Product data sheet

1. General description

PNP low V_{CEsat} transistor in a medium power flat lead SOT89 plastic package.

NPN complement: PBSS4320X

2. Features and benefits

- SOT89 (SC-62) package
- Low collector-emitter saturation voltage V_{CEsat}
- High collector current capability: I_C and I_{CM}
- · Higher efficiency leading to less heat generation
- · Reduced printed-circuit board requirements.
- AEC-Q101 qualified

3. Applications

- Power management
 - · DC/DC converters
 - Supply line switching
 - Battery charger
 - · LCD backlighting.
- Peripheral drivers
 - Driver in low supply voltage applications (e.g. lamps and LEDs)
 - · Inductive load driver (e.g. relays, buzzers and motors).

4. Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{CEO}	collector-emitter voltage	open base		-	-	-20	V
I _C	collector current		[1]	-	-	-3	Α
I _{CM}	peak collector current	limited by T _{j(max)}		-	-	-5	Α
h _{FE}	DC current gain	V _{CE} = -2 V; I _C = -0.1 A		220	-	-	
R _{CEsat}	collector-emitter saturation resistance	I _C = -3 A; I _B = -300 mA	[2]	-	90	105	mΩ

^[1] Device mounted on a ceramic printed-circuit board 7 cm², single-sided copper, tin-plated.

[2] Pulsed test: $t_p \le 300 \ \mu s$; $\delta \le 0.02$

20 V, 3 A PNP low VCEsat (BISS) transistor

5. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	E	emitter		C
2	С	collector		В—
3	В	base	3 2 1 SOT89	E sym132

6. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
PBSS5320X	SOT89	plastic surface-mounted package; die pad for good heat transfer; 3 leads	SOT89

7. Marking

Table 4. Marking codes

Type number	Marking code
PBSS5320X	S45

20 V, 3 A PNP low VCEsat (BISS) transistor

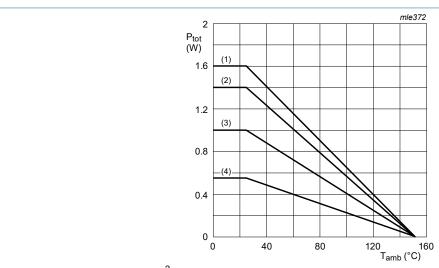

8. Limiting values

Table 5. Limiting values

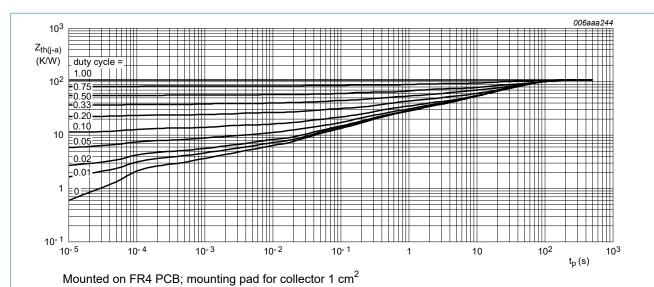
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CBO}	collector-base voltage	open emitter		-	-20	V
V _{CEO}	collector-emitter voltage	open base		-	-20	V
V _{EBO}	emitter-base voltage	open collector		-	-5	V
I _C	collector current		[1]	-	-3	Α
I _{CM}	peak collector current	limited by T _{j(max)}		-	-5	А
I _B	base current			-	-0.5	Α
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	[2]	-	550	mW
			[3]	-	1	W
			[4]	-	1.4	W
			[1]	-	1.6	W
Tj	junction temperature			-	150	°C
T _{amb}	ambient temperature			-65	150	°C
T _{stg}	storage temperature			-65	150	°C

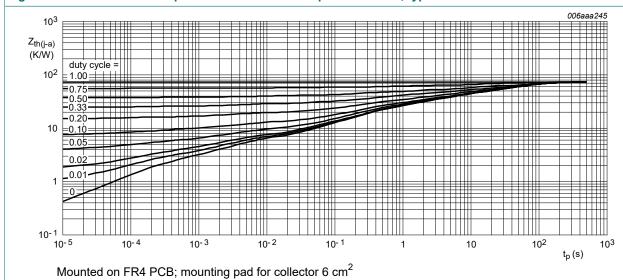
- Device mounted on a ceramic printed-circuit board 7 cm², single-sided copper, tin-plated.
- Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.
- Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1 cm² [3]
- Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 6 cm².

- (1) Ceramic PCB; 7 cm² mounting pad for collector (2) FR4 PCB; 6 cm² copper mounting pad for collector (3) FR4 PCB; 1 cm² copper mounting pad for collector
- (4) Standard footprint

Power derating curves Fig. 1.


20 V, 3 A PNP low VCEsat (BISS) transistor

9. Thermal characteristics


Table 6. Thermal characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$R_{th(j-a)}$	thermal resistance from	ent	[1]	-	-	225	K/W
	junction to ambient		[2]	-	-	125	K/W
			[3]	-	-	90	K/W
			[4]	-	-	80	K/W
R _{th(j-sp)}	thermal resistance from junction to solder point			-	-	16	K/W

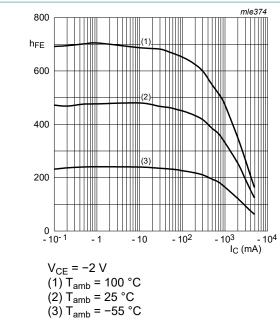
- Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.
- Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 1 cm².
- Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for collector 6 cm². Device mounted on a ceramic printed-circuit board 7 cm², single-sided copper, tin-plated.

Transient thermal impedance as a function of pulse duration; typical values Fig. 2.

Transient thermal impedance as a function of pulse duration; typical values

20 V, 3 A PNP low VCEsat (BISS) transistor

10. Characteristics

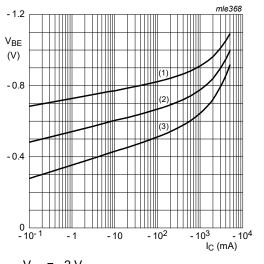

Table 7. Characteristics

 T_{amb} = 25 °C unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{CBO}	collector-base cut-off	V _{CB} = -20 V; I _E = 0 A		-	-	-100	nA
	current	V _{CB} = -20 V; I _E = 0 A; T _j = 150 °C		-	-	-50	μA
I _{CES}	collector-emitter cut-off current	V _{CE} = -20 V; V _{BE} = 0 V		-	-	-100	nA
I _{EBO}	emitter-base cut-off current	V _{EB} = -5 V; I _C = 0 A		-	-	-100	nA
h _{FE}	DC current gain	V _{CE} = -2 V; I _C = -0.1 A		220	-	-	
		V _{CE} = -2 V; I _C = -0.5 A		220	-	-	
		V _{CE} = -2 V; I _C = -1 A	[1]	200	-	-	
		V _{CE} = -2 V; I _C = -2 A	[1]	150	-	-	
		V _{CE} = -2 V; I _C = -3 A	[1]	100	-	-	
V _{CEsat}	collector-emitter saturation voltage	I _C = -0.5 A; I _B = -50 mA		-	-	-70	mV
		I _C = -1 A; I _B = -50 mA		-	-	-130	mV
		I _C = -2 A; I _B = -100 mA		-	-	-230	mV
		I _C = -3 A; I _B = -300 mA	[1]	-	-	-300	mV
R _{CEsat}	collector-emitter saturation resistance		[1]	-	90	105	mΩ
V _{BEsat}	base-emitter saturation	I _C = -2 A; I _B = -100 mA		-	-	-1.1	V
	voltage	I _C = -3 A; I _B = -300 mA	[1]	-	-	-1.2	V
V_{BEon}	base-emitter turn-on voltage	$V_{CE} = -2 \text{ V; } I_{C} = -1 \text{ A}$		-1.1	-	-	V
f _T	transition frequency	V _{CE} = -5 V; I _C = -100 mA; f = 100 MHz		100	-	-	MHz
C _c	collector capacitance	V_{CB} = -10 V; I_{E} = 0 A; i_{e} = 0 A; f = 1 MHz		-	-	50	pF

^[1] Pulsed test: $t_p \le 300 \ \mu s; \ \delta \le 0.02$

20 V, 3 A PNP low VCEsat (BISS) transistor

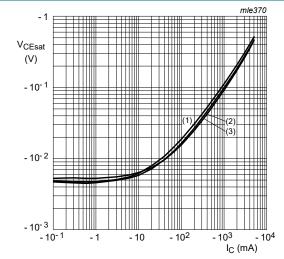


$$V_{CE} = -2 V$$

$$(1) I_{amb} = 100^{\circ} ($$

$$(3) T_{amb} = -55 °C$$

Fig. 4. DC current gain as a function of collector current; typical values


$$V_{CE} = -2 V$$

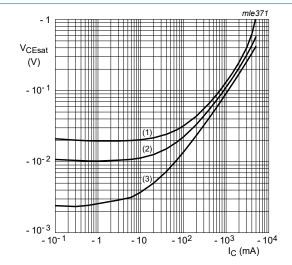
$$V_{CE} = -2 V$$

(1) $T_{amb} = -55 °C$
(2) $T_{amb} = 25 °C$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

(3)
$$T_{amb} = 100 \, ^{\circ}C$$

Fig. 5. Base-emitter voltage as a function of collector current; typical values


$$I_{\rm C}/I_{\rm B}=20$$

(1)
$$T_{amb} = 100 \, ^{\circ}C$$

(2)
$$T_{amb} = 25 \, ^{\circ}C$$

$$(3) T_{amb} = -55 °C$$

Fig. 6. Collector-emitter saturation voltage as a function of collector current; typical values

(1)
$$I_C/I_B = 100$$

(2)
$$I_C/I_B = 50$$

(3)
$$I_C/I_B = 10$$

Fig. 7. Collector-emitter saturation voltage as a function of collector current; typical values

20 V, 3 A PNP low VCEsat (BISS) transistor

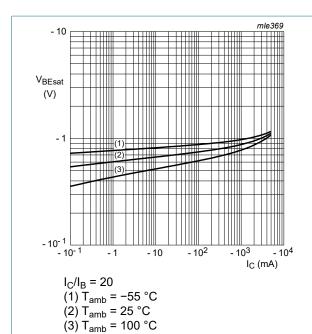
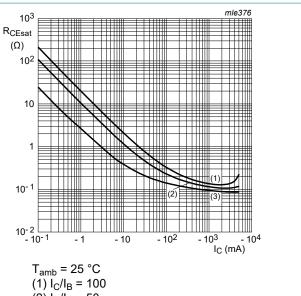
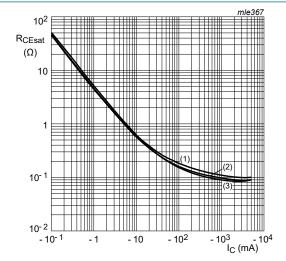
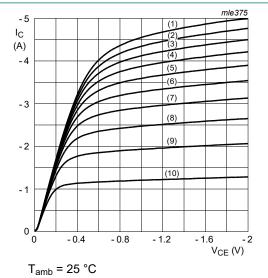




Fig. 8. Base-emitter saturation voltage as a function of Fig. 9. collector current; typical values


(2) $I_C/I_B = 50$ (3) $I_C/I_B = 10$

Equivalent on-resistance as a function of collector current; typical values

 $I_{\rm C}/I_{\rm B} = 20$ (1) T_{amb} = 100 °C (2) T_{amb} = 25 °C (3) $T_{amb} = -55 \, ^{\circ}C$

Fig. 10. Equivalent on-resistance as a function of collector current; typical values

(1) $I_B = -25 \text{ mA}$ $(2) I_B = -22.5 \text{ mA}$ (3) $I_B = -20 \text{ mA}$ $(4) I_B = -17.5 \text{ mA}$ $(5) I_B = -15 \text{ mA}$ (6) $I_B = -12.5 \text{ mA}$ (7) $I_B = -10 \text{ mA}$ (8) $I_B = -7.5 \text{ mA}$ (9) $I_B = -5 \text{ mA}$ $(10)^{-1}I_B = -2.5 \text{ mA}$

Fig. 11. Collector current as a function of collectoremitter voltage; typical values

20 V, 3 A PNP low VCEsat (BISS) transistor

11. Test information

Quality information

This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard Q101 - *Stress test qualification for discrete semiconductors*, and is suitable for use in automotive applications.

20 V, 3 A PNP low VCEsat (BISS) transistor

12. Package outline

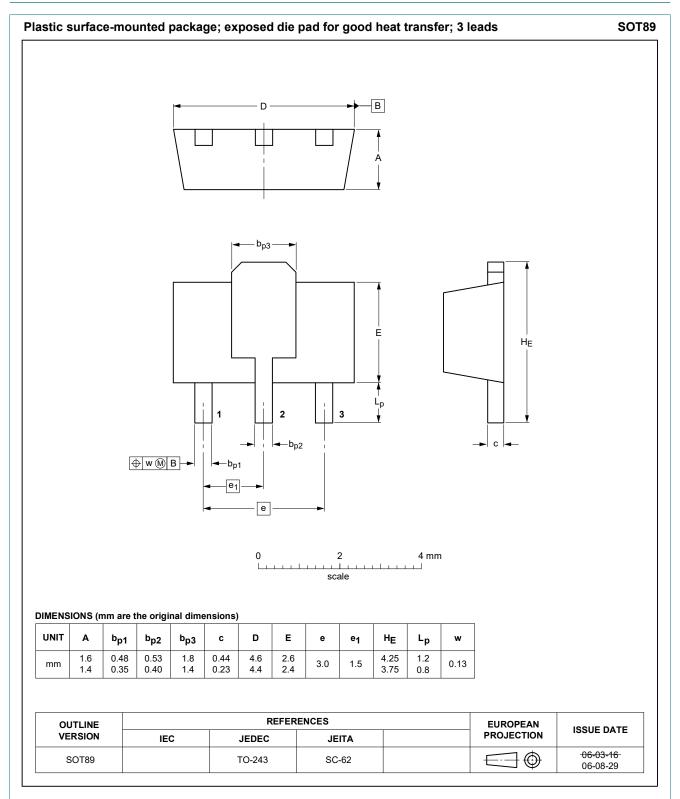


Fig. 12. Package outline SOT89

20 V, 3 A PNP low VCEsat (BISS) transistor

13. Soldering

20 V, 3 A PNP low VCEsat (BISS) transistor

14. Revision history

Table 8. Revision history

able of treviolett the							
Data sheet ID	Release date	Data sheet status	Change notice	Supersedes			
PBSS5320X v.3	20190527	Product data sheet	-	PBSS5320X v.2			
Modifications:	 Characteristics: V_{BEsat} corrected from typical to maximum. The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. 						
PBSS5320X v.2	20041104	Product data sheet	-	PBSS5320X v.1			
PBSS5320X v.1	20031127	Product data sheet	-	-			

20 V, 3 A PNP low VCEsat (BISS) transistor

15. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

PBSS5320X

All information provided in this document is subject to legal disclaimers

© Nexperia B.V. 2019. All rights reserved

20 V, 3 A PNP low VCEsat (BISS) transistor

Contents

1.	General description	1
2.	Features and benefits	1
3.	Applications	1
4.	Quick reference data	1
5.	Pinning information	2
6.	Ordering information	2
7.	Marking	2
8.	Limiting values	3
9.	Thermal characteristics	4
10.	Characteristics	5
11.	Test information	8
12.	Package outline	9
13.	Soldering	10
14.	Revision history	11
	Legal information	

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 27 May 2019

[©] Nexperia B.V. 2019. All rights reserved

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru