

MIC4609

600V 3-Phase MOSFET/IGBT Driver

Features

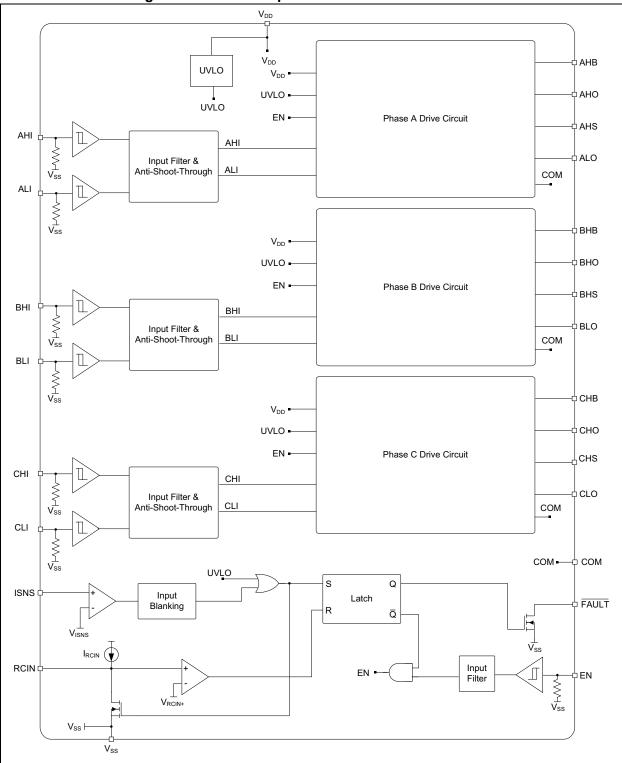
- · Gate Drive Supply Voltage up to 20V
- Overcurrent Protection with Programmable Restart Delay
- · 1A Gate Drivers
- · Dual (HI/LI) Inputs per Phase
- Fault Signal Asserts on Overcurrent and $\rm V_{DD}$ UVLO
- · TTL Input Thresholds
- 300 ns Typical Input Filtering Time
- · Shoot-Through Protection
- · Low-Power Consumption
- · Supply Undervoltage Protection
- -40°C to +125°C Junction Temperature Range

Typical Applications

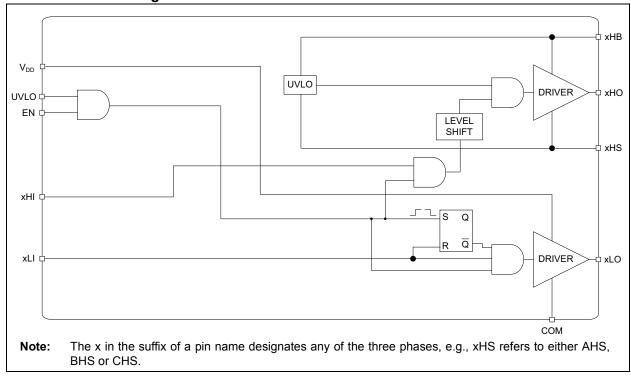
- · 3-Phase Motor Drive
- Field-Oriented Control (FOC)
- · White Goods Appliances
- · Brushless DC Fans

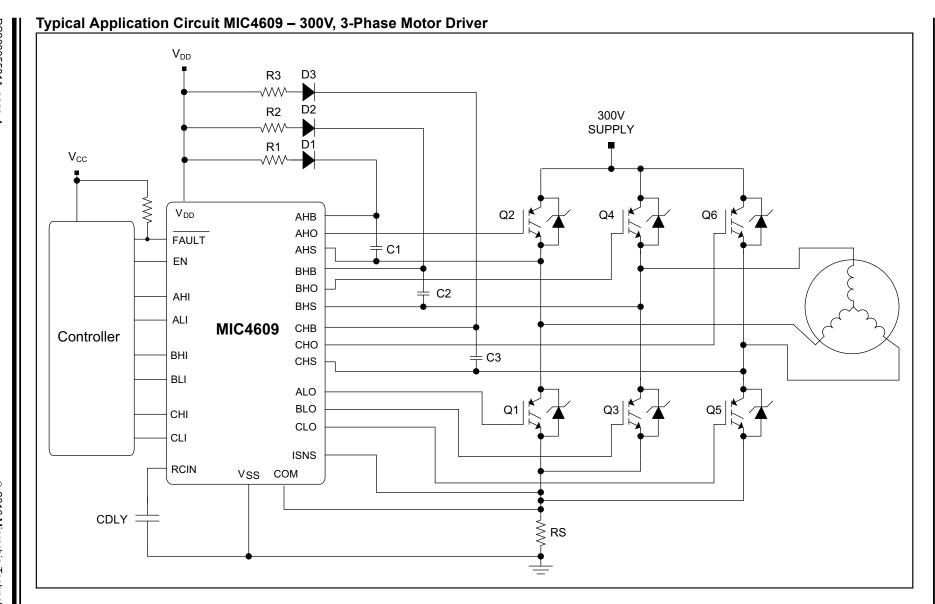
General Description

The MIC4609 is a 600V 3-phase MOSFET/IGBT driver. The MIC4609 features a 300 ns typical input filtering time to prevent unwanted pulses and a 550 ns of propagation delay. The MIC4609 has TTL input thresholds.


The robust operation of the MIC4609 ensures that the outputs are not affected by supply glitches, High Side (HS) ringing below ground, or HS slewing with high-speed voltage transitions. Undervoltage protection is provided on both the low-side and high-side drivers.

The MIC4609 is available in a 28-pin wide SOIC package. The MIC4609 has an operating junction temperature range of -40°C to +125°C.


Package Type


	- 71		MIC46	09			
	28-Pin SOICW						
V_{DD}	1	\cup			28	AHB	
AHI	2				27	AHO	
BHI	3				26	AHS	
CHI	4				25	NC	
ALI	5				24	ВНВ	
BLI	6				23	ВНО	
CLI	7				22	BHS	
FAULT	8				21	NC	
ISNS	9				20	СНВ	
EN	10				19	CHO	
RCIN	11				18	CHS	
V_{SS}	12				17	NC	
COM	13				16	ALO	
CLO	14				15	BLO	
					_		

Functional Block Diagram MIC4609 - Top Level Circuit

Functional Block Diagram MIC4609 - Phase x Drive Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V _{DD} , V _{XHB} - V _{XHS})	0.3V to +25V
Input Voltages (V _{XLI} , V _{XHI} , V _{EN})	0.3V to V _{DD}
Voltage on LO (V _{xLO})	0.3V to V _{DD}
Voltage on HO (V _{xHO})	V _{HS} - 0.3V to V _{HB}
Voltage on HS	5V to +630V
Voltage on HB	+655V
Storage Temperature	60°C to +150°C
ESD Rating	
НВМ	2kV
CDM	1.5 kV

† Notice: Stresses above those listed under "Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Operating Ratings (1)

Supply Voltage (V _{DD})	+10V to +20V
Voltage on xHS (continuous)	1V to +600V
Voltage on xHS (repetitive transie	nt)5V to +600V
HS Slew Rate	50V/ns
Voltage on xHB	$V_{XHS} + 10V \text{ to } V_{XHS} + 20V$
and/or	\dots V _{DD} - 1V to V _{DD} + 600V
Junction Temperature (T _J)	40°C to +125°C
Junction Thermal Resistance (θ_{JA})40°C to +125°C
SOIC Wide 28LD	53°C/W

Note 1: The device is not guaranteed to function outside its operating rating.

AC/DC ELECTRICAL CHARACTERISTICS (Note 1, 2)

Electrical Specifications: Unless otherwise indicated, $V_{DD} = V_{xHB} = 20V$, $V_{EN} = 5V$, $V_{SS} = V_{xHS} = 0V$; No load on xLO or xHO, $T_A = +25^{\circ}C$. **Bold** values indicate $-40^{\circ}C \le T_J \le +125^{\circ}C$.

7.20 01 7.11 10 , 1 A 20 01 2010 1	a.a.ca.ca.c			-		
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Supply Current						
V _{DD} Quiescent Current	I _{DD}	_	150	250	μA	xLI = xHI = 0V
V _{DD} Shutdown Current	I _{DDSH}	_	0.1	10	μА	EN = 0V with HS = floating or ground
V _{DD} Operating Current	I _{DDO}	_	240	350	μA	f = 20 kHz
Total xHB Quiescent Current	I _{xHB}	_	81	180	μA	xLI = xHI = 0V or xLI = 0V and xHI = 5V
Total xHB Operating Current	I _{xHBO}	_	600	1500	μA	f = 20 kHz
High-Side Leakage Current	I _{LxHB}	_	1	10	μA	$V_{xHB} = V_{xHS} = 600V$
Input (TTL: xLI, xHI, EN)						
Low-Level Input Voltage	V _{IL}	_	_	8.0	V	
High-Level Input Voltage	V _{IH}	2.2	_	_	V	
Input Voltage Hysteresis	V _{HYS}	_	0.2	_	V	
Input Pull-Down Resistance	R _I	100	370	500	kΩ	For xLI and xHI only (Note 3)
Undervoltage Protection						<u> </u>
V _{DD} Falling Threshold	V_{DDR}	7	8	9	V	
V _{DD} Threshold Hysteresis	V _{DDH}	_	0.5	_	V	
xHB Falling Threshold	V_{xHBR}	7	8	9	V	
xHB Threshold Hysteresis	V_{xHBH}	_	0.5	_	V	

- **Note 1:** Specification for packaged product only.
 - 2: The x in the suffix of a pin name designates any of the three phases, e.g., xHS refers to either AHS, BHS or CHS.
 - **3:** Enable resistance is typical only and is not production tested.

MIC4609

AC/DC ELECTRICAL CHARACTERISTICS (CONTINUED) (Note 1, 2)

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Overcurrent Protection			L	L		
Rising Overcurrent Threshold	V _{ISNS+}	420	520	650	mV	
ISNS Pin Blanking Time	t _{ISNS_BLK}	270	370	470	ns	
ISNS-to-Gate Propagation Delay	t _{ISNS_PROP}	400	650	900	ns	
Fault Circuit	_					
Fault Pin Output Low Voltage	V _{OLF}	_	_	8.0	V	V _{ISNS} = 1V, I _{FAULT} = 1 mA
Rising VCIN Pin Threshold	V _{RCIN+}	_	5	_	V	
VCIN Hysteresis	V _{RCIN_HYS}	_	0.6	_	V	
RCIN Pin Current Source	I _{RCIN}	3	5	7	μΑ	V _{RCIN} = 0V
Fault Clear Time	t _{FCL}	0.5	1	2	ms	C _{RCIN} = 1nF
LO Gate Driver						
Low-Level Output Voltage	V_{xOLL}	_	0.5	0.9	V	I_{xLO} = 50 mA
High-Level Output Voltage	V_{xOHL}	_	0.6	0.9	V	I_{xLO} = -50 mA V_{xOHL} = V_{DD} - V_{xLO}
Peak Sink Current	I _{xOHL}	_	1	_	Α	$V_{xLO} = 0V$
Peak Source Current	I _{xOLL}	_	1	_	Α	V _{xLO} = 20V
HO Gate Driver						
Low-Level Output Voltage	V_{xOLH}		0.5	0.9	V	I_{xHO} = 50 mA
High-Level Output Voltage	V _{xOHH}	_	0.6	0.9	V	I_{xHO} = -50 mA V_{xOHH} = V_{xHB} - V_{xHO}
Peak Sink Current	I _{xOHH}	_	1	_	Α	$V_{xHO} = 0V$
Peak Source Current	I _{xOLH}	_	1	_	Α	V _{xHO} = 20V
Switching Specifications						
Turn-On Propagation Delay	t _{ON}	300	600	700	ns	C _L = 1 nF
Turn-Off Propagation Delay	t _{OFF}	300	550	700	ns	C _L = 1 nF
Turn-On Rise Time	t_R	_	20	60	ns	C _L = 1 nF
Turn-Off Fall Time	t _F	_	20	60	ns	C _L = 1 nF
Input Filtering Time	t _{FLTR}	200	300	480	ns	xLI, xHI, EN
Dead Time	t _D	200	300	450	ns	C _L = 1 nF
Delay Matching	t _{DLYM}	_	50	_	ns	C _L = 1 nF
EN-to-Gate Shutdown Delay	t _{EN_OFF}	450	650	750	ns	C _L = 1 nF
Output Pulse Width Matching	t _{PWN}	_	50	_	ns	t _{PW} > 1 μs C _L = 1 nF

Note 1: Specification for packaged product only.

^{2:} The x in the suffix of a pin name designates any of the three phases, e.g., xHS refers to either AHS, BHS or CHS.

^{3:} Enable resistance is typical only and is not production tested.

TEMPERATURE CHARACTERISTICS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions	
Temperature Ranges							
Specified Temperature Range (Note 1)	T _A	-40	_	+125	°C		
Operating Temperature Range	T _A	-40	_	+125	°C		
Storage Temperature Range	T _S	-60	_	+150	°C		
Thermal Package Resistances							
Thermal Resistance, 28LD SOICW	θ_{JA}	_	53	_	°C/W		

Note 1: Operation in this range must not cause T_J to exceed Maximum Junction Temperature (+125°C).

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$ with $10V \le V_{DD} \le 20V$.

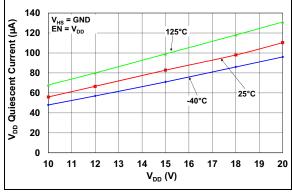


FIGURE 2-1: V_{DD} Voltage.

V_{DD} Quiescent Current vs.

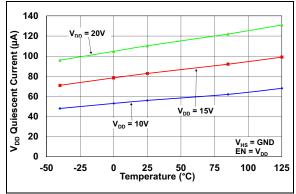


FIGURE 2-2: Temperature.

V_{DD} Quiescent Current vs.

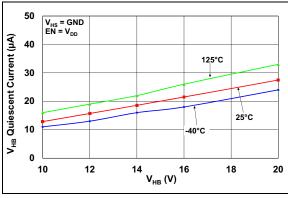
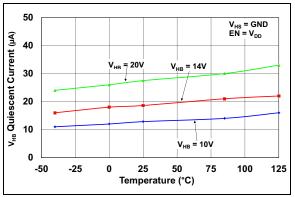



FIGURE 2-3: V_{HB} Voltage.

V_{HB} Quiescent Current vs.

Temperature.

FIGURE 2-4: V_{HB} Quiescent Current vs.

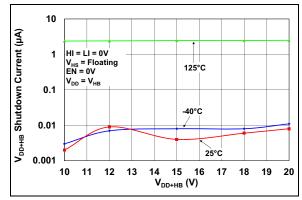


FIGURE 2-5: vs. Voltage.

V_{DD+HB} Shutdown Current

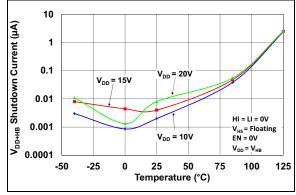
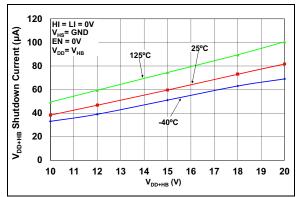
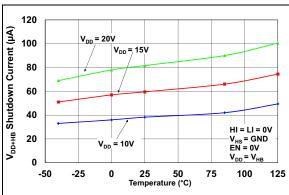
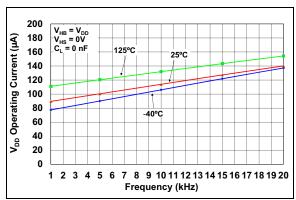
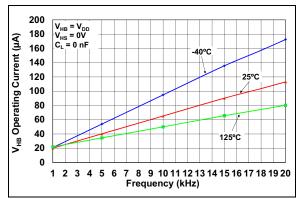
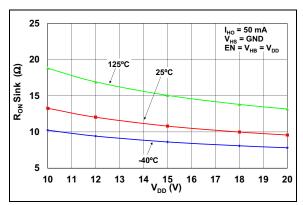



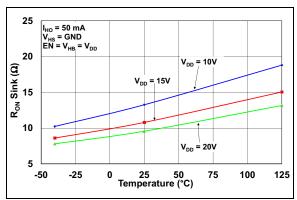
FIGURE 2-6: vs. Temperature.

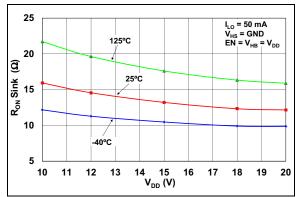
V_{DD+HB} Shutdown Current

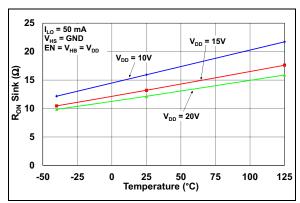
FIGURE 2-7: V_{DD+HB} Shutdown Current vs. Voltage.


FIGURE 2-8: V_{DD+HB} Shutdown Current vs. Temperature.


FIGURE 2-9: V_{DD} Operating Current vs. Frequency.


FIGURE 2-10: V_{HB} Operating Current vs. Frequency – One Phase.


FIGURE 2-11: HO Output Sink ON-Resistance vs. V_{DD} .

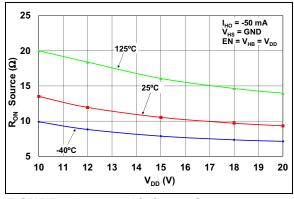

FIGURE 2-12: HO Output Sink ON-Resistance vs. Temperature.

FIGURE 2-13: LO Output Sink ON-Resistance vs. V_{DD} .

FIGURE 2-14: LO Output Sink ON-Resistance vs. Temperature.

FIGURE 2-15: HO Output Source ON-Resistance vs. V_{DD} .

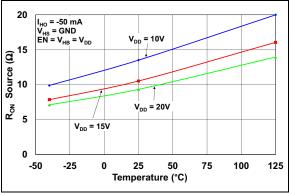
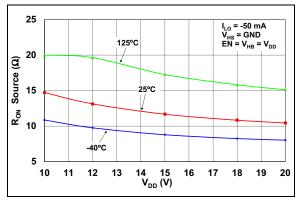



FIGURE 2-16: HO Output Source ON-Resistance vs. Temperature.

FIGURE 2-17: LO Output Source ON-Resistance vs. V_{DD} .

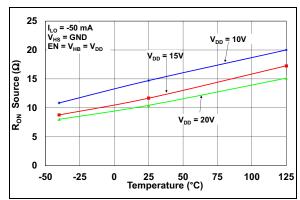
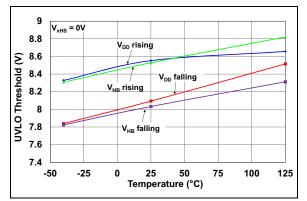
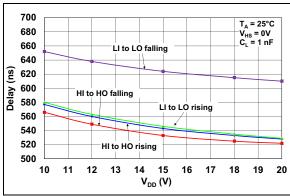
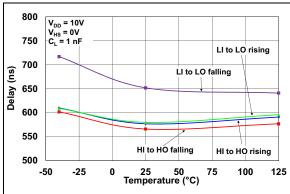
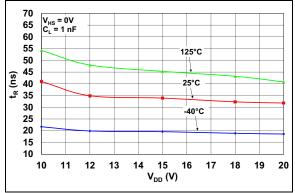
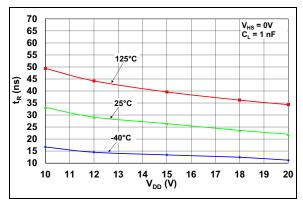




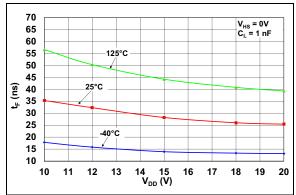
FIGURE 2-18: LO Output Source ON-Resistance vs. Temperature.

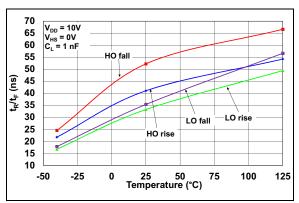
FIGURE 2-19: V_{DD}/V_{HB} ULVO vs. Temperature.

FIGURE 2-20: Propagation Delay vs. V_{DD} Voltage.



FIGURE 2-21: Propagation Delay vs. Temperature.


FIGURE 2-22: HO Rise Time vs. V_{DD} Voltage.


FIGURE 2-23: HO Fall Time vs. V_{DD} Voltage.

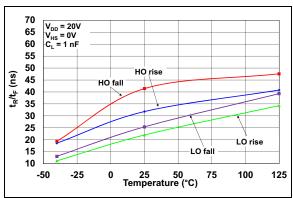
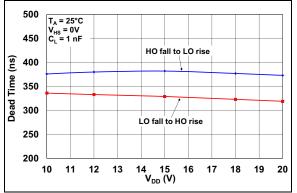
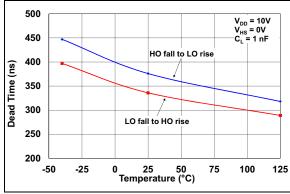
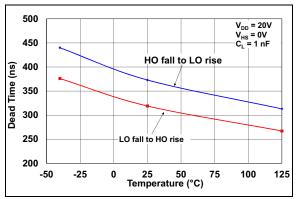
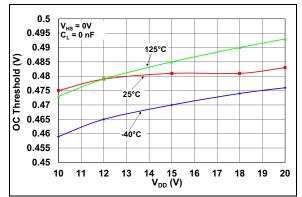

FIGURE 2-24: LO Rise Time vs. V_{DD} Voltage.

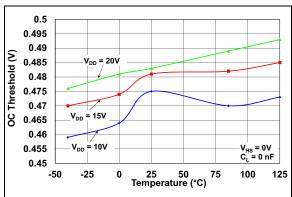
FIGURE 2-25: LO Fall Time vs. V_{DD} Voltage.

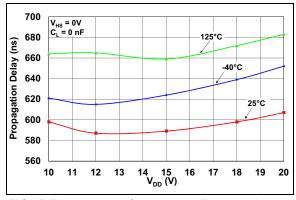
FIGURE 2-26: Rise/Fall Time vs. Temperature $(V_{DD} = 10V)$.

FIGURE 2-27: Rise/Fall Time vs. Temperature ($V_{DD} = 20V$).


FIGURE 2-28: Dead Time vs. V_{DD} Voltage.


FIGURE 2-29: Dead Time vs. Temperature $(V_{DD} = 10V)$.


FIGURE 2-30: Dead Time vs. Temperature $(V_{DD} = 20V)$.

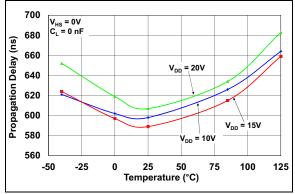

FIGURE 2-31: Overcurrent Threshold vs. V_{DD} Voltage.

FIGURE 2-32: Overcurrent Threshold vs. Temperature.

FIGURE 2-33: Overcurrent Propagation Delay vs. V_{DD} Voltage.

FIGURE 2-34: Overcurrent Propagation Delay vs. Temperature.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

SOICW-28LD	Symbol	I/O	Description
1	V _{DD}	Power	Input Supply for Gate Drivers Decouple this pin to V _{SS} with a > 2.2 µF capacitor. Connect anode of bootstrap diodes to this pin.
2	AHI	IN	A-Phase High-Side Drive Input
3	BHI	IN	B-Phase High-Side Drive Input
4	CHI	IN	C-Phase High-Side Drive Input
5	ALI	IN	A-Phase Low-Side Drive Input
6	BLI	IN	B-Phase Low-Side Drive Input
7	CLI	IN	C-Phase Low-Side Drive Input
8	FAULT	OUT	Fault Output Open drain asserts low to indicate Overcurrent or V _{DD} Undervoltage condition.
9	ISNS	IN	Current Sense Input for Overcurrent Shutdown
10	EN	IN	Enable Input Logic high on the Enable pin results in normal operation. Logic low forces the device to enter Shutdown mode.
11	RCIN	OUT	Overcurrent Fault Clear Delay Pin Connect to an external capacitor to set the fault clear delay.
12	V _{SS}	GND	Logic Ground Pin
13	СОМ	_	Low-Side Driver Return Pin
14	CLO	OUT	C-Phase Low-Side Drive Output Connect to the gate of the external low-side power MOSFET or IGBT.
15	BLO	OUT	B-Phase Low-Side Drive Output Connect to the gate of the external low-side power MOSFET or IGBT.
16	ALO	OUT	A-Phase Low-Side Drive Output Connect to the gate of the external low-side power MOSFET or IGBT.
17, 21, 25	NC		No Connect
18	CHS	_	C-Phase High-Side Drive Return Connection Connect to the emitter or source of the external high-side power device. Connect the bootstrap capacitor between this pin and the CHB pin.
19	CHO	OUT	C-Phase High-Side Drive Output Connect to the gate of the external high-side power MOSFET or IGBT.
20	СНВ	Power	C-Phase High-Side Bootstrap Supply External bootstrap capacitor is required. Connect the bootstrap capacitor between this pin and CHS. Connect to the anode of the external bootstrap diode.
22	BHS	_	B-Phase High-Side Drive Return Connection Connect to the emitter or source of the external high-side power device. Connect the bootstrap capacitor between this pin and the BHB pin.
23	ВНО	OUT	B-Phase High-Side Drive Output Connect to the gate of the external high-side power MOSFET or IGBT.

TABLE 3-1: PIN FUNCTION TABLE (CONTINUED)

SOICW-28LD	Symbol	I/O	Description
24	ВНВ	Power	B-Phase High-Side Bootstrap Supply External bootstrap capacitor is required. Connect the bootstrap capacitor between this pin and BHS. Connect to the anode of the external bootstrap diode.
26	AHS	_	A-Phase High-Side Drive Return Connection Connect to the emitter or source of the external high-side power device. Connect the bootstrap capacitor between this pin and the AHB pin.
27	AHO	OUT	A-Phase High-Side Drive Output Connect to the gate of the external high-side power MOSFET or IGBT.
28	АНВ	Power	A-Phase High-Side Bootstrap Supply External bootstrap capacitor is required. Connect the bootstrap capacitor between this pin and AHS. Connect to the anode of the external bootstrap diode.

4.0 FUNCTIONAL DESCRIPTION

The MIC4609 is a noninverting, 600V three-phase IGBT/MOSFET driver designed to independently drive six IGBTs or MOSFETs in a three-phase bridge. The MIC4609 offers a wide 10V-to-20V V_{DD} operating supply range with six independent inputs (TTL or 3.3V CMOS compatible).

The driver is comprised of six input buffers with hysteresis, four independent UVLO circuits (three high-side monitoring the HB voltage and one low-side monitoring the V_{DD} voltage), and six output drivers. The high-side output drivers utilize a high-speed level-shifting circuit that is referenced to the HS pin. An overcurrent protection circuit turns off all outputs during an overcurrent fault.

4.1 UVLO Protection

The UVLO circuits force the driver's outputs low until the supply voltage exceeds the UVLO threshold. Hysteresis in the UVLO circuits prevents system noise and finite circuit impedance from causing chatter during turn-on.

The UVLO circuits are illustrated in the functional block diagrams. The low-side UVLO circuit, Functional Block Diagram MIC4609 — Phase x Drive Circuit, monitors the voltage between the V_{DD} and V_{SS} pins. The circuit keeps all the drivers off when V_{DD} is less than the UVLO threshold voltage.

The three high-side UVLO circuits, shown in Typical Application Circuit MIC4609 - 300V, 3-Phase Motor Driver, monitor the voltage between the xHB and xHS pins. The circuit keeps its respective high-side output off when V_{HB} - V_{HS} is less than the UVLO threshold voltage.

4.2 Startup and UVLO

The startup sequence is illustrated in Figure 4-1. As V_{DD} rises above an unspecified threshold, V_{T} , the internal circuitry becomes active, the FAULT pin asserts low and the UVLO circuitry begins to monitor V_{DD} . When the rising V_{DD} reaches the UVLO threshold, a current source begins charging the RCIN pin's external capacitor until it reaches the RCIN delay threshold. The output drivers are enabled once the RCIN threshold is reached and the EN pin is asserted high.

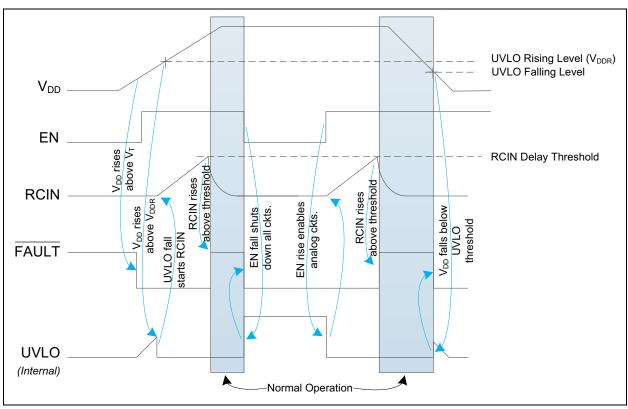


FIGURE 4-1: Startup and Fault Timing Diagram.

TABLE 4-1: OPERATIONAL TRUTH TABLE

				ULVO (1, 2)		Outpu	ts ^(3, 4)
Condition	xHI	xLI	EN	HB ULVO	V _{DD} ULVO	хНО	xLO
Disabled	Х	Х	L	Х	Х	L	L
V _{DD} ULVO	Χ	X	X	X	L	L	L
V _{HB} ULVO	Х	L or H	Н	L	Н	L	L or H
	Н	Н		Н	Н	L	L
	Н	Н	Н			L	L
Switching	L	Н	Н	Н	Н	L	Н
	Н	L	Н	Н	Н	Н	L
	L	L	Н	Н	Н	L	L

- **Note 1:** UVLO = H when $V_{DD} > UVLO$ threshold
 - 2: UVLO = L when V_{DD} < UVLO threshold
 - **3:** xHO and xLO remain low if both xHI and xLI are low when the V_{DD} rises above the UVLO threshold or when the EN pin is asserted high. Normal switching operation begins when one of the inputs changes state from L to H.
 - **4:** Anti-shoot-through circuit prevents a high on both outputs simultaneously.

4.3 Enable Inputs

There is one external Enable pin that controls all three phases. A logic high on the enable pin (EN) allows for startup of all phases and normal operation. Conversely, when a logic low is applied on the Enable pin, all phases turn off and the device enters a low current Shutdown mode. All outputs (xHO and xLO) are pulled low when EN is low. The EN pin is internally pulled down. Leaving the pin open disables the part.

4.4 Input Stage

The xHI and xLI pins are referenced to the COM pin and have a CMOS/TTL compatible input range. The input threshold voltage is independent of the V_{DD} supply. The input pin voltage must not exceed the V_{DD} pin voltage. The voltage state of the input signal(s) does not change the quiescent current draw of the driver. The input stage block diagram is shown in Figure 4-2.

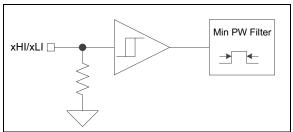


FIGURE 4-2: Input Stage Block Diagram.

An internal pull-down resistor is connected to the xHI and xLI pins. This pulls the driver output pins low if the inputs are disconnected or left floating. A small amount of hysteresis is programmed into the input to prevent false triggering of the output. In addition, each input has a minimum pulse-width filter for additional noise immunity protection. The input pulse width must exceed the $t_{\rm FLTR}$ time before the outputs will change state. Refer to the Electrical Characteristics table and Figure 4-3 for additional information.

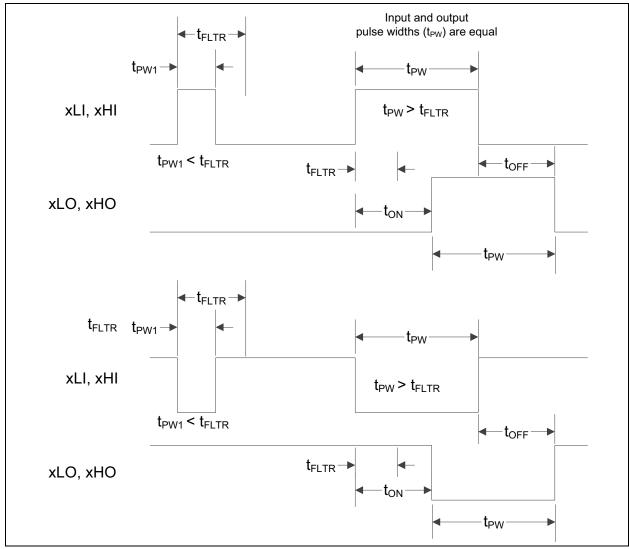


FIGURE 4-3: Minimum Pulse-Width Diagram.

4.5 Dead Time and Anti-Shoot-Through Protection

Shoot-through occurs when both the high and low-side IGBTs/MOSFETs of a particular phase are ON at the same time. The inputs of each phase use anti-shoot-through circuitry to prevent this condition from occurring. If both the HI and LI inputs of a phase go high, both outputs (HO and LO) of that phase go low. In addition to anti-shoot-through circuitry, a fixed "dead-time" delay is added to the input-to-output propagation delay. This allows the IGBTs/MOSFETs in a particular phase to fully turn off before the other turns on.

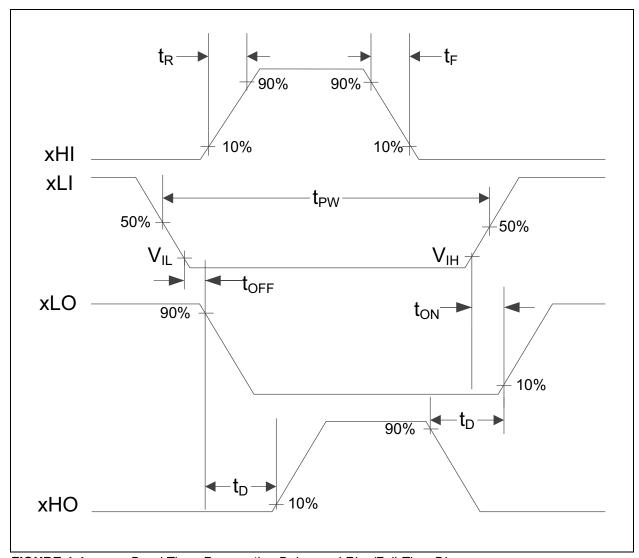


FIGURE 4-4: Dead Time, Propagation Delay, and Rise/Fall-Time Diagram.

4.6 Low-Side Driver Output Stage

The low-side driver, shown in Figure 4-5, is designed to drive an N-channel MOSFET or IGBT. The driver is referenced to the COM pin, which can be floating with respect to ground. The COM reference gives the gate drive currents a return path without having to flow through the current sense resistor.

Low driver impedances allow the external IGBT/MOSFET to be turned on and off quickly. The rail-to-rail drive capability of the output ensures a low V_{CE} or R_{DSON} from the external power device.

When driving the external IGBT on, the driver's internal P-channel MOSFET is turned on and V_{DD} is applied to the gate of the external IGBT. To turn off the external IGBT, the driver's N-channel FET is turned on, which discharges the external IGBT's gate.

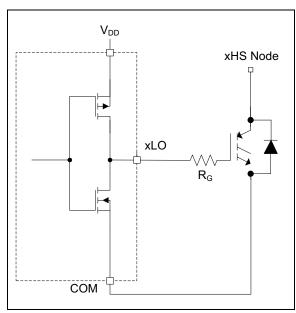
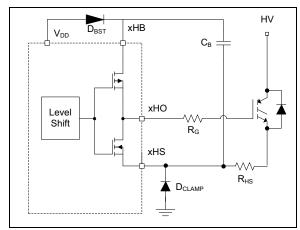



FIGURE 4-5: Low-Side Driver Block Diagram.

4.7 High-Side Driver and Bootstrap Circuit

The High-Side driver is designed to drive a floating N-channel FET or IGBT, whose source/emitter terminal is referenced to the HS pin. A simplified diagram of the high-side driver section is shown in Figure 4-6.

FIGURE 4-6: High-Side Driver and Bootstrap Circuit Block Diagram.

A low-power, high-speed, level-shifting circuit isolates the low-side (V_{SS} pin) referenced circuitry from the high-side (xHS pin) referenced driver. Power to the high-side driver and UVLO circuit is supplied by the bootstrap capacitor (C_B) while the voltage level of the xHS pin is shifted high.

The bootstrap circuit consists of an external diode, D_{BST}, and an external capacitor, C_B. In a typical application, such as the motor driver shown in Figure 4-7 (Phase A illustrated only), the AHS pin is at ground potential while the low-side MOSFET is ON. The internal diode charges capacitor C_B to V_{DD} - V_F during this time (where V_F is the forward voltage drop of the internal diode). After the low-side MOSFET is turned off and the AHO pin turns on, the voltage across capacitor CB is applied to the gate of the high-side external MOSFET. As the high-side MOSFET turns on, voltage on the AHS pin rises with the source of the high-side MOSFET until it reaches V_{DD}. As the AHS and AHB pins rise, the internal diode is reverse biased, preventing capacitor CB from discharging. During this time, the high-side MOSFET is kept ON by the voltage across capacitor C_B.

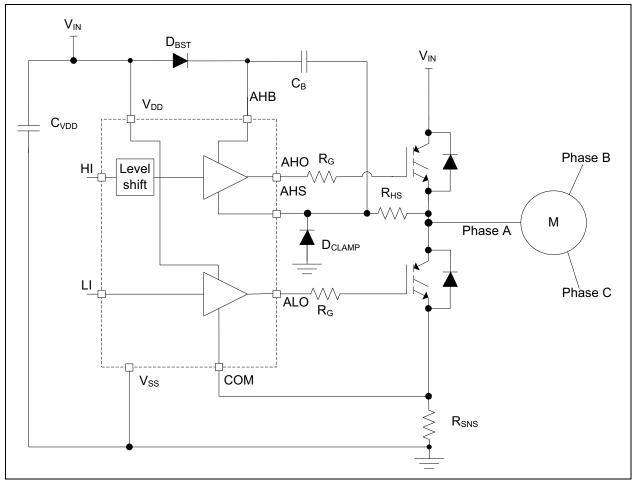


FIGURE 4-7: MIC4609 Motor Driver Typical Application – Phase A.

4.8 Overcurrent Protection Circuitry

The MIC4609 provides overcurrent protection for the 3-phase bridge. It consists of:

- a comparator that senses the voltage across a current-sense resistor
- a latch and timer that keep all gate drivers off during a fault
- an open-drain FAULT pin that pulls low during the fault.

Figure 4-8 illustrates the overcurrent protection sequence. When an overcurrent condition is detected, the FAULT pin is pulled low and a latch disables the gate drive outputs for a time determined by the RCIN pin capacitor. After the delay circuit times out, the latch is reset, the FAULT pin is deasserted to a high impedance state and the gate drive outputs are re-enabled.

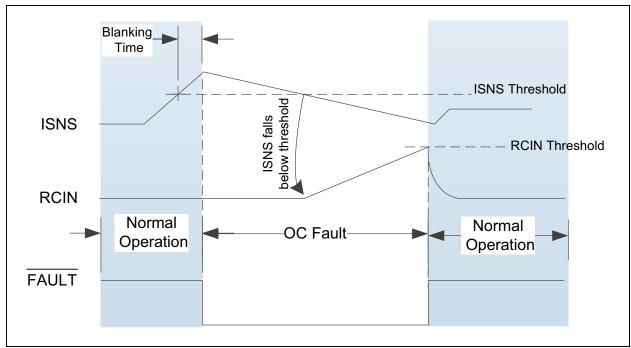


FIGURE 4-8: Overcurrent Fault Sequence.

4.8.1 ISNS

The ISNS pin may be used to monitor motor winding currents. The measurement is referenced to the V_{SS} pin and can sense the voltage across a low-side current sense resistor or it may be connected to a current sense transformer. The current sense resistor is typically connected between the source pins (MOSFET) or emitter pins (IGBT) of all three low-side switches and power ground.

If the peak voltage on the ISNS pin exceeds the $V_{\rm ISNS}$ threshold, it will cause all six outputs to latch off. A blanking circuit on the ISNS comparator output prevents noise from falsely tripping the overcurrent circuit. The ISNS pin is internally pulled down to $V_{\rm SS}$ but may be externally connected to $V_{\rm SS}$ ground for improved noise immunity if the overcurrent feature is not used.

4.8.2 RCIN

A capacitor connected to the RCIN pin determines the amount of time the gate drive outputs are latched off before they can be restarted.

During normal operation, the RCIN pin is internally pulled low. Once an overcurrent condition is detected, the RCIN pin capacitor is charged up by an internal current source until the voltage reaches the V_{RCIN+} threshold and the latch is reset. The outputs are then enabled.

The delay time can be approximated by applying Equation 4-1.

EQUATION 4-1:

$$t_{DLY} = \frac{C_{RCIN} \times V_{RCIN+}}{I_{RCIN}}$$
 Where:
$$C_{RCIN} = \text{External capacitance on the RCIN pin}$$

$$I_{RCIN} = \text{RCIN pin current source}$$

$$(typically 0.44 \ \mu\text{A})$$

$$V_{RCIN+} = \text{Internal comparator threshold}$$

4.8.3 FAULT

This open-drain output is asserted low for an overcurrent condition or when the V_{DD} voltage is below the UVLO threshold. It will de-assert to a high-impedance state once the V_{DD} rises above the UVLO threshold or when the RCIN pin voltage has reached the V_{RCIN+} threshold. During normal operation, the internal pull-down MOSFET of the pin is high impedance. A pull-up resistor must be connected to this pin.

5.0 APPLICATION INFORMATION

5.1 Bootstrap Circuit

The high-side gate drive cannot be operated continuously (100% duty cycle). It must be periodically turned off to refresh/recharge the bootstrap capacitor, C_B . There are two separate requirements to consider when choosing the bootstrap capacitor value:

- · IGBT or MOSFET gate charge
- · Duration of the high-side switch on-time

The high-side bootstrap circuit for Phase A is illustrated in Figure 5-1.

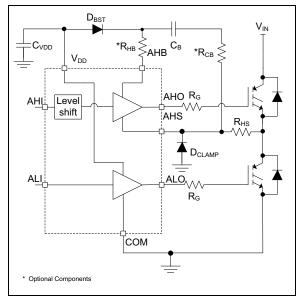


FIGURE 5-1: MIC4609 – Bootstrap Circuit.

The bootstrap capacitor voltage drops each time it delivers charge to turn on the IGBT. The voltage drop depends on the gate charge required by the IGBT. Most IGBT and MOSFET specifications contain gate charge versus V_{GE} or V_{GS} voltage information or graphs. Based on this information and a recommended ΔV_{HB} of 0.1V to 0.5V, the minimum value of bootstrap capacitance is calculated by applying Equation 5-1.

EQUATION 5-1:

$$C_B \ge \frac{Q_{GATE}}{\Delta V_{HB}}$$

Where:

 Q_{GATE} = Total gate charge at V_{HB}

 ΔV_{HB} = Voltage drop at the HB pin

After the high-side switch has turned on, the bootstrap capacitor will continue to discharge due to leakage currents in the bootstrap capacitor, the IGBT/MOSFET gate-to-source and the driver (HS-pin-to-ground leakage).

Typical leakage currents for the bootstrap capacitor and IGBT/MOSFET are in the 100 nA range. The MIC4609 HS-pin-to-driver leakage current is generally higher with typical values in the 1 μ A range (or higher at high junction temperature and voltage). The minimum value of bootstrap capacitor that prevents an excessive drop in the gate drive voltage to the high-side switch is calculated as per Equation 5-2.

EQUATION 5-2:

 $C_{B} \! \geq \! \frac{t_{ON} \! \times \! I_{discharge}}{\Delta V_{HB}}$

Where:

 t_{ON} = Maximum ON-time of the high-side

switch

 ΔV_{HB} = Voltage drop at the HB pin

I_{discharge} = Total discharge current at the HB pin (capacitor, IGBT/MOSFET, and HB

pin)

Resistors R_{HB} and R_{CB} can be used to reduce the peak C_B charge current or modify the high-side IGBT/MOSFET turn-on time. This helps reduce noise and EMI as well as ripple on the V_{DD} pin.

The resistor in series with the HB pin, R_{HB} , controls the turn-on time of the high-side switch by limiting the charge current into the gate.

Adding a resistor in series with capacitor C_B will reduce the peak charging current drawn through diode D_{BST} . It has some effect on slowing down the high-side switch turn-on time, however, it is not as effective as resistor R_{HB} since charging current also comes from V_{DD} until the high-side switch starts to turn on and raise the voltage on the HB node.

5.2 HS Node Clamp

A resistor/diode clamp between the switching node and the HS pin is recommended to minimize large negative glitches or pulses on the HS pin.

As shown in Figure 5-2, the high-side and low-side IGBTs turn on and off to regulate motor speed. During the on-time, when the high-side IGBT is conducting, current flows into the motor. After the high-side IGBT turns off, and before the low-side IGBT turns on, there is a brief period of time (dead time) that prevents both IGBTs from being ON at the same time. During the dead time, current from the motor flows through the diode in parallel with the low-side IGBT. Depending on the diode characteristics ($V_{\rm F}$ and turn-on time), the motor current and circuit parasitics, the initial negative voltage on the switch node can be several volts or more.

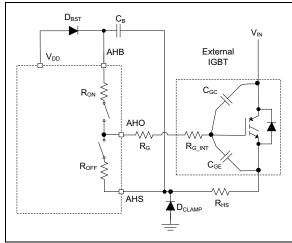
Even though the HS pin is rated for negative voltage, it is good practice to clamp the HS pin with a resistor and diode to prevent excessive negative voltage from damaging the driver. Depending on the application and

amount of negative voltage on the switch node, a 1A fast recovery diode and a minimum 10Ω resistor are recommended. A higher current diode and/or larger values of resistance can be used if necessary.

Adding a series resistor in the switch node limits the peak high-side driver current, which affects the switching speed of the high-side driver. The resistor, in series with the HO pin, may be reduced to help compensate for the extra HS pin resistance.

FIGURE 5-2:

Negative HS Pin Voltage.


5.3 Power Dissipation Considerations

Power dissipation in the driver can be separated into two areas:

- · Gate driver dissipation
- Quiescent current dissipation used to supply the internal logic and control functions

5.3.1 GATE DRIVER POWER DISSIPATION

Power dissipation in the output driver stage is mainly caused by charging and discharging the gate-to-emitter and gate-to-collector capacitance of the external IGBT. Figure 5-3 shows a simplified equivalent circuit of the MIC4609 driving an external high-side IGBT.

FIGURE 5-3: MIC4609 High-Side Driving an External IGBT.

5.3.2 DISSIPATION DURING THE EXTERNAL IGBT/MOSFET TURN-ON

Energy from capacitor C_B is used to charge up the input capacitance of the IGBT (C_{GE} and C_{GC}). The energy delivered to the gate is dissipated in the three resistive components, R_{ON} , R_G and R_{G_INT} . R_G is the series resistor between the driver output and the IGBT. R_{G_INT} is the gate resistance of the IGBT. R_{G_INT} is usually listed in the IGBT or MOSFET specifications. The ESR of capacitor C_B and the resistance of the connecting etch can be ignored since they are much less than R_{ON} and R_{G_INT} .

The effective capacitances of C_{GE} and C_{GC} are difficult to calculate because they vary nonlinearly with I_C , V_{GE} , and V_{CE} . Most power IGBT and MOSFET specifications include a graph of total gate charge versus V_{GE} . Figure 5-4 shows a typical gate charge curve for an arbitrary IGBT. The chart shows that for a gate voltage of 12V, the IGBT requires 12 nC of charge.

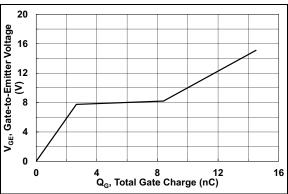


FIGURE 5-4:

Typical Gate Charge vs. V_{GF}.

The power dissipated by the resistive components of the gate drive circuit during turn-on is calculated as shown in Equation 5-3.

EQUATION 5-3:

 $P_{DRIVER} = Q_G \times V_{GE} \times f_S \times D$

Where:

P_{DRIVER} (1) = Average drive circuit power due to switching

 Q_G = Total gate charge at V_{GE}

V_{GE} = Gate-to-emitter voltage on the

f_S = Switching frequency of the gate drive circuit

D (2) = Operating duty cycle of the driver output

Note 1: P_{DRIVER} is the power dissipated by the individual driver for one of the six gate drive outputs.

 Operating duty cycle is the percentage of time that particular driver output is switching during one rotation of the motor.

The power dissipated by each of the internal gate drivers (high-side or low-side) is equal to the ratio of R_{ON} and R_{OFF} to the external resistive losses in R_{G} and $R_{G\ INT}$.

Letting R_{ON} = R_{OFF} , the power dissipated in the individual driver output in the IC is calculated as shown in Equation 5-4:

EQUATION 5-4:

$$P_{DISS} = P_{DRIVER} \times \frac{R_{ON}}{R_{ON} + R_G + R_{G-INT}}$$

The total power dissipated in the MIC4609, due to switching, is equal to the sum of all six driver dissipations.

5.3.3 SUPPLY CURRENT POWER DISSIPATION

Power is dissipated in the MIC4609 even if nothing is being driven. The supply current is drawn by the bias for the internal circuitry, the level shifting circuitry, and shoot-through current in the output drivers. The supply current is proportional to the operating frequency and the V_{DD} and V_{HB} voltages. Figures 2-9 and 2-10 show how supply current varies with switching frequency and supply voltage.

The power dissipated by the MIC4609 due to supply current is calculated by applying Equation 5-5.

EQUATION 5-5:

$$P_{DISS~SUPPLY} = ~V_{DD} \times I_{DD} \times V_{HB} \times I_{HB}$$

5.3.4 TOTAL POWER DISSIPATION AND THERMAL CONSIDERATIONS

Total power dissipation in the MIC4609 is equal to the power dissipation caused by driving the external IGBTs and the supply current. Equation 5-6 shows this relation.

EQUATION 5-6:

$$P_{DISS_TOTAL} = P_{DISS_SUPPLY} + \sum P_{DISS_DRIVERS}$$

The die temperature can be calculated after the total power dissipation is determined as shown in Equation 5-7.

EQUATION 5-7:

$$T_J = T_A + P_{DISS\ TOTAL} \times \theta_{JA}$$

Where:

T_A = Maximum ambient temperature (°C)

 $T_{.1}$ = Junction temperature (°C)

 $P_{DISS\ TOTAL}$ = MIC4609 power dissipation (W)

 θ_{JA} = Thermal resistance from junction-to-ambient air (°C/W)

5.3.5 OTHER TIMING CONSIDERATIONS

Make sure the input signal pulse width is greater than the minimum specified pulse width. An input signal that is less than the minimum pulse width may result in no output pulse or an output pulse whose width is significantly less than the input.

The maximum duty cycle (ratio of high-side on-time to switching period) is controlled by the minimum pulse width of the low side and by the time required for the C_B capacitors to charge during the off-time. Adequate time must be allowed for the C_B capacitor to charge up before the high-side driver is turned on.

5.4 Decoupling Capacitor Selection

Decoupling capacitors are required on the V_{DD} pin to supply the charge necessary to drive the external IGBTs or MOSFETs and also to minimize the voltage ripple on these pins. The V_{DD} pin decoupling capacitor supplies the transient current for all six drivers (three high-side and three low-side). The minimum recommended V_{DD} capacitance should be greater than the sum of all three C_B capacitors with a minimum 1 μ F ceramic capacitor regardless of C_B value.

Ceramic capacitors are recommended because of their low impedance and small size. Z5U-type ceramic capacitor dielectrics should not be used due to the large change in capacitance over temperature and voltage. Larger IGBTs/MOSFETs and low-switching frequencies may require larger capacitance values for proper operation. The voltage rating of the capacitors depends on the supply voltage, ambient temperature and the voltage derating used for reliability. 25V-rated X5R or X7R ceramic capacitors are recommended for most applications. The minimum capacitance value should be increased if low voltage capacitors are used because even good quality dielectric capacitors, such as X5R, will lose 40% to 70% of their capacitance value at the rated voltage.

Placement of the decoupling capacitors is critical. The bypass capacitor for V_{DD} should be placed as close as possible between the V_{DD} pin and the ground plane. The bypass capacitor (C_{B}) for the HB supply pin must be located as close as possible between the HB and HS pins. The etch connections must be short, wide, and direct. The use of a ground plane to minimize connection impedance is recommended.

5.5 Grounding, Component Placement and Circuit Layout

Nanosecond switching speeds and high-peak currents in and around the MIC4609 driver requires proper placement and trace routing of all components. Improper placement may cause degraded noise immunity, false switching, excessive ringing, or circuit latch-up.

Figure 5-5 shows the critical current paths when the driver outputs go high and turn on the external IGBTs. It also helps demonstrate the need for a low impedance ground plane. Charge needed to turn on the IGBT gates comes from the decoupling capacitors C_{VDD} and C_{B} . Current in the low-side gate driver flows from C_{VDD} through the internal driver, into the IGBT gate, and out the emitter. The return connection back to the decoupling capacitor is made through the ground plane. Any inductance or resistance in the ground return path causes a voltage spike or ringing to appear on the emitter of the IGBT. This voltage works against the gate drive voltage and can either slow down or turn off the IGBT during the period when it should be turned on

Current in the high-side driver is sourced from capacitor C_B and flows into the HB pin and out the HO pin, into the gate of the high-side IGBT. The return path for the current is from the emitter of the IGBT and back to capacitor C_B . The high-side circuit return path usually does not have a low-impedance ground plane so the etch connections in this critical path should be short and wide to minimize parasitic inductance. As with the low-side circuit, impedance between the IGBT emitter and the decoupling capacitor causes negative voltage feedback that fights the turn-on of the IGBT.

It is important to note that capacitor C_B must be placed close to the HB and HS pins. This capacitor not only provides the current for turn-on but it must also keep HB pin noise and ripple low for proper operation of the high-side drive circuitry.

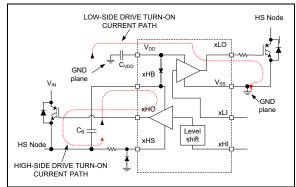


FIGURE 5-5:

Turn-On Current Paths.

Figure 5-5 shows the critical current paths when the driver outputs go low and turn off the external IGBTs. Short, low-impedance connections are important during turn-off for the same reasons given in the turn-on explanation. Current flowing through the internal diode replenishes charge in the bootstrap capacitor, C_B .

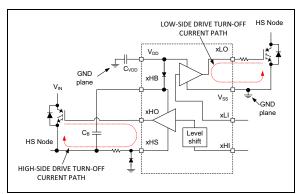
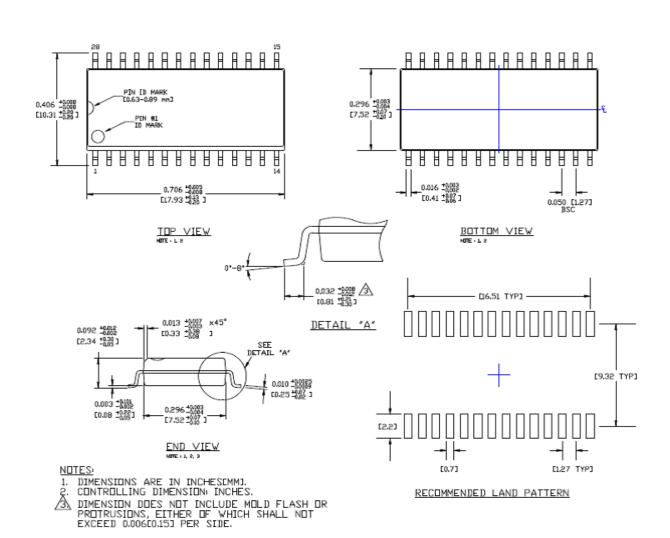



FIGURE 5-6: Turn-Off Current Paths.

It is highly recommended to use a ground plane to minimize parasitic inductance and impedance of the return paths. The MIC4609 is capable of greater than 1A peak currents and any impedance between the MIC4609, the decoupling capacitors, and the external IGBTs/MOSFETs will degrade the performance of the driver.

6.0 PACKAGING INFORMATION

DRAWING #	SOICW-28LD-PL-1	UNIT	INCH [MM]

APPENDIX A: REVISION HISTORY

Revision A (March 2016)

• Original release of this document.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

 $\underline{\text{To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.}\\$

PART NO. Device Lead	X Finish	XX Package Cod	– <u>X</u> ⁽¹⁾ le Tape and Reel Option	Example a) MIC46	es: 609YWM-TR:	600V 3-Phase MOSFET/IGBT Driver, 7.52 mm body, 28LD SOIC Wide package, Tape and Reel
Device:	MIC4609:	600V 3-Ph	ase MOSFET/IGBT Driver			
Lead Finish:	Υ	= Pb-Free wi Grade	th Industrial Temperature	Note 1:	part numbe	teel identifier only appears in the catalog r description. This identifier is used for
Package Code:	WM		all Outline, 7.52 mm Body, OIC Wide Package		package. C	rposes and is not printed on the device heck with your Microchip Sales Office for allability with the Tape and Reel option.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0438-5

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor

Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533

Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300

Fax: 86-27-5980-5118 China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444

Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301

Fax: 82-53-744-4302 **Korea - Seoul** Tel: 82-2-554-7200

Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857

Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870

Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0

Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

MIC4609YSM-TR MIC4609YWM-TR MIC4609YWM

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru