
September 2006 v5.0 1
© 2006 Actel Corporation

ARINC 429 Bus Interface

Product Summary

Intended Use
• ARINC 429 Transmitter (Tx)

• ARINC 429 Receiver (Rx)

Key Features
• Supports ARINC Specification 429-16

• Configurable up to 16 Rx and 16 Tx Channels

• Programmable FIFO Depth

– Up to 512 Words

• Programmable Interrupt Generation

– Rx and Tx Channels independently

– Up to 64 Words

• Configurable Label Memory Size

– Rx and Tx Channels independently

– Up to 256 Words

• Internal, Wrap-Around Testing

• Software Compatible with Legacy Devices

• Selectable Clock Speed

– 1, 10, 16, or 20 MHz

• Selectable Data Rate on Each Channel

– 12.5 100 kbps

– Optional 50 kbps

• CPU Interface

– Provides Direct CPU Access to Memory

– Simple Interface to Core8051

• Memory

– EDAC Support with RTAX-S Family

• ARINC 429 Bus Interface

– Supports Standard Line Drivers and Receivers

• Available as Integrated Tx and Rx

Supported Families
• Fusion

• ProASIC®3/E

• ProASICPLUS®

• Axcelerator®

• RTAX-S

Core Deliverables
• Evaluation Version

– Compiled RTL Simulation Model, Compliant
with the Actel Libero® Integrated Design
Environment (IDE)

• Netlist Version

– Structural VHDL and Verilog Netlists

• RTL version

– VHDL or Verilog Core Source Code

– Synthesis Scripts

• Verification Testbench – Verilog

• User Testbenches

– Libero IDE Compatible

– VHDL and Verilog

Development System
• Complete ARINC 429 Rx/Tx

• Implementation

– Implemented in an APA600 Device

– Controlled Via an External Terminal Using
Core8051 and RS232 Links

• Includes Line Driver and Receiver Components

Synthesis and Simulation Support
• Directly Supported within the Actel Libero IDE

• Synthesis:

– Synplicity®

– ExemplarTM

– Synopsys®

• Simulation

– Vital-Compliant VHDL Simulators

– OVI-Compliant Verilog Simulators

Verification and Compliance
• Actel-Developed Simulation Testbench

• Core Implemented on the ARINC 429
Development System

http://www.actel.com/survey/rating/?f=CoreARINC429_DS.pdf

ARINC 429 Bus Interface

2 v5.0

General Description
Core429 provides a complete Transmitter (Tx) and
Receiver (Rx). A typical system implementation using
Core429 is shown in Figure 1.

The core consists of three main blocks: Transmit, Receive,
and CPU Interface (Figure 1). Core429 requires
connection to an external CPU. The CPU interface
configures the transmit and receive control registers and
initializes the label memory. The core interfaces to the
ARINC 429 bus through an external ARINC 429 line driver
and line receiver. A detailed description of the Rx
interface and Tx interface is provided in the "Functional
Description" section on page 5.

External Components
There are two external components required for proper
operation of Core429:

• Standard ARINC 429 line driver

• Standard ARINC 429 line receiver

ARINC 429 Overview
ARINC 429 is a two-wire, point-to-point data bus that is
application-specific for commercial and transport
aircraft. The connection wires are twisted pairs. Words
are 32 bits in length and most messages consist of a
single data word. The specification defines the electrical
standard and data characteristics and protocols.

ARINC 429 uses a unidirectional data bus standard (Tx
and Rx are on separate ports) known as the Mark 33
Digital Information Transfer System (DITS). Messages are
transmitted at 12.5, 50 (optional), or 100 kbps to other
system elements that are monitoring the bus messages.
The transmitter is always transmitting either 32-bit data
words or the Null state.

The ARINC standard supports High, Low, and Null states
(Figure 2). A minimum of four Null bits should be
transmitted between ARINC words. No more than 20
receivers can be connected to a single bus (wire pair) and
no less than one receiver, though there will normally be
more.

Figure 3 on page 3 shows the bit positions of ARINC
data.

Each ARINC word contains five fields:

• Parity

Contents

General Description .. 2
ARINC 429 Overview .. 2
Core429 Device Requirements 3
Memory Requirements ... 4
Core429 Overview .. 5
Default Mode ... 5
Functional Description ... 5
Legacy Mode ... 7
Core Parameters ... 8
I/O Signal Descriptions ... 8
Default Mode Operation ... 10
Legacy Operation ... 13
Status Register .. 15
CPU Interface Timing for Default Mode 16
Clock Requirements .. 17
Core429 Verification .. 17
Testbench .. 17
Line Drivers ... 18
Line Receivers ... 18
Loopback Interface ... 18
Development System .. 18
Ordering Information .. 19
List of Changes ... 20
Datasheet Categories ... 21

Figure 1 • Typical Core429 System—One Tx and One Rx

Figure 2 • ARINC Standard

Actel FPGA

CPU Glue
Logic

CoreARINC429

Rx I/F

Tx I/F

RxHi
RxLo

TxHi
TxLo

CPU
Interface

1 2 3 4 5 6 7 8 9 10 32

111111 00 0 0 0

Bit
Number

"A" Leg

"B" Leg

Data

A

B
High
Null
Low

+5
0

–5

High
Null
Low

+5
0

–5

ARINC 429 Bus Interface

v5.0 3

• Sign/Status Matrix

• Data

• Source/Destination Identifiers

• Label

The parity bit is bit 32 (the MSB). SSM is the Sign/Status
Matrix and is included as bits 30 and 31. Bits 11 to 29
contain the data. Binary Coded Decimal (BCD) and binary
encoding (BNR) are common ARINC data formats. Data
formats can also be mixed. Bits 9 and 10 are Source/
Destination Identifiers (SDI) and indicate for which

receiver the data is intended. Bits 1 to 8 contain a label
(label words) identifying the data type.

Label words are quite specific in ARINC 429. Each aircraft
may be equipped with different electronic equipment
and systems needing interconnection. A large amount of
equipment may be involved, depending on the aircraft.
The ARINC specification identifies the equipment ID, a
series of digital identification numbers. Examples of
equipment are Flight Management Computers, Inertial
Reference Systems, Fuel Tanks, Tire Pressure Monitoring
Systems, and GPS Sensors.

Transmission Order
The least significant bit of each byte, except the label, is transmitted first, and the label is transmitted ahead of the
data in each case. The order of the bits transmitted on the ARINC bus is as follows:

8, 7, 6, 5, 4, 3, 2, 1, 9, 10, 11, 12, 13 … 32.

Core429 Device Requirements
Core429 can be implemented in several Actel FPGA devices. Table 1 through Table 5 on page 4 provide typical
utilization figures using standard synthesis tools for different Core429 configurations. Table 1 assumes that the label
size is set to 64 and FIFO depth is set to 64.

Figure 3 • ARINC Data Bit Positions

32 31 11 10 9

LABEL

30 29 18

LSB

DATA PAD DISCRETES SDIP SSM

MSB

Table 1 • Device Utilization for One Tx Module

Cells or Tiles

Family Combinatorial Sequential Total Memory Blocks Device Utilization

Fusion 363 147 510 1 AFS600 4%

ProASIC3/E 363 147 510 1 A3PE600 4%

ProASICPLUS 441 146 587 1 APA075 19%

Axcelerator 212 145 357 1 AX125 18%

RTAX-S 258 171 429 1 RTAX250S 10%

Table 2 • Device Utilization for One Rx Module

Cells or Tiles

Family Combinatorial Sequential Total Memory Blocks Devices Utilization

Fusion 431 233 664 2 AFS600 5%

ProASIC3/E 431 233 664 2 A3PE600 5%

ProASICPLUS 588 236 824 2 APA075 27%

Axcelerator 307 234 541 2 AX125 27%

RTAX-S 350 259 609 2 RTAX250S 14%

ARINC 429 Bus Interface

4 v5.0

Core429 clock rate can be programmed to be 1, 10, 16, or
20 MHz. All the Actel families listed above easily meet
the required performance.

Core429 I/O requirements depend on the system
requirements and the external interfaces. If the core and
memory blocks are implemented within the FPGA and
the CPU interface has a bidirectional data bus, then

approximately 74 I/O pins are required to implement
four Rx and four Tx modules. The core will require 62
pins to implement one Rx and one Tx module.

The core has various FIFO flags available for debugging
purposes. These flags may not be needed in the final
design and this will reduce the I/O count.

Memory Requirements
The number of memory blocks required differs, depending on whether each channel is configured the same or
differently.

Each Channel Configured the Same
Use EQ 1 to calculate the number of memory blocks required if each channel is configured the same.

Number of memory blocks = NRx * (INT (LABEL_SIZE/X) + INT (RX_FIFO_DEPTH/Y) + NTx * INT (FIFO_DEPTH/Y),

EQ 1

Table 3 • Device Utilization for One Rx and One Tx Module

Cells or Tiles

Family Combinatorial Sequential Total Memory Blocks Device Utilization

Fusion 848 609 1,457 3 AFS600 10%

ProASIC3/E 848 609 1,457 3 A3PE600 10%

ProASICPLUS 1,084 377 1,461 3 APA075 48%

Axcelerator 518 378 896 3 AX125 44%

RTAX-S 604 429 1,033 3 RTAX250S 24%

Table 4 • Device Utilization for 16 Rx and 16 Tx Modules

Cells or Tiles

Family Combinatorial Sequential Total Memory Blocks Device Utilization

Fusion 13,435 9,614 23,049 48 AFS1500 60%

ProASIC3/E 13,435 9,614 23,049 48 A3PE1500 60%

ProASICPLUS 16,835 5,928 22,763 48 APA750 69%

Axcelerator 8,044 5,944 13,988 48 AX2000 43%

RTAX-S 9,594 6,745 16,339 48 RTAX2000S 51%

Table 5 • Device Utilization for Legacy Mode (2 Rx and 1 Tx)

Family

Cells or Tiles Memory
Blocks Device UtilizationCombinational Sequential Total

Fusion 1,444 1,068 2,512 5 AFS600 18%

ProASIC3/E 1,444 1,068 2,512 5 A3PE600 18%

ProASICPLUS 1,840 674 2,514 5 APA150 41%

Axcelerator 955 653 1,608 5 RTAX250S 20%

RTAX-S 1,062 729 1,791 5 RTAX250S 42%

ARINC 429 Bus Interface

v5.0 5

where NRx is the number of receive channels, NTx is the number of transmit channels, INT is the function to round up
to the next integer, and X and Y are defined in Table 6.

Each Channel Configured Differently
Use EQ 2 to calculate the number of memory blocks required if each channel is configured differently.

Number of memory blocks = INT(FIFO_DEPTH[I]/Y + (INT(LABEL_SIZE[I]/X) + INT(FIFO_DEPTH[I]/Y)),

EQ 2

where NRx is the number of receive channels, NTx is the number of transmit channels, INT is the function to round up
to the next integer, and X and Y are defined in Table 6.

Examples for the ProASIC3/E Device Family
If the design has 2 receivers, 1 transmitter, 64 labels for each receiver, 32-words-deep FIFO for each receiver and
transmitter, then

the number of memory blocks = 2 * (INT (64/512) + INT (32/128)) + 1 * INT (32/128) = 2 * (1 + 1) + 1 * (1) = 5.

If the design has 2 receivers, 1 transmitter, 32 labels for receiver # 1, 64 labels for receiver # 2, 32 words-deep FIFO for
receiver # 1, 64-words-deep FIFO for receiver # 2, and 64-words-deep FIFO for transmitter, then

the number of memory blocks = INT (64/128) + (INT (32/512) + INT (32/128)) + (INT (64/512) + INT (64/128))

= 1 + (1 + 1) + (1 + 1) = 5.

Core429 Overview
Core429 provides a complete and flexible interface to a
microprocessor and an ARINC 429 data bus. Connection
to an ARINC 429 data bus requires additional line drivers
and line receivers.

Core429 interfaces to a processor through the internal
memory of the receiver. Core429 can be easily interfaced
to an 8-, 16- or 32-bit data bus. Look-up tables loaded
into memory enable the Core429 receive circuitry to
filter and sort incoming data by label and destination
bits. Core429 supports multiple (configurable) ARINC 429
receiver channels, and each receives data independently.
The receiver data rates (high or low speed) can be
programmed independently. Core429 can decode and
sort data based on the ARINC 429 Label and SDI bits and
stores it in FIFO. Each receiver uses programmable FIFO
to buffer received data. Core429 supports multiple

(configurable) ARINC 429 transmit channels and each
channel can transmit data independently.

Default Mode
This is the recommended mode and allows the user to
configure the core with user-defined transmit and
receive channels.

Functional Description
The core has three main blocks: Transmit, Receive, and
CPU interface. The core can be configured to provide up
to 16 transmit and receive channels.

Table 6 • Memory Parameters

Device Family X Y

Fusion 512 128

ProASIC3/E 512 128

ProASICPLUS 256 64

Axcelerator/RTAX-S 512 128

I 0=

NTx 1–

∑
I 0=

NRx 1–

∑

ARINC 429 Bus Interface

6 v5.0

Figure 4 gives a functional description of the Rx block.

The Rx block is responsible for recovering the clock from
the input serial data and performs serial-to-parallel
conversion and gap/parity check on the incoming data. It
also interfaces with the CPU.

The Rx module contains two 8-bit registers. One is used
for control function and the other is used for status.
Refer to Table 14 on page 11 and Table 15 on page 11
for detailed descriptions of the control and status
register bits. The CPU interface configures the internal
RAM with the labels, which are used to compare against
the incoming labels from the received ARINC data.

If the label-compare bit in the receive control register is
enabled, then the data which matches its labels with the
stored labels will be stored in the FIFO. If the label-
compare bit in the receive control register is disabled,
then the incoming data will be stored in the FIFO
without comparing against the labels in RAM.

The core supports reloading label memory using bit 7 of
the Rx control register. Note that when you set bit 7 to
initialize the label memory, the old label content still
exists, but the core keeps track only of the new label and
does not use the old label during label compare.

The FIFO asserts three status signals:

• rx_fifo_empty: FIFO is empty

• rx_fifo_half_full: FIFO is filled up to the
programmed RX_FIFO_LEVEL

• rx_fifo_full: FIFO is full

Depending on the FIFO status signals, the CPU will either
read the FIFO before it overflows, or not attempt to read
the FIFO if it is empty. The interrupt signal int_out_rx is
generated when one of the FIFO status signals
(rx_fifo_empty, rx_fifo_half_full, and rx_fifo_full) are
high.

Figure 4 • Core429 Rx Block Diagram

Data Sync
and Clock
Recovery

32-Bit Shift
Register

Label
Memory

Bit Counter

Word Gap
Timer

Parity
Check

Control
Logic

Control Reg

Status Reg

CPU I/F

Compare
Label

FIFO

RxLo

RxHi

clk

cpu_add

cpu_wen

cpu_ren

cpu_din

cpu_dout

cpu_wait

ARINC 429 Bus Interface

v5.0 7

Figure 5 gives a functional description of the Tx block.

The Tx module converts the 32-bit parallel data from the
TX FIFO to serial data. It also inserts the parity bit into
the ARINC data when parity is enabled. The CPU
interface is used to fill the FIFO with ARINC data. The TX
FIFO can hold up to 512 ARINC words of data. The
transmission starts as soon as one complete ARINC word
has been stored in the transmit FIFO.

The Tx module contains two 8-bit registers. One is used
for a control function and the other is used for status.
The CPU interface allows the system CPU to access the
control and status registers within the core.

The TX FIFO asserts three status signals:

• tx_fifo_empty: TX FIFO is empty

• tx_fifo_half_full: TX FIFO is filled up to the
programmed TX_FIFO_LEVEL

• tx_fifo_full: TX FIFO is full

Depending on the FIFO status signals, the CPU will either
read the FIFO before it overflows, or not attempt to read
the FIFO if it is empty. The interrupt signal int_out_tx is
generated when one of the FIFO status signals
(tx_fifo_empty, tx_fifo_half_full and tx_fifo_full) are
high.

Legacy Mode
In this mode, there is a legacy interface block that
communicates with the CPU interface. When legacy
mode is enabled, the core supports two receive (Rx)
channels and one transmit (Tx) channel only. This is not
configurable.

Figure 5 • Core429 Tx Block Diagram

32-Bit Parallel-
to-Serial Register

Control
Logic

Control Reg

Status Reg

CPU I/F

Parity
Generator

FIFO

clk

cpu_add

cpu_wen

cpu_ren

cpu_din

cpu_dout

cpu_wait

Waveform
Shaper

RxLo

RxHi

Load Shift

ARINC 429 Bus Interface

8 v5.0

Core Parameters
Core429 has several top-level Verilog parameters (VHDL
generics) that are used to select the number of channels
and FIFO sizes of the core that is implemented. Using
these parameters allows the size of the core to be
reduced when all the channels are not required.

For RTL versions, the parameters in Table 7 can be
directly set. For netlist versions of the core, a netlist
implementing four Tx and four Rx channels is provided
as per the defaults above. Actel will supply netlists with
alternative parameter settings on request.

I/O Signal Descriptions

ARINC Interface

Table 7 • FIFO and Label Parameters

Parameter Name Description Allowed Values Default

CLK_FREQ Clock Frequency 1, 10, 16, 20 MHz 1 MHz

CPU_DATA_WIDTH CPU Data Bus Width 8, 16, 32 bits 8

RXN Rx Channels 1 to 16 4

TXN Tx Channels 1 to 16 4

LEGACY_MODE 0 = Normal mode; 1 = Legacy mode 0,1 0

LABEL_SIZE_i Number of Labels for Rx Channel i 1 to 256 64

RX_FIFO_DEPTH_j Depth of FIFO for Rx Channel j ARINC word 32, 64, 128, 256, 512 32

RX_FIFO_LEVEL_k FIFO Level for Rx Channel k 1 to 64 16

TX_FIFO_DEPTH_l Depth of FIFO for Tx Channel l ARINC word 32, 64, 128, 256, 512 32

TX_FIFO_LEVEL_m FIFO Level for Tx Channel m 1 to 64 16

TXRXSPEED_n When this parameter is set to '1', a bit rate of 100/50 kbps is
selected. Otherwise selects a bit rate of 100/12.5 kbps. The bit
rate can be changed for the Rx/Tx channel pair. Refer to the Tx
and Rx control register bit descriptions in Table 14 on page 11
and Table 18 on page 12.

0, 1 0

Note: Where i, j, k, l, m, and n are from 0 to 15.

Table 8 • Clock and Reset

Name Type Description

clk In Master clock input (1, 10, 16, or 20 Mhz)

reset_n In Active low asynchronous reset

txa [TXN-1:0] Out ARINC transmit output A

txb [TXN-1:0] Out ARINC transmit output B

rxa [RXN-1:0] In ARINC receiver input A

rxb [RXN-1:0] In ARINC receiver input B

ARINC 429 Bus Interface

v5.0 9

Default Mode Signals

CPU Interface
The CPU interface allows access to the Core429 internal registers, FIFO, and internal memory. This interface is
synchronous to the clock.

Table 9 • Core Interface Signals

Name Type Description

int_out_rx[RXN-1:0] Out Interrupt from each receive channel. This interrupt is generated when one
of the following conditions occur:

• FIFO Empty

• FIFO Full

• FIFO is full up to the programmed RX_FIFO_LEVEL

This is an active high signal.

int_out_tx[TXN-1:0] Out Interrupt from each transmit channel. This interrupt is generated when one
of the following conditions occur:

• FIFO Empty

• FIFO Full

• FIFO is full up to the programmed TX_FIFO_LEVEL

This is an active high signal.

rx_fifo_full[RXN-1:0] Out RX FIFO full flag for each receive channel. This is an active high signal.

rx_fifo_half_full[RXN-1:0] Out RX FIFO programmed level flag for each receive channel. By default it is
programmed to half full. This is an active high signal.

rx_fifo_empty[RXN-1:0] Out RX FIFO empty flag for each receive channel.This is an active high signal.

tx_fifo_full[TXN-1:0] Out TX FIFO full flag for each transmit channel. This is an active high signal.

tx_fifo_half_full[TXN-1:0] Out TX FIFO programmed level flag for each transmit channel. By default it is
programmed to half full. This is an active high signal.

tx_fifo_empty[TXN-1:0] Out TX FIFO empty flag for each transmit channel. This is an active high signal.

Table 10 • CPU Interface Signals

Name Type Description

cpu_ren In CPU read enable, active low

cpu_wen In CPU write enable, active low

cpu_add [8:0] In CPU address

cpu_din [CPU_DATA_WIDTH-1:0] In CPU data input

cpu_dout [CPU_DATA_WIDTH-1:0] Out CPU data output

int_out Out Interrupt to CPU, active high. int_out is the OR function
of int_out_rx and int_out_tx.

cpu_wait Out Indicates that the CPU should hold cpu_ren or cpu_wen
active while the core completes the read or write
operation.

ARINC 429 Bus Interface

10 v5.0

Legacy Interface
The Legacy interface allows access to the Core429 internal registers, FIFO, and internal memory. This interface is
synchronous to the clock. The Tx module contains two 8-bit registers. One is used for control function and the other is
used for status.

Default Mode Operation
In the default mode, the core operates with the following register map.

CPU Address Map
The address bits 0 and 1 are used to create byte indexes.

For an 8-Bit CPU Data Bus:
00 – Byte 0

01 – Byte 1

10 – Byte 2

11 – Byte 3

For a 16-Bit CPU Data Bus:
00 – Lower half word

10 – Upper half word

For 32-Bit CPU Data Bus:
00 – Word

The address bits 2 and 3 select the registers within each
Rx or Tx block (see "Address Map" on page 11).

Table 11 • Legacy Interface Signals

Name Type Description

data_ready1 Out Receiver 1 data ready (FIFO not empty) flag

fifo_full1 Out Receiver 1 FIFO full

half_full1 Out Receiver 1 FIFO half full

data_ready2 Out Receiver 2 data ready (FIFO not empty) flag

fifo_full2 Out Receiver 2 FIFO full

half_full2 Out Receiver 2 FIFO half full

transmit_fifo_full Out Transmit FIFO full

transmit_half_full Out Transmit FIFO half full

rsel In Receiver data half word selection

ctrl_n In Clock for control word register

str_n In Read status register if rsel = 0, read control register if rsel = 1

entx In Enable transmission

txr Out Transmitter ready flag. Goes low when ARINC word loaded into FIFO. Goes high after
transmission and FIFO empty.

pl1_n In Latch enable for word 1 entered from data bus to transmitter FIFO

pl2_n In Latch enable for word 2 entered from data bus to transmitter FIFO. Must follow pl1_n.

en1_n In Data Bus control, enables receiver 1 data to outputs

en2_n In Data Bus control, enables receiver 2 data to outputs if en1_n is high

test In Disable transmitter output if high

dout In/Out Bidirectional data bus

data_valid Out Data is valid when data_valid = 1

ARINC 429 Bus Interface

v5.0 11

The address bit 4 is used to determine Rx/Tx as follows:

0 – Rx

1 – Tx

The address bits 5, 6, 7, and 8 are used for decoding the
16 channels as follows:

0000 – Channel0

0001 – Channel1

 . .

 . .

1110 – Channel14

1111 – Channel15

Table 12 shows the CPU address bit information.

Register Definitions

Rx Registers
Following is the detailed definition of cpu_add [3:2]
decoding and the explanation of Data Register, Control
Register, Status Register, and Label Memory Register
(Table 13 through Table 16 on page 12).

Address Map
00 – Data Register

01 – Control Register

10 – Status Register

11 – Label Memory

Table 12 • CPU Address Bit Positions

Channel Number Tx/Rx Register Index Byte Index

8 7 6 5 4 3 2 1 0

MSB 9-Bit CPU Address LSB

Table 13 • Rx Data Register

Bit Function Reset State Type Description

31:0 Data 0 R Read Data

Table 14 • Rx Control Register

Bit Function Reset State Type Description

0 Data rate 0 R/W Data rate: 0 = 100Kb/s; 1 = 12.5 or 50 Kbps

1 Label recognition 0 R/W Label compare: 0 = disable; 1 = enable

2 Enable 32nd bit as parity 0 R/W 0 = 32nd bit is data; 1 = 32nd bit is parity

3 Parity 0 R/W Parity: 0 = odd; 1 = even

4 Decoder 0 R/W 0: SDI bit comparison disabled;

1: SDI bit comparison enabled; ARINC bits 9 and 10 must
match bits 5 and 6 respectively.

5 Match header bit 9 0 R/W If bit 4 is set then this bit should match the ARINC header
bit 9 (SDI bit).

6 Match header bit 10 0 R/W If bit 4 is set then this bit should match the ARINC header
bit 10 (SDI bit).

7 Reload label memory 0 R/W When bit 7 is set to '1', label memory address pointers are
initialized to '000'. Set this bit to change the contents of
the label memory.

Table 15 • Rx Status Register

Bit Function Reset State Type Description

0 FIFO empty 0 R 0 = not empty; 1 = empty

1 FIFO half full or
programmed level

0 R 0 = Less than programmed level; 1 = FIFO is filled at least up
to programmed level

2 FIFO full 0 R 0 = not full; 1 = full

ARINC 429 Bus Interface

12 v5.0

Tx Registers
Following is a detailed definition of cpu_add [3:2]
decoding and an explanation of the Data Register,
Pattern RAM, Control Register, and Status Register.

Address Map
00 – Data Register

01 – Control Register

10 – Status Register

11 – Unused

Table 16 • Rx Label Memory Register

Bit Function Reset State Type Description

7:0 Label 0 R/W Read/Write Labels

Table 17 • Tx Data Register

Bit Function Reset State Type Description

31:0 Data 0 W Write Data

Table 18 • Tx Control Register

Bit Function Reset State Type Description

0 Data rate 0 R/W Data rate: 0 = 100Kb/s; 1 = 12.5 or 50 Kbps

1 Loopback 0 R/W 0 = Disable loopback; 1 = Enable loopback

2 Enable 32nd bit as parity 0 R/W 0 = 32nd bit is data; 1 = 32nd bit is parity

3 Parity 0 R/W Parity: 0 = odd; 1 = even

Table 19 • Tx Status Register

Bit Function Reset State Type Description

0 FIFO empty 0 R 0 = not empty; 1 = empty

1 FIFO half full or
programmed level

0 R 0 = Less than half full or programmed level; 1 = Half full
or programmed level

2 FIFO full 0 R 0 = not full; 1 = full

ARINC 429 Bus Interface

v5.0 13

Label Memory Operation
The label memory is implemented using an internal
memory block. The read address and write address are
generated by internal counters. The read and write
address counters can be reset by setting bit 7 of the

receive (Rx) control register to '1'. The write counter
increments each time the label memory register is
written. The read counter increments every time the
label memory register is read.

The label memory operation is shown in Figure 6.

To program labels, the CPU first resets the read and write
counters by setting bit 7 of the receive (Rx) control
register to '1'. Then the labels are written to the label
memory. The core will compare the incoming ARINC
word label (bit 1 to 8 of ARINC word) against the labels
contained in the label memory. The contents of the label
memory can be read by reading the label memory
register. While writing to or reading from label memory,

bit 1 of the receive (Rx) control register should be set to
'0'.

To reload the label memory, set bit 7 of the receive (Rx)
control register to '1'. The core will then ignore all
previous labels and new labels can be written to the
label memory.

Legacy Operation
In this mode, there is a legacy interface block that
communicates with the CPU interface. When legacy
mode is enabled, the core supports two receive (Rx)
channels and one transmit (Tx) channel only. Legacy
mode is not configurable to support multiple transmit
and receive channels. The purpose of the legacy mode
interface is to replace existing standard products.

Figure 6 • Label Memory Diagram

Read Address
Counter

Write Address
Counter

Label Memory Block

+1

+1

Rx Control Register Bit

Rx Control Register Bit

Write Data
(Rx Label Memory Register)

Read Data
(Rx Label Memory Register)

Number of Active Labels

WDATA

RDATA

RADDR

WADDR

Reset

Reset
Write Enable

Read Enable

Label Enable

ARINC 429 Bus Interface

14 v5.0

Control Register
Core429 contains a 16-bit control register, which is used to configure the Rx and Tx channels. The control register bits
0 to 15 are loaded from the databus when CTRL_n is low. The control register contents are output on the databus
when RSEL is high and STR_n is low. Each bit of the control register description is explained in Table 20.

Table 20 • Legacy Control Register

Bit Function
Reset
State Type Description

0 Receiver 1 data rate 0 R/W Data rate: 0 = 100 kbps; 1 = 12.5 kbps. Note: Does not support 50 kbps.

1 Label compare 0 R/W 0 = disable; 1 = enable
Load 16 labels using pl1_n/pl2_n
Read 16 labels using en1_n/en2_n

2 Enable label recognition
(Receiver 1)

0 R/W 0: Disable label recognition
1: Enable label recognition

3 Enable label recognition
(Receiver 2)

0 R/W 0: Disable label recognition
1: Enable label recognition

4 Enable 32 bit as parity 0 R/W 0 = 32 bit is data; 1 = 32 bit is parity

5 Self test 1 R/W 0: The transmitter’s digital outputs are internally connected to the receiver
logic inputs.
1: Normal operation

6 Receiver 1 decoder 0 R/W 0: Receiver 1 decoder disabled
1: ARINC bits 9 and 10 must match bits 7 and 8 of the control register.

7 Match ARINC bit 9 (receiver 1) 0 R/W If receiver 1 decoder is enabled, the ARINC bit 9 should match this bit.

8 Match ARINC bit 10 (receiver 1) 0 R/W If receiver 1 decoder is enabled, the ARINC bit 10 should match this bit.

9 Receiver 2 decoder 0 R/W 0: Receiver 2 decoder disabled
1: ARINC bits 9 and 10 must match bits 10 and 11 of the control register.

10 Match ARINC bit 9 (receiver 2) 0 R/W If receiver 2 decoder is enabled, the ARINC bit 9 should match this bit.

11 Match ARINC bit 10 (receiver 2) 0 R/W If receiver 2 decoder is enabled, the ARINC bit 10 should match this bit.

12 Transmitter parity 0 R/W Parity: 0 = odd; 1 = even

13 Transmitter data rate 0 R/W Data rate: 0 = 100 kbps; 1 = 12.5 kbps. Note: Does not support 50 kbps.

14 Receiver 2 data rate 0 R/W Data rate: 0 = 100 kbps; 1 = 12.5 kbps. Note: Does not support 50 kbps.

ARINC 429 Bus Interface

v5.0 15

Status Register
Core429 contains a 16-bit status register which can be read to determine the status of the ARINC receivers, data FIFOs,
and transmitter. The contents of the status register are output on the databus when RSEL is low and STR is low. Each
bit of the control register description is explained in Table 21.

Table 21 • Legacy Status Register

Bit Function Reset State Type Description

0 Receiver 1 FIFO Empty 0 R 0 = Receiver 1 FIFO not empty

1 = Receiver 1 FIFO empty

1 Receiver 1 FIFO Half Full 0 R 0 = Receiver 1 FIFO not half full

1 = Receiver 1 FIFO half full

2 Receiver 1 FIFO Full 0 R 0 = Receiver 1 FIFO not full

1 = Receiver 1 FIFO full

3 Receiver 2 FIFO Empty 0 R 0 = Receiver 2 FIFO not empty

1 = Receiver 2 FIFO empty

4 Receiver 2 FIFO Half Full 0 R 0 = Receiver 2 FIFO not half full

1 = Receiver 2 FIFO half full

5 Receiver 2 FIFO Full 0 R 0 = Receiver 2 FIFO not full

1 = Receiver 2 FIFO full

6 Transmitter FIFO Empty 0 R 0 = Transmitter FIFO not empty

1 = Transmitter FIFO empty

7 Transmitter FIFO Full 0 R 0 = Transmitter FIFO not full

1 = Transmitter FIFO full

8 Transmitter FIFO Half Full 0 R 0 = Transmitter FIFO not half full

1 = Transmitter FIFO half full

ARINC 429 Bus Interface

16 v5.0

CPU Interface Timing for Default Mode
The CPU interface signals are synchronized to the Core429 master clock. Figure 7 through Figure 12 on page 17 show
the waveforms for the CPU interface.

Note: cpu_ren should be deasserted on the next clock cycle after cpu_wait is deasserted. The read data is available one cycle after cpu_ren
is sampled.

Figure 7 • CPU Interface Control/Status Register Read Cycle

Note: cpu_wen should be deasserted on the next clock cycle after cpu_wait is deasserted. The write is done two cycles after cpu_wen is
sampled.

Figure 8 • CPU Interface Control Register Write Cycle

Note: cpu_ren should be deasserted on the next clock cycle after cpu_wait is deasserted. The read data is available six cycles after cpu_ren
is sampled.

Figure 9 • CPU Interface Data Register Read Cycle

Note: cpu_wen should be deasserted on the next clock cycle after cpu_wait is deasserted. The write is done two cycles after cpu_wen is
sampled.

Figure 10 • CPU Interface Data Register Write Cycle

clk

cpu_ren

cpu_add[8:0]

cpu_dout[31:0]

ADDR

Data

cpu_wait

clk

cpu_wen

cpu_add[8:0]

cpu_din[31:0]

ADDR

Write Done

cpu_wait

clk

cpu_ren

cpu_add[8:0]

cpu_dout[31:0]

ADDR

Data
cpu_wait

clk

cpu_wen

cpu_add[8:0]

cpu_din[31:0]

ADDR

Data

Write

cpu_wait

ARINC 429 Bus Interface

v5.0 17

Clock Requirements
To meet the ARINC 429 transmission bit rate
requirements, the Core429 clock input must be 1, 10, 16,
or 20 MHz with a tolerance of ± 0.01%.

Core429 Verification
The comprehensive verification simulation testbench
(included with the Netlist and RTL versions of the core)
verifies correct operation of the Core429 macro. The
verification testbench applies several tests to the
Core429 macro, including:

• Receive Interface tests

• Transmit Interface tests

• CPU Interface tests

• Legacy Interface tests

• Loopback tests

Using the supplied user testbench as a guide, the user
can easily customize the verification of the core by
adding or removing tests.

Testbench
The CPU model sets up Core429 via the CPU interface
and loads the transmit data. The transmit data will be

sent to the receiver. The CPU model can retrieve the
receive data through the CPU interface and compare it
against the transmitted data.

The core comes with three testbenches: a full verification
testbench that demonstrates full operation in Verilog,
and two user testbenches, one in VHDL and the other in
Verilog.

The user testbenches are intended to simplify core
integration into the target system (Figure 13). This
consists of the core connections to a CPU model and
loopback logic that connects Tx output to the Rx input.

Note: cpu_ren should be deasserted on the next clock cycle after cpu_wait is deasserted. The read data is available six cycles after cpu_ren
is sampled.

Figure 11 • CPU Interface Label Memory Read Cycle

Note: cpu_wen should be deasserted on the next clock cycle after cpu_wait is deasserted. The write is done two cycles after cpu_wen is
sampled.

Figure 12 • CPU Interface Label Memory Write Cycle

clk

cpu_ren

cpu_add[8:0]

cpu_dout

cpu_wait

Data

clk

cpu_wen

cpu_add[8:0]

cpu_din[31:0]

ADDR

Data

Write

cpu_wait

Figure 13 • Testbench Diagram

CPU
Model Loopback

I/F

CPU I/F

Rx I/F0

Tx I/F0

Rx I/F3

Tx I/F3

RxH0
RxL0
TxH0
TxL0

RXH3
RxL3
TxH3
TxL3

Core429

ARINC 429 Bus Interface

18 v5.0

Line Drivers
Core429 needs ARINC 429 line drivers to drive the ARINC 429 data bus. Core429 is designed to directly interface to
common ARINC 429 line drivers, such as the HOLT HI-8382/HI-8383, DDC DD-03182 or Device Engineering DEI1070.

Figure 14 shows the connections required from Core429 to the line drivers.

Line Receivers
Core429 needs ARINC 429 line receivers to receive the
ARINC 429 data bus. Core429 is designed to directly
interface to common ARINC 429 line receivers, such as
the HOLT HI-8588 or Device Engineering DEI3283. When
using ProASICPLUS, RTAX-S, or Axcelerator FPGA families,
level translators are required to connect the 5 V output
levels of the Core429 line receivers to the 3.3 V input
levels of the FPGA.

Figure 15 on page 19 shows the connections required
from Core429 to the line receivers.

Loopback Interface
If the loopback bit in the transmit control register is
enabled, the transmit outputs will be connected to the
receive inputs. If there are equal numbers of transmit
and receive channels, each transmit channel output is
connected to the corresponding receive channel input.
As an example, transmit channel 0 output is connected
to receive channel 0 input.

If there are more receive channels than transmit
channels, then the extra receive channels are connected
to transmit channel 0. As an example, if we have two
transmit channels (0 and 1) and four receive channels (0,
1, 2, and 3) then the connections are made as follows:

• Connect transmit channel 0 output to receive
channel 0 inputs.

• Connect transmit channel 1 output to receive
channel 1 input.

• Connect transmit channel 0 output to receive
channel 2 input.

• Connect transmit channel 0 output to receive
channel 3 input.

Development System
A complete ARINC 429 development system is also
available, Actel part number "Core429-DEV-KIT". The
development system uses an external terminal (PC) using
a serial UART link to control Core429 with four Rx and
four Tx channels implemented in a single ProASICPLUS

APA600 FPGA.

The loopback interface logic allows the ARINC core to
operate with the loopback mode. The development kit
(Figure 15 on page 19) includes ARINC line drivers and
line receivers.

On power-up, Core8051 will read the message from the
ADC, which could be the aircraft fuel level or flap
position, for example, and transmits over the transmit
channel. The message will be transmitted to the receiver
through the loopback interface. Then the message will
be retrieved by Core8051 from the receiver and
displayed on the LCD display.

Another way is to transmit the ADC message over the
transmit channel through the line drivers to another
system similar to the one described above. The message
will go through the receive channel of the second system
and can be displayed on the LCD display.

Figure 14 • Core429 Line Driver and Line Receiver Interface

CoreARINC429

Rx I/F

Tx I/F
RxHi
RxLo

TxHi
TxLo

Line Driver

Line Receiver

CPU
Interface

ARINC 429 Bus Interface

v5.0 19

Ordering Information
Core429 can be ordered through your local Actel sales representative. It should be ordered using the following part
number: Core429-XX, where XX is the appropriate value from Table 22:

The Evaluation board can also be ordered using the part number "Core429-DEV-KIT".

Figure 15 • Typical Core429 System Diagram

Table 22 • Ordering Codes

XX Description

EV Evaluation Version

SN Netlist for single use on Actel devices

AN Netlist for unlimited use on Actel devices

SR RTL for single use on Actel devices

AR RTL for unlimited use on Actel devices

UR RTL for use not restricted to Actel devices

APA600 FPGA

Core 8051

Core 429
4Tx and 4Tx

Loop-
back
I/F

UART
RS232

Keypad
and

LCD DIsplay
Terminal ADC

Tx1H
Tx1L

Rx1H
Rx1L

Tx2H
Tx2L

Rx2H
Rx2L

Tx3H
Tx3L

Rx3H
Rx3L

Tx4H
Tx4L

Rx4H
Rx4L

ARINC 429 Bus Interface

20 v5.0

List of Changes
The following table lists critical changes that were made in the current version of the document.

Previous Version Changes in Current Version (v5.0) Page

v4.1 The "Key Features" section was updated to modify the selectable data rate on each channel. 1

Figure 2 was added. 2

The "General Description" section and "ARINC 429 Overview" section were updated. 2

A paragraph was added to the end of the "Core429 Device Requirements" section. 3

Table 6 was updated to add Fusion. 5

Figure 3 was updated. 3

The "Default Mode" section was added. 5

The "Functional Description" section was updated. 5

The "Legacy Mode" section was added. 7

Table 7 was updated to add the TXRXSPEED_n parameter, and the table note was updated. 8

The first four rows of Table 9 were moved to Table 8. Table 9 was updated to remove the tx_en
signal, modify the int_out_tx signal description, and add the rx_fifo_full through tx_fifo_empty
signals. The "Clock and Reset" section was renamed to "ARINC Interface" and the "ARINC
Interface" section was renamed to "Default Mode Signals".

8–9

Table 11 was moved to a later position in the document, just before the "Default Mode" section. 10

Information about the Tx module was added to the "Legacy Interface" section. 10

The channel decoding values were updated for the 32-bit CPU data bus in the "Default Mode
Operation" section.

10

The Address Map was updated in the "Rx Registers" section and the "Tx Registers" section. 11, 12

Table 14 was updated to modify the data rate, decoder, match header bit 9, and match header bit
10 descriptions. Label memory address was renamed reload label memory, and its description was
updated.

11

Table 15 was updated to rename FIFO half full to FIFO half full or programmed level, and the
description was modified.

11

Table 16 was updated to rename Data to Label and update the type and description. 12

Table 18 was updated to modify the data rate description. 12

Table 19 was updated to modify the type of FIFO empty and FIFO full. FIFO half full was renamed to
FIFO half full or programmed level, and its type and description were modified.

12

The "Label Memory Operation" section was added. 13

Information was added to the "Legacy Operation" section to clarify its purpose and configurability. 13

Table 20 was updated to modify the description for receiver 1 data rate, label compare, match
ARINC bit 10, match ARINC bit 9, transmitter data rate, and transmitter data rate.

14

Table 21 was updated to change the type from R/W to R for all bits. 15

The signal names cpu_clk and cpu_addr[7:0] were changed to clk and cpu_add[8:0] in Figure 7
through Figure 12. The wave forms were modified in Figure 7, Figure 10, Figure 11, and Figure 12,
and notes were added to each figure.

16–17

ARINC 429 Bus Interface

v5.0 21

Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," and "Production." The definitions of these
categories are as follows:

Product Brief
The product brief is a summarized version of an advanced or production datasheet containing general product
information. This brief summarizes specific device and family information for unreleased products.

Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.

Unmarked (production)
This datasheet version contains information that is considered to be final.

v4.0 The title of Table 4 was updated. The Fusion device was changed to AFS1500. 4

v3.1 The "Supported Families" section was updated to include Fusion. 1

The "Core429 Device Requirements" section was updated to include Fusion data. 3

v3.0 The "Core Deliverables" section was updated. 1

Table 5 is new. 4

Table 9 was updated. 9

Figure 9 was updated. 16

v2.0 The "Core429 Device Requirements" section was updated. 3

Table 1 was updated. 3

Table 2 was updated. 3

Table 3 was updated. 4

Table 4 was updated. 4

Table 20 was updated. 14

51700055-5/9.06

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Microchip:

 Core429-SA Core429-AR Core429-RM Core429-AN Core429-OM

https://www.mouser.com/microsemi
https://www.mouser.com/access/?pn=Core429-SA
https://www.mouser.com/access/?pn=Core429-AR
https://www.mouser.com/access/?pn=Core429-RM
https://www.mouser.com/access/?pn=Core429-AN
https://www.mouser.com/access/?pn=Core429-OM

 Tел: +7 (812) 336 43 04 (многоканальный)
 Email: org@lifeelectronics.ru

 www.lifeelectronics.ru

ООО “ЛайфЭлектроникс” “LifeElectronics” LLC
ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и
отечественного производства от производителей и со складов крупных дистрибьюторов Европы,
Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению
коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные,
электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

 Конкурентоспособные цены и скидки постоянным клиентам.

 Специальные условия для постоянных клиентов.

 Подбор аналогов.

 Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.

 Приемлемые сроки поставки, возможна ускоренная поставка.

 Доставку товара в любую точку России и стран СНГ.

 Комплексную поставку.

 Работу по проектам и поставку образцов.

 Формирование склада под заказчика.

 Сертификаты соответствия на поставляемую продукцию (по желанию клиента).

 Тестирование поставляемой продукции.

 Поставку компонентов, требующих военную и космическую приемку.

 Входной контроль качества.

 Наличие сертификата ISO.

 В составе нашей компании организован Конструкторский отдел, призванный помогать
разработчикам, и инженерам.

 Конструкторский отдел помогает осуществить:

 Регистрацию проекта у производителя компонентов.

 Техническую поддержку проекта.

 Защиту от снятия компонента с производства.

 Оценку стоимости проекта по компонентам.

 Изготовление тестовой платы монтаж и пусконаладочные работы.

mailto:org@lifeelectronics.ru
http://lifeelectronics.ru/

	RateThisDoc:

