

Data Sheet

March 2006

Features

- Independent multiple channels of echo cancellation; from 32 channels of 64 ms to 16 channels of 128 ms with the ability to mix channels at 128 ms or 64 ms in any combination
- Independent Power Down mode for each group of 2 channels for power management
- Fully compliant to ITU-T G.165, G.168 (2000) and (2002) specifications
- Passed all AT&T voice quality tests for carrier grade echo canceller.
- Compatible to ST-BUS and GCI interface at 2 Mbps serial PCM
- PCM coding, μ/A-Law ITU-T G.711 or sign magnitude
- Per channel Fax/Modem G.164 2100 Hz or G.165 2100 Hz phase reversal Tone Disable
- Per channel echo canceller parameters control
- Transparent data transfer and mute
- Fast reconvergence on echo path changes
- Fully programmable convergence speeds
- Patented Advanced Non-Linear Processor with high quality subjective performance
- Protection against narrow band signal divergence and instability in high echo environments

Ordering Information

ZL50232/QCC100 Pin LQFPTraysZL50232/GDC208 Ball PBGATraysZL50232QCG1100 Pin LQFP*Trays, Bake & DrypackZL50232GDG2208 Ball PBGA**Trays*Pb Free Matte Tin**Pb Free Tin/Silver/Copper

-40°C to +85°C

- +9 dB to -12 dB level adjusters (3 dB steps) at all signal ports
- Offset nulling of all PCM channels
- 10 MHz or 20 MHz master clock operation
- 3.3 V pads and 1.8 V Logic core operation with 5 V tolerant inputs
- IEEE-1149.1 (JTAG) Test Access Port

Applications

- Voice over IP network gateways
- Voice over ATM, Frame Relay
- T1/E1/J1 multichannel echo cancellation
- Wireless base stations
- Echo Canceller pools
- DCME, satellite and multiplexer system

Figure 1 - ZL50232 Device Overview

1

Description

The ZL50232 Voice Echo Canceller implements a cost effective solution for telephony voice-band echo cancellation conforming to ITU-T G.168 requirements. The ZL50232 architecture contains 16 groups of two echo cancellers (ECA and ECB) which can be configured to provide two channels of 64 milliseconds or one channel of 128 milliseconds echo cancellation. This provides 32 channels of 64 milliseconds to 16 channels of 128 milliseconds echo cancellation of the two configurations. The ZL50232 supports ITU-T G.165 and G.164 tone disable requirements

Figure 2 - 100 Pin LQFP

ZL50232

⚠	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
A	V _{SS}	IC0	V _{SS}	c4i	V _{DD1}	IC0	V _{SS}	Sout	V _{DD1}	IC0	V _{SS}	IC0	V _{SS}	NC	V _{SS}	V _{SS}
в		• V	• IC0	O Vpdi		• V	• Pin	O V	• Rout	• V	• Sin	• V		• V	• V	• V
	•	• ss	•	e		•	0	• 55	0	• DD1	0	• ss	Ő	• ss	• ss	• 55
с	IC0	IC0	v _{ss} ●	V _{DD1}	V _{SS}	V _{DD2}	V _{SS}	V _{DD1}	v _{ss} ●	V _{DD1}	v _{ss} ●	V _{SS}	v _{ss} ●	V _{SS}	NC ●	v _{ss} ●
D	NC ●	IC0	V _{DD1}	v_{ss}	v_{DD1}	V _{DD2}	V _{DD1}	V _{SS}	V _{DD1}	v_{ss}	V _{DD1} ●	V _{SS}	V _{SS} ●	V _{DD1} ●	NC ●	A10 〇
E	NC ●	IC0	\mathbf{v}_{ss}	V _{SS}									V _{DD1}	\mathbf{v}_{ss}	IC0	A9 〇
F	NC ●	NC ●	V _{DD1}	V _{DD1}			Z	2L50	2320	GD			V _{SS} ●	V _{DD1}	IC0	A8 〇
G	NC ●		V _{SS}	V _{SS}			V _{SS}	\mathbf{v}_{ss}	V _{SS}	V _{SS}			V _{DD2}	V _{DD2}	NC ●	A7 〇
н	NC ●	Fsel	V _{DD1}	V _{DD1}			V _{SS} ●	V _{SS} ●	v _{ss} ●	v_{ss}			v _{ss}	V _{SS}	NC ●	A6 〇
J	NC ●	IC0	V _{DD2}	V _{DD2}			V _{SS}	V _{SS}	\mathbf{v}_{ss}	\mathbf{v}_{ss}			V _{DD1}	$\mathbf{v}_{\mathrm{DD1}}$	NC ●	A5 〇
к	NC ●	IC0	PLLVSS		D		V _{SS}	V _{SS}	v_{ss}	V _{SS}			V _{SS}	V _{SS}	NC ●	A4 〇
L	NC	NC	$\overset{\rm V_{SS}}{\bullet}$	V _{SS}									V _{DD1}	V _{DD1}	NC	A3 〇
м	TDI O	тмs О	V _{DD1}	V _{DD1}									V _{SS}	V _{SS}	V _{SS}	A2 〇
N	TDO O	TRST	V _{SS} ●	V _{SS}	V _{SS}	V _{DD1}	V _{SS}	V _{DD1} ●	v_{ss}	V _{DD1}	V _{SS}	V _{DD2}	V _{SS} ●	V _{DD1}	V _{DD1}	A1 〇
Р	С	V _{SS}	V _{SS}	V_{DD1}	V _{SS} ●	V _{DD1}	\mathbf{v}_{ss}	V _{DD1}	V _{SS}	V _{DD1}	\mathbf{v}_{ss}	V _{DD2}	\mathbf{v}_{ss}	V _{SS}	V _{DD1}	A0 〇
R	IC0	V _{SS}	RESET	VDD1	R/₩ ○	V _{DD1}	DTA O	V _{DD1}		V _{DD1}		V _{DD1}	cs O	\mathbf{v}_{ss}	V _{SS}	V _{SS} ●
т	V _{SS}		\mathbf{v}_{ss}	D1 O	V _{DD1}	D2	\mathbf{v}_{ss}	D3 〇	D4 〇	V _{SS}	D5 O	V _{DD1}	D6 〇	v_{ss}	D7	V _{SS}
<u>/1</u>	− A1 c	corner is	identifi	ed by m	netallize	ed marki	ngs.									

Figure 3 - 208 Ball LBGA

Table of Contents

1.0 Change Summary	7
2.0 Device Overview	0
2.1 Adaptive Filter	1
2.2 Double-Talk Detector	1
2.3 Path Change Detector	1
2.4 Non-Linear Processor (NLP)	2
2.5 Disable Tone Detector	3
2.6 Instability Detector	4
2.7 Narrow Band Signal Detector (NBSD)	4
2.8 Offset Null Filter	4
2.9 Adjustable Level Pads	4
2.10 ITU-T G.168 Compliance	4
3.0 Device Configuration	5
3.1 Normal Configuration	5
3.2 Back-to-Back Configuration	5
3.3 Extended Delay Configuration	6
4.0 Echo Canceller Functional States	6
4.1 Mute	6
4.2 Bypass	7
4.3 Disable Adaptation	7
4.4 Enable Adaptation	7
5.0 ZL50232 Throughput Delay1	7
6.0 Serial PCM I/O channels1	7
6.1 Serial Data Interface Timing	7
7.0 Memory Mapped Control and Status Registers1	9
7.1 Normal Configuration	9
7.2 Extended Delay Configuration	9
7.3 Back-to-Back Configuration	20
7.4 Power Up Sequence	20
7.5 Power Management	21
7.6 Call Initialization	21
7.7 Interrupts	22
8.0 JTAG Support	2
8.1 Test Access Port (TAP)	22
8.2 Instruction Register	23
8.3 Test Data Registers	23

List of Figures

Figure 1 - ZL50232 Device Overview	. 1
Figure 2 - 100 Pin LQFP	. 2
Figure 3 - 208 Ball LBGA	. 3
Figure 4 - Functional Block Diagram	10
Figure 5 - Disable Tone Detection	13
Figure 6 - Normal Device Configuration (64 ms)	15
Figure 7 - Back-to-Back Device Configuration (64 ms)	15
Figure 8 - Extended Delay Configuration (128 ms)	16
Figure 9 - ST-BUS and GCI Interface Channel Assignment for 2 Mbps Data Streams	18
Figure 10 - Memory Mapping	20
Figure 11 - Power Up Sequence Flow Diagram.	21
Figure 12 - ST-BUS Timing at 2.048 Mbps	27
Figure 13 - GCI Interface Timing at 2.048 Mbps	27
Figure 14 - Output Driver Enable (ODE)	27
Figure 15 - Master Clock	28
Figure 16 - Motorola Non-Multiplexed Bus Timing	28
Figure 17 - The MU Profile	32

List of Tables

Table 1 - Comparison of NLP Types	. 12
Table 2 - Quiet PCM Code Assignment Image: Control of the second secon	. 16
Table 3 - Memory Mapping of Per Channel Control and Status Registers	. 18
Table 4 - Group and Channel Allocation	. 19
Table 5 - Comparison of the NLP Types	. 33

1.0 Change Summary

Changes from September 2005 Issue to March 2006 Issue. Page, section, figure and table numbers refer to this current issue.

Page	Item	Change
1		Updated Ordering Information

Pin Description

Dim	Pin #		
Name	208-Ball LBGA	100 Pin LQFP	Description
V _{SS}	A1, A3,A7,A11, A13, A15, A16, B2, B6, B8, B12, B14, B15, B16, C3, C5, C7, C9, C11, C12, C13, C14, C16, D4, D8, D10, D12, D13, E3, E4, E14, F13, G3, G4, G7, G8, G9, G10, H7, H8, H9, H10, H13, H14, J7, J8, J9, J10, K7, K8, K9, K10, K13, K14, L3, L4, M13, M14, M15, N3, N4, N5, N7, N9, N11, N13, P2, P3, P5, P7, P9.P11, P13, P14, R2, R14, R15, R16, T1, T3, T7, T10, T14, T16	5, 18, 32, 42, 56, 69, 81, 98	Ground.
V _{DD1}	A5, A9, B10, C4, C8, B4, C10, D3, D5, D7, D9, D11, D14, E13, F3, F4, F14, H3, H4, J13, J14, L13, L14, M3, M4, N6, N8, N10, N14, N15, P4, P6, P8, P10, P15, R4, R6, R8, R10, R12, T5, T12	27, 48, 77, 100	Positive Power Supply. Nominally 3.3 V (I/O Voltage).
V _{DD2}	C6, D6, J3, J4, N12, P12, G13, G14	14, 37, 64, 91	Positive Power Supply. Nominally 1.8 V (Core Voltage).
ICO	E15, F15, A12, A10, A6, A2, B1, B3, C1, C2, D2, E2, J2, K2, R1	7, 41, 43, 65, 66, 67, 68, 70, 71, 72, 86, 87, 88, 93, 94	Internal Connection. These pins must be connected to V_{SS} for normal operation.

Pin Description (continued)

Dis	Pin #				
Name	208-Ball LBGA	100 Pin LQFP	Description		
NC	A14, C15, D1, D15, E1, F1, G1, G15, H1, H15, J1, J15, K1, K15,L1,L15,F2,L2	24, 25, 26, 44, 45, 46, 47, 49, 51, 52, 53, 54, 55, 73, 74, 75, 76, 78, 79, 80, 82, 83, 84, 85, 89, 99, 50	No connection. These pins must be left open for normal operation.		
IRQ	R9	9	Interrupt Request (Open Drain Output). This output goes I when an interrupt occurs in any channel. IRQ returns high w all the interrupts have been read from the Interrupt FIFO Register. A pull-up resistor (1 K typical) is required at this output the function of the second se		
DS	R11	10	Data <u>Strobe</u> (Input) . This active low input works in conjunction with \overline{CS} to enable the read and write operations.		
CS	R13	11	Chip Select (Input). This active low input is used by a microprocessor to activate the microprocessor port.		
R/W	R5	12	Read/Write (Input) . This input controls the direction of the data bus lines (D7-D0) during a microprocessor access.		
DTA	R7	13	Data Transfer Acknowledgment (Open Drain Output) . This active low output indicates that a data bus transfer is completed. A pull-up resistor (1 K typical) is required at this output.		
D0D7	T2,T4,T6,T8,T9,T11, T13,T15	15, 16, 17, 19, 20, 21, 22, 23	Data Bus D0 - D7 (Bidirectional) . These pins form the 8 bit bidirectional data bus of the microprocessor port.		
A0A10	P16,N16,M16,L16,K16, J16,H16,G16,F16,E16, D16	28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40	Address A0 to A10 (Input). These inputs provide the A10 - A0 address lines to the internal registers.		
ODE	B13	57	Output Drive Enable (Input). This input pin is logically AND'd with the ODE bit-6 of the Main Control Register. When both ODE bit and ODE input pin are high, the Rout and Sout ST-BUS outputs are enabled. When the ODE bit is low or the ODE input pin is low, the Rout and Sout ST-BUS outputs are high impedance.		
Sout	A8	58	Send PCM Signal Output (Output) . Port 1 TDM data output streams. Sout pin outputs serial TDM data streams at 2.048 Mbps with 32 channels per stream.		
Rout	В9	59	Receive PCM Signal Output (Output) . Port 2 TDM data output streams. Rout pin outputs serial TDM data streams at 2.048 Mbps with 32 channels per stream.		
Sin	B11	60	Send PCM Signal Input (Input). Port 2 TDM data input streams. Sin pin receives serial TDM data streams at 2.048 Mbps with 32 channels per stream.		

Pin Description (continued)

	Pin #		Description				
Name	208-Ball LBGA	100 Pin LQFP					
Rin	В7	61	Receive PCM Signal Input (Input). Port 1 TDM data input streams. Rin pin receives serial TDM data streams at 2.048 Mbps with 32 channels per stream.				
F0i	В5	62	Frame Pulse (Input). This input accepts and automatically identifies frame synchronization signals formatted according to ST-BUS or GCI interface specifications.				
C4i	A4	63	Serial Clock (Input). 4.096 MHz serial clock for shifting data in/out on the serial streams (Rin, Sin, Rout, Sout).				
MCLK	G2	90	Master Clock (Input). Nominal 10 MHz or 20 MHz Master Clock input. May be connected to an asynchronous (relative to frame signal) clock source.				
Fsel H2 92 Frequency select (Input). This input set frequency operation. When Fsel pin is low frequency operation.		Frequency select (Input). This input selects the Master Clock frequency operation. When Fsel pin is low, nominal 19.2 MHz Master Clock input must be applied. When Fsel pin is high, nominal 9.6 MHz Master Clock input must be applied.					
PLLVss1 PLLVss2	КЗ	97, 95	PLL Ground. Must be connected to V _{SS}				
	К4	96	PLL Power Supply. Must be connected to V_{DD2} = 1.8 V				
TMS	M2	1	Test Mode Select (3.3 V Input). JTAG signal that controls the state transitions of the TAP controller. This pin is pulled high by an internal pull-up when not driven.				
TDI	M1	2	Test Serial Data In (3.3 V Input). JTAG serial test instructions and data are shifted in on this pin. This pin is pulled high by an internal pull-up when not driven.				
TDO	N1	3	Test Serial Data Out (Output). JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high impedance state when JTAG scan is not enabled.				
тск	P1	4	Test Clock (3.3 V Input). Provides the clock to the JTAG test logic.				
TRST	N2	6	Test Reset (3.3 V Input). Asynchronously initializes the JTAG TAP controller by putting it in the Test-Logic-Reset state. This pin should be pulsed low on power-up or held low, to ensure that the ZL50232 is in the normal functional mode. This pin is pulled by an internal pull-down when not driven.				
RESET	R3	8	Device Reset (Schmitt Trigger Input). An active low resets the device and <u>puts the</u> ZL50232 into a low-power stand-by mode. When the RESET pin is returned to logic high and a clock is applied to the MCLK pin, the device will automatically execute initialization routines, which preset all the Main Control and Status Registers to their default power-up values.				

2.0 Device Overview

The ZL50232 architecture contains 32 echo cancellers divided into 16 groups. Each group has two echo cancellers, Echo Canceller A and Echo Canceller B. Each group can be configured in Normal, Extended Delay or Back-to-Back configurations. In **Normal configuration**, a group of echo cancellers provides two channels of 64 ms echo cancellation, which run independently on different channels. In **Extended Delay** configuration, a group of echo cancellers achieves 128 ms of echo cancellation by cascading the two echo cancellers (A & B). In **Back-to-Back** configuration, the two echo cancellers from the same group are positioned to cancel echo coming from both directions in a single channel, providing full-duplex 64 ms echo cancellation.

Each echo canceller contains the following main elements (see Figure 4).

- Adaptive Filter for estimating the echo channel
- Subtractor for cancelling the echo
- Double-Talk detector for disabling the filter adaptation during periods of double-talk
- Path Change detector for fast reconvergence on major echo path changes
- · Instability Detector to combat instability in very low ERL environments
- Patented Advanced Non-Linear Processor for suppression of residual echo, with comfort noise injection
- Disable Tone Detectors for detecting valid disable tones at send and receive path inputs
- Narrow-Band Detector for preventing Adaptive Filter divergence from narrow-band signals
- Offset Null filters for removing the DC component in PCM channels
- +9 to -12 dB level adjusters at all signal ports
- · Parallel controller interface compatible with Motorola microcontrollers
- PCM encoder/decoder compatible with μ /A-Law ITU-T G.711 or Sign-Magnitude coding

Each echo canceller in the ZL50232 has four functional states: *Mute, Bypass, Disable Adaptation* and *Enable Adaptation*. These are explained in the section entitled Echo Canceller Functional States.

Figure 4 - Functional Block Diagram

2.1 Adaptive Filter

The adaptive filter adapts to the echo path and generates an estimate of the echo signal. This echo estimate is then subtracted from Sin. For each group of echo cancellers, the adaptive filter is a 1024 tap FIR adaptive filter which is divided into two sections. Each section contains 512 taps providing 64 ms of echo estimation. In **Normal configuration**, the first section is dedicated to channel A and the second section to channel B. In **Extended Delay configuration**, both sections are cascaded to provide 128 ms of echo estimation in channel A. In **Back-to Back configuration**, the first section is used in the receive direction and the second section is used in the transmit direction for the same channel.

2.2 Double-Talk Detector

Double-Talk is defined as those periods of time when signal energy is present in both directions simultaneously. When this happens, it is necessary to disable the filter adaptation to prevent divergence of the Adaptive Filter coefficients. Note that when double-talk is detected, the adaptation process is halted but the echo canceller continues to cancel echo using the previous converged echo profile. A double-talk condition exists whenever the relative signal levels of Rin (Lrin) and Sin (Lsin) meet the following condition:

where DTDT is the Double-Talk Detection Threshold. Lsin and Lrin are signal levels expressed in dBm0.

A different method is used when it is uncertain whether Sin consists of a low level double-talk signal or an echo return. During these periods, the adaptation process is slowed down but it is not halted. The slow convergence speed is set using the Slow sub-register in Control Register 4. During slow convergence, the adaptation speed is reduced by a factor of 2^{Slow} relative to normal convergence for non-zero values of Slow. If Slow equals zero, adaptation is halted completely.

In the G.168 standard, the echo return loss is expected to be at least 6 dB. This implies that the Double-Talk Detector Threshold (DTDT) should be set to 0.5 (-6 dB). However, in order to achieve additional guardband, the DTDT is set internally to 0.5625 (-5 dB).

In some applications the return loss can be higher or lower than 6 dB. The ZL50232 allows the user to change the detection threshold to suit each application's need. This threshold can be set by writing the desired threshold value into the DTDT register.

The DTDT register is 16 bits wide. The register value in hexadecimal can be calculated with the following equation:

$$DTDT_{(hex)} = hex(DTDT_{(dec)} * 32768)$$

where $0 < DTDT_{(dec)} < 1$

Example:For DTDT = 0.5625 (-5 dB), the

hexadecimal value becomes

 $hex(0.5625 * 32768) = 4800_{hex}$

2.3 Path Change Detector

Integrated into the ZL50232 is a Path Change Detector. This permits fast reconvergence when a major change occurs in the echo channel. Subtle changes in the echo channel are also tracked automatically once convergence is achieved, but at a much slower speed.

The Path Change Detector is activated by setting the PathDet bit in Control Register 3 to "1". An optional path clearing feature can be enabled by setting the PathClr bit in Control Register 3 to "1". With path clearing turned on,

the existing echo channel estimate will also be cleared (i.e. the adaptive filter will be filled with zeroes) upon detection of a major path change.

2.4 Non-Linear Processor (NLP)

After echo cancellation, there is always a small amount of residual echo which may still be audible. The ZL50232 uses **Zarlink's patented Advanced NLP** to remove residual echo signals which have a level lower than the Adaptive Suppression Threshold (TSUP in G.168). This threshold depends upon the level of the Rin (Lrin) reference signal as well as the programmed value of the Non-Linear Processor Threshold register (NLPTHR). TSUP can be calculated by the following equation:

 $TSUP = Lrin + 20log_{10}(NLPTHR)$

where NLPTHR is the Non-Linear Processor Threshold register value and Lrin is the relative power level expressed in dBm0. The NLPTHR register is 16 bits wide. The register value in hexadecimal can be calculated with the following equation:

$$NLPTHR_{(hex)} = hex(NLPTHR_{(dec)} * 32768)$$

where $0 < \text{NLPTHR}_{(dec)} < 1$

When the level of residual error signal falls below TSUP, the NLP is activated further attenuating the residual signal by an additional 30 dB. To prevent a perceived decrease in background noise due to the activation of the NLP, a spectrally-shaped comfort noise, equivalent in power level to the background noise, is injected. This keeps the perceived noise level constant. Consequently, the user does not hear the activation and de-activation of the NLP.

The NLP processor can be disabled by setting the NLPDis bit to "1" in Control Register 2.

The comfort noise injector can be disabled by setting the INJDis bit to "1" in Control Register 1. It should be noted that the NLPTHR is valid and the comfort noise injection is active only when the NLP is enabled.

The patented Advanced NLP provides a number of new and improved features over the original NLP found in previous generation devices. Differences between the Advanced NLP and the original NLP are summarized in Table 1.

Feature	Register or Bit(s)	Advanced NLP Default Value	Original NLP Default Value
NLP Selection	NLPSel (Control Register 3)	1	0 (feature
			not supported)
Reject uncanceled echo as noise	NLRun1 (Control Register 3)	1	0 (feature
			not supported)
Reject double-talk as noise	NLRun2 (Control Register 3)	1	0 (feature
			not supported)
Noise level estimate or ramping	InjCtrl (Control Register 3)	1	0 (feature
scheme			not supported)
Noise level ramping rate	NLInc (Noise Control)	5(hex)	C(hex)
Noise level scaling	Noise Scaling	16(hex)	74(hex)

Table 1 - Comparison of NLP Types

The NLPSel bit in Control Register 3 selects which NLP is used. A "1" will select the Advanced NLP, "0" selects the original NLP.

The Advanced NLP uses a new noise ramping scheme to quickly and more accurately estimate the background noise level. The noise ramping method of the original NLP can also be used. The InjCtrl bit in Control Register 3 selects the ramping scheme.

The NLInc sub-register in Noise Control is used to set the ramping speed. When InjCtrl = 1 (such as with the Advanced NLP), a lower value will give faster ramping. When InjCtrl = 0 (such as with the original NLP), a higher value will give faster ramping. NLInc is a 4-bit value, so only values from 0 to F(hex) are valid.

The Noise Scaling register can be used to adjust the relative volume of the comfort noise. Lowering this value will scale the injected noise level down, conversely, raising the value will scale the comfort noise up. Due to differences in the noise estimator operation, the Advanced NLP requires a different scaling value than the original NLP.

IMPORTANT NOTE: NLInc and the Noise Scaling register have been pre-programmed with G.168 compliant values. Changing these values may result in undesirable comfort noise performance!

The Advanced NLP also contains safeguards to prevent double-talk and uncancelled echo from being mistaken for background noise. These features were not present in the original NLP. They can be disabled by setting the NLRun1 and NLRun2 bits in Control Register 3 to "0".

2.5 Disable Tone Detector

The G.165 recommendation defines the disable tone as having the following characteristics: 2100 Hz (\pm 21 Hz) sine wave, a power level between -6 to -31 dBm0, and a phase reversal of 180 degrees (\pm 25 degrees) every 450 ms (\pm 25 ms). If the disable tone is present for a minimum of one second with at least one phase reversal, the Tone Detector will trigger.

The G.164 recommendation defines the disable tone as a 2100 Hz (\pm 21 Hz) sine wave with a power level between 0 to -31 dBm0. If the disable tone is present for a minimum of 400 ms, with or without phase reversal, the Tone Detector will trigger.

The ZL50232 has two Tone Detectors per channels (for a total of 64) in order to monitor the occurrence of a valid disable tone on both Rin and Sin. Upon detection of a disable tone, TD bit of the Status Register will indicate logic high and an interrupt is generated (i.e., IRQ pin low). Refer to Figure 5 and to the **Interrupts** section.

Figure 5 - Disable Tone Detection

Once a Tone Detector has been triggered, there is no longer a need for a valid disable tone (G.164 or G.165) to maintain Tone Detector status (i.e. TD bit high). The Tone Detector status will only release (i.e. TD bit low) if the signals Rin and Sin fall below -30 dBm0, in the frequency range of 390 Hz to 700 Hz, and below -34 dBm0, in the frequency range of 700 Hz to 3400 Hz, for at least 400 ms. Whenever a Tone Detector releases, an interrupt is generated (i.e. IRQ pin low).

The selection between G.165 and G.164 tone disable is controlled by the PHDis bit in Control Register 2 on a per channel basis. When the PHDis bit is set to "1", G.164 tone disable requirements are selected.

In response to a valid disable tone, the echo canceller must be switched from the Enable Adaptation state to the Bypass state. This can be done in two ways, automatically or externally. In automatic mode, the Tone Detectors internally control the switching between Enable Adaptation and Bypass states. The automatic mode is activated by setting the AutoTD bit in Control Register 2 to high. In external mode, an external controller is needed to service the interrupts and poll the TD bits in the Status Registers. Following the detection of a disable tone (TD bit high) on a given channel, the external controller must switch the echo canceller from Enable Adaptation to Bypass state.

2.6 Instability Detector

In systems with very low echo channel return loss (ERL), there may be enough feedback in the loop to cause stability problems in the adaptive filter. This instability can result in variable pitched ringing or oscillation. Should this ringing occur, the Instability Detector will activate and suppress the oscillations.

The Instability Detector is activated by setting the RingClr bit in Control Register 3 to "1".

2.7 Narrow Band Signal Detector (NBSD)

Single or dual frequency tones (i.e., DTMF tones) present in the receive input (Rin) of the echo canceller for a prolonged period of time may cause the Adaptive Filter to diverge. The Narrow Band Signal Detector (NBSD) is designed to prevent this by detecting single or dual tones of arbitrary frequency, phase, and amplitude. When narrow band signals are detected, adaptation is halted but the echo canceller continues to cancel echo.

The NBSD will be active regardless of the Echo Canceller functional state. However the NBSD can be disabled by setting the NBDis bit to "1" in Control Register 2.

2.8 Offset Null Filter

Adaptive filters in general do not operate properly when a DC offset is present at any input. To remove the DC component, the ZL50232 incorporates Offset Null filters in both Rin and Sin inputs.

The offset null filters can be disabled by setting the HPFDis bit to "1" in Control Register 2.

2.9 Adjustable Level Pads

The ZL50232 provides adjustable level pads at Rin, Rout, Sin and Sout. This setup allows signal strength to be adjusted both inside and outside the echo path. Each signal level may be independently scaled with anywhere from +9 dB to -12 dB level, in 3 dB steps. Level values are set using the Gains register.

CAUTION: Gain adjustment can help interface the ZL50232 to a particular system in order to provide optimum echo cancellation, but it can also degrade performance if not done carefully. Excessive loss may cause low signal levels and slow convergence. Exercise great care when adjusting these values. Also, due to internal signal routings in Back to Back mode, it is not recommended that gain adjustments be used on Rin or Sout in this mode.

The -12 dB PAD bit in Control Register 1 is still supported as a legacy feature. Setting this bit will provide 12 dB of attenuation at Rin, and override the values in the Gains register.

2.10 ITU-T G.168 Compliance

The ZL50232 has been certified G.168 (1997), (2000) and (2002) compliant in all 64 ms cancellation modes (i.e. Normal and Back-to-Back configurations) by in-house testing with the DSPG ECT-1 echo canceller tester.

The ZL50232 has also been tested for G.168 compliance and all voice quality tests at AT&T Labs. The ZL50232 was classified as "carrier grade" echo canceller.

3.0 Device Configuration

The ZL50232 architecture contains 32 echo cancellers divided into 16 groups. Each group has two echo cancellers which can be individually controlled (Echo Canceller A (ECA) and Echo Canceller B (ECB)). They can be set in three distinct configurations: **Normal, Back-to-Back,** and **Extended Delay**. See Figures 6, 7, and 8.

3.1 Normal Configuration

In Normal configuration, the two echo cancellers (Echo Canceller A and B) are positioned in parallel, as shown in Figure 6, providing 64 milliseconds of echo cancellation in two channels simultaneously.

Figure 6 - Normal Device Configuration (64 ms)

3.2 Back-to-Back Configuration

In Back-to-Back configuration, the two echo cancellers from the same group are positioned to cancel echo coming from both directions in a single channel providing full-duplex 64 ms echo cancellation. See Figure 7. This configuration uses only one timeslot on PORT1 and PORT2 and the second timeslot normally associated with ECB contains zero code. Back-to-Back configuration allows a no-glue interface for applications where bidirectional echo cancellation is required.

Figure 7 - Back-to-Back Device Configuration (64 ms)

Back-to-Back configuration is selected by writing a "1" into the BBM bit of Control Register 1 for **both** Echo Canceller A and Echo Canceller B for a given group of echo canceller. Table 4 shows the 16 groups of 2 cancellers that can be configured into Back-to-Back.

Examples of Back-to-Back configuration include positioning one group of echo cancellers between a codec and a transmission device or between two codecs for echo control on analog trunks.

3.3 Extended Delay Configuration

In this configuration, the two echo cancellers from the same group are internally cascaded into one 128 milliseconds echo canceller. See Figure 8. This configuration uses only one timeslot on PORT1 and PORT2 and the second timeslot normally associated with ECB contains quiet code.

Figure 8 - Extended Delay Configuration (128 ms)

Extended Delay configuration is selected by writing a "1" into the ExtDI bit in Echo Canceller A, Control Register 1. For a given group, only Echo Canceller A, Control Register 1, has the ExtDI bit. For Echo Canceller B Control Register 1, Bit 0 must always be set to zero.

Table 4 shows the 16 groups of 2 cancellers that can each be configured into 64 ms or 128 ms echo tail capacity.

4.0 Echo Canceller Functional States

Each echo canceller has four functional states: Mute, Bypass, Disable Adaptation and Enable Adaptation.

4.1 Mute

In Normal and in Extended Delay configurations, writing a "1" into the MuteR bit replaces Rin with quiet code which is applied to both the Adaptive Filter and Rout. Writing a "1" into the MuteS bit replaces the Sout PCM data with quiet code.

		SIGN/	CCITT	(G.711)
	2's complement	μ-Law A-Law	μ -Law	A-Law
+Zero (quiet code)	0000 _{hex}	80 _{hex}	FF _{hex}	D5 _{hex}

Table 2 - Quiet PCM Code Assignment

In Back-to-Back configuration, writing a "1" into the MuteR bit of Echo Canceller A, Control Register 2, causes quiet code to be transmitted on Rout. Writing a "1" into the MuteS bit of Echo Canceller A, Control Register 2, causes quiet code to be transmitted on Sout.

In Extended Delay and in Back-to-Back configurations, MuteR and MuteS bits of Echo Canceller B must always be "0". Refer to Figure 4 and to Control Register 2 for bit description.

4.2 Bypass

The Bypass state directly transfers PCM codes from Rin to Rout and from Sin to Sout. When Bypass state is selected, the Adaptive Filter coefficients are reset to zero. Bypass state must be selected for at least one frame (125 μ s) in order to properly clear the filter.

4.3 Disable Adaptation

When the Disable Adaptation state is selected, the Adaptive Filter coefficients are frozen at their current value. The adaptation process is halted, however, the echo canceller continues to cancel echo.

4.4 Enable Adaptation

In Enable Adaptation state, the Adaptive Filter coefficients are continually updated. This allows the echo canceller to model the echo return path characteristics in order to cancel echo. This is the normal operating state.

The echo canceller functions are selected in Control Register 1 and Control Register 2 through four control bits: MuteS, MuteR, Bypass and AdaptDis. Refer to the Registers Description for details.

5.0 ZL50232 Throughput Delay

The throughput delay of the ZL50232 varies according to the device configuration. For all device configurations, Rin to Rout has a delay of two frames and Sin to Sout has a delay of three frames. In Bypass state, the Rin to Rout and Sin to Sout paths have a delay of two frames.

6.0 Serial PCM I/O channels

There are two sets of TDM I/O streams, each with channels numbered from 0 to 31. One set of input streams is for Receive (Rin) channels, and the other set of input streams is for Send (Sin) channels. Likewise, one set of output streams is for Rout PCM channels, and the other set is for Sout channels. See Figure 9 for channel allocation.

The arrangement and connection of PCM channels to each echo canceller is a 2 port I/O configuration for each set of PCM Send and Receive channels, as illustrated in Figure 4.

6.1 Serial Data Interface Timing

The ZL50232 provides ST-BUS and GCI interface timing. The Serial Interface clock frequency, $\overline{C4i}$, is 4.096 MHz. The input and output data rate of the ST-BUS and GCI bus is 2.048 Mbps.

The 8 KHz input frame pulse can be in either ST-BUS or GCI format. The ZL50232 automatically detects the presence of an input frame pulse and identifies it as either ST-BUS or GCI. In ST-BUS format, every second falling edge of the C4i clock marks a bit boundary, and the data is clocked in on the rising edge of C4i, three quarters of the way into the bit cell (See Figure 12). In GCI format, every second rising edge of the C4i clock marks the bit boundary, and data is clocked in on the second falling edge of C4i, half the way into the bit cell (see Figure 13).

Figure 9 - ST-BUS and GCI Interface Channel Assignment for 2 Mbps Data Streams

Base Address +		Echo Canceller A		Base Address +		Echo Canceller B
MS Byte	LS Byte			MS Byte	LS Byte	
-	00h	Control Reg 1		-	20h	Control Reg 1
-	01h	Control Reg 2		-	21h	Control Reg 2
-	02h	Status Reg		-	22h	Status Reg
-	03h	Reserved		-	23h	Reserved
-	04h	Flat Delay Reg		-	24h	Flat Delay Reg
-	05h	Reserved		-	25h	Reserved
-	06h	Decay Step Size Reg		-	26h	Decay Step Size Reg
-	07h	Decay Step Number		-	27h	Decay Step Number
-	08h	Control Reg 3		-	28h	Control Reg 3
-	09h	Control Reg 4		-	29h	Control Reg 4
-	0Ah	Noise Scaling		-	2Ah	Noise Scaling
-	0Bh	Noise Control		-	2Bh	Noise Control
0Dh	0Ch	Rin Peak Detect Reg		2Dh	2Ch	Rin Peak Detect Reg
0Fh	0Eh	Sin Peak Detect Reg		2Fh	2Eh	Sin Peak Detect Reg
11h	10h	Error Peak Detect Reg		31h	30h	Error Peak Detect Reg
13h	12h	Reserved		33h	32h	Reserved
15h	14h	DTDT Reg		35h	34h	DTDT Reg
17h	16h	Reserved		37h	36h	Reserved
19h	18h	NLPTHR		39h	38h	NLPTHR
1Bh	1Ah	Step Size, MU		3Bh	3Ah	Step Size, MU
1Dh	1Ch	Gains		3Dh	3Ch	Gains
1Fh	1Eh	Reserved		3Fh	3Eh	Reserved

 Table 3 - Memory Mapping of Per Channel Control and Status Registers

7.0 Memory Mapped Control and Status Registers

Internal memory and registers are memory mapped into the address space of the HOST interface. The internal dual ported memory is mapped into segments on a "per channel" basis to monitor and control each individual echo canceller and associated PCM channels. For example, in **Normal configuration**, echo canceller #5 makes use of Echo Canceller B from group 2. It occupies the internal address space from 0A0_{hex} to 0BF_{hex} and interfaces to PCM channel #5 on all serial PCM I/O streams.

As illustrated in Table 3, the "per channel" registers provide independent control and status bits for each echo canceller. Figure 10 shows the memory map of the control/status register blocks for all echo cancellers.

When **Extended Delay** or **Back-to-Back** configuration is selected, Control Register 1 of ECA and ECB and Control Register 2 of the selected group of echo cancellers require special care. Refer to the Register description section.

Table 4 is a list of the channels used for the 16 groups of echo cancellers when they are configured as **Extended Delay** or **Back-to-Back**.

7.1 Normal Configuration

For a given group (group 0 to 15), 2 PCM I/O channels are used. For example, group 1 Echo Cancellers A and B, channels 2 and 3 are active.

Group	Channels	Group	Channels
0	0, 1	8	16, 17
1	2, 3	9	18, 19
2	4, 5	10	20, 21
3	6, 7	11	22, 23
4	8, 9	12	24, 25
5	10, 11	13	26, 27
6	12, 13	14	28, 29
7	14, 15	15	30, 31

Table 4 - Group and Channel Allocation

7.2 Extended Delay Configuration

For a given group (group 0 to 15), only one PCM I/O channel is active (Echo Canceller A) and the other channel carries quiet code. For example, group 2, Echo Canceller A (Channel 4) will be active and Echo Canceller B (Channel 5) will carry quiet code.

7.3 Back-to-Back Configuration

For a given group (group 0 to 15), only one PCM I/O channel is active (Echo Canceller A) and the other channel carries quiet code. For example, group 5, Echo Canceller A (Channel 10) will be active and Echo Canceller B (Channel 11) will carry quiet code.

Group 0 Echo	Channel 0, ECA Ctrl/Stat Registers	0000h> 001Fh
Cancellers Registers	Channel 1, ECB Ctrl/Stat Registers	0020h> 003Fh
Group 1 Echo	Channel 2, ECA Ctrl/Stat Registers	0040h> 005Fh
Cancellers Registers	Channel 3, ECB Ctrl/Stat Registers	0060h> 007Fh
Groups 2 Echo Cance Registers	> 14 ellers	
Group 15 Echo	Channel 30, ECA Ctrl/Stat Registers	03C0h> 03DFh
Cancellers Registers	Channel 31, ECB Ctrl/Stat Registers	03E0h> 03FFh
	Main Control Registers <15:0>	0400h> 040Fh
	Interrupt FIFO Register	0410h
	Test Register	0411h
	Reserved Test Register	0412h> FFFFh

Figure 10 - Memory Mapping

7.4 Power Up Sequence

On power up, the RESET pin must be held low for 100 μ s. Forcing the RESET pin low will put the ZL50232 in power down state. In this state, all internal clocks are halted, D<7:0>, Sout, Rout, DTA and IRQ pins are tristated. The 16 Main Control Registers, the Interrupt FIFO Register and the Test Register are reset to zero.

When the RESET pin returns to logic high and a valid MCLK is applied, the user must wait 500 μ s for the PLL to lock. C4i and F0i can be active during this period. At this point, the echo canceller must have the internal registers reset to an initial state. This is accomplished by one of two methods. The user can either issue a second hardware reset or perform a software reset. A second hardware reset is performed by driving the RESET pin low for at least 500 ns and no more than 1500 ns before being released. A software reset is accomplished by programming a "1" to each of the PWUP bits in the Main Control Registers, waiting 250 μ s (2 frames) and then programming a "0" to each of the PWUP bits.

The user must then wait 500 μ s for the PLL to relock. Once the PLL has locked, the user can power up the 16 groups of echo cancellers individually by writing a "1" into the PWUP bit in Main Control Register of each echo canceller group.

For each group of echo cancellers, when the PWUP bit toggles from zero to one, echo cancellers A and B execute their initialization routine. The initialization routine sets their registers, Base Address+ 00_{hex} to Base Address+ $3F_{hex}$, to the default Reset Value and clears the Adaptive Filter coefficients. Two frames are necessary for the initialization routine to execute properly.

Once the initialization routine is executed, the user can set the per channel Control Registers, Base Address+ 00_{hex} to Base Address+ $3F_{hex}$, for the specific application.

Figure 11 - Power Up Sequence Flow Diagram

7.5 Power Management

Each group of echo cancellers can be placed in Power Down mode by writing a "0" into the PWUP bit in their respective Main Control Register. When a given group is in Power Down mode, the corresponding PCM data are bypassed from Rin to Rout and from Sin to Sout with two frames delay. Refer to the Main Control Register section for description.

The typical power consumption can be calculated with the following equation:

 $P_C = 9 * Nb_of_groups + 3.6$, in mW

where $0 \le Nb_of_groups \le 16$.

7.6 Call Initialization

To ensure fast initial convergence on a new call, it is important to clear the Adaptive Filter. This is done by putting the echo canceller in bypass mode for at least one frame (125 μ s) and then enabling adaptation.

Since the Narrow Band Detector is "ON" regardless of the functional state of Echo Canceller it is recommended that the Echo cancellers are reset before any call progress tones are applied.

7.7 Interrupts

The ZL50232 provides an interrupt pin (\overline{IRQ}) to indicate to the HOST processor when a G.164 or G.165 Tone Disable is detected and released.

Although the ZL50232 may be configured to react automatically to tone disable status on any input PCM voice channels, the user may want for the external HOST processor to respond to Tone Disable information in an appropriate application-specific manner.

Each echo canceller will generate an interrupt when a Tone Disable occurs and will generate another interrupt when a Tone Disable releases.

Upon receiving an IRQ, the HOST CPU should read the Interrupt FIFO Register. This register is a FIFO memory containing the channel number of the echo canceller that has generated the interrupt.

All pending interrupts from any of the echo cancellers and their associated input channel number are stored in this FIFO memory. The IRQ always returns high after a read access to the Interrupt FIFO Register. The IRQ pin will toggle low for each pending interrupt.

After the HOST CPU has received the channel number of the interrupt source, the corresponding per channel Status Register can be read from internal memory to determine the cause of the interrupt (see Table 3 for address mapping of Status register). The TD bit indicates the presence of a Tone Disable.

The MIRQ bit 5 in the Main Control Register 0 masks interrupts from the ZL50232. To provide more flexibility, the MTDBI (bit-4) and MTDAI (bit-3) bits in the Main Control Register<15:0> allow Tone Disable to be masked or unmasked from generating an interrupt on a per channel basis. Refer to the Registers Description section.

8.0 JTAG Support

The ZL50232 JTAG interface conforms to the Boundary-Scan standard IEEE1149.1. This standard specifies a design-for-testability technique called Boundary-Scan test (BST). The operation of the Boundary Scan circuitry is controlled by an Test Access Port (TAP) controller. JTAG inputs are **3.3 V** compliant only.

8.1 Test Access Port (TAP)

The TAP provides access to many test functions of the ZL50232. It consists of four input pins and one output pin. The following pins are found on the TAP.

• Test Clock Input (TCK)

The TCK provides the clock for the test logic. The TCK does not interfere with any on-chip clock and thus remains independent. The TCK permits shifting of test data into or out of the Boundary-Scan register cells concurrent with the operation of the device and without interfering with the on-chip logic.

 Test Mode Select Input (TMS) The logic signals received at the TMS input are interpreted by the TAP Controller to control the test operations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally pulled to V_{DD1} when it is not driven from an external source.

Test Data Input (TDI)

Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received input data is sampled at the rising edge of TCK pulses. This pin is internally pulled to V_{DD1} when it is not driven from an external source.

Test Data Output (TDO)

Depending on the sequence previously applied to the TMS input, the contents of either the instruction register or data register are serially shifted out towards the TDO. The data from the TDO is clocked on the falling edge of the TCK pulses. When no data is shifted through the Boundary Scan cells, the TDO driver is set to a high impedance state.

Test Reset (TRST)

This pin is used to reset the JTAG scan structure. This pin is internally pulled to V_{SS} .

8.2 Instruction Register

In accordance with the IEEE 1149.1 standard, the ZL50232 uses public instructions. The JTAG Interface contains a 3-bit instruction register. Instructions are serially loaded into the instruction register from the TDI when the TAP Controller is in its shifted-IR state. Subsequently, the instructions are decoded to achieve two basic functions: to select the test data register that will operate while the instruction is current, and to define the serial test data register path, which is used to shift data between TDI and TDO during data register scanning.

8.3 Test Data Registers

As specified in IEEE 1149.1, the ZL50232 JTAG Interface contains three test data registers:

- Boundary-Scan register
 The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the ZL50232 core logic.
- Bypass Register The Bypass register is a single stage shift register that provides a one-bit path from TDI to TDO.
- Device Identification register
 The Device Identification register provides access to the following encoded information:
 device version number, part number and manufacturer's name.

Absolute Maximum Ratings*

	Parameter	Symbol	Min.	Max.	Units
1	I/O Supply Voltage (V _{DD1})	V _{DD_IO}	-0.5	5.0	V
2	Core Supply Voltage (V _{DD2})	V _{DD_CORE}	-0.5	2.5	V
3	Input Voltage	V _{I3}	V _{SS} - 0.5	V _{DD1} +0.5	V
4	Input Voltage on any 5 V Tolerant I/O pins	V _{I5}	V _{SS} - 0.3	7.0	V
5	Continuous Current at digital outputs	Ι _ο		20	mA
6	Package power dissipation	PD		2	W
7	Storage temperature	Τ _S	-55	150	°C

* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

Recommended Operating Conditions - Voltages are with respect to ground (Vss) unless otherwise stated

	Characteristics	Sym.	Min,	Typ.‡	Max.	Units
1	Operating Temperature	T _{OP}	-40		+85	°C
2	I/O Supply Voltage (V _{DD_IO})	V _{DD1}	3.0	3.3	3.6	V
3	Core Supply Voltage (V _{DD_CORE})	V _{DD2}	1.6	1.8	2.0	V
4	Input High Voltage on 3.3 V tolerant I/O	V _{IH3}	0.7V _{DD1}		V _{DD1}	V
5	Input High Voltage on 5 V tolerant I/O pins	V _{IH5}	0.7V _{DD1}		5.5	V
6	Input Low Voltage	V _{IL}			0.3V _{DD1}	V

[‡] Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.

DC Electrical Characteristics[†] - Voltages are with respect to ground (V_{ss}) unless otherwise stated.

		Characteristics	Sym.	Min.	Typ.‡	Max.	Units	Test Conditions
		Static Supply Current	I _{CC}			250	μA	RESET = 0
1		IDD_IO (V _{DD1} = 3.3 V)	I _{DD_IO}		10		mA	All 32 channels active
		IDD_CORE (V _{DD2} = 1.8 V)	I _{DD_CORE}		65		mA	All 32 channels active
2		Power Consumption	P _C		150		mW	All 32 channels active
3	N P	Input High Voltage	V _{IH}	0.7V _{DD1}			V	
4	U T	Input Low Voltage	V _{IL}			0.3V _{DD1}	V	
5	S	Input Leakage Input Leakage on Pullup Input Leakage on Pulldown	I _{IH} /I _{IL} I _{LU} I _{LD}		-30 30	10 -55 65	μΑ μΑ μΑ	$V_{IN}=V_{SS}$ to V_{DD1} or 5.5 V $V_{IN}=V_{SS}$ $V_{IN}=V_{DD1}$ See Note 1
6		Input Pin Capacitance	Cl			10	pF	
7	0	Output High Voltage	V _{OH}	0.8V _{DD1}			V	I _{OH} = 12 mA
8	T	Output Low Voltage	V _{OL}			0.4	V	I _{OL} = 12 mA
9	U U T	High Impedance Leakage	I _{OZ}			10	μA	$V_{IN}=V_{SS}$ to 5.5 V
10	S	Output Pin Capacitance	C _O			10	pF	

Characteristics are over recommended operating conditions unless otherwise stated.
Typical figures are at 25°C, V_{DD1} =3.3 V and are for design aid only: not guaranteed and not subject to production testing.
* Note 1: Maximum leakage on pins (output or I/O pins in high impedance state) is over an applied voltage (V_{IN}).

AC Electrical Characteristics[†] - Timing Parameter Measurement Voltage Levels - Voltages are with respect to ground (V_{ss}) unless otherwise stated.

	Characteristics	Sym.	Level	Units	Conditions
1	CMOS Threshold	V _{TT}	0.5V _{DD1}	V	
2	CMOS Rise/Fall Threshold Voltage High	V _{HM}	0.7V _{DD1}	V	
3	CMOS Rise/Fall Threshold Voltage Low	V _{LM}	0.3V _{DD1}	V	

† Characteristics are over recommended operating conditions unless otherwise stated.

AC Electrical Characteristics[†] - Frame Pulse and C4i

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes
1	Frame pulse width (ST-BUS, GCI)	t _{FPW}	20		2* t _{CP} -20	ns	
2	Frame Pulse Setup time before C4i falling (ST-BUS or GCI)	t _{FPS}	10	122	150	ns	
3	Frame Pulse Hold Time from $\overline{C4i}$ falling (ST-BUS or GCI)	t _{FPH}	10	122	150	ns	
4	C4i Period	t _{CP}	190	244	300	ns	
5	C4i Pulse Width High	t _{CH}	85		150	ns	
6	C4i Pulse Width Low	t _{CL}	85		150	ns	
7	C4i Rise/Fall Time	t _r , t _f			10	ns	

Characteristics are over recommended operating conditions unless otherwise stated.
 Typical figures are at 25°C, V_{DD1} = 3.3 V and for design aid only: not guaranteed and not subject to production testing.

AC Electrical Characteristics[†] - Serial Streams for ST-BUS and GCI Backplanes

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Test Conditions
1	Rin/Sin Set-up Time	t _{sis}	10			ns	
2	Rin/Sin Hold Time	t _{SIH}	10			ns	
3	Rout/Sout Delay - Active to Active	t _{SOD}			60	ns	C _L =150 pF
4	Output Data Enable (ODE) Delay	t _{ode}			30	ns	C _L =150 pF, R _L =1 K See Note 1

† Characteristics are over recommended operating conditions unless otherwise stated.

⁺ Typical figures are at 25°C, V_{DD1} = 3.3 V and for design aid only: not guaranteed and not subject to production testing.

* Note1: High Impedance is measured by pulling to the appropriate rail with RL, with timing corrected to cancel time taken to discharge CL.

	Characteristic	Sym.	Min.	Typ.‡	Max.	Units	Notes
1	Master Clock Frequency, - Fsel = 0 - Fsel = 1	f _{MCF0} f _{MCF1}	19.0 9.5	20.0 10.0	21.0 10.5	MHz MHz	
2	Master Clock Low	t _{MCL}	20			ns	
3	Master Clock High	t _{MCH}	20			ns	

AC Electrical Characteristics[†] - Master Clock - Voltages are with respect to ground (V_{SS}). unless otherwise stated.

Characteristics are over recommended operating conditions unless otherwise stated.
 Typical figures are at 25°C, V_{DD1} = 3.3 V and for design aid only: not guaranteed and not subject to production testing.

AC Electrical Characteristics[†] - Motorola Non-Multiplexed Bus Mode Typ.‡ **Characteristics** Min. Sym. Max. Units **Test Conditions** 0 ns t_{CSS} CS setup from DS falling 1 _____ . _ _ _ ... touro Λ ns

2	R/W setup from DS falling	'RWS	0		115	
3	Address setup from DS falling	t _{ADS}	0		ns	
4	CS hold after DS rising	t _{CSH}	0		ns	
5	R/\overline{W} hold after DS rising	t _{RWH}	0		ns	
6	Address hold after DS rising	t _{ADH}	0		ns	
7	Data delay on read	t _{DDR}		79	ns	
8	Data hold on read	t _{DHR}	3	15	ns	
9	Data setup on write	t _{DSW}	0		ns	
10	Data hold on write	t _{DHW}	0		ns	
11	Acknowledgment delay	t _{AKD}		80	ns	
12	Acknowledgment hold time	t _{AKH}	0	8	ns	
13	IRQ delay	t _{IRD}	20	65	ns	

Characteristics are over recommended operating conditions unless otherwise stated.
 Typical figures are at 25°C, V_{DD1} = 3.3 V and for design aid only: not guaranteed and not subject to production testing.

Figure 12 - ST-BUS Timing at 2.048 Mbps

Figure 13 - GCI Interface Timing at 2.048 Mbps

Figure 14 - Output Driver Enable (ODE)

Figure 15 - Master Clock

Figure 16 - Motorola Non-Multiplexed Bus Timing

9.0 Register Description

	Echo Canceller A (ECA): Control Register 1										
	Power-u	up 00 _{hex}		R/W Address: 00 _{hex} + Base Address							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Reset	INJDis	BBM	PAD	Bypass	AdpDis	0	ExtDI				
	Functional Description of Register Bits										
Reset	When high, this bit and	the power-up clears the Ad	o initialization aptive Filter o	is executed. coefficients.	This presets a	all register bit	s including				
INJDis	When high,	the noise inje	ection proces	s is disabled.	When low no	ise injection i	s enabled.				
BBM	^{3M} When high, the Back to Back configuration is enabled. When low, the Normal configuration is enabled. Note: Do not enable Extended-Delay and BBM configurations at the same time. Always set both BBM bits of the two echo cancellers (Control Register 1) of the same group to the same logic value to avoid conflict.										
PAD	When high, Gains regis	12 dB of atte ter controls th	nuation is ins le signal leve	erted into the ls.	Rin to Rout	path. When Ic	ow, the				
Bypass	When high, Adaptive Fi output data	Sin data is by Iter coefficien on both Sout	y-passed to S ts are set to z and Rout is a	Sout and Rin o ero and the f a function of t	data is by-pas ilter adaptatio he echo canc	sed to Rout. on is stopped. celler algorithi	The When low, n.				
AdpDis	When high, When low, t	echo cancell he echo canc	er adaptation celler dynamic	is disabled. ∃ cally adapts to	The Voice Pro the echo pa	cessor cance th characteris	els echo. stics.				
0	Bits marked	l as "1" or "0"	are reserved	bits and shou	uld be written	as indicated.					
ExtDI	When high, 128 ms ech independen	Echo Cancel o canceller. V itly.	lers A and B Vhen low, Ecl	of the same g no Cancellers	roup are inte A and B of th	rnally cascad he same grou	ed into one p operate				

	Echo Canceller B (ECB): Control Register 1										
	Power-u	ıp 02 _{hex}		R/W Address: 20 _{hex} + Base Address							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Reset	INJDis	BBM	PAD	Bypass	AdpDis	1	0				
	Functional Description of Register Bits										
Reset	When high, the power-up initialization is executed which presets all register bits including this bit and clears the Adaptive Filter coefficients.										
INJDis	When high, the noise injection process is disabled. When low, noise injection is enabled.										
BBM	When high, the Back to Back configuration is enabled. When low, the Normal configuration is enabled. Note: Do not enable Extended-Delay and BBM configurations at the same time. Always set both BBM bits of the two echo cancellers (Control Register 1) of the same group to the same logic value to avoid conflict.										
PAD	When high, Gains regis	12 dB of atte ter controls th	nuation is ins le signal level	erted into the s.	Rin to Rout	path. When Ic	ow, the				
Bypass	When high, Adaptive Fi output data	Sin data is by ter coefficien on both Sout	y-passed to S ts are set to z and Rout is a	out and Rin o ero and the fi a function of t	data is by-pas ilter adaptatic he echo canc	sed to Rout. on is stopped. celler algorithi	The When low, n.				
AdpDis	When high, echo canceller adaptation is disabled. The Voice Processor cancels echo. When low, the echo canceller dynamically adapts to the echo path characteristics.										
1	Bits marked	l as "1" or "0"	are reserved	bits and shou	uld be written	as indicated.					
0	Control Reg	jister 1 (Echo	Canceller B)	Bit 0 is a res	erved bit and	should be wr	itten "0".				

Power-up			ECA: Contro	R/W Address: 01 _{hex} + Base Address							
00	hex		ECB: Contro	R/W Address: 21 _{hex} + Base Address							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
TDis	PHDis	NLPDis	AutoTD	NBDis	HPFDis	MuteS	MuteR				
	Functional Description of Register Bits										
TDis	When high, Echo Cance entirely and	tone detection ellers A and B are put into I	n is disabled. TDis bits are Power Down	. When low, to high, Tone E mode.	one detection Disable proce	is enabled. V ssors are dis	When both abled				
PHDis	When high, the tone detectors will trigger upon the presence of a 2100 Hz tone regardless of the presence/absence of periodic phase reversals. When low, the tone detectors will trigger only upon the presence of a 2100 Hz tone with periodic phase reversals.										
NLPDis	When high, function nor	the non-linea mally. Useful	r processor is for G.165 cor	s disabled. W nformance tes	hen low, the sting.	non-linear pro	ocessors				
AutoTD	When high, the presend When low, t the 2100 Hz	the echo can e of 2100 Hz he echo canc z tone detecto	celler puts its tone. See PH celler algorithr ors.	elf in Bypass IDis for qualif m will remain	mode when f fication of 210 operational r	the tone deter 00 Hz tones. egardless of t	ctors detect the state of				
NBDis	When high, enabled.	the narrow-b	and detector	is disabled. V	Vhen low, the	narrow-band	l detector is				
HPFDis	When high, When low, t signals.	the offset nul he offset nulli	ling high passing filters are	s filters are by active and wi	ypassed in th Il remove DC	e Rin and Sir offsets on P	n paths. CM input				
MuteS	When high,	data on Sout	is muted to c	quiet code. W	hen low, Sou	t carries activ	ve code.				
MuteR	When high.	data on Rout	is muted to o	nuiet code. W	hen low, Rou	t carries activ	/e code.				

Note: In order to correctly write to Control Register 1 and 2 of ECB, it is necessary to write the data twice to the register, one immediately after another. The two writes must be separated by at least 350ns and no more than 20 us.

Power-up			ECA: Status Register				Read Address: 02 _{hex} + Base Address	
00	hex		ECB: Status Register				Read Address: 22 _{hex} + Base Address	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reserve	TD	DTDet	Reserve	Reserve	Reserve	TDG	NB	
	Functional Description of Register Bits							
Reserve	Reserved b	it						
TD	Logic high indicates the presence of a 2100Hz tone							
DTDet	Logic high i	ndicates the	presence of a	double-talk d	condition			
Reserve	Reserved b	it						
Reserve	Reserved b	it						
Reserve	Reserved b	it						
TDG	Tone detect	tion status bit	gated with th	e AutoTD bit.	(Control Reg	gister 2)		
	Logic high i	Logic high indicates that AutoTD has been enabled and the tone detector has detected						
	the presence	e of a 2100 H	Iz tone.					
NB	Logic high i	ndicates the	presence of a	narrow-band	l signal on Ri	n		

Power-up		EC	CA: Flat Dela	R/W Ac 04 _{hex} + Bas	ddress: se Address		
00	hex	EC	ECB: Flat Delay Register (FD) R/W Ad 24 _{hex} + Ba			ddress: se Address	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0

Power-up 00 _{hex}		ECA: D	ecay Step N	R/W Address: 07 _{hex} + Base Address			
		ECB: D	ecay Step N	R/W Address: 27 _{hex} + Base Address			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NS7	NS6	NS5	NS4	NS3	NS2	NS1	NS0

Power-up 04 _{hex}		ECA: Deca	ay Step Size	R/W Ad 06 _{hex} + Bas	ddress: se Address		
		ECB: Deca	ay Step Size	R/W Address: 26 _{hex} + Base Address			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	SSC2	SSC1	SSC0

Note: Bits marked with "0" are reserved bits and should be written "0"

Figure 17 - The MU Profile

Functional Description of Register Bits

The Exponential Decay registers (Decay Step Number and Decay Step Size) and Flat Delay register allow the LMS adaptation step-size (MU) to be programmed over the length of the FIR filter. A programmable MU profile allows the performance of the echo canceller to be optimized for specific applications. For example, if the characteristic of the echo response is known to have a flat delay of several milliseconds and a roughly exponential decay of the echo impulse response, then the MU profile can be programmed to approximate this expected impulse response thereby improving the convergence characteristics of the Adaptive Filter. Note that in the following register descriptions, one tap is equivalent to 125 μ s (64 ms/512 taps).

- FD₇₋₀ **Flat Delay**: This register defines the flat delay of the MU profile, (i.e., where the MU value is 2^{-16}). The delay is defined as FD₇₋₀ x 8 taps. For example; If FD₇₋₀ = 5, then MU= 2^{-16} for the first 40 taps of the echo canceller FIR filter. The valid range of FD₇₋₀ is: $0 \le FD_{7-0} \le 64$ in normal mode and $0 \le FD_{7-0} \le 128$ in extended-delay mode. The default value of FD₇₋₀ is zero.
- SSC_{2-0} **Decay Step Size Control**: This register controls the step size (SS) to be used during the exponential decay of MU. The decay rate is defined as a decrease of MU by a factor of 2 every SS taps of the FIR filter, where SS = 4 x2^{SSC₂₋₀}. For example; If SSC₂₋₀ = 4, then MU is reduced by a factor of 2 every 64 taps of the FIR filter. The default value of SSC₂₋₀ is 04_{hex}.
- NS₇₋₀ **Decay Step Number**: This register defines the number of steps to be used for the decay of MU where each step has a period of SS taps (see SSC_{2-0}). The start of the exponential decay is defined as: Filter Length (512 or 1024) [Decay Step Number (NS₇₋₀) x Step Size (SS)] where SS = 4 x2^{SSC₂₋₀}. For example; If NS₇₋₀=4 and SSC₂₋₀=4, then the exponential decay start value is 512 - [NS₇₋₀ x SS] = 512 - [4 x (4x2⁴)] = 256 taps for a filter length of 512 taps.

Power-up FB _{hex}			ECA: Contro	ol Register 3		R/W Address: 08 _{hex} + Base Address	
			ECB: Contro	R/W Ac 28 _{hex} + Bas	R/W Address: 28 _{hex} + Base Address		
Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2				Bit 1	Bit 0
NLRun2	InjCtrl	NLRun1 RingClr Reserve PathClr				PathDet	NLPSel
		Functi	onal Descript	tion of Regist	er Bits		
NLRun2	When high, the comfort noise level estimator actively rejects double-talk as being background noise. When low, the noise level estimator makes no such distinction.						
InjCtrl	Selects which noise ramping scheme is used. See Table below.						
NLRun1	When high, t background	When high, the comfort noise level estimator actively rejects uncancelled echo as being background noise. When low, the noise level estimator makes no such distinction.					
RingClr	When high, t	the instability of	letector is acti	vated. When Ic	ow, the instabi	lity detector is	disabled.
Reserve	Reserved bit	. Must always	be set to one	for normal ope	eration.		
PathClr	PathClr When high, the current echo channel estimate will be cleared and the echo canceller will enter fast convergence mode upon detection of a path change. When low, the echo canceller will keep the current path estimate but revert to fast convergence mode upon detection of a path change. Note: this bit is ignored if PathDet is low.						
PathDet	When high, t disabled.	the path chang	ge detector is a	activated. Whe	n low, the path	n change dete	ctor is
NLPSel	When high, t	the Advanced	NLP is selecte	ed. When low, t	the original NL	P is selected.	

The Table 5 below is the same as Table 1 shown on page 12)

Feature	Register or Bit(s)	Advanced NLP Default Value	Original NLP Default Value
NLP Selection	NLPSel (Control Register 3)	1	0 (feature not supported)
Reject uncancelled echo as noise	NLRun1 (Control Register 3)	1	0 (feature not supported)
Reject double-talk as noise	NLRun2 (Control Register 3)	1	0 (feature not supported)
Noise level estimator ramping scheme	InjCtrl (Control Register 3)	1	0 (feature not supported)
Noise level ramping rate	NLInc (Noise Control)	5 _{hex}	C _{hex}
Noise level scaling	Noise Scaling	16 _{hex}	74 _{hex}

Table 5 - Comparison of the NLP Types

Power-up			ECA: Contro	R/W A 09 _{hex} + Ba	R/W Address: 09 _{hex} + Base Address			
54	4 _{hex}		ECB: Contro	R/W Address: 29 _{hex} + Base Address				
Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2			Bit 1	Bit 0	
0	SD2	SD1	SD0	0	Slow2	Slow1	Slow0	
Functional Description of Register Bits								
0	Must be set	Must be set to zero.						
SupDec	These three convergence the echo car	bits (SD2,SD1 e state followin nceller in fast c	,SD0) control I g a path chang convergence ind	now long the e e, Reset or B definitely.	echo canceller ypass operatio	remains in a fa on. A value of z	ast ero will keep	
0	Must be set	to zero.						
Slow	Slow conver For Slow = 1 normal adap For Slow = 0	gence mode s , 2,, 7, slow tation.), no adaptatio	peed adjustme convergence s n occurs during	nt.(Bits Slow2 speed is reduct slow converg	, Slow1,Slow(ced by a facto gence.)) r of 2 ^{Slow} as co	mpared to	

Power-up 16 _{hex}		E	CA: Noise	Scaling (NS	R/W Address: 0A _{hex} + Base Address					
		E	CB: Noise	Scaling (NS	R/W Address: 2A _{hex} + Base Address					
Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2				Bit 1	Bit 0			
NS7	NS6	NS5	NS4	NS3	NS2	NS1	NS0			
			Functiona	I Descriptio	on of Regist	ter Bits				
This regist	This register is used to scale the comfort noise up or down. Larger values will increase the relative level of									
comfort no	comfort noise. The default value of 16 _{hex} will provide G.168 compliance with the Advanced NLP. A value of									
74 _{hex} is re	commende	d if the origi	nal NLP is u	ised.						

Power-up			ECA: Nois	se Control		R/W Address: 0B _{hex} + Base Address		
45	hex		ECB: Nois	R/W Address: 2B _{hex} + Base Address				
Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2				Bit 1	Bit 0	
Reserve	Reserve	Reserve	Reserve	NLInc3	NLInc2	NLInc1	NLInc0	
		Funct	ional Descrip	tion of Regis	ter Bits			
Reserve	Reserved bit	s. Must be set	t to 4 _{hex} for no	rmal operatior	1.			
NLInc	Noise level estimator ramping rate. When InjCtrl = 1, a lower value will give faster ramping. When InjCtrl = 0, a higher value will give faster ramping. The default value of 5_{hex} will provide G.168 compliance with InjCtrl = 1. A value of C_{hex} is recommended if InjCtrl = 0.							

Power-up		ECA:	Rin Peak Det	ect Register 2	2 (RP)	Read Address: 0D _{hex} + Base Address			
N	/A	ECB:	Rin Peak Det	Read Address: 2D _{hex} + Base Address					
Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2			Bit 1	Bit 0			
RP15	RP14	RP13	RP12	RP11	RP10	RP9	RP8		
Powe	er-up	ECA:	Rin Peak Det	Read Address:					
N	/ A					0C _{hex} + Base Address			
		ECB:	Rin Peak Det	Read Address:					
						2C _{hex} + Ba	se Address		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RP7	RP6	RP5	RP4	RP3	RP2	RP1	RP0		
	•	Fun	ctional Descr	iption of Reg	ister Bits	·	·		
These peak detector registers allow the user to monitor the receive in (Rin) peak signal level. The information									
is in 16-bit 2	2's compleme	ent linear code	d format prese	ented in two 8	bit registers for	or each echo cai	nceller. The		
high byte is	in Register 2	2 and the low b	yte is in Regis	ster 1.					

Power-up		ECA:	Sin Peak Det	ect Register	2 (SP)	Read A 0F _{hex} + Ba	Read Address: 0F _{hex} + Base Address	
N	/A	ECB:	Sin Peak Det	Read Address: 2F _{hex} + Base Address				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SP15	SP14	SP13	SP12	SP11	SP10	SP9 SP8		
			·	·				
Powe	er-up	ECA: Sin Peak Detect Register 1 (SP) ECB: Sin Peak Detect Register 1 (SP)				Read Address: 0E _{hex} + Base Address		
N	/ A							
						Read Address:		
						2E _{hex} + Base Address		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	
		Funct	ional Descrip	tion of Regis	ter Bits			
These peak detector registers allow the user to monitor the send in (Sin) peak signal level. The information is in								
16-bit 2's co	mplement linea	ar coded form	at presented ir	n two 8 bit reg	isters for eacl	n echo cancelle	r. The high	
byte is in Re	gister 2 and th	ie low byte is i	n Register 1.					

Power-up		ECA: I	Error Peak De	etect Register	2 (EP)	Read A 11 _{hex} + Bas	Read Address: 11 _{hex} + Base Address		
N	/A	ECB: I	Error Peak De	Read Address: 31 _{hex} + Base Address					
Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2			Bit 1	Bit 0		
EP15	EP14	EP13	EP12	EP11	EP10 EP9 EP8				
						•	•		
Power-up N/A		ECA: I	Error Peak De	Read Address: 10 _{hex} + Base Address					
		ECB: I	Error Peak De	Read Address: 30 _{hex} + Base Address					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EP7	EP6	EP5	EP4	EP3	EP2	EP1	EP0		
	Functional Description of Register Bits								
These peak 2's compler Register 2 a	These peak detector registers allow the user to monitor the error signal peak level. The information is in 16 bit 2's complement linear coded format presented in two 8 bit registers for each echo canceller. The high byte is in Register 2 and the low byte is in Register 1.								

Power-up		ECA: Doub	ple-Talk Detect	Register 2	R/W Address: 15 _{hex} + Base Address			
48	hex	ECB: Doub	ole-Talk Detect	R/W Address: 35 _{hex} + Base Address				
Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2				Bit 0	
DTDT15	DTDT14	DTDT13	DTDT12	DTDT11	DTDT10	DTDT9	DTDT8	
					•		•	
Pow	er-up	ECA: Doub	ole-Talk Detect	Register 1	R/W Address: 14 _{hex} + Base Address			
00	hex	ECB: Doub	ble-Talk Detect	ion Threshold	Register 1	R/W Ac 34 _{hex} + Bas	ldress: se Address	
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
DTDT7	DTDT6	DTDT5	DTDT4	DTDT3	DTDT2	DTDT1	DTDT0	
		Fι	Inctional Desc	ription of Regi	ister Bits			
This regis compleme 0 dB. The	This register allows the user to program the level of Double-Talk Detection Threshold (DTDT). The 16 bit 2's complement linear value defaults to 4800_{hex} = 0.5625 or -5 dB. The maximum value is $7FFF_{hex}$ = 0.9999 or 0 dB. The high byte is in Register 2 and the low byte is in Register 1.							

Power-up		ECA: Non-L	inear Proces (NLP	R/W Address: 19 _{hex} + Base Address					
00	hex	ECB: Non-L	inear Proces (NLP	R/W Address: 39 _{hex} + Base Address					
Bit 7	Bit 6	Bit 5 Bit 4 Bit 3 Bit 2				Bit 1	Bit 0		
NLP15	NLP14	NLP13	NLP12	NLP11	NLP10	NLP9	NLP8		
Powe	Power-up		inear Proces (NLP	R/W Ao 18 _{hex} + Bas	ddress: se Address				
E0	hex	ECB: Non-L	inear Proces (NLP)	sor Threshold THR)	d Register 1	R/W Ao 38 _{hex} + Bas	ddress: se Address		
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
NLP7	NLP6	NLP5	NLP4	NLP3	NLP2	NLP1	NLP0		
Functional Description of Register Bits									
This register allows the user to program the level of the Non-Linear Processor Threshold (NLPTHR). The 16 bit 2's complement linear value defaults to $0CE0_{hex} = 0.1$ or -20.0 dB. The maximum value is $7FFF_{hex} = 0.9999$ or 0 dB. The high byte is in Register 2 and the low byte is in Register 1									

Power-up		ECA: Ad	aptation Step	R/W Address: 1B _{hex} + Base Address						
40	hex	ECB: Ad	aptation Step	R/W Address: 3B _{hex} + Base Address						
Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2				Bit 0			
MU15	MU14	MU13	MU12	MU11	MU10	MU9	MU8			
Power-up		ECA: Adaptation Step Size Register 1 (MU) R/W Address: 1A _{hex} + Base Addr					ddress: se Address			
00	hex	ECB: Ad	aptation Step	o Size Registe	er 1 (MU)	R/W A 3A _{hex} + Ba	ddress: se Address			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
MU7	MU6	MU5	MU4	MU3	MU2	MU1	MU0			
Functional Description of Register Bits										
This registe 4000 _{hex} = 1 is in Regist	This register allows the user to program the level of MU. MU is a 16 bit 2's complement value which defaults to $4000_{hex} = 1.0$ The maximum value is $7FFF_{hex}$ or 1.9999 decimal. The high byte is in Register 2 and the low byte is in Register 1.									

Power-up			ECA: Gains		R/W Ac 1D _{hex} + Bas	ldress: se Address			
44	4 _{hex}		ECB: Gains	Register 2		R/W Address: 3D _{hex} + Base Address			
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	Rin2	Rin1	Rin0	0	Rout2	Rout1	Rout0		
		1				1			
Pow	/er-up		ECA: Gains	R/W Address: 1C _{hex} + Base Address					
44	4 _{hex}		ECB: Gains	R/W Ac 3C _{hex} + Bas	ldress: se Address				
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0	0 Sin2 Sin1 Sin0 0 Sout2				Sout2	Sout1	Sout0		
		Fur	nctional Desc	ription of Re	gister Bits				
This regis	ter is used to	select gain v	alues on RIN,	ROUT, SIN a	ind SOUT.				
Gains is s has three	plit into four g gain bits. The	roups of four b following tabl	bits. Each grou e indicates ho	ip maps to a d w these gain t	ifferent signal bits are used:	port (as indicate	ed above), and		
Bit2 Bit1	Bit0 Gain L	evel							
1 1	1 +9 dB	0101							
1 1 () +6 dB)								
1 0 1	1 +3 dB								
1 0 0) 0 dB (0	default)							
0 1 1	1 -3 dB								
0 1 0	D 1 0 -6 dB								
0 0 2	1 -9 dB								
0 0 0) -12 dB								
Note that will overric	the -12 dB PA de the settings	D bit in Contro s in Gains.	ol Register 1 p	orovides 12 dB	of attenuation	n in the Rin to R	out path, and		

	Main Control Register 0 (EC Group 0)											
	Power-	up 00 _{hex}			R/W Addre	ess: 400 _{hex}						
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
WR_all	ODE	MIRQ	MTDBI	MTDAI	Format	Law	PWUP					
	Functional Description of Register Bits											
WR_all	Write all control bit: When high, Group 0-15 Echo Cancellers Registers are mapped into 0000 _{hex} to 0003F _{hex} which is Group 0 address mapping. Useful to initialize the 16 Groups of Echo Cancellers as per Group 0. When low, address mapping is per Figure 10. Note: Only the Main Control Register 0 has the WR_all bit											
ODE	Output Data Enable: This control bit is logically AND'd with the ODE input pin. When both ODE bit and ODE input pin are high, the Rout and Sout outputs are enabled. When the ODE bit is low or the ODE input pin is low, the Rout and Sout outputs are high impedance. Note: Only the Main Control Register 0 has the ODE bit.											
MIRQ	Mask Interrupt: When high, all the interrupts from the Tone Detectors output are masked. The Tone Detectors operate as specified in their Echo Canceller B, Control Register 2. When low, the Tone Detectors Interrupts are active. Note: Only the Main Control Register 0 has the MIRQ bit.											
MTDBI	Mask Tone D Canceller B i Register 2. V	Detector B Inter s masked. The Vhen low, the ⁻	rrupt: When hig e Tone Detecto Tone Detector	gh, the Tone D or operates as B Interrupt is a	etector interrup specified in Ec active.	ot output from ho Canceller I	Echo B, Control					
MTDAI	Mask Tone D Canceller A i Register 2. V	Detector A Inters s masked. The Vhen low, the ⁻	rrupt: When hig e Tone Detecto Tone Detector	gh, the Tone D or operates as A Interrupt is a	etector interrup specified in Ec active.	bt output from ho Canceller <i>i</i>	Echo A, Control					
Format	ITU-T/Sign M (G.711) PCM sign-magnitu	lag: When hig code. When l de PCM code.	h, both Echo C ow, both Echo	Cancellers A ar Cancellers A a	nd B for a giver and B for a give	n group, accer en group, acce	ot ITU-T ept					
Law	A/ μ Law: When high, both Echo Cancellers A and B for a given group, accept A-Law companded PCM code. When low, both Echo Cancellers A and B for a given group, accept μ -Law companded PCM code.											
PWUP	Power-UP: V active. When in Power Dov and from Sir echo cancell Address+00 _r coefficients. initialization r specific appli	Vhen high, bot low, both Ech wn mode. In th to Sout with er A and B exe nex to Base Ad Two frames ar routine is exec ication.	h Echo Cance o Cancellers A is mode, the ca two frames de ecute their initia dress+3F _{hex} , t e necessary fo uted, the user	llers A and B a and B and Top presponding F lay. When the alization routin o default powe or the initializat can set the pe	nd Tone Detect ne Detectors for PCM data are to PWUP bit togo e which preset or up value and ion routine to e r channel Conf	tors for a give or a given grou oypassed from gles from zero s their registe clears the Ad execute proper trol Registers	en group, are p, are placed n Rin to Rout to one, the rs, Base aptive Filter rly. Once the for their					

Main Control Register 2 (EC Group 2)R/W Address: 402 _{hex} Main Control Register 3 (EC Group 3)R/W Address: 403 _{hex} Main Control Register 4 (EC Group 4)R/W Address: 404 _{hex} Main Control Register 5 (EC Group 5)R/W Address: 405 _{hex} Main Control Register 6 (EC Group 6)R/W Address: 406 _{hex} Main Control Register 7 (EC Group 7)R/W Address: 406 _{hex} Main Control Register 7 (EC Group 7)R/W Address: 406 _{hex} Main Control Register 9 (EC Group 8)R/W Address: 408 _{hex} Main Control Register 10 (EC Group 10)R/W Address: 408 _{hex} Main Control Register 10 (EC Group 10)R/W Address: 408 _{hex} Main Control Register 11 (EC Group 12)R/W Address: 406 _{hex} Main Control Register 13 (EC Group 12)R/W Address: 400 _{hex} Main Control Register 13 (EC Group 13)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 14)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex}	Main Cont	in Control Register 1 (EC Group 1) R/W Address: 401 _{hex}									
Main Control Register 3 (EC Group 3)R/W Address: 403 _{hex} Main Control Register 4 (EC Group 4)R/W Address: 404 _{hex} Main Control Register 5 (EC Group 5)R/W Address: 405 _{hex} Main Control Register 6 (EC Group 6)R/W Address: 406 _{hex} Main Control Register 7 (EC Group 7)R/W Address: 406 _{hex} Main Control Register 8 (EC Group 8)R/W Address: 407 _{hex} Main Control Register 9 (EC Group 9)R/W Address: 408 _{hex} Main Control Register 10 (EC Group 10)R/W Address: 408 _{hex} Main Control Register 11 (EC Group 11)R/W Address: 406 _{hex} Main Control Register 12 (EC Group 12)R/W Address: 406 _{hex} Main Control Register 13 (EC Group 13)R/W Address: 406 _{hex} Main Control Register 14 (EC Group 14)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 14)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 14)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 14)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 14)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15)R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15)R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15)R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15)R/W Address: 40F _{hex} Main Control Register 15 (EC Group 16)R/W Address: 40F _{he}	Main Cont	ain Control Register 2 (EC Group 2)									
Main Control Register 4 (EC Group 4)R/W Address: 404 _{hex} Main Control Register 5 (EC Group 5)R/W Address: 405 _{hex} Main Control Register 6 (EC Group 6)R/W Address: 406 _{hex} Main Control Register 7 (EC Group 7)R/W Address: 407 _{hex} Main Control Register 8 (EC Group 8)R/W Address: 408 _{hex} Main Control Register 9 (EC Group 9)R/W Address: 409 _{hex} Main Control Register 10 (EC Group 10)R/W Address: 408 _{hex} Main Control Register 11 (EC Group 12)R/W Address: 406 _{hex} Main Control Register 12 (EC Group 12)R/W Address: 406 _{hex} Main Control Register 13 (EC Group 12)R/W Address: 406 _{hex} Main Control Register 14 (EC Group 13)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 14)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 14)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 16)MTDAIMast Tone Detector B Interrupt: When high, the Tone Detector interrupt output fr	Main Cont	Main Control Register 3 (EC Group 3) R/W Address: 403 _{hex}									
Main Control Register 5 (EC Group 5)R/W Address: 405 _{hex} Main Control Register 6 (EC Group 6)R/W Address: 406 _{hex} Main Control Register 7 (EC Group 7)R/W Address: 407 _{hex} Main Control Register 8 (EC Group 8)R/W Address: 408 _{hex} Main Control Register 9 (EC Group 9)R/W Address: 409 _{hex} Main Control Register 10 (EC Group 10)R/W Address: 406 _{hex} Main Control Register 11 (EC Group 11)R/W Address: 406 _{hex} Main Control Register 12 (EC Group 12)R/W Address: 406 _{hex} Main Control Register 13 (EC Group 13)R/W Address: 400 _{hex} Main Control Register 14 (EC Group 14)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15)R/W AddressMain Control Register 15 (EC Group 15)R/W Address	Main Cont	Main Control Register 4 (EC Group 4) R/W Address: 404 _{hex}									
Main Control Register 6 (EC Group 6) R/W Address: 406 _{hex} Main Control Register 7 (EC Group 7) R/W Address: 407 _{hex} Main Control Register 8 (EC Group 8) R/W Address: 408 _{hex} Main Control Register 9 (EC Group 9) R/W Address: 409 _{hex} Main Control Register 10 (EC Group 10) R/W Address: 404 _{hex} Main Control Register 11 (EC Group 11) R/W Address: 406 _{hex} Main Control Register 12 (EC Group 12) R/W Address: 406 _{hex} Main Control Register 13 (EC Group 12) R/W Address: 406 _{hex} Main Control Register 13 (EC Group 13) R/W Address: 406 _{hex} Main Control Register 14 (EC Group 13) R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15) R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15) R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15) R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15) R/W Address: 406 _{hex} Main Control Register 15 (EC Group 15) R/W Address: 407 _{hex} Main Control Register 15 (EC Group 15) R/W Address: 407 _{hex} Main Control Register 15 (EC Group 16) MTDBI MTDAI Mused Unused MTDBI MTDAI Functional Description of Register Bits	Main Cont	Main Control Register 5 (EC Group 5) R/W Address: 405 _{hex}									
Main Control Register 7 (EC Group 7) R/W Address: 407 _{hex} Main Control Register 8 (EC Group 8) R/W Address: 408 _{hex} Main Control Register 9 (EC Group 9) R/W Address: 409 _{hex} Main Control Register 10 (EC Group 10) R/W Address: 40A _{hex} Main Control Register 11 (EC Group 11) R/W Address: 40B _{hex} Main Control Register 12 (EC Group 12) R/W Address: 40C _{hex} Main Control Register 13 (EC Group 13) R/W Address: 40C _{hex} Main Control Register 14 (EC Group 14) R/W Address: 40E _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40E _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Mused Unused MTDBI MTDBI MTDAI Format Law PWUP Functional Description of Register Bits PWUP Unused Unused Bits. MTDBI Mask Tone Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller	Main Cont	rol Register 6	(EC Group 6)				R/W Address	: 406 _{hex}			
Main Control Register 8 (EC Group 8) R/W Address: 408 _{hex} Main Control Register 9 (EC Group 9) R/W Address: 409 _{hex} Main Control Register 10 (EC Group 10) R/W Address: 40A _{hex} Main Control Register 11 (EC Group 11) R/W Address: 40B _{hex} Main Control Register 12 (EC Group 12) R/W Address: 40C _{hex} Main Control Register 13 (EC Group 13) R/W Address: 40D _{hex} Main Control Register 14 (EC Group 14) R/W Address: 40E _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Mused Unused MTDBI MTDBI MTDAI Format Law PWUP Functional Description of Register Bits Unused Unused Bits. MTDBI Mask Tone Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller <td>Main Cont</td> <td>rol Register 7</td> <td>(EC Group 7)</td> <td></td> <td></td> <td></td> <td>R/W Address</td> <td>: 407_{hex}</td>	Main Cont	rol Register 7	(EC Group 7)				R/W Address	: 407 _{hex}			
Main Control Register 9 (EC Group 9)R/W Address: 409_{hex} Main Control Register 10 (EC Group 10)R/W Address: $40A_{hex}$ Main Control Register 11 (EC Group 11)R/W Address: $40B_{hex}$ Main Control Register 12 (EC Group 12)R/W Address: $40C_{hex}$ Main Control Register 13 (EC Group 13)R/W Address: $40D_{hex}$ Main Control Register 14 (EC Group 14)R/W Address: $40E_{hex}$ Main Control Register 15 (EC Group 15)R/W Address: $40F_{hex}$ Main Control Register 15 (EC Group 15)R/W Address: $40F_{hex}$ Main Control Register 15 (EC Group 15)R/W Address: $40F_{hex}$ Main Control Register 15 (EC Group 15)R/W Address: $40F_{hex}$ Main Control Register 15 (EC Group 15)R/W Address: $40F_{hex}$ Main Control Register 15 (EC Group 15)R/W Address: $40F_{hex}$ MusedUnusedMTDBIMTDBIMTDAIFormatLawPWUPFunctional Description of Register BitsUnusedUnused Bits.MTDBIMask Tone Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller	Main Conti	rol Register 8	(EC Group 8)				R/W Address	: 408 _{hex}			
Main Control Register 10 (EC Group 10) R/W Address: 40A _{hex} Main Control Register 11 (EC Group 11) R/W Address: 40B _{hex} Main Control Register 12 (EC Group 12) R/W Address: 40C _{hex} Main Control Register 13 (EC Group 13) R/W Address: 40D _{hex} Main Control Register 14 (EC Group 14) R/W Address: 40E _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Unused Unused MTDBI MTDAI Format Law PWUP Functional Description of Register Bits Unused Unused Bits. MTDBI MTDAI Format Law PWUP	Main Conti	rol Register 9	(EC Group 9)				R/W Address	: 409 _{hex}			
Main Control Register 11 (EC Group 11) R/W Address: 40B _{hex} Main Control Register 12 (EC Group 12) R/W Address: 40C _{hex} Main Control Register 13 (EC Group 13) R/W Address: 40D _{hex} Main Control Register 14 (EC Group 14) R/W Address: 40E _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Unused Unused MTDBI MTDAI Format Law PWUP Functional Description of Register Bits Unused Unused Bits. MTDBI MTDBI Description of Register Bits	Main Cont	rol Register 10) (EC Group 10))			R/W Address	: 40A _{hex}			
Main Control Register 12 (EC Group 12) R/W Address: 40C _{hex} Main Control Register 13 (EC Group 13) R/W Address: 40D _{hex} Main Control Register 14 (EC Group 14) R/W Address: 40E _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Unused Unused MTDBI MTDAI Format Law PWUP Functional Description of Register Bits Unused Unused Bits. Unused Bits. Unused Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller	Main Cont	rol Register 11	I (EC Group 11)			R/W Address	: 40B _{hex}			
Main Control Register 13 (EC Group 13) R/W Address: 40D _{hex} Main Control Register 14 (EC Group 14) R/W Address: 40E _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Power-up 00 _{hex} R/W Address: 40F _{hex} Bit 7 Bit 6 Bit 5 Bit 4 Unused Unused MTDBI MTDAI Functional Description of Register Bits Unused Bits. MTDBI Mask Tone Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller	Main Cont	rol Register 12	2 (EC Group 12	2)			R/W Address	: 40C _{hex}			
Main Control Register 14 (EC Group 14) R/W Address: 40E _{hex} Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Power-up 00 _{hex} Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Unused Unused Unused MTDBI MTDAI Format Law PWUP Functional Description of Register Bits Unused Unused Bits. MTDBI Mask Tone Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller	Main Cont	rol Register 13	3 (EC Group 13	3)			R/W Address	: 40D _{hex}			
Main Control Register 15 (EC Group 15) R/W Address: 40F _{hex} Power-up 00 _{hex} Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Unused Unused Unused MTDBI MTDAI Format Law PWUP Functional Description of Register Bits Unused Unused Bits. MTDBI Mask Tone Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller	Main Cont	rol Register 14	4 (EC Group 14	4)			R/W Address	: 40E _{hex}			
Power-up 00 _{hex} Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Unused Unused Unused MTDBI MTDAI Format Law PWUP Functional Description of Register Bits Unused Unused Bits. MTDBI Mask Tone Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller	Main Cont	rol Register 18	5 (EC Group 15	5)			R/W Address	: 40F _{hex}			
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Unused Unused Unused MTDBI MTDAI Format Law PWUP Functional Description of Register Bits Unused Unused Bits. MTDBI Mask Tone Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller			Power	-up 00 _{hex}							
Unused Unused MTDBI MTDAI Format Law PWUP Functional Description of Register Bits Unused Unused Bits. MTDBI Mask Tone Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Functional Description of Register Bits Unused Unused Bits. MTDBI Mask Tone Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller	Unused	Unused	Unused	MTDBI	MTDAI	Format	Law	PWUP			
Unused Unused Bits. MTDBI Mask Tone Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller		L	Fun	ctional Descri	ption of Regis	ster Bits	•				
MTDBI Mask Tone Detector B Interrupt: When high, the Tone Detector interrupt output from Echo Canceller	Unused	Unused Bits									
	MTDBI	Mask Tone	Detector B Inter	rupt: When hig	h, the Tone De	tector interrup	t output from Ea	cho Canceller			
B is masked. The Tone Detector operates as specified in Echo Canceller B, Control Register 2.		B is masked	. The Tone Def	ector operates	as specified in	n Echo Cancell	er B, Control R	egister 2.			
When low, the Tone Detector B Interrupt is active.		When low, th	ne Tone Detect	or B Interrupt is	s active.						
MTDAI Mask Tone Detector A Interrupt: When high, the Tone Detector interrupt output from Echo Canceller	MTDAI	Mask Tone I	Detector A Inter	rupt: When hig	h, the Tone De	etector interrup	t output from Ec	cho Canceller			
A is masked. The Tone Detector operates as specified in Echo Canceller A, Control Register 2.		A is masked	. The Tone Det	ector operates	as specified in	n Echo Cancell	er A, Control R	egister 2.			
When low, the Tone Detector A Interrupt is active.		When low, the	ne Tone Detect	or A Interrupt is	s active.						
Format ITU-T/Sign Mag: When high, both Echo Cancellers A and B for a given group, select ITU-T (G.711)	Format	ITU-T/Sign N	Mag: When hig	h, both Echo C	ancellers A an	d B for a given	group, select l	TU-T (G.711)			
PCM code. When low, both Echo Cancellers A and B for a given group, select sign-magnitude PCM		PCM code. \	When low, both	Echo Cancelle	ers A and B for	a given group,	select sign-ma	gnitude PCM			
		code.									
Law A/µ Law: When high, both Echo Cancellers A and B for a given group, select A-Law companded	Law	A/µ Law: Wr	hen high, both	Echo Cancelle	rs A and B for a	a given group,	select A-Law c	ompanded			
PCM code. When low, both Echo Cancellers A and B for a given group, select µ-Law companded		PCM code.	when low, both	Echo Cancello	ers A and B for	a given group	, select μ-Law	companded			
POW COUR.		PCIVI COUE.	Nhan high hat	h Eaba Canaal	loro A and P a	ad Tana Dataa	toro for a given	aroup oro			
PWOP Power-OP. When high, both Echo Cancellers A and B and Tone Detectors for a given group, are placed	PWUP	POwer-UP. V	nigh, bot		and B and To	no Tone Delectors for	ors of a given	group, are			
in Power Down mode. In this mode, the corresponding PCM data are hypassed from Rin to Pout		active. When low, both Echo Cancellers A and B and Ione Detectors for a given group, are placed									
and from Sin to Sout with two frames delay. When the PWUP hit toggles from zero to one the		and from Si	n to Sout with	two frames de	lav When the	PWUP bit togo	les from zero to	one the			
echo cancellers A and B execute their initialization routine which presets their registers. Base		echo cancel	lers A and B ex	ecute their init	ialization routir	ne which prese	ts their register	s. Base			
Address+00 _{hov} to Base Address+3F _{hov} , to default Reset Value and clears the Adaptive Filter		Address+00	how to Base Ad	dress+3Fhow. to	o default Reset	Value and cle	ars the Adaptiv	e Filter			
coefficients. Two frames are necessary for the initialization routine to execute properly. Once the		coefficients.	Two frames ar	e necessarv fo	r the initializati	on routine to e	xecute properly	. Once the			
initialization routine is executed, the user can set the per channel Control Registers for their specific		initialization	routine is exec	uted, the user of	can set the per	channel Contr	ol Registers for	their specific			
application.		application.		-	·		-				

	Interrupt FIFO Register												
	Power-up 00 _{hex} R/W Address: 410 _{hex}												
Bit 7	Bit 6	Bit 1	Bit 0										
IRQ	0 0 14 13 12 11 10												
	Functional Description of Register Bits												
IRQ	Logic high in is read. Logi	dicates an inte c Low indicate	errupt has occu s that no interr	urred. IRQ bit i rupt is pending	is cleared after and the FIFO	the Interrupt F is empty.	IFO register						
0	Unused bit.	Always zero.											
0	0 Unused bit. Always zero.												
I<4:0>	I<4:0> binary occurred. No	code indicate	es the channel a Tone Disabl	number at wh e is detected o	ich a Tone Det or released, an	ector state cha interrupt is ge	ange has nerated.						

Test Register												
Power-up 00 _{hex} R/W Address: 411 _{hex}												
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
Reserve	Reserve	Reserve	Reserve	Reserve	Reserve	Reserve	Tirq					
Functional Description of Register Bits												
Reserve	Reserved bit	s. Must always	s be set to zero	o for normal op	eration.							
Tirq	Test IRQ: Us any change t correspondin normal opera	eful for the ap to MTDBI and tg channel nur ation is selecte	plication engin MTDAI bits of nber will be av d.	eer to verify th the Main Contr ailable from th	e interrupt ser ol Register wi e Interrupt FIF	vice routine. V Il cause an inte O Register. W	/hen high, errupt and its /hen low,					

Notes:

- 1. Pin 1 indicator may be a corner chamfer, dot or both.
- 2. Controlling dimensions are in millimeters.
- 3. The top package body size may be smaller than the bottom package body size by a max. of 0.15 mm.
- 4. Dimension D1 and E1 do not include mould protusion.
- 5. Dimension b does not include dambar protusion.
- 6. Coplanarity, measured at seating plane G, to be 0.08 mm max.

This drawing supersedes 418/ED/51210/023 (Swindon)

© Zarlink Semiconductor 2002 All rights reserved.			s reserved.			Package Code
ISSUE	1	2	3		Previous package codes	Package Outline for 100 lead
ACN	201373	207144	212447		GP / B	LQFP (14 x 14 x 1.4mm) 2 0mm Ecotorint
DATE	290ct96	15.10199	26Mar02	SEMICORPOCTOR	/	
BATE	2000100	1000100	20110102			
APPRD.						GPD00233

BOTTOM VIEW

For more information about all Zarlink products visit our Web Site at

www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru