

Sach Nr.: T60404-N4644-X050 Item no.:

Page

of

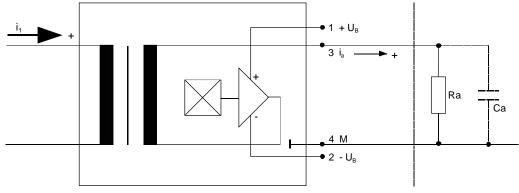
K-Nr.:
K-no.:

400 A - Stromsensor-Modul / Current Sensor Module (Molex Connector)

Datum:
Date:

Von 6

Customers part no.:


Maßbild siehe Blatt 2 : Mechanical outlines page 2

Anschlußschema:

Schematic diagram

Ambient temperature

Customer

Betriebsdaten/Charakteristische Daten (Richtwerte):

Operational data/characteristic data (nominal values):

Nennstrom	i _{1Neff}	=	400	Α
Rated current Nennausgangsstrom	i "	=	80	mA
Output current	aNeff	_	00	ША
Nennübersetzungsverhältnis	K_N	=	(1): 5000	
Transformation ratio				
Überstrom $(R_a < 10 \Omega)$)	1max	=	± 425	Α
Over current $(R_a < 10 \Omega)$				
PositiverVersorgungsstrom im Leerlauf	I _{Bo+}	<	18	mA
Positive supply current				
Negativer Versorgungsstrom im Leerlauf	I _{Bo-}	<	2	mA
Negative supply current				
Versorgungsspannung (± 12 V ±5% bei eingeschränktem î _{1msx})	U_B	=	± 15	V ±5%
Supply voltage (± 12 V ±5%with limited î _{1msx})			140	
Maximale Versorgungsspannung (ohne Fkt.)	U_Btot	=	±18	V
Maximum supply voltage (without function)	Б		450	
Innenwiderstand	R _i	<	152	Ω
Interal resistance	D		0 200	0
Abschlußwiderstandsbereich Load resistance	R _a	=	0200	Ω
Umgebungstemperatur	Tu	=	-40+85	°C
Offigebullystelliperatul	I []	_	- 4 0+00	$\overline{}$

Weitere Vorschriften: Gehäuse- und Spulenkörperwerkstoff UL-gelistet.

Applicable documents: Housing and bobbin material UL-listed

Datum Name Index Änderung 24.05.02 HH. 83 Maßbild aktualisiert. 03.03.00 Bd. 83 Leiterplatte geändert (Nutzentrennung umgestellt). Grundplatte mit vergoldeten Stiften. Hrsg.: KB-FB FT freig.: HH. Bearb: KB-PM B: Dö. Bd.

VACUUMSCHMELZE	DATE	NBLATT / Spe	ecification	Sach Nr.: T60	404-N4644-X050
K-Nr.: K-no.:	400	A - Stromsensor-N	Modul / Current Sens	sor Module (Molex Connector)	Datum: 24.05.2002 Date:
	element/Stand	dard type	Kd. Sach Nr.: Customers part no	D.:	Seite 2 von 6 Page of
Maßbild (mm): Mechanical outline		naßtoleranz DIN IS al tolerances	O 2768-c		Anschlüsse: Connections:
		4,5			Stifte 0,64 x 0,64mm vergoldet
1	<u> </u>	O		Toleranz der	
≤46	35	0	0	Befestigungs- raster ±0,5mm	
	≤26 <u>▼</u>	0	0	Tolerance of mounting holes	
•	<u> </u>	4,5 12,5 37,5 ≤56			
(16,55	5)	F	DC ((Stecker: Connector) //olex 5045-04/AG	
	5			12,1	
25,4	0,5			emessen am Boden	Beschriftung: inscription
	Ť	30		er Steckerschutzwände)	4644X050 F DC

DC=Date Code F=Factory

Optimale Position des Rückleiters für kurze Ansprechzeiten ist eine seitliche Rückführung des Primärleiters in Höhe des Innenlochs.

Optimal position of the return conductor for short response time is alongside at the same height as the inner hole.

Hrsg.: KB-FB FT	Bearb: Bd.	KB-PM B: Dö.		freig.: HH.

Sach Nr.: T60404-N4644-X050 Item no.:

K-Nr.: Datum: 400 A - Stromsensor-Modul / Current Sensor Module (Molex Connector) 24.05.2002 Date: K-no.: Kunde: Kd. Sach Nr.: Seite 3 von 6 Typenelement/Standard type Customer Customers part no. Page of

Prüfung: (V:100%-Test; AQL...:DIN ISO 2859-Teil 1)

Inspection

 $N_1 \cdot \hat{i}_1$

Hrsg.: KB-FB FT

Bearb:

Bd.

1) (V) Ausgangsstrom (R_a = 20 Ω) i_a (400 A) = 80 mA \pm 0,5 %

Output current ($R_a = 20 \Omega$)

2) (V) Offsetstrom $I_0 \leq 0.02$ mA

Offset current

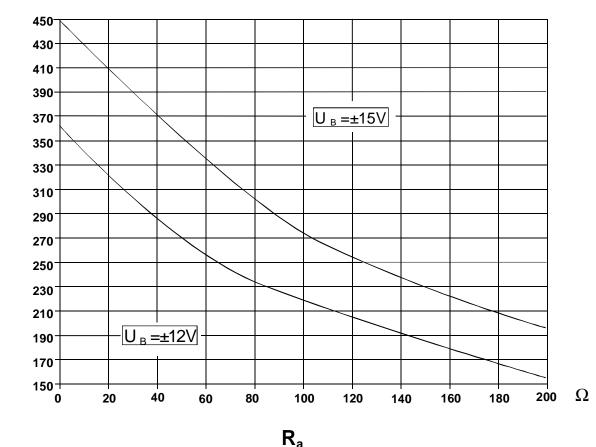
3) (V) M3014: Prüfspannung (50 Hz, 2 s) $U_{p,eff}$ = 6 kV

Test voltage (50 Hz, 2 s) C_u - Schiene im Mittelloch gegen Pin1...Pin4

Cu-bar in the center hole to Pin1...Pin4

4) (AQL 1/S4) M3024: Glimmaussetzspannung $U_{TA,eff}$ \geq 1770 V

Partial discharge C_u - Schiene im Mittelloch gegen Pin1...Pin4


C_u-bar in the center hole to Pin1...Pin4

freig.: HH.

Messungen nach Temperaturangleich der Prüflinge an Raumtemperatur

Measurements after temperature balance of the samples at room temperature

KB-PM B: Dö.

Sach Nr.: Item no.:

T60404-N4644-X050

K-Nr.: 400 A - Stromsensor-Modul / Current Sensor Module (Molex Connector) Datum: 24.05.2002 Date: K-no.: Kunde: Kd. Sach Nr.: Seite 4 von 6 Typenelement/Standard type Customer Customers part no.: Page of Charakteristische Daten (Richtwerte) des Stromsensormoduls ermittelt durch eine Typprüfung General data ascertained by type test Meßgenauigkeit bei Raumtemperatur 0,5 % Measuring accuracy at room temperatur Linearität F_{Li} 0.1 % < Linearity Temperaturdrift von F_i (-40...+85°C) F_{Ti} 0,1 % < Temperature drift of F_i (-40...+85°C) Frequenzbereich (bei eingeschränkter Amplitude) DC...50** kHz f = Frequency range (with limited amplitude) Ansprechzeit 3** μs Response time Verzögerungszeit bei î_{1max} bei einem Stromanstieg von di/dt = 100 A/μs Δt (î_{1max}, 100 A/μs) < 1** μs Delay time at $\hat{i}_{1\text{max}}$ with a current rise of di/dt = 100 A/ μ s Offsetstrom (beinhaltend I_o , ΔI_{ot} , ΔI_{oT}) 0,02 mΑ < loges Offset current (including I_0 , ΔI_{ot} , ΔI_{oT}) Offsetstrom bei Raumtemperatur 0.02 mΑ l٥ < Offset current at room temperature Drift von Io 0,02 ΔI_{ot} < mΑ Offset current drift Temperaturdrift von I_o (-40...+85°C) ΔI_{oT} 0.02 mΑ < Offset current temperature drift (-40...+85°C) Hysterese von Io 0.05 ΔI_{oH} < mΑ Hysteresis of Io Offsetripple (s.Blatt 5) 1 mA i_{oss} < Offset ripple (s. page 5) Versorgungsspannungsdurchgriff auf I_o $\Delta I_o/\Delta U_B$ 0.001 mA/V < Supply voltage rejection ratio Maximal mögliche Koppelkapazität primär - sekundär pF C_k 15 < (bei nichtisoliertem das Innenloch voll ausfüllendem Primärleiter)
Maxiimum possibble coupling capacitance (primary - secondary) (with not isolated the the hole completely filling primary conductor) Ausgangsstörgleichstrom I_{aSt} 0,1 mΑ < Interference output current Kritischer Abstand bei einem Störimpuls 10 < cm a_{Krit} Critical distance with an interference pulse current Spannungsfestigkeit (gültig nach DIN VDE 0160, für Isolierklasse I. Verschmutzungsgrad 2 und verstärkte Isolierung) Dielectric strength (with DIN VDE 0160: material group I, pollution degree 2, reinforced insolution) Prüfspanung (50 Hz, 1 min) 5 kV $U_{p,eff}^*$ = Test voltage (50 Hz, 1 min) Bemessungsspannung für Kriechstrecke (DIN VDE 0160) $U_{is.eff}^*$ 2000 V \leq Working voltage (DIN VDE 0160) Ûis* Bemessungsspannung für Luftstrecke (DIN VDE 0160) \leq 2000 V Working voltage (DIN VDE 0160) Netz- Nennspannung gegen Erde für Luftstecke (DIN VDE 0160) $U_{N,eff}^*$ ≤ 690 ٧ Rated mains voltage vs. earth (DIN VDE 0160) Anwendungsklasse nach DIN 40040 Feuchteklasse E erfüllt (Applicability tested by IEC 68-2-30: test Db) Lagertemperaturbereich -40 ... +85°C T_{l} = Storage temperature range Masse m < 135 Masse Stromrichtung: Ein positiver Meßstrom erscheint am Anschluß ia, wenn der Primärstrom in Pfeilrichtung fließt.

Current direction: A positiv output current appears at point ia by primary current in direction of the arrow.

Hrsg.: KB-FB FT freig.: HH. Bearb: KB-PM B: Dö. Bd.

Die Spannungsfestigkeit gilt am separaten Bauelement zwischen Primärleiter und den Stiften 1...4. The dielectric strength is valid between primary conductor and pin 1...4.

^{**} Bei seitlicher Rückführung des Primärleiters in Höhe des Innenlochs. With return conductor alongside at the same height as the inner hole.

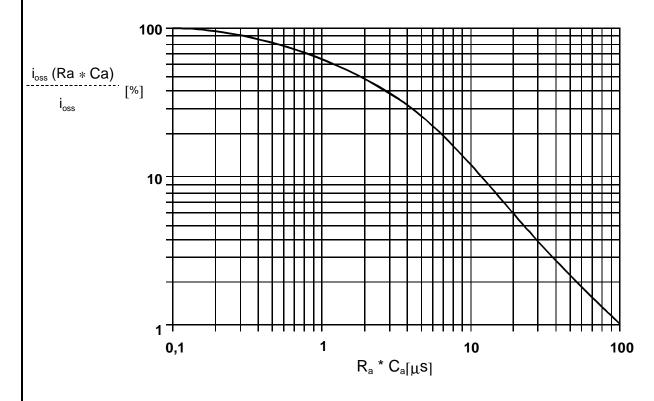
Sach Nr.: T60404-N4644-X050

K-Nr.: K-no.:	•	400 A - Stromsensor-Mo	odul / Current Sensor	Module (Molex Connector)	Datum:	24	1.05.20	02	
Kunde: Customer	Typeneleme	nt/Standard type	Kd. Sach Nr.: Customers part no.:		Seite Page	5	von of	6	

Mögliche Offsettripple-Verringerung durch Tiefpaß:

Avariable offset ripple reduction means of a low pass:

Der Offsettripple kann durch einen externen Tiefpaß verringert werden . Dazu muß parallel zu R_a eine Kapazität C_a geschaltet werden. Die Abbildung zeigt den verbleibenden Wert des Offsetripples ($i_{oss}(R_a \cdot C_a)$) bezogen auf den Wert ohne externe Kapazität (i_{oss}). Hierbei wird allerdings die Ansprechzeit verlängert. Sie berechnet sich nach der Formel:


The offset ripple can be reduced by an external low pass. Therefore a capacitance C_a must be switched parallel to R_a . The diagram shows the remaining value of the offset ripple ($i_{oss}(R_a \cdot C_a)$) relative to the value without external capacitance (i_{oss}). In this case the response time is lengthened. It is calculated from:

Beispiel: $i_{oss} (R_a \cdot C_a)$

Example: ----= 25%

 i_{oss}

 $\begin{aligned} R_{a} &= 47~\Omega; & C_{a} &= 100~nF \\ \tau_{a} &\leq 21~\mu s; & f_{g} &= 34~kHz \end{aligned}$

Sach Nr.: T60404-N4644-X050 Item no.:

K-Nr.: K-no.:	TOO A - Ottottiscrisor-Modal / Carrent Sensor Modale (Molex Confiector)		Datum: Date:	2	4.05.20	02		
Kunde: Customer	Typeneleme	nt/Standard type	Kd. Sach Nr.: Customers part no.:	Seite Page	6	von of	6	

Erläuterung einiger in den Tabellen verwendeter Größen (alphabetisch)

Explanation of several of the terms used in the tablets (in alphabetical order)

Abstand eines störstromführenden Leiters von der Gehäuseseitenflaäche, bei dem auch an ungünstiger Stelle die zugeordnete Störgröße am Ausgang des Sensos 1% des Nennstroms nicht übersteigt. Den Angaben liegt ein sinusförmiger Störimpuls mit einer Impulsbeite von 50 µs in Höhe des Nennstroms zugrunde.

Distance of a current carring conductor from the sides of the housing, where even at the most unfavourable spot the applicable interference at the sensor output does not exeed 1% of rated current. The data is based on a sinusoidal interference pulse current with a pulse width of 50 μs having the same magnitude as the rated current.

F_{aes}(i₁):Die Summe aller möglichen Fehler im gesamten Temperaturbereich bei der Messung eines Stroms i₁:

The sum of all possible errors over the temperature range when measuring a current i₁:

$$F_{ges} = 100 \bullet \begin{vmatrix} i_a (i_1) \\ ----- - 1 \\ K_N \cdot i_1 \end{vmatrix}$$

F_i: In der Ausgangsprüfung zugelassener Meßfehler bei RT, definiert durch

Permissible measurement error in the final inspection at RT, defined by

$$F_{i} = 100 \bullet \begin{vmatrix} I_{a} & | \\ ----- & 1 \end{vmatrix}$$

$$\begin{vmatrix} I_{aNeff} & | \\ I_{aNeff} & | \end{vmatrix}$$

wobei lan der offsetbereinigte Ausgangsgleichstromwert für einen Eingangsgleichstrom in Höhe des (positiven)

Nennstroms ist (d.h. $I_0 = 0$)

where Ian is the output DC value of an input DC current of the same magnitude as the (positive) rated current (Io = 0)

Linearitätsfehler definiert durch $F_{Li} = 100 \bullet$ $\begin{vmatrix} ----- & ----- \\ I_{1Neff} & I_{an} \end{vmatrix}$ F_{Li}:

Dabei ist I₁ beliebiger Eingangsgleichstrom und I_a die zugehörige offsetbereinigte Ausgangsgröße (d.h. I_o = 0). I_{an}

s. Erläuterung zu Fi.

Where I_1 is any input DC and I_a the corresponding output term. I_{an} see notes of F_i ($I_0 = 0$).

Temperaturdrift der nennwertbezogene Ausgangsgrößen Ian (vgl. Erläuterung zu Fi) im spezifischen F_{Ti}: Temperaturbereich, gegeben durch.

Temperatur drift of the rated value orientated output term. Ian (cf. Notes on Fi) in a specified temperature range, obtained by:

Ausgangsgleichstrom hervorgerufen durch einen Störgleichstrom in Höhe des Nennstroms in einem Leiter in 1 cm I_{aSt}: Abstand von der Gehäuseseitenfläche (ungünstige Lage).

Output DC current caused by an interfering DC current of the same magnitude as the rated current in a conductor 1 cm away from the sides of the housing (unfavourable position).

Nullpunktabweichung nach Übersteuerung mit Gleichstrom des 4-fachen Nennwerts. (Ra = RaN) ΔI_{oH} :

Zero variaton after overloading with a DC of fourfold the rated value. (Ra = RaN)

Alat: Langzeitdrift von I₀ nach 100 Temperaturwechseln im Bereich von -40 bis 85 °C.

Long term drift of $\rm I_{o}$ after 100 temperature cycles in the range -40 to 85 $^{\circ}\text{C}.$

Ansprechzeit, gemessen als Verzögerungszeit bei $i_1 = 0.9$ î₁ zwischen einem eingespeisten Rechteckstrom τ: und dem dazugehörigen Ausgangsstrom.

Response time, measured as delay time at $i_1 = 0.9$ \hat{i}_1 between a rectangular current i_1 and the output current i_2

 Δt (\hat{i}_{1max} , 100 A/ μ s): Verzögerungszeit zwischen î_{1max} und dem dazugehörigen Ausgangsstrom i_a bei einem

Delay time between \hat{i}_{1i}	$_{\rm max}$ and the output current ${\rm i_a}$ with a primary current ris	e of αι ₁ /αt = 100 A/μs.

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru