

PRECISION SEMICONDUCTOR PRESSURE SENSOR

PF PRESSURE SENSOR

Cross-section of Sensor Chip> Silicon Piezo resistance strain gauge Anode junction Pressure Glass base Highly reliable wire bonding technology Very strong, heat resistant body

• A wide range of rated pressure, including a minute pressure

There are 10 types of sensors covering a wide range of rated pressure from a minute pressure between 4.9 kPa {0.05 kgf/cm²}, to a maximum pressure of 980.7 kPa {10 kgf/cm²}.

Realization of highly accurate, linear characteristics

This sensor employs a semiconductor strain gauge method, ensuring accurate and linear detection characteristics. It also has excellent repeatability of pressure characteristics.

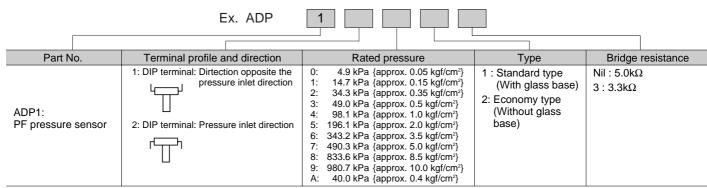
• Impressive line-up of models


- Taking their place alongside the standard $5k\Omega$ bridge resistance models are those with a $3.3k\Omega$ resistance which is optimally suited to 5V drive circuits.
- Economy model (no glass base) gives outstanding value for consumer appliances

40 kPa (0.4 kgf/cm²) and 49 kPa (0.5 kgf/cm²) units are also available.

Example of pressure characteristics

(when the rated pressure is between 98.1 kPa $\{1.0 \text{ kgf/cm}^2\}$


Drive current: 1.5 mA rated current; ambient temperature: 25°C 77°F

TYPICAL APPLICATIONS

- Medical equipment: Electronic hemodynamometer
- Home appliance: Vacuum cleaner
- Gas equipment: Microprocessor gas meter, gas leakage detector
- Industrial equipment: Absorption device, etc.

ORDERING INFORMATION

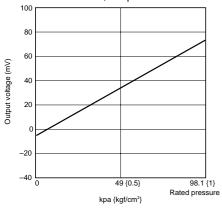
	Bridge	e resistance	5.0	lkΩ	3.3kΩ			
Pressure	Terminal		DIP terminal: Direction opposite the pressure inlet direction	DIP terminal: Pressure inlet direction	DIP terminal: Direction opposite the pressure inlet direction	DIP terminal: Pressure inlet direction		
	4.9kPa	approx. 0.05kgf/cm ²	ADP1101	ADP1201				
	14.7kPa	approx. 0.15kgf/cm ²	ADP1111	ADP1211				
Standard type (With glass base)	34.3kPa	approx. 0.35kgf/cm ²	ADP1121	ADP1221				
	49.0kPa	approx. 0.5kgf/cm ²	ADP1131	ADP1231				
	98.1kPa	approx. 1.0kgf/cm ²	ADP1141	ADP1241				
	196.1kPa	approx. 2.0kgf/cm ²	ADP1151	ADP1251				
	343.2kPa	approx. 3.5kgf/cm ²	ADP1161	ADP1261				
	490.3kPa	approx. 5.0kgf/cm ²	ADP1171	ADP1271				
	833.6kPa	approx. 8.5kgf/cm ²	ADP1181	ADP1281				
	980.7kPa	approx. 10.0kgf/cm ²	ADP1191	ADP1291				
Economy type	40.0kPa	approx. 0.4kgf/cm ²			ADP11A23	ADP12A23		
(Without glass base)	49.0kPa	approx. 0.5kgf/cm ²	ADP1132	ADP1232				

SPECIFICATIONS

Туре		Standard type (With glass base)								Economy type (Without glass base)			
Type of pressure		Gauge pressure											
Pressure medium		Air (For other medium, please consult us.)											
Rated	Unit: kPa	4.9	14.7	34.3	49.0	98.1	196.1	343.2	490.3	833.6	980.7	40.0	49.0
pressure	Unit: kgf/cm² (approx.)	0.05	0.15	0.35	0.5	1.0	2.0	3.5	5.0	8.5	10.0	0.4	0.5
Max. applied pressure		Twice the rated pressure 1.5 times the rated pressure								Twice the rated pressure			
Bridge resistance		5000±1000 Ω								3300±600 Ω	5000±1000 Ω		
Ambient temperature		-20 to 100°C −4 to 212°F (no freezing or condensation)							−5 to 50°C −7 to 122°F	–20 to 100°C –4 to 212°F			
Storage temperature		−40 to 120°C −40 to 248°F (no freezing or condensation)									-40 to 120°C -70 to 248°F		
Temperature compensation range		0 to 50°C 32 to 122°F									0 to 50°C 32 to 122°F		
Drive current (constant current)		1.5 mA DC											
Output span voltage		40±20 mV 100±40 mV								43.5±22.5 mV	85±45 mV		
Offset voltage		±20 mV								±15 mV	±25 mV		
Linearity		±0.7%FS	±0.5%FS	$\pm 0.5\%$ FS $\pm 0.3\%$ FS $\pm 0.5\%$ FS				±0.6	%FS	±0.3%FS			
Pressure	hysteresis	±0.6%FS	S ±0.4%FS ±0.4%FS ±0.4%FS					±0.7%FS					
	tage-temperature istics (0 to 50°C 32 to 122°F)	±15%FS	±15%FS ±5.0%FS							±10%FS	±8%FS		
Sensitivity-temperature characteristics (0 to 50°C 32 to 122°F)		±10%FS	10%FS ±2.5%FS							±1.3%FS	±2.5%FS		

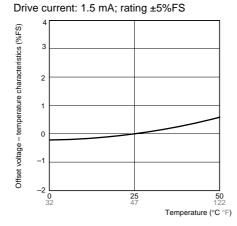
Notes) 1. Unless otherwise specified, measurements were taken with a drive current of 1.5 mA ±0.01 mA at a temperature of 25°C 77°F and humidity ranging from 25% to 85%.

- 2. Please consult us if a pressure medium other than air is to be used.
- 3. This is the regulation which applies within the compensation temperature range.
- 4. Please consult us if the intended use involves a negative pressure.


DATA

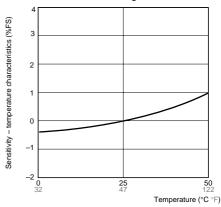
1. Characteristics data

1-<1> Output characteristics


ADP1141

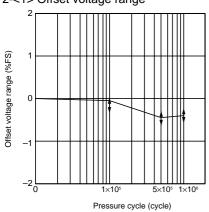
Drive current: 1.5 mA; temperature: 25°C 77°F

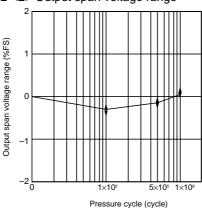
1-<2> Offset voltage – temperature characteristics


ADP1141

1-<3> Sensitivity – temperature characteristics (%FS)

ADP1141


Drive current: 1.5 mA; rating ±2.5%FS


2. Pressure cycle range (0 to rated pressure)

Tested sample: ADP1131, temperature: 25°C 77°F

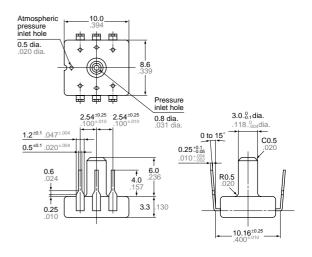
2-<1> Offset voltage range

2-<2> Output span voltage range

Even after testing for 1 million times, the variations in the offset voltage and output span voltage are minimal.

3. Evaluation test

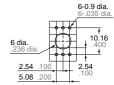
Tested item		Tested condition		
	Storage at high temperature	Temperature: Left in a 120°C 248°F constant temperature bath Time: 1,000 hrs.		
Environmental characteristics	Storage at low temperature	Temperature: Left in a -40°C -40°F constant temperature bath Time: 1,000 hrs.		
	Humidity	Temperature/humidity: Left at 40°C 104°F, 90% RH Time: 1,000 hrs.		
	Temperature cycle	Temperature: -40°C to 120°C -40°F to 248°F 1 cycle: 30 min. Times of cycle: 100	Passed	
Endurance characteristics	High temperature/high humidity operation	Temperature/humidity: 40°C 104°F, 90% RH Operation times: 10 ⁶ , rated voltage applied		
Mechanical	Vibration resistance	Double amplitude: 1.5 mm .059 inch Vibration: 10 to 55 Hz Applied vibration direction: X, Y, Z 3 directions Times: 2 hrs each		
characteristics	Dropping resistance	Dropping height: 75 cm 29.528 inch Times: 2 times		
	Terminal strength	Pulling strength: 9.8 N {1 kgf}, 10 sec. Bending strength: 4.9 N {0.5 kgf}, left and right 90° 1 time		
Soldering Resistance	Soldered in DIP soldering bath	Temperature: 230°C 446°F Time: 5 sec.	Passed	
	Temperature	Temperature: 260°C 500°F Time: 10 sec.	Passed	

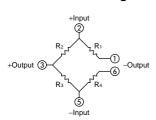

Note: For details other than listed above, please consult us.

DIMENTIONS

1. Terminal direction: Direction opposite the pressure inlet derection ADP11□□ (□)

Atmospheric pressure inlet hole 0.5 dia. 143 10.16^{±0.2} $3.0^{-0.1}_{-0.1}$ dia. 0.8 dia. .031 dia 6.0 R0.5 0.6 0.25^{+0.1}_{-0.05} .010^{+.004}_{-.002} 0.5^{±0.1} .020 1.2^{±0.1} .047^{±.004} 2.54^{±0.25} .100^{±.010} Recommended PC board pattern (5) (BOTTOM VIEW) 6-0.9 dia. NAIS Tolerance: ±0.1 .004


2. Terminal direction: Pressure inlet direction ADP12□□ (□)


Recommended PC board pattern (BOTTOM VIEW)

General tolerance: ±0.3 ±.012 mm inch

Tolerance: ±0.1 .004

3. Terminal connection diagram

Terminal No.	Name		
1	Output (–)		
2	Power supply (+)		
3	Output (+)		
4	No connection		
5	Power supply (-)		
6	Output (-)		

Note: Leave terminal 4 unconnected.

NOTES

1. Mounting

Use lands on the printed-circuit boards to which the sensor can be securely fixed.

2. Soldering

1) Due to its small size, the thermal capacity of the pressure sensor DIP type is low. Therefore, take steps to minimize the effects of external heat.

Dip soldering bath: Max. 260°C 500°F, 5 sec.

Soldering iron: 260 to 300°C 500 to 572°F (30W) within 5 sec.

2) Use a non-corrosive resin type of flux. Since the pressure sensor DIP type is exposed to the atmosphere, do not allow flux to enter inside.

3. Cleaning

- 1) Since the pressure sensor chip is exposed to the atmosphere, do not allow cleaning fluid to enter inside.
- 2) Avoid ultrasonic cleaning since this may cause breaks or disconnections in the wiring.

4. Environment

Consult with us before using or storing the pressure sensor chip in a place exposed to corrosive gases (such as the gases given off by organic solvents, sulfites, hydrogen sulfides, etc.) which will adversely affect the performance of the pressure sensor chip.

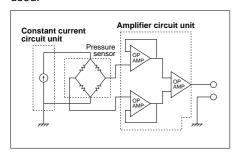
5. Quality check under actual loading conditions

- To assure reliability, check the sensor under actual loading conditions. Avoid any situation that may adversely affect its performance.
- 2) As for test data, please contact us.

6. Other handling precautions

- 1) That using the wrong pressure range or mounting method may result in accidents.
- 2) Air can be used directly as a pressure medium. Consult with us before using a corrosive gas (such as a gas given off by an organic solvent, sulfite or hydrogen sulfide) as the pressure medium.
- 3) The pressure sensor chip is positioned inside the pressure inlet. Never poke wires or other foreign matter through the pressure inlet since they may damage the chip or block the inlet. Avoid use when the atmospheric pressure inlet is blocked.
- 4) Leave pin No. 4 unconnected since the pressure sensor chip may be damaged if a voltage is applied to this pin. 5) Use an operating pressure which is within the rated pressure range. Using a pressure beyond this range may cause damage.
- 6) Since this pressure sensor chip does not have a water-proof construction, consult with us if it is to be used in a location where it may be sprayed with water, etc. 7) Avoid using the pressure sensor chip in an environment where condensation may form. Furthermore, its output may fluctuate if any moisture adhering to it freezes.

- 8) The pressure sensor chip is constructed in such a way that its output will fluctuate when it is exposed to light.
 Especially when pressure is to be applied by means of a transparent tube, take steps to prevent the pressure sensor chip from being exposed to light.
 9) Avoid using the pressure sensor chip where it will be susceptible to ultrasonic or other high-frequency vibration.
 10) Since static charge can damage the pressure sensor chip, bear in mind the
- following handling precautions.
 When storing the pressure sensor chips, use a conductive material to short the pins or wrap the entire chip in aluminum foil. Plastic containers should not be used to store or transport

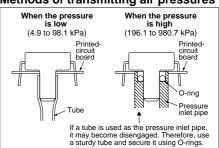

the chips since they readily become

charged.

- When using the pressure sensor chips, all the charged articles on the bench surface and the work personnel should be grounded so that any ambient static will be safely discharged.
- 11) Due to the pressures involved, give due consideration to the securing of the pressure sensor DIP type and to the securing and selection of the inlet tube. Consult us if you have any queries.

APPLICATION CIRCUIT DIAGRAM (EXAMPLE)

The pressure sensor is designed to convert a voltage by means of constant current drive and then, if necessary, it amplifies the voltage for use. The circuit shown below is a typical example of a circuit in which the pressure sensor is used.


MOUNTING METHOD

The general method for transmitting air pressures differs depending on whether the pressure is low or high.

• Checkpoints for use

- <1> Select a pressure inlet pipe which is sturdy enough to prevent pressure leaks.
- <2> Fix the pressure inlet pipe securely so as to prevent pressure leaks.
- <3> Do not block the pressure inlet pipe.

Methods of transmitting air pressures

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru