUT - HOST MODE:" ON P NOTE: This pin is internally pulled "Low" for asynchronous microprocess when no clock is present. TRATIO L16 I Transmitter Transformer Ratio Select - Hardware mode In external termination mode (TXTSEL = 0), setting this pin "High" selects former ratio of 1:2 for the transmitter. A "Low" on this pin sets the transmitter former ratio is permanently set to 1:2 and the state of this pin is ignored. INT L16 O This pin is asserted "Low" to indicate an alarm condition. SEE"INTERRUM PUT - HOST MODE" ON PAGE 14. NOTE: This pin is an open drain output and requires an external 10kΩ pulling. RESET T8 I Hardware Reset (Active "Low"): When this pin is tied "Low" for more than 10μs, the device is put in the rese Exar recommends initiating a Hardware reset upon power up. NOTE: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail.	DMO_7	V14		
tern from the transmitter of any channel that the receiver of that channel has an LOS condition. A "Low" level on this pin disables this function. Note: All channels share the same ATAOS control function. Microprocessor Clock Input - Host mode SEE"MICROPROCESSOR CLOCK INPUT - HOST MODE:" ON P Note: This pin is internally pulled "Low" for asynchronous microprocess when no clock is present. TRATIO L16 I Transmitter Transformer Ratio Select - Hardware mode In external termination mode (TXTSEL = 0), setting this pin "High" selects former ratio of 1:2 for the transmitter. A "Low" on this pin sets the transmitter former ratio to 1:2.45. In the internal termination mode the transmitter transatio is permanently set to 1:2 and the state of this pin is ignored. INT L16 O This pin is asserted "Low" to indicate an alarm condition. SEE"INTERRUMPUT - HOST MODE" ON PAGE 14. NOTE: This pin is an open drain output and requires an external 10kΩ pull-Reserved (Active "Low"): When this pin is tied "Low" for more than 10μs, the device is put in the rese Exar recommends initiating a Hardware reset upon power up. NOTE: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail Data Format:	ATAOS	T13	ı	Automatic Transmit "All Ones" Pattern - Hardware Mode
Microprocessor Clock Input - Host mode SEE"MICROPROCESSOR CLOCK INPUT - HOST MODE:" ON P Note: This pin is internally pulled "Low" for asynchronous microprocess when no clock is present. TRATIO				A "High" level on this pin enables the automatic transmission of an "All Ones" AMI pattern from the transmitter of any channel that the receiver of that channel has detected an LOS condition. A "Low" level on this pin disables this function.
PCLK				Note: All channels share the same ATAOS control function.
Note: This pin is internally pulled "Low" for asynchronous microprocess when no clock is present. Transmitter Transformer Ratio Select - Hardware mode In external termination mode (TXTSEL = 0), setting this pin "High" selects former ratio of 1:2 for the transmitter. A "Low" on this pin sets the transmitter former ratio to 1:2.45. In the internal termination mode the transmitter transation is permanently set to 1:2 and the state of this pin is ignored. Interrupt Output - Host mode This pin is asserted "Low" to indicate an alarm condition. SEE"INTERRUPPUT - HOST MODE" ON PAGE 14. Note: This pin is an open drain output and requires an external 10kΩ pulled "Hort is pin is tied "Low" for more than 10μs, the device is put in the rese Exar recommends initiating a Hardware reset upon power up. Note: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail Dual-Ra				·
### When no clock is present. Transmitter Transformer Ratio Select - Hardware mode In external termination mode (TXTSEL = 0), setting this pin "High" selects former ratio of 1:2 for the transmitter. A "Low" on this pin sets the transmitter former ratio to 1:2.45. In the internal termination mode the transmitter transmitter transmitter to 1:2 and the state of this pin is ignored. Interrupt Output - Host mode This pin is asserted "Low" to indicate an alarm condition. SEE"INTERRUPTED HOST MODE" ON PAGE 14. Note: This pin is an open drain output and requires an external 10kΩ pull-When this pin is tied "Low" for more than 10μs, the device is put in the rese Exar recommends initiating a Hardware reset upon power up. Note: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail Dual-Rai	μPCLK	T13		SEE"MICROPROCESSOR CLOCK INPUT - HOST MODE:" ON PAGE 14.
In external termination mode (TXTSEL = 0), setting this pin "High" selects former ratio of 1:2 for the transmitter. A "Low" on this pin sets the transmitter former ratio to 1:2.45. In the internal termination mode the transmitter training is permanently set to 1:2 and the state of this pin is ignored. Interrupt Output - Host mode This pin is asserted "Low" to indicate an alarm condition. SEE"INTERRUPTUT - HOST MODE" ON PAGE 14. Note: This pin is an open drain output and requires an external 10kΩ pull-When this pin is tied "Low" for more than 10μs, the device is put in the rese Exar recommends initiating a Hardware reset upon power up. Note: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail Dual-				NOTE: This pin is internally pulled "Low" for asynchronous microprocessor interface when no clock is present.
former ratio of 1:2 for the transmitter. A "Low" on this pin sets the transmitter former ratio to 1:2.45. In the internal termination mode the transmitter transmitter. Interrupt Output - Host mode This pin is asserted "Low" to indicate an alarm condition. SEE"INTERRUPTER ON PAGE 14. Note: This pin is an open drain output and requires an external 10kΩ pull-When this pin is tied "Low" for more than 10μs, the device is put in the rese Exar recommends initiating a Hardware reset upon power up. Note: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail Dual-Rail Data Format:	TRATIO	L16	I	
PUT - HOST MODE" ON PAGE 14. Note: This pin is an open drain output and requires an external 10kΩ pull- RESET T8 I Hardware Reset (Active "Low"): When this pin is tied "Low" for more than 10μs, the device is put in the rese Exar recommends initiating a Hardware reset upon power up. Note: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail.				
RESET T8 I Hardware Reset (Active "Low"): When this pin is tied "Low" for more than 10µs, the device is put in the rese Exar recommends initiating a Hardware reset upon power up. Note: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail Data Format.	INT	L16	0	This pin is asserted "Low" to indicate an alarm condition. SEE"INTERRUPT OUT-PUT - HOST MODE" ON PAGE 14.
When this pin is tied "Low" for more than 10μs, the device is put in the rese Exar recommends initiating a Hardware reset upon power up. Note: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail Data Format.				Note: This pin is an open drain output and requires an external $10k\Omega$ pull-up resistor.
Exar recommends initiating a Hardware reset upon power up. NOTE: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail	RESET	T8	ı	Hardware Reset (Active "Low"):
Note: This pin is internally pulled "High" with a 50kΩ resistor. SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail Data Format:				When this pin is tied "Low" for more than 10µs, the device is put in the reset state.
SR/DR K4 I Single-Rail/Dual-Rail Data Format: Connect this pin "Low" to select transmit and receive data format in Dual-Rail				Exar recommends initiating a Hardware reset upon power up.
Connect this pin "Low" to select transmit and receive data format in Dual-Ra				Note: This pin is internally pulled "High" with a $50k\Omega$ resistor.
this mode, HDB3 or B82S encoder and decoder are not available. Connect this pin "High" to select single-rail data format . Note: Internally pulled "Low" with a 50kΩ resistor.	SR/DR	K4	ı	Connect this pin "Low" to select transmit and receive data format in Dual-Rail mode . In this mode, HDB3 or B8ZS encoder and decoder are not available. Connect this pin "High" to select single-rail data format .

REV. 1.0.2

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

SIGNAL NAME	LEAD#	Түре				DESCRIPTION		
			Loop-ba	ck Control F	ins, Bits [1:0	D] Channel_[7:0]		
LOOP1_0	A10	ı	_	Loop-back Control bit 1, Channel _0				
LOOP0_0	C10		Loop-ba	ck Control b	it 0, Channe	I_0		
LOOP1_1	A11		Loop-ba	ck Control b	it 1, Channe	I_1		
LOOP0_1	B10		Loop-ba	ck Control b	it 0, Channe	I_1		
LOOP1_2	C11		Loop-ba	ck Control b	it 1, Channe	I_2		
LOOP0_2	D11		Loop-ba	ck Control b	it 0, Channe	I _2		
LOOP1_3	A12		Loop-ba	ck Control b	it 1, Channe	I_3		
LOOP0_3	B11		Loop-ba	ck Control b	it 0, Channe	I_3		
LOOP1_4	T7		Loop-ba	ck Control b	it 1, Channe	I_4		
LOOP0_4	U7		Loop-ba	ck Control b	it 0, Channe	I_4		
LOOP1_5	V7		Loop-ba	ck Control b	it 1, Channe	I_5		
LOOP0_5	V8		_		it 0, Channe			
LOOP1_6	V9		_		it 1, Channe			
LOOP0_6	U8		_		it 0, Channe			
LOOP1_7	U9		_		it 1, Channe			
LOOP0_7	R7		_		it 0, Channe			
				vare mode, to ving table.	hese pins cor	ntrol the Loop-Back mode for each channel_n per		
				LOOP1_n	LOOP0_n	MODE		
				0	0	Normal Mode No Loop-Back Channel_r		
				0	1	Local Loop-Back Channel_n		
				1	0	Remote Loop-Back Channel_n		
				1	1	Digital Loop-Back Channel_n		
A[1]	A10		Micropro	occeor Add	ross A[7:0] s	and Data Bus Pins D[7:0] - Host mode		
A[0]	C10		-			dress and data bus pins. SEE"MICROPROCES-		
A[3]	A11					BUS PINS - HOST MODE:" ON PAGE 14, and		
A[2]	B10					rite Data Bus Pins - Host mode" on		
A[5]	C11		page 13	3.				
A[4]	D11		NOTE: T	hese pins are	e internally pu	ılled "Low" with a 50kΩ resistor.		
A[7]	A12							
A[6]	B11							
D[7]	T7							
D[6]	U7							
D[5]	V7 V8							
D[4]								
D[3]	V9							
D[2]	U8							
D[1]	U9							
D[0]	R7							

SIGNAL NAME	LEAD#	Түре	DESCRIPTION
EQC4	A6	ı	Equalizer Control Input 4 - Hardware mode This pin together with pins EQC[3:0] is used to control the transmit pulse shaping, transmit line build-out (LBO) and receive monitoring while operating at one of either the T1, E1 or J1 clock rates/modes. SEE"RECEIVE EQUALIZER CONTROL AND TRANSMIT LINE BUILD-OUT SETTINGS" ON PAGE 30. for description of Transmit Equalizer Control bits. Equalizer Control Input 3 Equalizer Control Input 2 Equalizer Control Input 1 Equalizer Control Input 0
EQC3 EQC2 EQC1 EQC0 RDY_DTACK CS_ ALE_AS RD_DS_ WR_R/W	B7 A7 C7 D7 A6 B7 A7 C7	O 	 In Hardware mode all transmit channels share the same pulse setting controls function. All channels of an XRT83L38 must operate at the same clock rate, either the T1, E1 or J1 modes. In Host mode, these pins perform various microprocessor functions. SEE"MICROPROCESSOR INTERFACE" ON PAGE 12. NOTE: Internally pulled "Low" with a 50kΩ resistor.
RXTSEL	U11	I	Receiver Termination Select In Hardware mode, when this pin is "Low" the receive line termination is determined only by an external resistor. When "High", the receive termination is realized by the internal resistor or the combination of internal and external resistors. These conditions are described in the table below. Note: In Hardware mode all channels share the same RXTSEL control function. RXTSEL RX Termination 0 External 1 Internal In Host mode, the RXTSEL_n bits in the channel control registers determine if the receiver termination is external or internal. However, the function of RXTSEL can be transferred to the Hardware pin by setting the TERCNTL bit (bit 6) to "1" in the register address hex 0x82. Note: This pin is internally pulled "Low" with a 50kΩ resistor.
TXTSEL	V11	I	Transmit Termination Select - Hardware Mode When this pin is "Low" the transmit line termination is determined only by an external resistor. When "High", the transmit termination is realized only by the internal resistor. TXTSEL TX Termination 0 External 1 Internal Notes: 1. This pin is internally pulled "Low" with a 50kΩ resistor. 2. In Hardware mode all channels share the same TXTSEL control function.

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

SIGNAL NAME	LEAD#	Түре		DESCRIPTIO	N			
TERSEL1 TERSEL0	T11 R11	I	Termination Impedance Select bit 1: Termination Impedance Select bit 0: In the Hardware mode and in the internal termination mode (TXTSEL="1" and RXT-SEL="1") TERSEL[1:0] control the transmit and receive termination impedance according to the following table.					
			TERSE	1 TERSEL0	Termination			
			0	0	100Ω			
			0	1	110Ω			
			1	0	75Ω			
			1	1	120Ω			
			In the internal termination moccompletely by internal resistors resistor (see description of RXR In the internal termination moctransmitter and receiver respect transformer. Notes: 1. This pin is internally put 2. In Hardware mode, ald 3. In the external termination with the internal termination moctransmitter.	r by the combinates [1:0] pins). In the transform wely with the transform wely with the transform with a channels share tion mode a 1::	ation of internal at a ratio of 1:2 an an ansmitter output A $50k\Omega$ $resistor$. $the same TERS$	and one fixed external d 1:1 is required for AC coupled to the		
TEST	U12	I	Manufacturing Test: NOTE: For normal operation this	pin must be tie	d to ground.			
īСТ	V12	I	When this pin is tied "Low", all of circuit testing. Pulling RESET and ICT pins "Low This condition should not be per Note: This pin is internally pulling.	utput pins are fo v" simultaneous mitted during no	y will put the chiprmal operation.			

POWER AND GROUND

SIGNAL NAME	LEAD#	Түре	DESCRIPTION
TGND_0	D3	****	Transmitter Analog Ground for Channel _0
TGND_1	F2		Transmitter Analog Ground for Channel _1
TGND_2	E15		Transmitter Analog Ground for Channel _2
TGND_3	C17		Transmitter Analog Ground for Channel _3
TGND_4	R3		Transmitter Analog Ground for Channel _4
TGND_5	P3		Transmitter Analog Ground for Channel _5
TGND_6	T16		Transmitter Analog Ground for Channel _6
TGND_7	R16		Transmitter Analog Ground for Channel _7

SIGNAL NAME	LEAD#	Түре	DESCRIPTION
TVDD_0	E4	***	Transmitter Analog Positive Supply (3.3V ± 5%) for Channel _0
TVDD_1	F4		Transmitter Analog Positive Supply (3.3V ± 5%) for Channel _1
TVDD_2	F16		Transmitter Analog Positive Supply (3.3V ± 5%) for Channel _2
TVDD_3	E17		Transmitter Analog Positive Supply (3.3V ± 5%) for Channel _3
TVDD_4	R4		Transmitter Analog Positive Supply (3.3V ± 5%) for Channel _4
TVDD_5	P1		Transmitter Analog Positive Supply (3.3V ± 5%) for Channel _5
TVDD 6	N15		Transmitter Analog Positive Supply (3.3V ± 5%) for Channel _6
TVDD_7	P15		Transmitter Analog Positive Supply (3.3V ± 5%) for Channel _7
RVDD_0	C2	****	Receiver Analog Positive Supply (3.3V± 5%) for Channel _0
RVDD_1	E5		Receiver Analog Positive Supply (3.3V± 5%) for Channel _1
RVDD_2	G16		Receiver Analog Positive Supply (3.3V± 5%) for Channel _2
RVDD_3	D16		Receiver Analog Positive Supply (3.3V± 5%) for Channel _3
RVDD_4	V2		Receiver Analog Positive Supply (3.3V± 5%) for Channel _4
RVDD_5	N3		Receiver Analog Positive Supply (3.3V± 5%) for Channel _5
RVDD_6	N17		Receiver Analog Positive Supply (3.3V± 5%) for Channel _6
RVDD_7	U18		Receiver Analog Positive Supply (3.3V± 5%) for Channel _7
RGND_0	D2	****	Receiver Analog Ground for Channel_0
RGND_1	G3		Receiver Analog Ground for Channel_1
RGND_2	G17		Receiver Analog Ground for Channel_2
RGND_3	D17		Receiver Analog Ground for Channel_3
RGND_4	T2		Receiver Analog Ground for Channel_4
RGND_5	M2		Receiver Analog Ground for Channel_5
RGND_6	M17		Receiver Analog Ground for Channel_6
RGND_7	R17		Receiver Analog Ground for Channel_7
AVDD Bias	K17	****	Analog Positive Supply (3.3V± 5%)
VDDPLL_1	J3		Analog Positive Supply for Master Clock Synthesizer PLL (3.3V± 5%)
VDDPLL_2	J2		Analog Positive Supply for Master Clock Synthesizer PLL (3.3V± 5%)
AGND Bias	J17	****	Analog Ground
GNDPLL_1	K3		Analog Ground for Master Clock Synthesizer PLL
GNDPLL_2	L4		Analog Ground for Master Clock Synthesizer PLL
DVDD_DRV	R9	****	Digital Positive Supply (3.3V± 5%)
DVDD_PRE	U10		Digital Positive Supply (3.3V± 5%)
DVDD μP	K18		Digital Positive Supply (3.3V± 5%)
DVDD_PRE	D10		Digital Positive Supply (3.3V± 5%)
DVDD_DRV	K15		Digital Positive Supply (3.3V± 5%)
DVDD	A9		Digital Positive Supply (3.3V± 5%)
DGND_PRE	R8	****	Digital Ground
DGND_DRV	Т9		Digital Ground
DGND μP	H17		Digital Ground
DGND	B9		Digital Ground
DGND_DRV	D8		Digital Ground
DGND_PRE	C9		Digital Ground

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

PINS ONLY AVAILABLE IN BGA PACKAGE

SIGNAL NAME	LEAD#	Түре	DESCRIPTION
DVDD_DRV	J4	****	Digital Positive Supply (3.3V± 5%)
DVDD_DRV	D9		Digital Positive Supply (3.3V± 5%)
DGND_DRV	G15	****	Digital Ground
DGND_DRV	K2		Digital Ground
RXON	K16	I	Receiver On - Harware Mode Writing a "1" to this pin in Hardware mode turns on the Receive Sections of all channels. Writing a "0" shuts off the Receiver Sections of all channels.
NC1	A1	****	No Connect Pins
NC2	V1		
NC3	V18		
NC4	A18		
NC5	B1		
NC6	E1		
NC7	N1		
NC8	R1		
NC9	P18		
NC10	N18		
NC11	E18		
NC12	B18		

FUNCTIONAL DESCRIPTION

The XRT83SL38 is a fully integrated short-haul transceiver intended for T1, J1 or E1 systems. Simplified block diagrams of the chip are shown in **Figure 1**, **Host** mode and **Figure 2**, **Hardware** mode.

In T1 applications, the XRT83SL38 can generate five transmit pulse shapes to meet the short-haul Digital Cross-connect (DSX-1) template requirement. The operation and configuration of the XRT83SL38 can be controlled through a parallel microprocessor **Host** interface or **Hardware** control.

MASTER CLOCK GENERATOR

Using a variety of external clock sources, the on-chip frequency synthesizer generates the T1 (1.544MHz) or E1 (2.048MHz) master clocks necessary for the transmit pulse shaping and receive clock recovery circuit.

There are two master clock inputs MCLKE1 and MCLKT1. In systems where both T1 and E1 master clocks are available these clocks can be connected to the respective pins. All channels of a given XRT83Sl38 must be operated at the same clock rate, either T1, E1 or J1 modes.

In systems that have only one master clock source available (E1 or T1), that clock should be connected to both MCLKE1 and MCLKT1 inputs for proper operation. T1 or E1 master clocks can be generated from 8kHz, 16kHz, 56kHz, 64kHz, 128kHz and 256kHz external clocks under the control of CLKSEL[2:0] inputs according to Table 1.

NOTE: EQC[4:0] determine the T1/E1 operating mode. See **Table 5** for details.

FIGURE 3. TWO INPUT CLOCK SOURCE

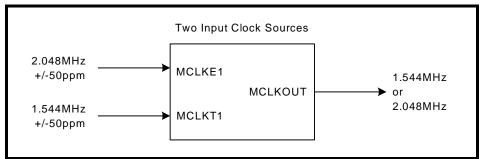


FIGURE 4. ONE INPUT CLOCK SOURCE

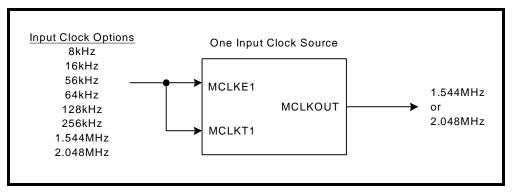


TABLE 1: MASTER CLOCK GENERATOR

MCLKE1 ĸHz	MCLKT1 ĸHz	CLKSEL2	CLKSEL1	CLKSEL0	MCLKRATE	MASTER CLOCK KHZ
2048	2048	0	0	0	0	2048
2048	2048	0	0	0	1	1544
2048	1544	0	0	0	0	2048
1544	1544	0	0	1	1	1544
1544	1544	0	0	1	0	2048
2048	1544	0	0	1	1	1544
8	х	0	1	0	0	2048
8	х	0	1	0	1	1544
16	х	0	1	1	0	2048
16	х	0	1	1	1	1544
56	х	1	0	0	0	2048
56	х	1	0	0	1	1544
64	х	1	0	1	0	2048
64	х	1	0	1	1	1544
128	х	1	1	0	0	2048
128	х	1	1	0	1	1544
256	х	1	1	1	0	2048
256	х	1	1	1	1	1544

In **Host** mode the programming is achieved through the corresponding interface control bits, the state of the CLKSEL[2:0] control bits and the state of the MCLKRATE interface control bit.

RECEIVER

RECEIVER INPUT

At the receiver input, a cable attenuated AMI signal can be coupled to the receiver through a capacitor or a 1:1 transformer. The input signal is first applied to a selective equalizer for signal conditioning. The maximum equalizer gain is up to 36 dB for both T1 and E1 modes. The equalized signal is subsequently applied to a peak detector which in turn controls the equalizer settings and the data slicer. The slicer threshold for both E1 and T1 is typically set at 50% of the peak amplitude at the equalizer output. After the slicers, the digital representation of the AMI signals are applied to the clock and data recovery circuit. The recovered data subsequently goes through the jitter attenuator and decoder (if selected) for HDB3 or B8ZS decoding before being applied to the RPOS_n/RDATA_n and RNEG_n/LCV_n pins. Clock recovery is accomplished by a digital phase-locked loop (DPLL) which does not require any external components and can tolerate high levels of input jitter that meets or exceeds the ITU-G.823 and TR-TSY000499 standards.

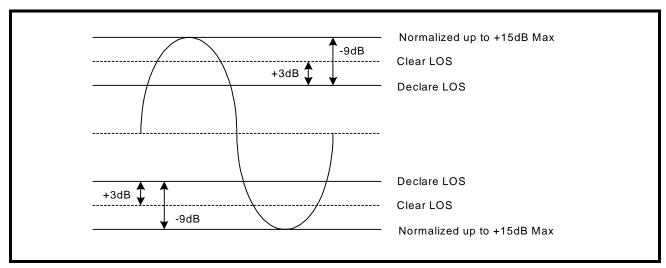
RECEIVE MONITOR MODE

In applications where Monitor mode is desired, the equalizer can be configured in a gain mode which handles input signals attenuated resistively up to 29dB, along with 0 to 6dB cable attenuation for both T1 and E1 applications, refer to **Table 5** for details. This feature is available in both **Hardware** and **Host** modes.

RECEIVER LOSS OF SIGNAL (RLOS)

For compatibility with ITU G.775 requirements, the RLOS monitoring function is implemented using both analog and digital detection schemes. If the analog RLOS condition occurs, a digital detector is activated to count for 32 consecutive zeros in E1 (4096 bits in Extended Los mode, EXLOS = "1") or 175 consecutive zeros in T1 before RLOS is asserted. RLOS is cleared when the input signal rises +3dB (built in hysteresis) above the point at which it was declared and meets 12.5% ones density of 4 ones in a 32 bit window, with no more than 16 consecutive zeros for E1. In T1 mode, RLOS is cleared when the input signal rises +3dB (built in hysteresis) above the point at which it was declared and contains 16 ones in a 128 bit window with no more than 100 consecutive zeros in the data stream. When loss of signal occurs, RLOS register indication and register status will change. If the RLOS register enable is set high (enabled), the alarm will trigger an interrupt causing the interrupt pin (INT) to go low. Once the alarm status register has been read, it will automatically reset upon read (RUR), and the INT pin will return high.

Analog RLOS


Setting the Receiver Inputs to -15dB T1/E1 Short Haul Mode

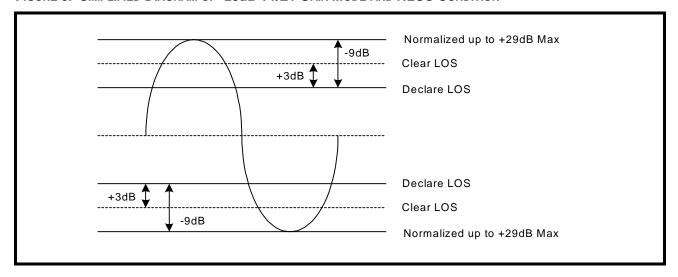
By setting the receiver inputs to -15dB T1/E1 short haul mode, the equalizer will detect the incoming amplitude and make adjustments by adding gain up to a maximum of +15dB normalizing the T1/E1 input signal.

NOTE: This is the only setting that refers to cable loss (frequency), not flat loss (resistive).

Once the T1/E1 input signal has been normalized to 0dB by adding the maximum gain (+15dB), the receiver will declare RLOS if the signal is attenuated by an additional -9dB. The total cable loss at RLOS declaration is typically -24dB (-15dB + -9dB). A 3dB hysteresis was designed so that transients will not trigger the RLOS to clear. Therefore, the RLOS will typically clear at a total cable attenuation of -21dB. See **Figure 5** for a simplified diagram.

FIGURE 5. SIMPLIFIED DIAGRAM OF -15dB T1/E1 SHORT HAUL MODE AND RLOS CONDITION

Setting the Receiver Inputs to -29dB T1/E1 Gain Mode

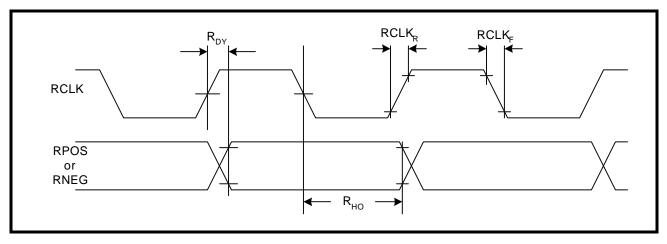

By setting the receiver inputs to -29dB T1/E1 gain mode, the equalizer will detect the incoming amplitude and make adjustments by adding gain up to a maximum of +29dB normalizing the T1/E1 input signal.

Note: This is the only setting that refers to flat loss (resistive). All other modes refer to cable loss (frequency).

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

Once the T1/E1 input signal has been normalized to 0dB by adding the maximum gain (+29dB), the receiver will declare RLOS if the signal is attenuated by an additional -9dB. The total cable loss at RLOS declaration is typically -38dB (-29dB + -9dB). A 3dB hysteresis was designed so that transients will not trigger the RLOS to clear. Therefore, the RLOS will typically clear at a total flat loss of -35dB. See **Figure 6** for a simplified diagram.

FIGURE 6. SIMPLIFIED DIAGRAM OF -29dB T1/E1 GAIN MODE AND RLOS CONDITION


RECEIVE HDB3/B8ZS DECODER

The Decoder function is available in both **Hardware** and **Host** modes on a per channel basis by controlling the TNEG_n/CODES_n pin or the CODES_n interface bit. The decoder function is only active in single-rail Mode. When selected, receive data in this mode will be decoded according to HDB3 rules for E1 and B8ZS for T1 systems. Bipolar violations that do not conform to the coding scheme will be reported as Line Code Violation at the RNEG_n/LCV_n pin of each channel. The length of the LCV pulse is one RCLK cycle for each code violation. In E1mode only, an excessive number of zeros in the receive data stream is also reported as an error at the same output pin. If AMI decoding is selected in single rail mode, every bipolar violation in the receive data stream will be reported as an error at the RNEG_n/LCV_n pin.

RECOVERED CLOCK (RCLK) SAMPLING EDGE

This feature is available in both **Hardware** and **Host** modes on a global basis. In **Host** mode, the sampling edge of RCLK output can be changed through the interface control bit RCLKE. If a "1" is written in the RCLKE interface bit, receive data output at RPOS_n/RDATA_n and RNEG_n/LCV_n are updated on the falling edge of RCLK for all eight channels. Writing a "0" to the RCLKE register, updates the receive data on the rising edge of RCLK. In **Hardware** mode the same feature is available under the control of the RCLKE pin.

FIGURE 7. RECEIVE CLOCK AND OUTPUT DATA TIMING

JITTER ATTENUATOR

To reduce phase and frequency jitter in the recovered clock, the jitter attenuator can be placed in the receive signal path. The jitter attenuator uses a data FIFO (First In First Out) with a programmable depth that can vary between 2x32 and 2x64. The jitter attenuator can also be placed in the transmit signal path or disabled altogether depending upon system requirements. The jitter attenuator, other than using the master clock as reference, requires no external components. With the jitter attenuator selected, the typical throughput delay from input to output is 16 bits for 32 bit FIFO size or 32 bits for 64 bit FIFO size. When the read and write pointers of the FIFO in the jitter attenuator are within two bits of over-flowing or under-flowing, the bandwidth of the jitter attenuator is widened to track the short term input jitter, thereby avoiding data corruption. When this situation occurs, the jitter attenuator will not attenuate input jitter until the read/write pointer's position is outside the two bits window. Under normal condition, the jitter transfer characteristic meets the narrow bandwidth requirement as specified in ITU- G.736, ITU- I.431 and AT&T Pub 62411 standards.

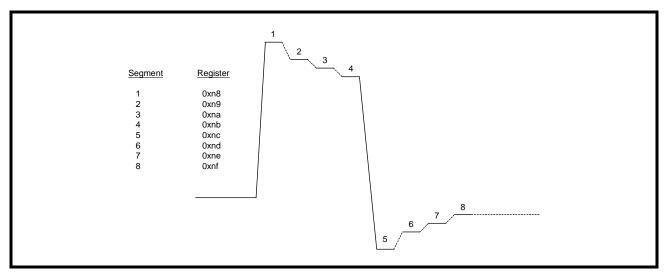
In T1 mode the Jitter Attenuator Bandwidth is always set to 3Hz. In E1 mode, the bandwidth can be reduced through the JABW control signal. When JABW is set "High" the bandwidth of the jitter attenuator is reduced from 10Hz to 1.5Hz. Under this condition the FIFO length is automatically set to 64 bits and the 32 bits FIFO length will not be available in this mode. Jitter attenuator controls are available on a per channel basis in the **Host** mode and on a global basis in the **Hardware** mode.

GAPPED CLOCK (JA MUST BE ENABLED IN THE TRANSMIT PATH)

The XRT83SL38 LIU is ideal for multiplexer or mapper applications where the network data crosses multiple timing domains. As the higher data rates are de-multiplexed down to T1 or E1 data, stuffing bits are removed which can leave gaps in the incoming data stream. If the jitter attenuator is enabled in the transmit path, the 32-Bit or 64-Bit FIFO is used to smooth the gapped clock into a steady T1 or E1 output. The maximum gap width of the 8-Channel LIU is shown in Table 2.

TABLE 2: MAXIMUM GAP WIDTH FOR MULTIPLEXER/MAPPER APPLICATIONS

FIFO DEPTH	MAXIMUM GAP WIDTH
32-Bit	20 UI
64-Bit	50 UI


Note: If the LIU is used in a loop timing system, the jitter attenuator should be enabled in the receive path.

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

ARBITRARY PULSE GENERATOR FOR T1 AND E1

The arbitrary pulse generator divides the pulse into eight individual segments. Each segment is set by a 7-Bit binary word by programming the appropriate channel register. This allows the system designer to set the overshoot, amplitude, and undershoot for a unique line build out. The MSB (bit 7) is a sign-bit. If the sign-bit is set to "1", the segment will move in a positive direction relative to a flat line (zero) condition. If this sign-bit is set to "0", the segment will move in a negative direction relative to a flat line condition. A pulse with numbered segments is shown in **Figure 8**.

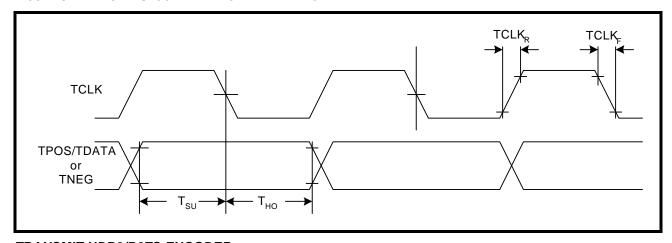
FIGURE 8. ARBITRARY PULSE SEGMENT ASSIGNMENT

By default, the arbitrary segments are programmed to 0x00h. The transmitter outputs will result in an all zero pattern to the line. For E1 arbitrary mode, see global register 0xC0h.

TRANSMITTER

DIGITAL DATA FORMAT

Both the transmitter and receiver can be configured to operate in dual or single-rail data formats. This feature is available under both **Hardware** and **Host** control modes, on a global basis. The dual or single-rail data format is determined by the state of the SR/DR pin in **Hardware** mode or SR/DR interface bit in the **Host** mode. In single-rail mode, transmit clock and NRZ data are applied to TCLK_n and TPOS_n/TDATA_n pins respectively. In single-rail and **Hardware** mode the TNEG_n/CODES_n input can be used as the CODES function. With TNEG_n/CODES_n tied "Low", HDB3 or B8ZS encoding and decoding are enabled for E1 and T1 modes respectively. With TNEG_n/CODES_n tied "High", the AMI coding scheme is selected. In both dual or single-rail modes of operations, the transmitter converts digital input data to a bipolar format before being transmitted to the line.


TRANSMIT CLOCK (TCLK) SAMPLING EDGE

Serial transmit data at TPOS_n/TDATA_n and TNEG_n/CODES_n are clocked into the XRT83SL38 under the synchronization of TCLK_n. With a "0" written to the TCLKE interface bit, or by pulling the TCLKE pin "Low", input data is sampled on the falling edge of TCLK_n. The sampling edge is inverted with a "1" written to TCLKE interface bit, or by connecting the TCLKE pin "High".

REV. 1.0.2

FIGURE 9. TRANSMIT CLOCK AND INPUT DATA TIMING

TRANSMIT HDB3/B8ZS ENCODER

The Encoder function is available in both **Hardware** and **Host** modes on a per channel basis by controlling the TNEG_n/CODES_n pin or CODES interface bit. The encoder is only available in single-rail mode. In E1 mode and with HDB3 encoding selected, any sequence with four or more consecutive zeros in the input serial data from TPOS_n/TDATA_n, will be removed and replaced with 000V or B00V, where "B" indicates a pulse conforming with the bipolar rule and "V" representing a pulse violating the rule. An example of HDB3 Encoding is shown in **Table 3**. In a T1 system, an input data sequence with eight or more consecutive zeros will be removed and replaced using the B8ZS encoding rule. An example of Bipolar with 8 Zero Substitution (B8ZS) encoding scheme is shown in **Table 4**. Writing a "1" into the CODES_n interface bit or connecting the TNEG_n/CODES_n pin to a "High" level selects the AMI coding for both E1 or T1 systems.

TABLE 3: EXAMPLES OF HDB3 ENCODING

	NUMBER OF PULSE BEFORE NEXT 4 ZEROS	NEXT 4 BITS
Input		0000
HDB3 (case1)	odd	V000
HDB3 (case2)	even	B00V

TABLE 4: EXAMPLES OF B8ZS ENCODING

Case 1	PRECEDING PULSE	NEXT 8 BITS
Input	+	00000000
B8ZS		000VB0VB
AMI Output	+	000+ -0- +
Case 2		
Input	-	00000000
B8ZS		000VB0VB
AMI Output	-	000- +0+ -

DRIVER FAILURE MONITOR (DMO)

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

The driver monitor circuit is used to detect transmit driver failure by monitoring the activities at TTIP and TRING outputs. Driver failure may be caused by a short circuit in the primary transformer or system problems at the transmit input. If the transmitter of a channel has no output for more than 128 clock cycles, the corresponding DMO pin goes "High" and remains "High" until a valid transmit pulse is detected. In **Host** mode, the failure of the transmit channel is reported in the corresponding interface bit. If the DMOIE bit is also enabled, any transition on the DMO interface bit will generate an interrupt. The driver failure monitor is supported in both **Hardware** and **Host** modes on a per channel basis.

TRANSMIT PULSE SHAPER & LINE BUILD OUT (LBO) CIRCUIT

The transmit pulse shaper circuit uses the high speed clock from the Master timing generator to control the shape and width of the transmitted pulse. The internal high-speed timing generator eliminates the need for a tightly controlled transmit clock (TCLK) duty cycle. With the jitter attenuator not in the transmit path, the transmit output will generate no more than 0.025Unit Interval (UI) peak-to-peak jitter. In **Hardware** mode, the state of the A[4:0]/EQC[4:0] pins determine the transmit pulse shape for all eight channels. In **Host** mode transmit pulse shape can be controlled on a per channel basis using the interface bits EQC[4:0]. The chip supports five fixed transmit pulse settings for T1 Short-haul applications plus a fully programmable waveform generator for arbitrary transmit output pulse shapes (The arbitrary pulse generators are available for both T1 and E1). The choice of the transmit pulse shape and LBO under the control of the interface bits are summarized in **Table 5**. For CSU LBO transmit pulse design information, refer to ANSI T1.403-1993 Network-to-Customer Installation specification, Annex-E.

Note: EQC[4:0] determine the T1/E1 operating mode of the XRT83SL38. When EQC4 = "1" and EQC3 = "1", the XRT83SL38 is in the E1 mode, otherwise it is in the T1/J1 mode. For details on how to enable the E1 arbitrary mode, see global register 0xC0h.

TABLE 5: RECEIVE EQUALIZER CONTROL AND TRANSMIT LINE BUILD-OUT SETTINGS

EQC4	EQC3	EQC2	EQC1	EQC0	E1/T1 MODE & RECEIVE SENSITIVITY	TRANSMIT LBO	CABLE	CODING
0	1	0	0	0	T1 Short Haul/15dB	0-133 ft./ 0.6dB	100Ω/ TP	B8ZS
0	1	0	0	1	T1 Short Haul/15dB	133-266 ft./ 1.2dB	100Ω/ TP	B8ZS
0	1	0	1	0	T1 Short Haul/15dB	266-399 ft./ 1.8dB	100Ω/ TP	B8ZS
0	1	0	1	1	T1 Short Haul/15dB	399-533 ft./ 2.4dB	100Ω/ TP	B8ZS
0	1	1	0	0	T1 Short Haul/15dB	533-655 ft./ 3.0dB	100Ω/ TP	B8ZS
0	1	1	0	1	T1 Short Haul/15dB	Arbitrary Pulse	100Ω/ TP	B8ZS
0	1	1	1	0	T1 Gain Mode/29dB	0-133 ft./ 0.6dB	100Ω/ TP	B8ZS
0	1	1	1	1	T1 Gain Mode/29dB	133-266 ft./ 1.2dB	100Ω/ TP	B8ZS
1	0	0	0	0	T1 Gain Mode/29dB	266-399 ft./ 1.8dB	100Ω/ TP	B8ZS
1	0	0	0	1	T1 Gain Mode/29dB	399-533 ft./ 2.4dB	100Ω/ TP	B8ZS
1	0	0	1	0	T1 Gain Mode/29dB	533-655 ft./ 3.0dB	100Ω/ TP	B8ZS
1	0	0	1	1	T1 Gain Mode/29dB	Arbitrary Pulse	100Ω/ TP	B8ZS
1	1	1	0	0	E1 Short Haul	ITU G.703/Arbitrary	75Ω Coax	HDB3
1	1	1	0	1	E1 Short Haul	ITU G.703/Arbitrary	120Ω TP	HDB3

TABLE 5: RECEIVE EQUALIZER CONTROL AND TRANSMIT LINE BUILD-OUT SETTINGS

EQC4	EQC3	EQC2	EQC1	EQC0	E1/T1 MODE & RECEIVE SENSITIVITY	TRANSMIT LBO	CABLE	Coding
1	1	1	1	0	E1 Gain Mode	ITU G.703/Arbitrary	75Ω Coax	HDB3
1	1	1	1	1	E1 Gain Mode	ITU G.703/Arbitrary	120Ω TP	HDB3

TRANSMIT AND RECEIVE TERMINATIONS

The XRT83SL38 is a versatile LIU that can be programmed to use one Bill of Materials (BOM) for worldwide applications for T1, J1 and E1. For specific applications the internal terminations can be disabled to allow the use of existing components and/or designs.

RECEIVER (CHANNELS 0 - 7)

INTERNAL RECEIVE TERMINATION MODE

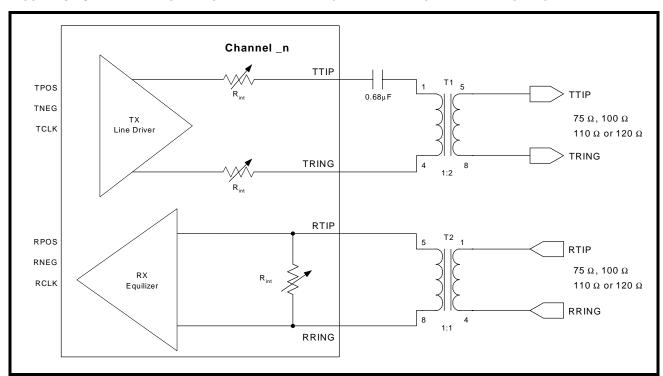

In **Hardware** mode, RXTSEL (Pin 83) can be tied "High" to select internal termination mode for all receive channels or tied "Low" to select external termination mode. Individual channel control can only be done in **Host** mode. By default the XRT83SL38 is set for external termination mode at power up or at **Hardware** reset.

TABLE 6: RECEIVE TERMINATION CONTROL

RXTSEL	RX TERMINATION
0	EXTERNAL
1	INTERNAL

In **Host** mode, bit 7 in the appropriate channel register, (**Table 20**, "**Microprocessor Register #1**, **Bit Description**," on page 52), is set "High" to select the internal termination mode for that specific receive channel.

FIGURE 10. SIMPLIFIED DIAGRAM FOR THE INTERNAL RECEIVE AND TRANSMIT TERMINATION MODE

XRT83SL38

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

If the internal termination mode (RXTSEL = "1") is selected, the effective impedance for E1, T1 or J1 can be achieved either with an internal resistor or a combination of internal and external resistors as shown in **Table 7**.

NOTE: In Hardware mode, pins RXRES[1:0] control all channels.

TABLE 7: RECEIVE TERMINATIONS

RXTSEL	TERSEL1	TERSEL0	RXRES1	RXRES0	R _{ext}	R _{int}	Mode
0	х	х	Х	х	R _{ext}	∞	T1/E1/J1
1	0	0	0	0	∞	100Ω	T1
1	0	1	0	0	∞	110Ω	J1
1	1	0	0	0	∞	75Ω	E1
1	1	1	0	0	∞	120Ω	E1
1	0	0	0	1	240Ω	172Ω	T1
1	0	1	0	1	240Ω	204Ω	J1
1	1	0	0	1	240Ω	108Ω	E1
1	1	1	0	1	240Ω	240Ω	E1
1	0	0	1	0	210Ω	192Ω	T1
1	0	1	1	0	210Ω	232Ω	J1
1	1	0	1	0	210Ω	116Ω	E1
1	1	1	1	0	210Ω	280Ω	E1
1	0	0	1	1	150Ω	300Ω	T1
1	0	1	1	1	150Ω	412Ω	J1
1	1	0	1	1	150Ω	150Ω	E1
1	1	1	1	1	150Ω	600Ω	E1

Figure 11 is a simplified diagram for T1 (100 Ω) in the external receive and transmit termination mode. **Figure 12** is a simplified diagram for E1 (75 Ω) in the external receive and transmit /.termination mode.

FIGURE 11. SIMPLIFIED DIAGRAM FOR T1 IN THE EXTERNAL TERMINATION MODE (RXTSEL= 0)

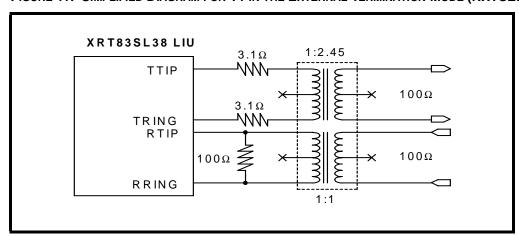
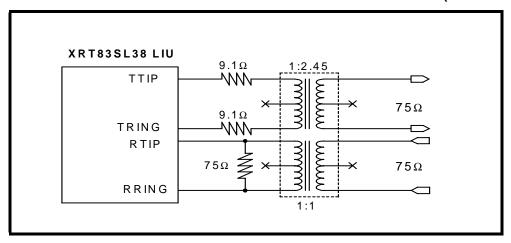



FIGURE 12. SIMPLIFIED DIAGRAM FOR E1 IN EXTERNAL TERMINATION MODE (RXTSEL= 0)

TRANSMITTER (CHANNELS 0 - 7)

TRANSMIT TERMINATION MODE

In **Hardware** mode, TXTSEL (Pin 84) can be tied "High" to select internal termination mode for all transmit channels or tied "Low" for external termination. Individual channel control can be done only in **Host** mode. In **Host** mode, bit 6 in the appropriate register for a given channel is set "High" to select the internal termination mode for that specific transmit channel, see **Table 20**, "**Microprocessor Register #1**, **Bit Description**," **on page 52**.

TABLE 8: TRANSMIT TERMINATION CONTROL

TXTSEL	TX TERMINATION	TX TRANSFORMER RATIO
0	EXTERNAL	1:2.45
1	INTERNAL	1:2

For internal termination, the transformer turns ratio is always 1:2. In internal mode, no external resistors are used. An external capacitor of $0.68\mu F$ is used for proper operation of the internal termination circuitry, see Figure 10.

TABLE 9: TERMINATION SELECT CONTROL

TERSEL1	TERSEL0	TERMINATION
0	0	100Ω
0	1	110Ω
1	0	75Ω
1	1	120Ω

EXTERNAL TRANSMIT TERMINATION MODE

By default the XRT83SL38 is set for external termination mode at power up or at Hardware reset.

When external transmit termination mode is selected, the internal termination circuitry is disabled. The value of the external resistors is chosen for a specific application according to the turns ratio selected by TRATIO (Pin 127) in **Hardware** mode or bit 0 in the appropriate register for a specific channel in **Host** mode, see **Table 10** and **Table 22**, "Microprocessor Register #3, Bit Description," on page 56. Figure 11 is a simplified block

diagram for T1 (100 Ω) in the external termination mode. Figure 12 is a simplified block diagram for E1 (75 Ω) in the external termination mode.

TABLE 10: TRANSMIT TERMINATION CONTROL

TRATIO	TURNS RATIO
0	1:2.45
1	1:2

Table 11 summarizes the transmit terminations.

TABLE 11: TRANSMIT TERMINATIONS

	TERSEL1	TERSEL0	TXTSEL	TRATIO	$R_{int} \Omega$	n	$R_{ext} \Omega$	C _{ext}	
			0=EXTERNAL		SET BY CONTROL	n, R _{ext} , and C _{ext} are suggested			
			1=INTERNAL		BITS	SE	TTINGS		
	T -	1 -					T	I -	
T1	0	0	0	0	0Ω	2.45	3.1Ω	0	
110 Ω	0	0	0	1	Ω	2	3.1Ω	0	
	0	0	1	х	12.5Ω	2	0Ω	0.68μF	
	0	1	0	0	0Ω	2.45	3.1Ω	0	
J1 110 Ω	0	1	0	1	0Ω	2	3.1Ω	0	
	0	1	1	х	13.75Ω	2	0Ω	0.68μF	
	1	0	0	0	0Ω	2.45	6.2Ω	0	
E1 75 Ω	1	0	0	1	0Ω	2	9.1Ω	0	
	1	0	1	х	9.4Ω	2	0Ω	0.68μF	
	1	1	0	0	0Ω	2.45	6.2Ω	0	
E1 120 Ω	1	1	0	1	0Ω	2	9.1Ω	0	
	1	1	1	х	15Ω	2	0Ω	0.68μF	

REDUNDANCY APPLICATIONS

Telecommunication system design requires signal integrity and reliability. When a T1/E1 primary line card has a failure, it must be swapped with a backup line card while maintaining connectivity to a backplane without losing data. System designers can achieve this by implementing common redundancy schemes with the XRT83SL38 Line Interface Unit (LIU). The XRT83SL38 offers features that are tailored to redundancy applications while reducing the number of components and providing system designers with solid reference designs. These features allow system designers to implement redundancy applications that ensure reliability. The Internal Impedance mode eliminates the need for external relays when using the 1:1 and 1+1 redundancy schemes.

XRT83SL38

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

PROGRAMMING CONSIDERATIONS

In many applications switching the control of the transmitter outputs and the receiver line impedance to **hardware** control will provide faster transmitter ON/OFF switching.

In **Host** Mode, there are two bits in register 130 (82H) that control the transmitter outputs and the Rx line impedance select, TXONCNTL (Bit 7) and TERCNTL (Bit 6).

Setting bit-7 (TXONCNTL) to a "1" transfers the control of the Transmit On/Off function to the TXON_n **Hardware** control pins. (Pins 90 through 93 and pins 169 through 172).

Setting bit-6 (TERCNTL) to a "1" transfers the control of the Rx line impedance select (RXTSEL) to the RXTSEL **Hardware** control pin (pin 83).

Either mode works well with redundancy applications. The user can determine which mode has the fastest switching time for a unique application.

TYPICAL REDUNDANCY SCHEMES

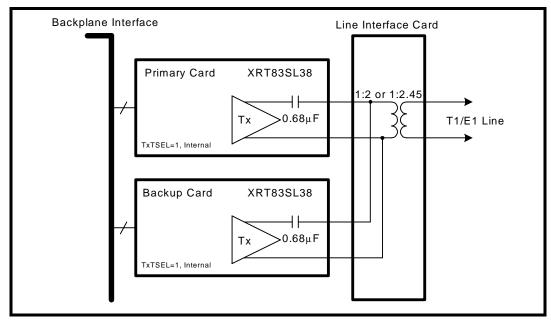
- ·1:1 One backup card for every primary card (Facility Protection)
- ·1+1 One backup card for every primary card (Line Protection)
- ·N+1One backup card for N primary cards

1:1 REDUNDANCY

A 1:1 facility protection redundancy scheme has one backup card for every primary card. When using 1:1 redundancy, the backup card has its transmitters tri-stated and its receivers in high impedance. This eliminates the need for external relays and provides one bill of materials for all interface modes of operation. The transmit and receive sections of the LIU device are described separately.

1+1 REDUNDANCY

A 1+1 line protection redundancy scheme has one backup card for every primary card, and the receivers on the backup card are monitoring the receiver inputs. Therefore, the receivers on both cards need to be active. The transmit outputs require no external resistors. The transmit and receive sections of the LIU device are described separately.

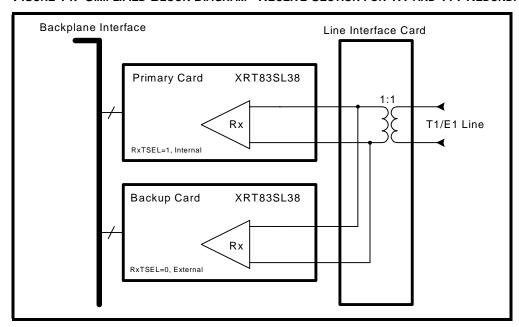

TRANSMIT 1:1 & 1+1 REDUNDANCY

For 1:1 and 1+1 redundancy, the transmitters on the primary and backup card should be programmed for Internal Impedance mode. The transmitters on the backup card should be tri-stated. Select the appropriate impedance for the desired mode of operation, T1/E1/J1. A 0.68uF capacitor is used in series with TTIP for blocking DC bias. See **Figure 13** for a simplified block diagram of the transmit section for 1:1 and 1+1 redundancy scheme.

NOTE: For simplification, the over voltage protection circuitry was omitted.

REV. 1.0.2

FIGURE 13. SIMPLIFIED BLOCK DIAGRAM OF THE TRANSMIT SECTION FOR 1:1 & 1+1 REDUNDANCY



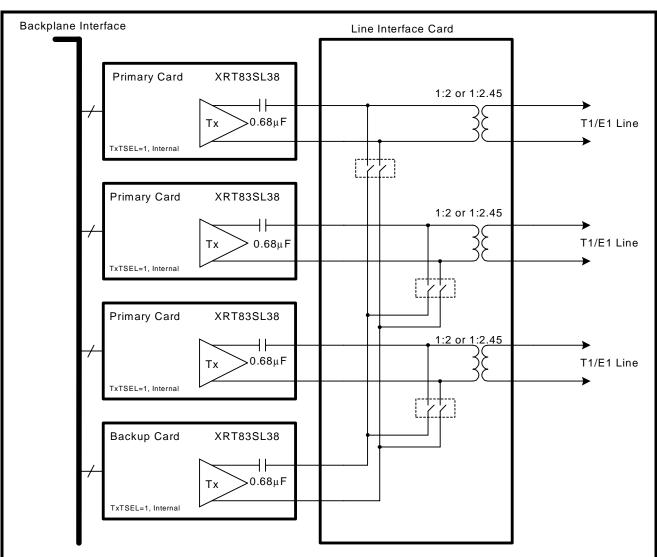
RECEIVE 1:1 & 1+1 REDUNDANCY

For 1:1 and 1+1 redundancy, the receivers on the primary card should be programmed for Internal Impedance mode. The receivers on the backup card should be programmed for External Impedance mode. Since there is no external resistor in the circuit, the receivers on the backup card will be high impedance. This key design feature eliminates the need for relays and provides one bill of materials for all interface modes of operation. Select the impedance for the desired mode of operation, T1/E1/J1. To swap the primary card, set the backup card to Internal Impedance mode, then the primary card to External Impedance mode. See **Figure 14** for a simplified block diagram of the receive section for a 1:1 and 1+1 redundancy scheme.

Note: For simplification, the over voltage protection circuitry was omitted.

FIGURE 14. SIMPLIFIED BLOCK DIAGRAM - RECEIVE SECTION FOR 1:1 AND 1+1 REDUNDANCY

N+1 REDUNDANCY

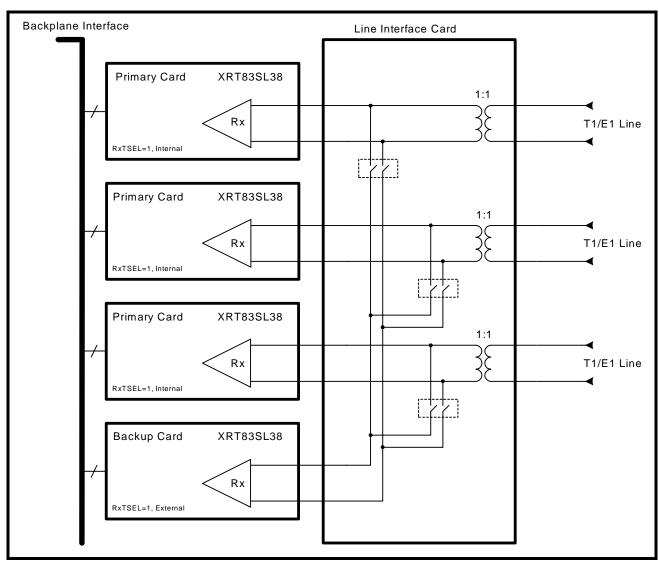

N+1 redundancy has one backup card for N primary cards. Due to impedance mismatch and signal contention, external relays are necessary when using this redundancy scheme. The advantage of relays is that they create complete isolation between the primary cards and the backup card. This allows all transmitters and receivers on the primary cards to be configured in internal impedance mode, providing one bill of materials for all interface modes of operation. The transmit and receive sections of the XRT83SL38 are described separately.

TRANSMIT

For N+1 redundancy, the transmitters on all cards should be programmed for internal impedance mode providing one bill of materials for T1/E1/J1. The transmitters on the backup card do not have to be tri-stated. To swap the primary card, close the desired relays, and tri-state the transmitters on the failed primary card. A 0.68µF capacitor is used in series with TTIP for blocking DC bias. See **Figure 15** for a simplified block diagram of the transmit section for an N+1 redundancy scheme.

NOTE: For simplification, the over voltage protection circuitry was omitted.

FIGURE 15. SIMPLIFIED BLOCK DIAGRAM - TRANSMIT SECTION FOR N+1 REDUNDANCY



RECEIVE

For N+1 redundancy, the receivers on the primary cards should be programmed for internal impedance mode. The receivers on the backup card should be programmed for external impedance mode. Since there is no external resistor in the circuit, the receivers on the backup card will be high impedance. Select the impedance for the desired mode of operation, T1/E1/J1. To swap the primary card, set the backup card to internal impedance mode, then the primary card to external impedance mode. See **Figure 16**. for a simplified block diagram of the receive section for a N+1 redundancy scheme.

NOTE: For simplification, the over voltage protection circuitry was omitted.

FIGURE 16. SIMPLIFIED BLOCK DIAGRAM - RECEIVE SECTION FOR N+1 REDUNDANCY

PATTERN TRANSMIT AND DETECT FUNCTION

Several test and diagnostic patterns can be generated and detected by the chip. In **Hardware** mode each channel can be independently programmed to transmit an All Ones pattern by applying a "High" level to the corresponding TAOS_n pin. In **Host** mode, the three interface bits TXTEST[2:0] control the pattern generation and detection independently for each channel according to **Table 12**.

TABLE 12: PATTERN TRANSMISSION CONTROL

TXTEST2	TXTEST1	TXTEST0	TEST PATTERN
0	х	х	None
1	0	0	TDQRSS
1	0	1	TAOS
1	1	0	TLUC
1	1	1	TLDC

TRANSMIT ALL ONES (TAOS)

This feature is available in both **Hardware** and **Host** modes. With the TAOS_n pin connected to a "High" level or when interface bits TXTEST2="1", TXTEST1="0" and TXTEST0="1" the transmitter ignores input from TPOS_n/TDATA_n and TNEG_n/CODES_n pins and sends a continuous AMI encoded all "Ones" signal to the line, using TCLK_n clock as the reference. In addition, when the **Hardware** pin and interface bit ATAOS is activated, the chip will automatically transmit the All "Ones" data from any channel that detects an RLOS condition. This feature is not available on a per channel basis. TCLK n must NOT be tied "Low".

NETWORK LOOP CODE DETECTION AND TRANSMISSION

This feature is available in **Host** mode only. When the interface bits TXTEST2="1", TXTEST1="1" and TXTEST0="0" the chip is enabled to transmit the "00001" Network Loop-Up Code from the selected channel requesting a Loop-Back condition from the remote terminal. Simultaneously setting the interface bits NLCDE1="0" and NLCDE0="1" enables the Network Loop-Up code detection in the receiver. If the "00001" Network Loop-Up code is detected in the receive data for longer than 5 seconds, the NLCD bit in the interface register is set indicating that the remote terminal has activated remote Loop-Back and the chip is receiving its own transmitted data. When the interface bits TXTEST2="1", TXTEST1="1" and TXTEST0="1" the chip is enabled to transmit the Network Loop-Down Code (TLDC) "001" from the selected channel requesting the remote terminal the removal of the Loop-Back condition.

In the **Host** mode each channel is capable of monitoring the contents of the receive data for the presence of Loop-Up or Loop-Down code from the remote terminal. In the **Host** mode the two interface bits NLCDE[1:0] control the Loop-Code detection independently for each channel according to **Table 13**.

TABLE 13: LOOP-CODE DETECTION CONTROL

NLCDE1	NLCDE0	CONDITION
0	0	Disable Loop-Code Detection
0	1	Detect Loop-Up Code in Receive Data
1	0	Detect Loop-Down Code in Receive Data
1	1	Automatic Loop-Code detection and Remote Loop-Back Activation

Setting the interface bits to NLCDE1="0" and NLCDE0="1" activates the detection of the Loop-Up code in the receive data. If the "00001" Network Loop-Up code is detected in the receive data for longer than 5 seconds, the NLCD interface bit is set to "1" and stays in this state for as long as the receiver continues to receive the

Network Loop-Up Code. In this mode if the NLCD interrupt is enabled, the chip will initiate an interrupt on every transition of NLCD. The host has the option to ignore the request from the remote terminal, or to respond to the request and manually activate Remote Loop-Back. The host can subsequently activate the detection of the Loop-Down Code by setting NLCDE1="1" and NLCDE0="0". In this case, receiving the "001" Loop-Down Code for longer than 5 seconds will set the NLCD bit to "1" and if the NLCD interrupt is enabled, the chip will initiate an interrupt on every transition of NLCD. The host can respond to the request from the remote terminal and remove Loop-Back condition. In the manual Network Loop-Up (NLCDE1="0" and NLCDE0="1") and Loop-Down (NLCDE1="1" and NLCDE0="0") Code detection modes, the NLCD interface bit will be set to "1" upon receiving the corresponding code in excess of 5 seconds in the receive data. The chip will initiate an interrupt any time the status of the NLCD bit changes and the Network Loop-code interrupt is enabled.

In the Host mode, setting the interface bits NLCDE1="1" and NLCDE0="1" enables the automatic Loop-Code detection and Remote Loop-Back activation mode if, TXTEST[2:0] is NOT equal to "110". As this mode is initiated, the state of the NLCD interface bit is reset to "0" and the chip is programmed to monitor the receive input data for the Loop-Up Code. If the "00001" Network Loop-Up Code is detected in the receive data for longer than 5 seconds in addition to the NLCD bit in the interface register being set, Remote Loop-Back is automatically activated. The chip stays in remote Loop-Back even if it stops receiving the "00001" pattern. After the chip detects the Loop-Up code, sets the NLCD bit and enters Remote Loop-Back, it automatically starts monitoring the receive data for the Loop-Down code. In this mode however, the NLCD bit stays set even if the receiver stops receiving the Loop-Up code, which is an indication to the host that the Remote Loop-Back is still in effect. Remote Loop-Back is removed if the chip detects the "001" Loop-Down code for longer than 5 seconds. Detecting the "001" code also results in resetting the NLCD interface bit and initiating an interrupt. The Remote Loop-Back can also be removed by taking the chip out of the Automatic detection mode by programming it to operate in a different state. The chip will not respond to remote Loop-Back request if Local Analog Loop-Back is activated locally. When programmed in Automatic detection mode the NLCD interface bit stays "High" for the whole time the Remote Loop-Back is activated and initiates an interrupt any time the status of the NLCD bit changes provided the Network Loop-code interrupt is enabled.

TRANSMIT AND DETECT QUASI-RANDOM SIGNAL SOURCE (TDQRSS)

Each channel of XRT83SL38 includes a QRSS pattern generation and detection block for diagnostic purposes that can be activated only in the **Host** mode by setting the interface bits TXTEST2="1", TXTEST1="0" and TXTEST0="0". For T1 systems, the QRSS pattern is a 2²⁰-1pseudo-random bit sequence (PRBS) with no more than 14 consecutive zeros. For E1 systems, the QRSS pattern is 2¹⁵ -1 PRBS with an inverted output. With QRSS and Analog Local Loop-Back enabled simultaneously, and by monitoring the status of the QRPD interface bit, all main functional blocks within the transceiver can be verified.

When the receiver achieves QRSS synchronization with fewer than 4 errors in a 128 bits window, QRPD changes from "Low" to "High". After pattern synchronization, any bit error will cause QRPD to go "Low" for one clock cycle. If the QRPDIE bit is enabled, any transition on the QRPD bit will generate an interrupt.

With TDQRSS activated, a bit error can be inserted in the transmitted QRSS pattern by transitioning the INSBER interface bit from "0" to "1". Bipolar violation can also be inserted either in the QRSS pattern, or input data when operating in the single-rail mode by transitioning the INSBPV interface bit from "0" to "1". The state of INSBER and INSBPV bits are sampled on the rising edge of the TCLK_n. To insure the insertion of the bit error or bipolar violation, a "0" should be written in these bit locations before writing a "1".

XRT83SL38

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

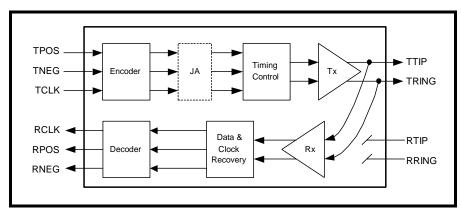
LOOP-BACK MODES

The XRT83SL38 supports several Loop-Back modes under both **Hardware** and **Host** control. In **Hardware** mode the two LOOP[1:0] pins control the Loop-Back functions for each channel independently according to **Table 14**.

TABLE 14: LOOP-BACK CONTROL IN HARDWARE MODE

LOOP1	LOOP0	LOOP-BACK MODE
0	0	None
0	1	Analog
1	0	Remote
1	1	Digital

In **Host** mode the Loop-Back functions are controlled by the three LOOP[2:0] interface bits. Each channel can be programmed independently according to **Table 15**.

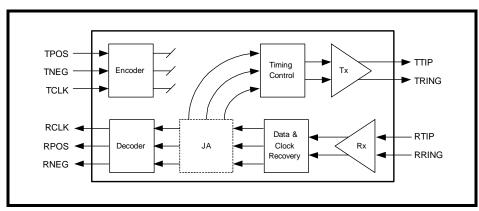

TABLE 15: LOOP-BACK CONTROL IN HOST MODE

LOOP2	LOOP1	LOOP0	LOOP-BACK MODE
0	Х	Х	None
1	0	0	Dual
1	0	1	Analog
1	1	0	Remote
1	1	1	Digital

LOCAL ANALOG LOOP-BACK (ALOOP)

With Local Analog Loop-Back activated, the transmit data at TTIP and TRING are looped-back to the analog input of the receiver. External inputs at RTIP/RRING in this mode are ignored while valid transmit data continues to be sent to the line. Local Analog Loop-Back exercises most of the functional blocks of the XRT83SL38 including the jitter attenuator which can be selected in either the transmit or receive paths. Local Analog Loop-Back is shown in Figure 17.

FIGURE 17. LOCAL ANALOG LOOP-BACK SIGNAL FLOW



In this mode, the jitter attenuator (if selected) can be placed in the transmit or receive path.

REMOTE LOOP-BACK (RLOOP)

With Remote Loop-Back activated, receive data after the jitter attenuator (if selected in the receive path) is looped back to the transmit path using RCLK as transmit timing. In this mode transmit clock and data are ignored, while RCLK and receive data will continue to be available at their respective output pins. Remote Loop-Back with jitter attenuator selected in the receive path is shown in **Figure 18**.

FIGURE 18. REMOTE LOOP-BACK MODE WITH JITTER ATTENUATOR SELECTED IN RECEIVE PATH

In the Remote Loop-Back mode if the jitter attenuator is selected in the transmit path, the receive data from the Clock and Data Recovery block is looped back to the transmit path and is applied to the jitter attenuator using RCLK as transmit timing. In this mode the transmit clock and data are also ignored, while RCLK and received data will continue to be available at their respective output pins. Remote Loop-Back with the jitter attenuator selected in the transmit path is shown in **Figure 19**.

TPOS-**►** TTIP Timing Encoder Тx TNEG-Control **TRING** TCLK-**RCLK**◀ RTIP Clock & **RPOS**◀ Decoder Data Rx **RRING** Recover RNEG◀

FIGURE 19. REMOTE LOOP-BACK MODE WITH JITTER ATTENUATOR SELECTED IN TRANSMIT PATH

DIGITAL LOOP-BACK (DLOOP)

Digital Loop-Back or Local Loop-Back allows the transmit clock and data to be looped back to the corresponding receiver output pins through the encoder/decoder and jitter attenuator. In this mode, receive data and clock are ignored, but the transmit data will be sent to the line uninterrupted. This loop back feature allows users to configure the line interface as a pure jitter attenuator. The Digital Loop-Back signal flow is shown in **Figure 20**.

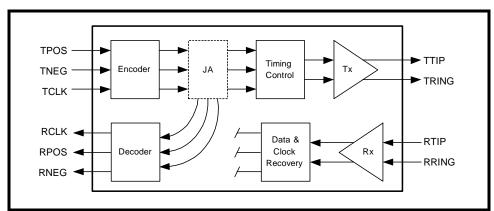
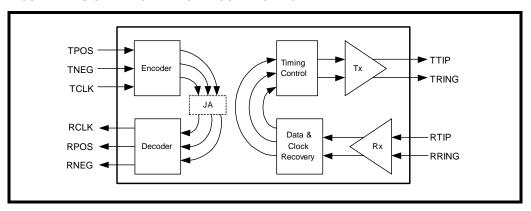



FIGURE 20. DIGITAL LOOP-BACK MODE WITH JITTER ATTENUATOR SELECTED IN TRANSMIT PATH

DUAL LOOP-BACK

Figure 21 depicts the data flow in dual-loopback. In this mode, selecting the jitter attenuator in the transmit path will have the same result as placing the jitter attenuator in the receive path. In dual Loop-Back mode the recovered clock and data from the line are looped back through the transmitter to the TTIP and TRING without passing through the jitter attenuator. The transmit clock and data are looped back through the jitter attenuator to the RCLK and RPOS/RDATA and RNEG pins.

FIGURE 21. SIGNAL FLOW IN DUAL LOOP-BACK MODE

MICROPROCESSOR PARALLEL INTERFACE

XRT83SL38 is equipped with a microprocessor interface for easy device configuration. The parallel port of the XRT83SL38 is compatible with both Intel and Motorola address and data buses. The XRT83SL38 has an 8-bit address A[7:0] input and 8-bit bi-directional data bus D[7:0]. The signals required for a generic microprocessor to access the internal registers are described in **Table 16**.

TABLE 16: MICROPROCESSOR INTERFACE SIGNAL DESCRIPTION

D[7:0]	Data Input (Out	Data Input (Output): 8 bits bi-directional Read/Write data bus for register access.										
A[7:0]	Address Input:	Address Input: 8 bit address to select internal register location.										
μPTS1 μPTS2	Microprocessor	Microprocessor Type Select:										
μι 102		μPTS2 μPTS1 μP Type										
		0	0	68HC11, 8051, 80C188 (async.)								
		0	1	Motorola 68K (async.)								
		1	0	Intel x86 (sync.)								
		1	1	Intel i960, Motorola 860 (sync.)								
		_			-							
μ PCLK	clock speed is 54	Microprocessor Clock Input : Input clock for synchronous microprocessor operation. Maximum clock speed is 54MHz. This pin is internally pulled "Low" for asynchronous microprocessor operation when no clock is present.										
ALE_AS	Address Latch Input (Address Strobe): -Intel bus timing, the address inputs are latched into the internal register on the falling edge of ALEMotorola bus timing, the address inputs are latched into the internal register on the falling edge of AS.											
cs	Chip Select Inpu	ut: This signal r	must be "Low	" in order to access the parallel port.								
RD_DS	•	a "Low" pulse		s a read operation when \overline{CS} pin is "Lo dicates a read or write operation when								
WR_R/W	_	a "Low" pulse oning, a "High" p	ulse on R/W	s a write operation when $\overline{\text{CS}}$ pin is "Low" selects a read operation and a "Low" v".								
RDY_DTACK	Ready Output (Data Transfer Acknowledge Output): -Intel bus timing, RDY is asserted "High" to indicate the XRT83SL38 has completed a read or write operationMotorola bus timing, DTACK is asserted "Low" to indicate the XRT83SL38 has completed a read or write operation.											
ĪNT		registers. The		to indicate an interrupt caused by an his pin can be blocked by setting the 0								

MICROPROCESSOR REGISTER TABLES

The microprocessor interface consists of 256 addressable locations. Each channel uses 16 dedicated 8 byte registers for independent programming and control. There are four additional registers for global control of all channels and two registers for device identification and revision numbers. The remaining registers are for factory test and future expansion. The control register map and the function of the individual bits are summarized in **Table 17** and **Table 18** respectively.

TABLE 17: MICROPROCESSOR REGISTER ADDRESS

REGISTER NUMBER	Regi	STER ADDRESS	Function
REGISTER NUMBER	HEX	BINARY	FUNCTION
0 - 15	0x00 - 0x0F	00000000 - 00001111	Channel 0 Control Registers
16 - 31	0x10 -0x1F	00010000 - 00011111	Channel 1 Control Registers
32 - 47	0x20 - 0x2F	00100000 - 00101111	Channel 2 Control Registers
48 - 63	0x30 - 0x3F	00110000 - 00111111	Channel 3 Control Registers
64 - 79	0x40 - 0x4F	01000000 - 01001111	Channel 4 Control Registers
80 - 95	0x50 - 0x5F	01010000 - 01011111	Channel 5 Control Registers
96-111	0x60 - 0x6F	01100000 - 01101111	Channel 6 Control Registers
112 - 127	0x70 - 0x7F	01110000 - 01111111	Channel 7 Control Registers
128 - 131	0x80 - 0x83	10000000 - 10000011	Command Control registers for all 8 channels
132 -139	0x84 - 0x8B	10000100 - 10001011	R/W registers reserved for testing channels 0-3
140 - 191	0x8C - 0xBF	10001100 - 10111111	Reserved
192	0xC0	11000000	Command Control register for all 8 channels
193 - 195	0xC1 - 0xC3	11000001 - 11000011	Reserved
196 - 203	0xC4 - 0xCB	11000100 - 11001011	R/W registers reserved for testing channels 4-7
204 - 253	0xCC - 0xFD	11001100 - 11111101	Reserved
254	0xFE	11111110	Device ID
255	0xFF	11111111	Revision ID

TABLE 18: MICROPROCESSOR REGISTER BIT DESCRIPTION

REG.#	Address	REG. TYPE	Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
Channel 0	Channel 0 Control Registers									
0	00000000 Hex 0x00	R/W	Reserved	Reserved	RXON_n	EQC4_n	EQC3_n	EQC2_n	EQC1_n	EQC0_n
1	00000001 Hex 0x01	R/W	RXTSEL_n	TXTSEL_n	TERSEL1_n	TERSEL0_n	JASEL1_n	JASEL0_n	JABW_n	FIFOS_n
2	00000010 Hex 0x02	R/W	INVQRSS_n	TXTEST2_n	TXTEST1_n	TXTEST0_n	TXON_n	LOOP2_n	LOOP1_n	LOOP0_n
3	00000011 Hex 0x03	R/W	NLCDE1_n	NLCDE0_n	CODES_n	RXRES1_n	RXRES0_n	INSBPV_n	INSBER_n	TRATIO_n

TABLE 18: MICROPROCESSOR REGISTER BIT DESCRIPTION

REG.#	Address	REG. Type	Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
4	00000100 Hex 0x04	R/W	Reserved	DMOIE_n	FLSIE_n	LCVIE_n	NLCDIE_n	AISDIE_n	RLOSIE_n	QRPDIE_n
5	00000101 Hex 0x05	RO	Reserved	DMO_n	FLS_n	LCV_n	NLCD_n	AISD_n	RLOS_n	QRPD_n
6	00000110 Hex 0x06	RUR	Reserved	DMOIS_n	FLSIS_n	LCVIS_n	NLCDIS_n	AISDIS_n	RLOSIS_n	QRPDIS_n
7	00000111 Hex 0x07	RO	Reserved	Reserved	CLOS5_n	CLOS4_n	CLOS3_n	CLOS2_n	CLOS1_n	CLOS0_n
8	00001000 Hex 0x08	R/W	Х	B6S1_n	B5S1_n	B4S1_n	B3S1_n	B2S1_n	B1S1_n	B0S1_n
9	00001001 Hex 0x09	R/W	Х	B6S2_n	B5S2_n	B4S2_n	B3S2_n	B2S2_n	B1S2_n	B0S2_n
10	00001010 Hex 0x0A	R/W	Х	B6S3_n	B5S3_n	B4S3_n	B3S3_n	B2S3_n	B1S3_n	B0S3_n
11	00001011 Hex 0x0B	R/W	Х	B6S4_n	B5S4_n	B4S4_n	B3S4_n	B2S4_n	B1S4_n	B0S4_n
12	00001100 Hex 0x0C	R/W	Х	B6S5_n	B5S5_n	B4S5_n	B3S5_n	B2S5_n	B1S5_n	B0S5_n
13	00001101 Hex 0x0D	R/W	Х	B6S6_n	B5S6_n	B4S6_n	B3S6_n	B2S6_n	B1S6_n	B0S6_n
14	00001110 Hex 0x0E	R/W	Х	B6S7_n	B5S7_n	B4S7_n	B3S7_n	B2S7_n	B1S7_n	B0S7_n
15	00001111 Hex 0x0F	R/W	Х	B6S8_n	B5S8_n	B4S8_n	B3S8_n	B2S8_n	B1S8_n	B0S8_n
			Reset = 0	Reset = 0	Reset = 0	Reset = 0	Reset = 0	Reset = 0	Reset = 0	Reset = 0
Command	Control Glo	bal Regis	sters for all 8 c	hannels						
16-31	0001xxxx Hex 0x10- 0x1F	R/W	Channel 1Cor	ntrol Register (se	ee Registers 0-	15 for description)			
32-47	0010xxxx Hex 0x20- ox2F	R/W	Channel 2 Co	ntrol Register (s	see Registers 0-	15 for description	n)			
48-63	0011xxxx Hex 0x30- 0x3F	R/W	Channel 3 Co	ntrol Register (s	see Registers 0-	15 for description	1)			
64-79	0100xxxx Hex 0x40- 0x4F	R/W	Channel 4 Co	ntrol Register (s	see Registers 0-	15 for description	n)			
80-95	0101xxxx Hex 0x50- 0x5F	R/W	Channel 5 Co	Channel 5 Control Register (see Registers 0-15 for description)						
96-111	0110xxxx Hex 0x60- 0x6F	R/W	Channel 6 Co	Channel 6 Control Register (see Registers 0-15 for description)						
112-127	0111xxxx Hex 0x70- 0x7F	R/W	Channel 7 Co	ntrol Register (s	see Registers 0-	15 for description	n)			
Command	Control Reg	jisters fo	r All 8 Channe	ls						

TABLE 18: MICROPROCESSOR REGISTER BIT DESCRIPTION

REG.#	Address	REG. Type	Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
128	10000000 Hex 0x80	R/W	SR/DR	ATAOS	RCLKE	TCLKE	DATAP	Reserved	GIE	SRESET
129	10000001 Hex 0x81	R/W	Reserved	CLKSEL2	CLKSEL1	CLKSEL0	MCLKRATE	RXMUTE	EXLOS	ICT
130	10000010 Hex 0x82	R/W	TXONCNTL	TERCNTL	Reserved	Reserved	MONITOR_3	MONITOR_2	MONITOR _1	MONITOR_0
131	10000011 Hex 0x83	R/W	GAUGE1	GAUGE0	Reserved	Reserved	SL_1	SL_0	EQG_1	EQG_0
Test Regis	ters for cha	nnels 0 - 3	3				<u>I</u>		l	
132	10000100	R/W	Test byte 0							
133	10000101	R/W	Test byte 1							
134	10000110	R/W	Test byte 2							
135	10000111	R/W	Test byte 3							
136	10001000	R/W	Test byte 4							
137	10001001	R/W	Test byte 5							
138	10001010	R/W	Test byte 6							
139	10001011	R/W	Test byte 7							
Unused Re	egisters									
140-191	100011xx									
Command	Control Reg	ister for	All 8 Channels	i						
192	11000000 Hex 0xC0	R/W	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	E1Arben
Unused Re	egisters									
193-195	110000xx									
Test Regis	ters for cha	nnels 4 - 7	7							
196	11000100	R/W	Test byte 0							
197	11000101	R/W	Test byte 0							
198	11000110	R/W	Test byte 0							
199	11000111	R/W	Test byte 0							
200	11001000	R/W	Test byte 0							
201	11001001	R/W	Test byte 0							
202	11001010	R/W	Test byte 0							
203	11001011	R/W	Test byte 0							
Unused Ro	egisters									
204	11001100									
253	11111101									
ID Registe	rs									

XRT83SL38

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

TABLE 18: MICROPROCESSOR REGISTER BIT DESCRIPTION

REG.#	Address	REG. Type	Віт 7	Віт 6	Віт 5	Віт 4	Віт 3	Віт 2	Віт 1	Віт 0
254	11111110 Hex 0xFE	RO	DEVICE ID he	ex: FC Binary : 1	11111100					
255	11111111 Hex 0xFF	RO	DEVICE "Rev	ision ID"						

MICROPROCESSOR REGISTER DESCRIPTIONS

TABLE 19: MICROPROCESSOR REGISTER #0, BIT DESCRIPTION

REGISTER ADDRESS 00000000 00010000 00100000 00110000 01010000 01100000 01110000	CHANNEL_n CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7 NAME	Function	Register Type	RESET VALUE
D7	Reserved		R/W	0
D6	Reserved		R/W	
D5	RXON_n	Receiver ON: Writing a "1" into this bit location turns on the Receive Section of channel n. Writing a "0" shuts off the Receiver Section of channel n. Notes: 1. This bit provides independent turn-off or turn-on control of each receiver channel. 2. In Hardware mode all receiver channels are always on in the TQFP package. In the BGA packace all receiver channels can be turned on or off together by applying the appropriate signal to the RXON pin (#K16).		0
D4	EQC4_n	Equalizer Control bit 4: This bit together with EQC[3:0] are used for controlling transmit pulse shaping, transmit line buildout (LBO) and receive monitoring for either T1 or E1 Modes of operation. See Table 5 for description of Equalizer Control bits.	R/W	0
D3	EQC3_n	Equalizer Control bit 3: See bit D4 description for function of this bit	R/W	0
D2	EQC2_n	Equalizer Control bit 2: See bit D4 description for function of this bit	R/W	0
D1	EQC1_n	Equalizer Control bit 1: See bit D4 description for function of this bit	R/W	0
D0	EQC0_n	Equalizer Control bit 0: See bit D4 description for function of this bit	R/W	0

TABLE 20: MICROPROCESSOR REGISTER #1, BIT DESCRIPTION

REGISTER ADDRESS 00000001 00010001 00100001 00110001 01010001 01100001 01110001 BIT #	CHANNEL_n CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7 NAME RXTSEL_n			ion Select:	CTION In Host mode, th		REGISTER TYPE	RESET VALUE
			RXT	ver accordi	xnd external line to ng to the following X Termination External Internal			
D6	TXTSEL_n	to select	t between the transformation the transformation to the transformat	ne internal a mitter acco	In Host mode, the and external line to the follow IX Termination External Internal	ermination	R/W	0
D5	TERSEL1_n	In Host I and RXT receive to table; In the interest the community in the interest that into the interest in t	TSEL = "1") termination TERSEL1 0 0 1 1 ternal termination termination of i	TERSEL O 1 nation mod lized compensation mod	rmination mode, ('0') control the transcording to the factorial according to the factorial 100Ω Terminat 100Ω 110Ω 75Ω 120 Ω e, the receiver termination fixed externation, the transmitter of	ion mination of esistors or by al resistor.	R/W	0
D4	TERSEL0_n		ation Imped				R/W	0

TABLE 20: MICROPROCESSOR REGISTER #1, BIT DESCRIPTION

D3	JASEL1_n	are used to	litter Attenuator select bit 1: The JASEL1 and JASEL0 bits are used to disable or place the jitter attenuator of each channel independently in the transmit or receive path.						0
		1 1	ASEL1 bit D3	JASI bit I	-	JA Path			
			0	0) J <i>i</i>	A Disabled			
			0	1	J	A in Transmit	Path		
			1	0) J,	A in Receive F	Path		
			1	1	J	A in Receive	Path		
D2	JASEL0_n	Jitter Atte		elect bit	t 0: See o	lescription of b	oit D3 for the	R/W	0
D1	JABW_n	to "1" to se FIFO leng "0" to sele mode. In T nently set	Jitter Attenuator Bandwidth Select: In E1 mode, set this bit to "1" to select a 1.5Hz Bandwidth for the Jitter Attenuator. The FIFO length will be automatically set to 64 bits. Set this bit to '0" to select 10Hz Bandwidth for the Jitter Attenuator in E1 mode. In T1 mode the Jitter Attenuator Bandwidth is permanently set to 3Hz, and the state of this bit has no effect on the Bandwidth.						0
		Mode	JAB bit D		FIFOS_n bit D0	JA B-W Hz	FIFO Size		
		T1	0		0	3	32		
		T1	0		1	3	64		
		T1	1		0	3	32		
		T1	1		1	3	64		
		E1	0		0	10	32		
		E1	0		1	10	64		
		E1	1		0	1.5	64		
		E1	1		1	1.5	64		
D0	FIFOS_n	FIFO Size this bit.	FIFO Size Select: See table of bit D1 above for the function of this bit.						0

TABLE 21: MICROPROCESSOR REGISTER #2, BIT DESCRIPTION

REGISTER ADDRESS 00000010 00010010 00110010 00110010 0100010 01100010 01110010 BIT #	CHANNEL_n CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7 NAME	Invert QRSS Pa		ICTION	ve. Writing a "1"	REGISTER TYPE	RESET VALUE
		this bit inverts the a "0" sends the 0	e polarity of tra	ansmitted QR	SS pattern. Writir		
D6	TXTEST2_n	Transmit Test P and TXTEST0 a according to the TXTEST2 0 1 1 TDQRSS (Trans condition when a Source generation number n. In a T	TXTEST1 X 0 1 1 smit/Detect Q activated enabon and detection and detection system QR:	TXTESTO X 0 1 uasi-Randon on for the seless pattern is	Test Pattern No Pattern TDQRSS TAOS TLUC TLDC TLDC n Signal): This ndom Signal ected channel a 2 ²⁰ -1 pseudo-	ns	0
		random bit sequitive zeros. In a ETAOS (Transmithe transmission channel number TLUC (Transmithe transmitted to the When Network LIXRT83SL38 will and Remote Locentary, if activated Loop-Back autor to the Loo	e1 system, QF t All Ones): A of an All One n. t Network Lo s the Network e line for the s coop-Up code ignore the Au op-Back activa) in order to av matically wher k request. t Network Lo s the network	RSS is a 2 ¹⁵ -1 activating this is Pattern from the Pop-Up Code elected changes being transe tomatic Loop- tion (NLCDE- void activating in the remote the Loop-Down Code Loop-Down Code	PRBS pattern. condition enable in the selected : Activating this de of "00001" to be nel number in. smitted, the -Code detection 1 ="1", NLCDE0 g Remote Digital erminal responds de): Activating the Code of "001" to be	s pe s	
D5	TXTEST1_n	Transmit Test p function of this b		See description	on of bit D6 for th	e R/W	0

TABLE 21: MICROPROCESSOR REGISTER #2, BIT DESCRIPTION

D4	TXTEST0_n	Transmit Test function of this		it 0: See de	scription of bit D6 for the	e R/W	0
D3	TXON_n	Transmit and shuts off the T	Transmitter ON: Writing a "1" into this bit location turns on the Transmit and Receive Sections of channel n. Writing a "0" shuts off the Transmit Section of channel n. In this mode, "TIP_n and TRING_n driver outputs will be tri-stated for power eduction or redundancy applications.				
D2	LOOP2_n	Loop-Back co and LOOP0 bi according to the	ts control th				
		LOOP2	LOOP1	LOOP0	Loop-Back Mode		
		0	Х	Х	No Loop-Back		
		1	0	0	Dual Loop-Back		
		1	0	1	Analog Loop-Back		
		1	1	0	Remote Loop-Back		
		1	1	1	Digital Loop-Back		
D1	LOOP1_n	Loop-Back co	R/W	0			
D0	LOOP0_n	Loop-Back co		: See desci	iption of bit D2 for the	R/W	0

REV. 1.0.2

TABLE 22: MICROPROCESSOR REGISTER #3, BIT DESCRIPTION

REGISTER ADDRESS 00000011 00010011 00110011 01100011 01100011 01110011 BIT #	CHANNEL_n CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7 NAME	Network Loop (Func		REGISTER TYPE	RESET VALUE
	_	This bit together tion of each char	ec-			
		NLCDE1	NLCDE0	Function		
		0	0	Disable Loop-code detection		
		0	1	Detect Loop-Up code in receive data		
		1	0	Detect Loop-Down code in receive data		
		1	1	Automatic Loop-Code detection		
		NLCDE0 = "0", the receive data tively. When the detected for mor set to "1" and if initiated. The Ho function manuall Setting the NLC Automatic Loopvation mode. As interface bit is reitor the receive of tern is detected "1", Remote Loc cally programme Down code. The receiving the Loc is removed whe more than 5 sec mode is terminat	the chip is mar for the Loop-U presence of the than 5 second the NLCD interies that the option of the NLCD interies that the option of the NLCD interies the mode is in set to "0" and the data for the Loof for longer than the NLCD bit stays op-Up code. Then the chip receonds or if the A ted.	E0 = "1" or NLCDE1 = "1" a nually programmed to mon p or Loop-Down code respe "00001" or "001" patterns, the status of the NLCD b rupt is enabled, an interruption to control the Loop-Band Remote Loop-Back and Remote Loop-Back a nitiated, the state of the NLCD bit is programmed to mp-Up code. If the "00001" poseconds, the NLCD bit is ated and the chip is automate receive data for the Loop-Back conditatives the Loop-Down code utomatic Loop-Code detect	itor ecc- n is it is t is t is ack the cti- CD on- pat- set ati- op- pps ion for ion	
D6	NLCDE0_n	Network Loop (See description			R/W	0
D5	CODES_n	decoding for cha	nis bits selects h Innel number n.	et: HDB3 or B8ZS encoding an Writing "1" selects an AMI active when single rail mode		0

TABLE 22: MICROPROCESSOR REGISTER #3, BIT DESCRIPTION

D4	RXRES1_n	bit along with th	Receive External Resistor Control Pin 1: In Host mode, the bit along with the RXRESO_n bit selects the value of the extendal Receive fixed resistor according to the following table;					
		RXRES1_n	RXRES0_n	Required Fixed External RX Resistor]			
		0	0	No external Fixed Resistor				
		0	1	240Ω				
		1	0	210Ω				
		1	1	150Ω				
D3	RXRES0_n		nal Resistor Con on of D4 the RXI	ntrol Pin 0: For function of RES1_n bit.	of this	R/W	0	
D2	INSBPV_n	"1", a bipolar vio stream of the se be inserted eith operating in sin on the rising ed NOTE: To ens	Insert Bipolar Violation: When this bit transitions from "0" to "1", a bipolar violation is inserted in the transmitted data stream of the selected channel number n. Bipolar violation can be inserted either in the QRSS pattern, or input data when operating in single-rail mode. The state of this bit is sampled on the rising edge of the respective TCLK_n. Note: To ensure the insertion of a bipolar violation, a "0" should be written in this bit location before writing a "1".					
D1	INSBER_n	Insert Bit Error: With TDQRSS enabled, when this bit transitions from "0" to "1", a bit error will be inserted in the transmitted QRSS pattern of the selected channel number n. The state of this bit is sampled on the rising edge of the respective TCLK_n. Note: To ensure the insertion of bit error, a "0" should be written in this bit location before writing a "1".					0	
D0	TRATIO_n	writing a "1" to t transmitter. Writ to 1:2.45. In the	his bit selects a t ing a "0" sets the internal termina o is permanently	ne external termination manufacturer ratio of 1:2 for transformer transformer transformer tion mode the transmitte set to 1:2 and the state of	or the ratio	R/W	0	

TABLE 23: MICROPROCESSOR REGISTER #4, BIT DESCRIPTION

REGISTER ADDRESS 00000100 00010100 00100100 00110100 01000100 01010100 01100100	CHANNEL_n CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7	FUNCTION	REGISTER TYPE	RESET VALUE
Віт#	NAME			
D7	Reserved		RO	0
D6	DMOIE_n	DMO Interrupt Enable: Writing a "1" to this bit enables DMO interrupt generation, writing a "0" masks it.	R/W	0
D5	FLSIE_n	FIFO Limit Status Interrupt Enable: Writing a "1" to this bit enables interrupt generation when the FIFO limit is within to 3 bits, writing a "0" to masks it.	R/W	0
D4	LCVIE_n	Line Code Violation Interrupt Enable: Writing a "1" to this bit enables Line Code Violation interrupt generation, writing a "0" masks it.	R/W	0
D3	NLCDIE_n	Network Loop-Code Detection Interrupt Enable: Writing a "1" to this bit enables Network Loop-code detection interrupt generation, writing a "0" masks it.	R/W	0
D2	AISDIE_n	AIS Interrupt Enable: Writing a "1" to this bit enables Alarm Indication Signal detection interrupt generation, writing a "0" masks it.	R/W	0
D1	RLOSIE_n	Receive Loss of Signal Interrupt Enable: Writing a "1" to this bit enables Loss of Receive Signal interrupt generation, writing a "0" masks it.	R/W	0
D0	QRPDIE_n	QRSS Pattern Detection Interrupt Enable: Writing a "1" to this bit enables QRSS pattern detection interrupt generation, writing a "0" masks it.	R/W	0

TABLE 24: MICROPROCESSOR REGISTER #5, BIT DESCRIPTION

REGISTER ADDRESS 00000101 00010101 00100101 00110101 01000101 01100101 01110101	CHANNEL_N CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7 NAME	Function	REGISTER TYPE	RESET VALUE
D7	Reserved		RO	0
D6	DMO_n	Driver Monitor Output: This bit is set to a "1" to indicate transmit driver failure is detected. The value of this bit is based on the current status of DMO for the corresponding channel. If the DMOIE bit is enabled, any transition on this bit will generate an Interrupt.	RO	0
D5	FLS_n	FIFO Limit Status: This bit is set to a "1" to indicate that the jitter attenuator read/write FIFO pointers are within +/- 3 bits. If the FLSIE bit is enabled, any transition on this bit will generate an Interrupt.	RO	0
D4	LCV_n	Line Code Violation: This bit is set to a "1" to indicate that the receiver of channel n is currently detecting a Line Code Violation or an excessive number of zeros in the B8ZS or HDB3 modes. If the LCVIE bit is enabled, any transition on this bit will generate an Interrupt.	RO	0

TABLE 24: MICROPROCESSOR REGISTER #5, BIT DESCRIPTION

D3	NLCD_n	Network Loop-Code Detection:	RO	0
		This bit operates differently in the Manual or the Automatic Network Loop-Code detection modes.		
		In the Manual Loop-Code detection mode, (NLCDE1 = "0" and NLCDE0 = "1" or NLCDE1 = "1" and NLCDE0 = "0") this bit gets set to "1" as soon as the Loop-Up ("00001") or Loop-Down ("001") code is detected in the receive data for longer than 5 seconds. The NLCD bit stays in the "1" state for as long as the chip detects the presence of the Loop-code in the receive data and it is reset to "0" as soon as it stops receiving it. In this mode, if the NLCD interrupt is enabled, the chip will initiate an interrupt on every transition of the NLCD.		
		When the Automatic Loop-code detection mode, (NLCDE1 = "1" and NLCDE0 = "1") is initiated, the state of the NLCD interface bit is reset to "0" and the chip is programmed to monitor the receive input data for the Loop-Up code. This bit is set to a "1" to indicate that the Network Loop Code is detected for more than 5 seconds. Simultaneously the Remote Loop-Back condition is automatically activated and the chip is programmed to monitor the receive data for the Network Loop Down code. The NLCD bit stays in the "1" state for as long as the Remote Loop-Back condition is in effect even if the chip stops receiving the Loop-Up code. Remote Loop-Back is removed if the chip detects the "001" pattern for longer than 5 seconds in the receive data. Detecting the "001" pattern also results in resetting the NLCD interface bit and initiating an interrupt provided the NLCD interrupt enable bit is active. When programmed in Automatic detection mode, the NLCD interface bit stays "High" for the entire time the Remote Loop-Back is active and initiate an interrupt anytime the status		
		of the NLCD bit changes. In this mode, the Host can monitor the state of the NLCD bit to determine if the Remote Loop-Back is activated.		
D2	AISD_n	Alarm Indication Signal Detect: This bit is set to a "1" to indicate All Ones Signal is detected by the receiver. The value of this bit is based on the current status of Alarm Indication Signal detector of channel n. If the AISDIE bit is enabled, any transition on this bit will generate an Interrupt.	RO	0
D1	RLOS_n	Receive Loss of Signal: This bit is set to a "1" to indicate that the receive input signal is lost. The value of this bit is based on the current status of the receive input signal of channel n. If the RLOSIE bit is enabled, any transition on this bit will generate an Interrupt.	RO	0
D0	QRPD_n	Quasi-random Pattern Detection: This bit is set to a "1" to indicate the receiver is currently in synchronization with QRSS pattern. The value of this bit is based on the current status of Quasi-random pattern detector of channel n. If the QRPDIE bit is enabled, any transition on this bit will generate an Interrupt.	RO	0

TABLE 25: MICROPROCESSOR REGISTER #6, BIT DESCRIPTION

REGISTER ADDRESS 00000110 00010110 00100110 00100110 0100110 01100110 01110110	CHANNEL_N CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7 NAME	Function	REGISTER TYPE	RESET VALUE
D7	Reserved		RO	0
D6	DMOIS_n	Driver Monitor Output Interrupt Status: This bit is set to a "1" every time the DMO status has changed since last read. Note: This bit is reset upon read.	RUR	0
D5	FLSIS_n	FIFO Limit Interrupt Status: This bit is set to a "1" every time when FIFO Limit (Read/Write pointer with +/- 3 bits apart) status has changed since last read. Note: This bit is reset upon read.	RUR	0
D4	LCVIS_n	Line Code Violation Interrupt Status: This bit is set to a "1" every time when LCV status has changed since last read. Note: This bit is reset upon read.	RUR	0
D3	NLCDIS_n	Network Loop-Code Detection Interrupt Status: This bit is set to a "1" every time when NLCD status has changed since last read. Note: This bit is reset upon read.	RUR	0
D2	AISDIS_n	AIS Detection Interrupt Status: This bit is set to a "1" every time when AISD status has changed since last read. Note: This bit is reset upon read.	RUR	0
D1	RLOSIS_n	Receive Loss of Signal Interrupt Status: This bit is set to a "1" every time RLOS status has changed since last read. Note: This bit is reset upon read.	RUR	0
D0	QRPDIS_n	Quasi-Random Pattern Detection Interrupt Status: This bit is set to a "1" every time when QRPD status has changed since last read. Note: This bit is reset upon read.	RUR	0

TABLE 26: MICROPROCESSOR REGISTER #7, BIT DESCRIPTION

REGISTER ADDRESS 00000111 00010111 00100111 01000111 01100111 01110111 BIT #	CHANNEL_N CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7	FUNCTION	Register Type	RESET VALUE
D7	Reserved		RO	0
D6	Reserved		RO	0
D5	CLOS5_n	Cable Loss bit 5: CLOS[5:0]_n are the six bit receive selective equalizer setting which is also a binary word that represents the cable attenuation indication within ±1dB. CLOS5_n is the most significant bit (MSB) and CLOS0_n is the least significant bit (LSB).	RO	0
D4	CLOS4_n	Cable Loss bit 4: See description of D5 for function of this bit.	RO	0
D3	CLOS3_n	Cable Loss bit 3: See description of D5 for function of this bit.	RO	0
D2	CLOS2_n	Cable Loss bit 2: See description of D5 for function of this bit.	RO	0
D1	CLOS1_n	Cable Loss bit 1: See description of D5 for function of this bit.	RO	0
D0	CLOS0_n	Cable Loss bit 0: See description of D5 for function of this bit.	RO	0

TABLE 27: MICROPROCESSOR REGISTER #8, BIT DESCRIPTION

REGISTER ADDRESS 00001000 00011000 00101000 00101000 01011000 01101000 01111000	CHANNEL_N CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7	Function	REGISTER TYPE	RESET VALUE
D7	Reserved		R/W	0
D6-D0	B6S1_n - B0S1_n	Arbitrary Transmit Pulse Shape, Segment 1:The shape of each channel's transmitted pulse can be made independently user programmable by selecting "Arbitrary Pulse" mode in Table 5. The arbitrary pulse is divided into eight time segments whose combined duration is equal to one period of MCLK. This 7 bit number represents the amplitude of the nth channel's arbitrary pulse during the first time segment. B6S1_n-B0S1_n is in signed magnitude format with B6S1_n as the sign bit and B0S1_n as the least significant bit (LSB).	R/W	0

TABLE 28: MICROPROCESSOR REGISTER #9, BIT DESCRIPTION

REGISTER ADDRESS 00001001 00011001 00101001 00111001 010010	CHANNEL_n CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7	Function	REGISTER TYPE	RESET VALUE
D7	Reserved		R/W	0
D6-D0	B6S2_n - B0S2_n	Arbitrary Transmit Pulse Shape, Segment 2 The shape of each channel's transmitted pulse can be made independently user programmable by selecting "Arbitrary Pulse" mode in Table 5 . The arbitrary pulse is divided into eight time segments whose combined duration is equal to one period of MCLK. This 7 bit number represents the amplitude of the nth channel's arbitrary pulse during the second time segment. B6S2_n-B0S2_n is in signed magnitude format with B6S2_n as the sign bit and B0S2_n as the least significant bit (LSB).	R/W	0

TABLE 29: MICROPROCESSOR REGISTER #10, BIT DESCRIPTION

REGISTER ADDRESS 00001010 00011010 00101010 00111010 010010	CHANNEL_n CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7 NAME	FUNCTION	REGISTER TYPE	RESET VALUE
D7	Reserved		R/W	0
D6-D0	B6S3_n - B0S3_n	Arbitrary Transmit Pulse Shape, Segment 3 The shape of each channel's transmitted pulse can be made independently user programmable by selecting "Arbitrary Pulse" mode in Table 5 . The arbitrary pulse is divided into eight time segments whose combined duration is equal to one period of MCLK. This 7 bit number represents the amplitude of the nth channel's arbitrary pulse during the third time segment. B6S3_n-B0S3_n is in signed magnitude format with B6S3_n as the sign bit and B0S3_n as the least significant bit (LSB).	R/W	0

TABLE 30: MICROPROCESSOR REGISTER #11, BIT DESCRIPTION

REGISTER ADDRESS 00001011 00011011 00101011 00111011 0101011 01101011 01111011 BIT #	CHANNEL_n CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7 NAME	Function	REGISTER TYPE	RESET VALUE
D7	Reserved		R/W	0
D6-D0	B6S4_n - B0S4_n	Arbitrary Transmit Pulse Shape, Segment 4 The shape of each channel's transmitted pulse can be made independently user programmable by selecting "Arbitrary Pulse" mode in Table 5 . The arbitrary pulse is divided into eight time segments whose combined duration is equal to one period of MCLK. This 7 bit number represents the amplitude of the nth channel's arbitrary pulse during the fourth time segment. B6S4_n-B0S4_n is in signed magnitude format with B6S4_n as the sign bit and B0S4_n as the least significant bit (LSB).	R/W	0

TABLE 31: MICROPROCESSOR REGISTER #12, BIT DESCRIPTION

REGISTER ADDRESS 00001100 00011100 00101100 01101100 01011100 011011	CHANNEL_N CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_5 CHANNEL_6 CHANNEL_7	Function	REGISTER TYPE	Reset Value
D7	Reserved		R/W	0
D6-D0	B6S5_n - B0S5_n	Arbitrary Transmit Pulse Shape, Segment 5 The shape of each channel's transmitted pulse can be made independently user programmable by selecting "Arbitrary Pulse" mode in Table 5 . The arbitrary pulse is divided into eight time segments whose combined duration is equal to one period of MCLK. This 7 bit number represents the amplitude of the nth channel's arbitrary pulse during the fifth time segment. B6S5_n-B0S5_n is in signed magnitude format with B6S5_n as the sign bit and B0S5_n as the least significant bit (LSB).	R/W	0

TABLE 32: MICROPROCESSOR REGISTER #13, BIT DESCRIPTION

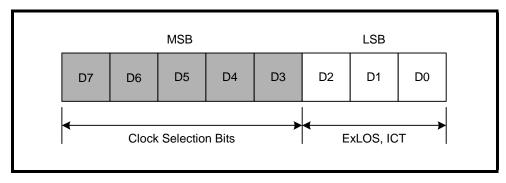
REGISTER ADDRESS 00001101 00011101 00101101 00111101 01001101 01011101 01111101 BIT #	CHANNEL_n CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7	FUNCTION	Register Type	RESET VALUE
D7	Reserved		R/W	0
D6-D0	B6S6_n - B0S6_n	Arbitrary Transmit Pulse Shape, Segment 6 The shape of each channel's transmitted pulse can be made independently user programmable by selecting "Arbitrary Pulse" mode in Table 5 . The arbitrary pulse is divided into eight time segments whose combined duration is equal to one period of MCLK. This 7 bit number represents the amplitude of the nth channel's arbitrary pulse during the sixth time segment. B6S6_n-B0S6_n is in signed magnitude format with B6S6_n as the sign bit and B0S6_n as the least significant bit (LSB).	R/W	0

TABLE 33: MICROPROCESSOR REGISTER #14, BIT DESCRIPTION

REGISTER ADDRESS 00001110 00011110 00101110 00111110 01011110 011011	CHANNEL_n CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7	Function	REGISTER TYPE	RESET VALUE
D7	Reserved		R/W	0
D6-D0	B6S7_n - B0S7_n	Arbitrary Transmit Pulse Shape, Segment 7 The shape of each channel's transmitted pulse can be made independently user programmable by selecting "Arbitrary Pulse" mode in Table 5 . The arbitrary pulse is divided into eight time segments whose combined duration is equal to one period of MCLK. This 7 bit number represents the amplitude of the nth channel's arbitrary pulse during the seventh time segment. B6S7_n-B0S7_n is in signed magnitude format with B6S7_n as the sign bit and B0S7_n as the least significant bit (LSB).	R/W	0

TABLE 34: MICROPROCESSOR REGISTER #15, BIT DESCRIPTION

REGISTER ADDRESS 00001111 00011111 00101111 01001111 01011111 011011	CHANNEL_n CHANNEL_0 CHANNEL_1 CHANNEL_2 CHANNEL_3 CHANNEL_4 CHANNEL_5 CHANNEL_6 CHANNEL_7	Function	REGISTER TYPE	RESET VALUE
D7	Reserved		R/W	0
D6-D0	B6S8_n - B0S8_n	Arbitrary Transmit Pulse Shape, Segment 8 The shape of each channel's transmitted pulse can be made independently user programmable by selecting "Arbitrary Pulse" mode in Table 5 . The arbitrary pulse is divided into eight time segments whose combined duration is equal to one period of MCLK. This 7 bit number represents the amplitude of the nth channel's arbitrary pulse during the eighth time segment. B6S8_n-B0S8_n is in signed magnitude format with B6S8_n as the sign bit and B0S8_n as the least significant bit (LSB).	R/W	0


TABLE 35: MICROPROCESSOR REGISTER #128, BIT DESCRIPTION

REGISTER ADDRESS 10000000 BIT #	Name	Function	REGISTER TYPE	RESET VALUE
D7	SR/DR	Single-rail/Dual-rail Select: Writing a "1" to this bit configures all 8 channels in the XRT83SL38 to operate in the Single-rail mode. Writing a "0" configures the XRT83SL38 to operate in Dual-rail mode.	R/W	0
D6	ATAOS	Automatic Transmit All Ones Upon RLOS: Writing a "1" to this bit enables the automatic transmission of All "Ones" data to the line for the channel that detects an RLOS condition. Writing a "0" disables this feature.	R/W	0
D5	RCLKE	Receive Clock Edge: Writing a "1" to this bit selects receive output data of all channels to be updated on the negative edge of RCLK. Wring a "0" selects data to be updated on the positive edge of RCLK.	R/W	0
D4	TCLKE	Transmit Clock Edge: Writing a "0" to this bit selects transmit data at TPOS_n/TDATA_n and TNEG_n/CODES_n of all channels to be sampled on the falling edge of TCLK_n. Writing a "1" selects the rising edge of the TCLK_n for sambling.		0
D3	DATAP	DATA Polarity: Writing a "0" to this bit selects transmit input and receive output data of all channels to be active "High". Writing a "1" selects an active "Low" state.	R/W	0
D2	Reserved			0
D1	GIE	Global Interrupt Enable: Writing a "1" to this bit globally enables interrupt generation for all channels. Writing a "0" disables interrupt generation.	R/W	0
D0	SRESET	Software Reset μ P Registers: Writing a "1" to this bit longer than 10 μ s initiates a device reset through the microprocessor interface. All internal circuits are placed in the reset state with this bit set to a "1" except the microprocessor register bits.	R/W	0

CLOCK SELECT REGISTER

The input clock source is used to generate all the necessary clock references internally to the LIU. The microprocessor timing is derived from a PLL output which is chosen by programming the Clock Select Bits and the Master Clock Rate in register 0x81h. Therefore, if the clock selection bits or the MCLRATE bit are being programmed, the frequency of the PLL output will be adjusted accordingly. During this adjustment, it is important to "Not" write to any other bit location within the same register while selecting the input/output clock frequency. For best results, register 0x81h can be broken down into two sub-registers with the MSB being bits D[7:3] and the LSB being bits D[2:0] as shown in Figure 22. Note: Bit D[7] is a reserved bit.

FIGURE 22. REGISTER 0x81H SUB REGISTERS

Programming Examples:

Example 1: Changing bits D[7:3]

If bits D[7:3] are the only values within the register that will change in a WRITE process, the microprocessor only needs to initiate ONE write operation.

Example 2: Changing bits D[2:0]

If bits D[2:0] are the only values within the register that will change in a WRITE process, the microprocessor only needs to initiate ONE write operation.

Example 3: Changing bits within the MSB and LSB

In this scenario, one must initiate TWO write operations such that the MSB and LSB do not change within ONE write cycle. It is recommended that the MSB and LSB be treated as two independent sub-registers. One can either change the clock selection (MSB) and then change bits D[2:0] (LSB) on the SECOND write, or viceversa. No order or sequence is necessary.

TABLE 36: MICROPROCESSOR REGISTER #129, BIT DESCRIPTION

REGISTER ADDRESS 10000001	Name		Function						REGISTER TYPE	RESET VALUE
Віт#										
D7	Reserved								R/W	0
D6	CLKSEL2 Clock Select Inputs for Master Clock Synthesizer bit 2: In Host mode, CLKSEL[2:0] are input signals to a program ble frequency synthesizer that can be used to generate a rester clock from an external accurate clock source according the following table;						ogramma- ate a mas-	R/W	0	
		MCLKE1	MCLKT1 kHz	CLKSEL2	CLKSEL1	CLKSEL0	MCLKRATE	CLKOUT/ kHz		
		2048	2048	0	0	0	0	2048		
		2048	2048	0	0	0	1	1544		
		2048	1544	0	0	0	0	2048		
		1544	1544	0	0	1	1	1544		
		1544	1544	0	0	1	0	2048		
		2048	1544	0	0	1	1	1544		
		8	Х	0	1	0	0	2048		
		8	Х	0	1	0	1	1544		
		16	Х	0	1	1	0	2048		
		16	Х	0	1	1	1	1544		
		56	Х	1	0	0	0	2048		
		56	Х	1	0	0	1	1544		
		64	X	1	0	1	0	2048		
		128	X	1	0	0	0	1544 2048		
		128	X	1	1	0	1	1544		
		256	X	1	1	1	0	2048		
		256	X	1	1	1	1	1544		
		the mas	ter frequ Ire pins.	iency PL	L is cont	rolled by	nals are igi	ponding		
D5	CLKSEL1			of bit D6		_	/nthesize/ is bit.	bit 1:	R/W	0
D4	CLKSEL0		Clock Select inputs for Master Clock Synthesizer bit 0: See description of bit D6 for function of this bit.						R/W	0
D3	MCLKRATE	Master The Ma	Master clock Rate Select: The state of this bit programs the Master Clock Synthesizer to generate the T1/J1 or E1 clock. The Master Clock Synthesizer will generate the E1 clock when MCLKRATE = "0", and the T1/J1 clock when MCLKRATE = "1".						R/W	0
D2	RXMUTE	outputs any cha	at RPOS		and RNI an RLO	EG/LCV I		s receive " state for	R/W	0

TABLE 36: MICROPROCESSOR REGISTER #129, BIT DESCRIPTION

D1	EXLOS	Extended LOS: Writing a "1" to this bit extends the number of zeros at the receive input of each channel before RLOS is declared to 4096 bits. Writing a "0" reverts to the normal mode (175+75 bits for T1 and 32 bits for E1).	R/W	0
D0	ICT	In-Circuit-Testing: Writing a "1" to this bit configures all the output pins of the chip in high impedance mode for In-Circuit-Testing. Setting the ICT bit to "1" is equivalent to connecting the Hardware ICT pin 88 to ground.	R/W	0

TABLE 37: MICROPROCESSOR REGISTER #130, BIT DESCRIPTION

REGISTER ADDRESS 10000010	Name	Function	REGISTER TYPE	RESET VALUE
Віт#				
D7	TXONCNTL	Transmit On Control: In Host mode, setting this bit to "1" transfers the control of the Transmit On/Off function to the TXON_n Hardware control pins. Note: This provides a faster On/Off capability for redundancy application.	R/W	0
D6	TERCNTL	Termination Control. In Host mode, setting this bit to "1" transfers the control of the RXTSEL to the RXTSEL Hardware control pin. Note: This provides a faster On/Off capability for redundancy application.		0
D5-D4		Reserved		

TABLE 37: MICROPROCESSOR REGISTER #130, BIT DESCRIPTION

D3	MONITOR_3	the receiver connected to channels.Re output them addition, the TRING_7 by nel 7. With MONIT feature is dis octal line tra	7 inputs o one of the eceiver 7 to RPOS e data to be y means of TOR_[3:0] sabled ar insceiver.	at RTIP_7 he other s recovers _7/RNEG he monitor of activation bits set t ad the XR d Monitor	and RRII are and RRII seven tran the input of _7 and RO ed can be ng Remote of "0", the IT83SL38 in _7 and RII are	nonitoring enabled NG_7 are internal smit and receive data and clock and CLK_7 respectivel routed to TTIP_7 e Loop-Back for corrected Monitors configured as a nel Select Selection No Monitoring Receiver 0 Receiver 1 Receiver 2 Receiver 3 Receiver 4 Receiver 5 Receiver 6 No Monitoring Transmitter 0 Transmitter 1 Transmitter 2 Transmitter 3 Transmitter 4 Transmitter 5 Transmitter 6	ly d y. In and han-	0		
							R/W			
D2	MONITOR_2		Protected Monitoring: See description for MONITOR_3							
D1	MONITOR_1		Protected Monitoring: See description for MONITOR_3							
D0	MONITOR_0	Protected N See descrip		_	_3		R/W	0		

TABLE 38: MICROPROCESSOR REGISTER #131, BIT DESCRIPTION

REGISTER ADDRESS									
1000000	NAME				REGISTER TYPE	RESET Value			
Віт#								=	
D7	GAUGE1	This	Gauge Sele bit together wown in the ta	R/W	0				
			GAUGE1		GAUGE0	Wire Size			
			0		0	22 and 24 Gauge			
			0		1	22 Gauge			
			1		0	24 Gauge			
			1		1	26 Gauge			
D6	GAUGE0		Gauge Sele	ector	Bit 0:			R/W	0
D5	Reserved							R/W	0
D4	Reserved			R/W	0				
D3	SL_1		er Level Con evel for the sl			bit and bit D2 control th owing table.	e slic-	R/W	0
			SL_1	SL_	_0	Slicer Mode			
			0	0	Noi	mal			
			0	1	Dec	crease by 5% from Norr	mal		
			1	0	Inc	rease by 5% from Norm	ıal		
			1	1	Noi	mal			
D2	SL_0	Slice	or Level Con	trol l	hit N: Saa	description bit D3.		R/W	0
D1	EQG_1					This bit together with bit I	20	R/W	0
<i>D</i> 1	LWO_1					as shown in the table be		10,00	O
			EQG_1 EQG_0 Equalizer Gain						
			0	0 0 1		Normal			
			0	0 1		Reduce Gain by 1 dB			
			1		0	Reduce Gain by 3 dB			
			1		1	Normal			
D0	EQG_0	Equa	alizer Gain C	ontr	ol bit 0: S	see description of bit D1		R/W	0

TABLE 39: MICROPROCESSOR REGISTER #192, BIT DESCRIPTION

REGISTER ADDRESS 11000000 BIT #	NAME	Function	REGISTER TYPE	RESET VALUE
D[7:1]	Reserved	These register bits are not used.	R/W	0
D0	E1Arben	E1 Arbitrary Pulse Enable This bit is used to enable the Arbitrary Pulse Generators for shaping the transmit pulse shape when E1 mode is selected. If this bit is set to "1", all 8 channels will be configured for the Arbitrary Mode. However, each channel is individually controlled by programming the channel registers 0xn8 through 0xnF, where n is the number of the channel. "0" = Disabled (Normal E1 Pulse Shape ITU G.703) "1" = Arbitrary Pulse Enabled	R/W	0

ELECTRICAL CHARACTERISTICS

TABLE 40: ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to + 150°C
Operating Temperature40°C to + 85°C
Supply Voltage0.5V to + 3.8V
V _{In} 0.5V to + 5.5V

TABLE 41: DC DIGITAL INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS

VDD=3.3V±	VDD=3.3V±5%, T _A =25°C, UNLESS OTHERWISE SPECIFIED										
PARAMETER	SYMBOL	Min.	TYP.	MAX.	Units						
Power Supply Voltage	VDD	3.13	3.3	3.46	V						
Input High Voltage	V _{IH}	2.0	-	5.0	V						
Input Low Voltage	V _{IL}	-0.5	-	0.8	V						
Output High Voltage @ IOH = 2.0mA	V _{OH}	2.4	-	-	V						
Output Low Voltage @IOL = 2mA.	V _{OL}	-	-	0.4	V						
Input Leakage Current (except Input pins with Pull-up or Pull- down resistor).	ΙL	-	-	±10	μА						
Input Capacitance	C _I	-	5.0	-	pF						
Output Load Capacitance	C _L	-	-	25	pF						

TABLE 42: XRT83SL38 POWER CONSUMPTION

(Vdd=3.3V±5%, T_A=25°C unless otherwise specified)

Mode	SUPPLY	IMPEDANCE TERMINATION TRANSFORMER RATIO		TYP.	Max.	Unit	TEST			
WIODL	VOLTAGE	IMPEDANCE	RESISTOR	RECEIVER	TRANSMITTER	1115.	WAX.	0	Conditions	
E1	3.3V	75Ω	Internal	1:1	1:2	1.96	2.16	W	100% "1's"	
E1	3.3V	120Ω	Internal	1:1	1:2	1.85	2.04	W	100% "1's"	
T1	3.3V	100Ω	Internal	1:1	1:2	1.95	2.15	W	100% "1's"	
	3.3V		External			429	472	mW	All transmitters off	

TABLE 43: E1 RECEIVER ELECTRICAL CHARACTERISTICS

(VDD=3.3V±5%, T _A = -40° TO 85°C, UNLESS OTHERWISE SPECIFIED)									
PARAMETER	MIN.	TYP.	Max.	Unit	TEST CONDITIONS				
Receiver loss of signal:					Cable attenuation @1024KHz				
Number of consecutive zeros before RLOS is set	10	175	255						
Input signal level at RLOS	15	20		dB	ITU-G.775, ETSI 300 233				
RLOS De-asserted	12.5			dB					
Input Impedance		13		kΩ					
Input Jitter Tolerance: 1 Hz 10kHz-100kHz	37 0.2			Ulpp Ulpp	ITU G.823				
Recovered Clock Jitter Transfer Corner Frequency	-	36		kHz	ITU G.736				
Peaking Amplitude			- 0.5	dB					
Jitter Attenuator Corner Frequency (-3dB curve) (JABW=0) (JABW=1)	-	10 1.5	-	Hz Hz	ITU G.736				
Return Loss:					ITU-G.703				
51kHz - 102kHz	14	-	-	dB					
102kHz - 2048kHz	20			dB					
2048kHz - 3072kHz	16			dB					

REV. 1.0.2

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

TABLE 44: T1 RECEIVER ELECTRICAL CHARACTERISTICS

VDD=3.3V±5%, T _A =-40° TO 85°C, UNLESS OTHERWISE SPECIFIED								
PARAMETER	Min.	TYP.	Max.	Unit	TEST CONDITIONS			
Receiver loss of signal:								
Number of consecutive zeros before RLOS is set	100	175	250					
Input signal level at RLOS	15	20	-	dB	Cable attenuation @772KHz			
RLOS Clear	12.5	-	-	% ones	ITU-G.775, ETSI 300 233			
Input Impedance		13	-	kΩ				
Jitter Tolerance:								
1Hz	138	-	-	Ulpp	AT&T Pub 62411			
10kHz - 100kHz	0.4	-	-					
Recovered Clock Jitter								
Transfer Corner Frequency	-	9.8	-	KHz	TR-TSY-000499			
Peaking Amplitude	-		0.1	dB				
Jitter Attenuator Corner Fre-	-	6		-Hz	AT&T Pub 62411			
quency (-3dB curve)								
Return Loss:								
51kHz - 102kHz	-	20	-	dB				
102kHz - 2048kHz	-	25	-	dB				
2048kHz - 3072kHz	-	25	-	dB				

TABLE 45: E1 TRANSMIT RETURN LOSS REQUIREMENT

FREQUENCY	RETURN LOSS					
I REQUENCT	G.703/CH-PTT	ETS 300166				
51-102kHz	8dB	6dB				
102-2048kHz	14dB	8dB				
2048-3072kHz	10dB	8dB				

TABLE 46: E1 TRANSMITTER ELECTRICAL CHARACTERISTICS

VDD=3.3V±5%, T _A =-40° to 85°C, unless otherwise specified									
PARAMETER MIN. TYP. MAX. UNIT TEST CONDITIONS									
AMI Output Pulse Amplitude:					Transformer with 1:2 ratio and Internal				
75 Ω Application	2.185	2.37	2.555	V	termination.				
120 Ω Application	2.76	3.00	3.24	V					
Output Pulse Width	224	244	264	ns					

TABLE 46: E1 TRANSMITTER ELECTRICAL CHARACTERISTICS

VDD=3.3V±5%, T _A =-40° TO 85°C, UNLESS OTHERWISE SPECIFIED								
PARAMETER	MIN.	TYP.	Max.	Unit	TEST CONDITIONS			
Output Pulse Width Ratio	0.95	-	1.05	-	ITU-G.703			
Output Pulse Amplitude Ratio	0.95	-	1.05	-	ITU-G.703			
Jitter Added by the Transmitter Output	-	0.025	0.05	Ulpp	Broad Band with jitter free TCLK applied to the input.			
Output Return Loss:								
51kHz -102kHz	8	-	-	dB	ETSI 300 166, CHPTT			
102kHz-2048kHz	14	-	-	dB				
2048kHz-3072kHz	10	-	-	dB				

TABLE 47: T1 TRANSMITTER ELECTRICAL CHARACTERISTICS

VDD=3.3V±5%, T _A =-40° to 85°C, unless otherwise specified									
PARAMETER	MIN.	TYP.	Max.	Unit	TEST CONDITIONS				
AMI Output Pulse Amplitude:	2.5	3.0	3.50	V	Transformer with 1:2 ratio and Internal termination.				
Output Pulse Width	338	350	362	ns	ANSI T1.102				
Output Pulse Width Imbalance	-	-	20	-	ANSI T1.102				
Output Pulse Amplitude Imbalance	-	-	<u>+</u> 200	mV	ANSI T1.102				
Jitter Added by the Transmitter Output	-	0.025	0.05	Ulpp	Broad Band with jitter free TCLK applied to the input.				
Output Return Loss: 51kHz -102kHz 102kHz-2048kHz 2048kHz-3072kHz	-	15 15 15	- - -	dB dB dB					

REV. 1.0.2

FIGURE 23. ITU G.703 PULSE TEMPLATE

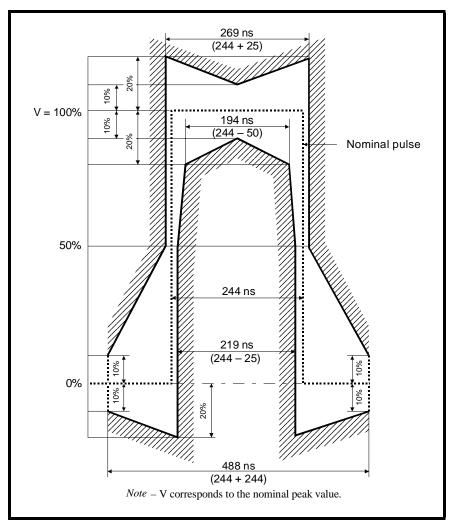
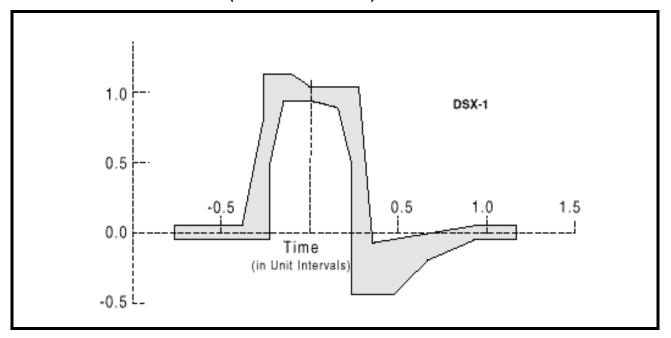
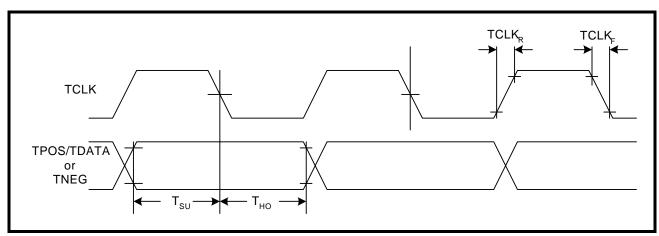


TABLE 48: TRANSMIT PULSE MASK SPECIFICATION

Test Load Impedance	75 Ω Resistive (Coax)	120 Ω Resistive (twisted Pair)
Nominal Peak Voltage of a Mark	2.37V	3.0V
Peak voltage of a Space (no Mark)	0 <u>+</u> 0.237V	0 <u>+</u> 0.3V
Nominal Pulse width	244ns	244ns
Ratio of Positive and Negative Pulses Imbalance	0.95 to 1.05	0.95 to 1.05

FIGURE 24. DSX-1 PULSE TEMPLATE (NORMALIZED AMPLITUDE)




TABLE 49: DSX1 INTERFACE ISOLATED PULSE MASK AND CORNER POINTS

	MINIMUM CURVE		MAXIMUM CURVE
TIME (UI)	NORMALIZED AMPLITUDE	TIME (UI)	NORMALIZED AMPLITUDE
-0.77	05V	-0.77	.05V
-0.23	05V	-0.39	.05V
-0.23	0.5V	-0.27	.8V
-0.15	0.95V	-0.27	1.15V
0.0	0.95V	-0.12	1.15V
0.15	0.9V	0.0	1.05V
0.23	0.5V	0.27	1.05V
0.23	-0.45V	0.35	-0.07V
0.46	-0.45V	0.93	0.05V
0.66	-0.2V	1.16	0.05V
0.93	-0.05V		
1.16	-0.05V		

TABLE 50: AC ELECTRICAL CHARACTERISTICS

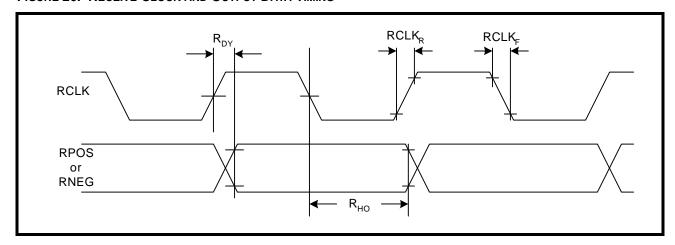

VDD=3.3V±5%, TA=25°C, UNLESS OTHERWISE SPECIFIED					
PARAMETER	SYMBOL	Mın.	TYP.	Max.	Units
E1 MCLK Clock Frequency		-	2.048		MHz
T1 MCLK Clock Frequency		-	1.544		MHz
MCLK Clock Duty Cycle		40	-	60	%
MCLK Clock Tolerance		-	±50	-	ppm
TCLK Duty Cycle	T _{CDU}	30	50	70	%
Transmit Data Setup Time	T _{SU}	50	-	-	ns
Transmit Data Hold Time	T _{HO}	30	-	-	ns
TCLK Rise Time(10%/90%)	TCLK _R	-	-	40	ns
TCLK Fall Time(90%/10%)	TCLK _F	-	-	40	ns
RCLK Duty Cycle	R _{CDU}	45	50	55	%
Receive Data Setup Time	R _{SU}	150	-	-	ns
Receive Data Hold Time	R _{HO}	150	-	-	ns
RCLK to Data Delay	R _{DY}	-	-	40	ns
RCLK Rise Time(10% to 90%) with 25pF Loading.	RCLK _R	-	-	40	ns
RCLK Fall Time(90% to 10%) with 25pF Loading.	RCLK _F			40	ns

FIGURE 25. TRANSMIT CLOCK AND INPUT DATA TIMING

FIGURE 26. RECEIVE CLOCK AND OUTPUT DATA TIMING

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR REV. 1.0.2

MICROPROCESSOR INTERFACE I/O TIMING

INTEL INTERFACE TIMING - ASYNCHRONOUS

The signals used for the Intel microprocessor interface are: Address Latch Enable ($\overline{\text{RD}}$), Write Enable ($\overline{\text{WR}}$), Chip Select ($\overline{\text{CS}}$), Address and Data bits. The microprocessor interface uses minimum external glue logic and is compatible with the timings of the 8051 or 80C188 with an 8-16 MHz clock frequency, and with the timings of x86 or i960 family or microprocessors. The interface timing shown in **Figure 27** and **Figure 29** is described in **Table 51**.

FIGURE 27. INTEL ASYNCHRONOUS PROGRAMMED I/O INTERFACE TIMING

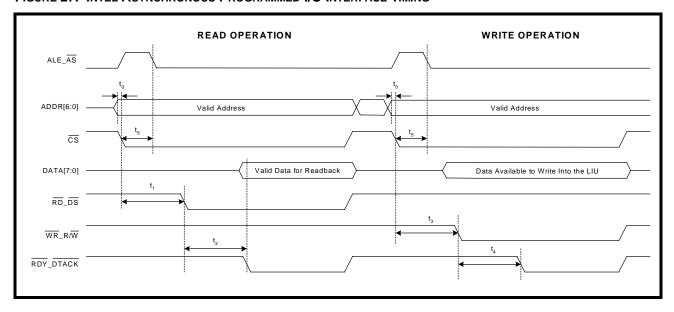


TABLE 51: ASYNCHRONOUS MODE 1 - INTEL 8051 AND 80188 INTERFACE TIMING

SYMBOL	PARAMETER	Min	MAX	Units	
t ₀	Valid Address to CS Falling Edge	0	-	ns	
t ₁	CS Falling Edge to RD Assert	20	-	ns	
t ₂	RD Assert to RDY Assert	-	135	ns	
NA	RD Pulse Width (t2)	135	-	ns	
t ₃	CS Falling Edge to WR Assert	20	-	ns	
t ₄	WR Assert to RDY Assert	-	135	ns	
NA	WR Pulse Width (t2)	135	-	ns	
t ₅	CS Falling Edge to AS Falling Edge	0	-	ns	
Reset pulse width	Reset pulse width - both Motorola and Intel Operations (see Figure 29)				
t ₉	Reset pulse width	10		μs	

MOTOROLA ASYCHRONOUS INTERFACE TIMING

The signals used in the Motorola microprocessor interface mode are: Address Strobe (AS), Data Strobe (\overline{DS}), Read/Write Enable (R/W), Chip Select (\overline{CS}), Address and Data bits. The interface is compatible with the timing of a Motorola 68000 microprocessor family with up to 16.67 MHz clock frequency. The interface timing is shown in **Figure 28** and **Figure 29**. The I/O specifications are shown in **Table 52**.

FIGURE 28. MOTOROLA 68K ASYNCHRONOUS PROGRAMMED I/O INTERFACE TIMING

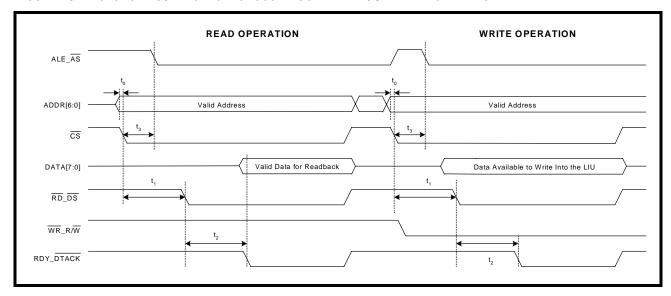
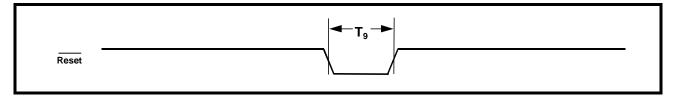
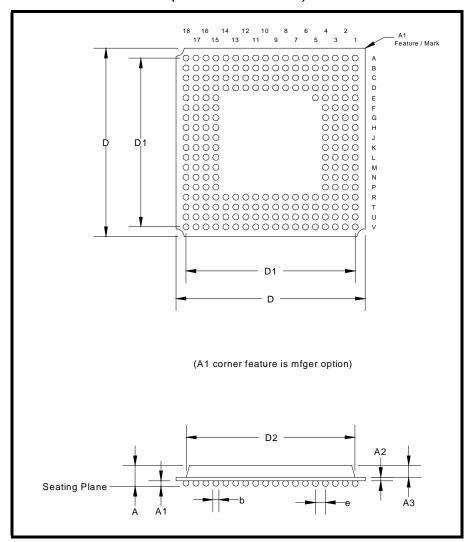



TABLE 52: ASYNCHRONOUS - MOTOROLA 68K - INTERFACE TIMING SPECIFICATION

SYMBOL	PARAMETER	Min	Max	Units
t ₀	Valid Address to CS Falling Edge	0	-	ns
t ₁	CS Falling Edge to DS Assert	20	-	ns
t ₂	DS Assert to DTACK Assert	-	135	ns
NA	DS Pulse Width (t2)	135	-	ns
t ₃	CS Falling Edge to AS Falling Edge	0	-	ns
Reset pulse width - both Motorola and Intel Operations (see Figure 29)				
t ₉	Reset pulse width	10		μs

FIGURE 29. MICROPROCESSOR INTERFACE TIMING - RESET PULSE WIDTH



REV. 1.0.2

OCTAL T1/E1/J1 SH TRANSCEIVER WITH CLOCK RECOVERY AND JITTER ATTENUATOR

PACKAGE DIMENSIONS

225 BALL PLASTIC BALL GRID ARRAY (BOTTOM VIEW) (19.0 X 19.0 X 1.0mm)

Note: The control dimension is in millimeter.

Note. The control dimension is in infillineter.				
	INCHES		MILLIMETERS	
SYMBOL	MIN	MAX	MIN	MAX
Α	0.049	0.096	1.24	2.45
A1	0.016	0.024	0.40	0.60
A2	0.013	0.024	0.32	0.60
А3	0.020	0.048	0.52	1.22
D	0.740	0.756	18.80	19.20
D1	0.669	0.669 BSC		BSC
D2	0.665	0.669	16.90	17.00
b	0.020	0.028	0.50	0.70
е	0.039	BSC	1.00	BSC

ORDERING INFORMATION

Part Number	Package	OPERATING TEMPERATURE RANGE
XRT83SL38IB	225 Ball BGA	-40°C to +85°C

REVISIONS

Rev#	DESCRIPTION
P1.0.0	Initial data sheet
P101	Edits
P102	Reformatted columns.
P1.0.3	corrected microprocessor timing information and edited Redundancy section.
P1.0.4	Made edits to RLOS section. Table 4, EQC4 and EQC3 changed. RX transformer changed from 2:1 to 1:1. Removed references to 1:2.42 transformer ratio.
P1.0.5	Definition of TXON_n pin changed. Added detailed explanation of LOS operation. Added description of arbitrary pulse. Added description of the operation of the TRATIO bit. Added description of Gap Clock Support.
P1.0.6	Changed issue date to November 2002. Corrected BGA pinout.
P1.0.7	Swapped the function of $\mu PTS1$ and $\mu PTS2$. Replaced $\mu Processor$ timing diagrams and timing information, (Figures 27 and 28 Tables 50 and 51).
P1.0.8	Removed EXT_VCM_[0-7] and made them <u>No Connect pins</u> . <u>M</u> CLKT1 changed to pin K1, TGND_0 changed to pin D3 and D3 made NC. SR_DR moved to pin K4.
P1.0.9	Added RXON_n to bit 5 Control register 0.
P1.1.0	Added new E1 arbitrary pulse feature. Added description to the global registers.
1.0.0	Final release.
1.0.1	Added (Exar recommends initiating a HW reset upon power up.) to the Hardware rest pin description. In figure 30 and in tables 51 and 52 changed t9 to 10 (μs). Changed format to add new logo.
1.0.2	Remove XRT83SL38IV product info.

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2007 EXAR Corporation

Datasheet June 2007.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru