
USB Interface Adapter Evaluation Module

User's Guide

Literature Number: SLLU093

August 2006

2 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

Contents

Preface ... 7

1 Introduction ... 9
1.1 List of Hardware Items for Operation .. 9

1.2 List of Software Items for Operation .. 10

1.3 Step-by-Step Instructions for Operation and Troubleshooting .. 10

2 Summary of Hardware Design .. 11
2.1 Introduction... 11

2.2 Ribbon-Cable Connector J2 and Pinout.. 11

2.3 Configuration of Pullup Resistors for Pins 8, 9, and 10 .. 12

2.4 EEPROM ... 12

2.5 LED Indication of USB Attached .. 12

3 Firmware Programming and Communications Protocol .. 13
3.1 Firmware Features Summary ... 13

3.2 Firmware Version Command and Response .. 13

3.3 I2C Write Command and Response .. 14

3.4 I2C Read Command and Response .. 14

3.5 Read/Write Port 0 Command and Response.. 15

3.6 EEPROM Program Command and Response .. 15

3.7 EEPROM Read Command and Response .. 16

3.8 Set Pullup Resistors Command and Response ... 16

3.9 Set I2C-PMBUS-SMBUS Speed Command and Response ... 17

3.10 Generic I2C Write Command and Response .. 17

3.11 Generic I2C Read Command and Response .. 18

3.12 Board Test Command and Response .. 18

3.13 Other Commands for Different Applications ... 18

4 Firmware Versioning Scheme .. 19
4.1 Introduction... 19

4.2 Rules for Implementing Compliant Custom Firmware.. 20

4.3 Compliant Versioning ... 20

5 GUI and PC Libraries .. 25
5.1 Windows XP ... 26

5.2 Device Transport .. 27

5.3 GUI Application .. 28

6 Schematic, Bill of Materials, PCB Layout ... 29
6.1 Schematic .. 30

6.2 Bill of Materials (BOM).. 31

6.3 Printed Circuit Board (PCB) Layout... 33

A Lists of Communication Protocol ... 37
A.1 Host PC to USB Interface Adapter Commands ... 37

A.2 USB Interface Adapter to Host PC Response Commands .. 38

B PMBUS/SMBUS Communications ... 39
B.1 Overview.. 39

SLLU093–August 2006 Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

B.2 Basic SMBUS Transaction Types Supported ... 39

B.3 Special Signals Used for PMBUS/SMBUS Communications.. 39

B.4 Packet Error Checking (PEC) Implementation .. 40

B.5 Communication Clock Speed and Clock Stretching .. 40

B.6 Configuration of Pullup Resistors for ALERT, DATA, and CLOCK Lines.................................. 40

B.7 Limitations .. 40

B.8 List of Host PC to USB Interface Adapter Commands ... 41

B.9 List of USB Interface Adapter to Host PC Response Commands .. 42

B.10 Send Byte Command and Response... 43

B.11 Receive Byte Command and Response ... 43

B.12 Write Byte Command and Response... 43

B.13 Write Word Command and Response.. 44

B.14 Read Byte Command and Response... 44

B.15 Read Word Command and Response.. 45

B.16 Process Call Command and Response .. 45

B.17 Block Write Command and Response.. 46

B.18 Block Read Command and Response ... 46

B.19 Block Read – Block Write Process Call Command and Response... 47

B.20 Group Command and Response.. 47

B.21 Assert/Deassert CONTROL Lines Command and Response... 48

B.22 Poll PMBUS Signal Lines Command and Response... 48

B.23 Turn On/Off PEC Command and Response... 49

4 Contents SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

List of Figures

1-1 Connection of USB Interface Adapter, USB Cable, and Ribbon Cable .. 9
4-1 Flow Chart for Determining Firmware Programing... 22
4-2 Interactions of Applications During Firmware Programming.. 23
5-1 USB Adapter Software Architecture ... 25
5-2 Sample GUI Application ... 28
6-1 Schematic ... 30
6-2 PCB Layout — Top L1 (Copper Layer) — Assembly TA ... 33
6-3 PCB Layout — Top S1 (Silkscreen Layer).. 34
6-4 PCB Layout — Top L1 (Copper Layer).. 35
6-5 PCB Layout — Bottom L2 (Copper Layer).. 36

List of Tables

2-1 Terminal Functions... 11
2-2 Configurable Options of Pullup Resistors for Pins 8, 9, and 10.. 12
4-1 List of Pairs of Commands Needed for Firmware Versioning .. 20
4-2 Three Bytes for Firmware Versioning.. 20
4-3 Initial Family Codes .. 21
6-1 Bill of Materials ... 31
B-1 Host PC to USB Interface Adapter Commands .. 41
B-2 USB Interface Adapter to Host PC Response Commands ... 42

SLLU093–August 2006 List of Figures 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

All trademarks are the property of their respective owners.

List of Tables6 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

CAUTION
This EVM contains components that can potentially be damaged by electrostatic
discharge. Always transport and store the EVM in its supplied ESD bag when
not in use. Handle using an antistatic wristband. Operate on an antistatic work
surface. For more information on proper handling, refer to SSYA008.

WARNING
By default, the I C data and clock lines are pulled up to 3.3 V. If internal
pullup resistors are not used and external ones are used instead, please make
sure to pull up to 3.3 V only. Operation from 5 V is not specified and may
permanently damage this USB Interface Adapter EVM.

2 internally

Preface
SLLU093–August 2006

Read This First

About This Manual

This user's guide describes the functions and operation of the USB Interface Adapter evaluation module,
from different aspects of hardware design, firmware programming, communication protocols, GUI and PC
libraries, etc.

How to Use This Manual

This document contains the following chapters:

• Chapter 1 – Introduction
• Chapter 2 – Summary of Hardware Design
• Chapter 3 – Firmware Programming and Communications Protocol
• Chapter 4 – Firmware Versioning Scheme
• Chapter 5 – GUI and PC Libraries
• Chapter 6 – Schematic, Bill of Materials, and PCB Layout

Information About Cautions and Warnings

The information in a caution or a warning is provided for your protection. Please read each caution and
warning carefully.

SLLU093–August 2006 Read This First 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

FCC Warning

FCC Warning

This equipment is intended for use in a laboratory test environment only. It generates, uses, and can
radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable
protection against radio frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case, the user, at his/her own expense, will be
required to take whatever measures may be required to correct this interference.

8 Read This First SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

1.1 List of Hardware Items for Operation

10-Pin Ribbon CableLED Indication of
USB Attached

USB Cable

Chapter 1
SLLU093–August 2006

Introduction

This EVM serves as an interface adapter or a bridge between a host PC (IBM™
compatible) and one or multiple slave devices via a standard type-A to mini-B USB
cable. The communication between the USB interface adapter and the host PC is via
USB, while the communication between the USB interface adapter and the slave
device(s) is via an inter-integrated circuit (I2C) and/or general-purpose inputs/outputs
GPIOs. The bridge converts communication transactions between the USB and
I2C/GPIO.

Note: For the USB interface adapter to communicate with multiple I2C
slaves, build a special 10-pin ribbon cable with multiple connector(s),
so that all the I2C slave devices can be daisy-chained together on
the same ribbon cable.

In order to operate this USB interface adapter, the following items are required (see Figure 1-1):
• USB interface adapter in an enclosure
• Standard type-A to type-mini-B (5-pin) USB cable
• 10-pin ribbon cable with connectors on both ends

Figure 1-1. Connection of USB Interface Adapter, USB Cable, and Ribbon Cable

SLLU093–August 2006 Introduction 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

1.2 List of Software Items for Operation

1.3 Step-by-Step Instructions for Operation and Troubleshooting

List of Software Items for Operation

In addition to the previously listed hardware items, the following software also is needed:
• I2C/GPIO/PMBUS/SMBUS transport layer DLL driver (PMBus Transport (USB HID).dll) created by TI
• Demo GUI software (USB SAA GUI.exe) for I2C/GPIO/PMBUS/SMBUS application

Both can be downloaded from the TI website in the file "USB interface adapter GUI.zip", which also
contains other accessory files.

The USB interface adapter is recognized by a PC as a generic human interface device (HID), which is
supported by the built-in USB/HID drivers of the Windows operating system. Therefore, it is plug and play
and no proprietary USB driver is required.

After you have downloaded and installed the transport DLL and the GUI demo software, follow these steps
to operate the USB interface adapter:

1. Plug in the USB cable to both the PC and the USB interface adapter and wait for the green LED to
illuminate.
Troubleshooting: If the green LED does not illuminate after 30 s, check to ensure the USB cable is
securely connected. If the connection is secure, try a different USB port. If a different USB port does
not solve the problem, try to reboot the computer. If rebooting the computer does not fix the problem,
try a different USB cable. If trying different USB cable does not solve the problem, contact TI technical
support for help.

2. Plug in the 10-pin ribbon cable to both the USB interface adapter and an I2C slave board. Make sure
that the notch on the ribbon-cable connector matches the keyhole of the socket in the enclosure.

3. Power up the I2C slave board. Note that the default I2C speed is set at 100 kHz and the default pullups
for I2C data and clock lines are set at 2.2 kΩ.

4. Run the DEMO GUI software and follow the instructions for the GUI.
Troubleshooting: If the I2C slave board cannot talk with the USB interface adapter, first check to
ensure the 10-pin ribbon cable has been securely connected. If the ribbon cable has been securely
connected, check the I2C communication speed and the pullups for I2C data and clock lines suitable for
the application. If not, modify the I2C communication speed and the pullups accordingly. If this still
does not solve the problem, contact the manufacturer of the I2C slave board for help.

10 Introduction SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

2.1 Introduction

2.2 Ribbon-Cable Connector J2 and Pinout

Chapter 2
SLLU093–August 2006

Summary of Hardware Design

This chapter describes the major features of hardware design for the USB interface
adapter. See Chapter 6 for the schematic, bill of materials (BOM), and PCB layout
information.

The hardware is based on a USB peripheral chip from TI (TUSB3210). The TUSB3210 has an 8052 core
with enhanced performance. The PCB is a simple two-layer, top-side populated board (see the schematic
in Chapter 6). The major features of the hardware design are detailed the in the following sections.

This connector is used for communications and controls between the USB interface adapter and one more
multiple I2C slave device(s).

Table 2-1. Terminal Functions

TERMINAL
I/O DESCRIPTION

NAME NO.

Used as either the 5th PMBUS CONTROL line (output) or as GPIO pin 7PMBCTRL5/GPIO7 1 I/O (input/output, with internal pullup enabled)

Used as either the 4th PMBUS CONTROL line (output) or as GPIO pin 6PMBCTRL4/GPIO6 2 I/O (input/output, with internal pullup enabled)

Used as either the 3rd PMBUS CONTROL line (output) or as GPIO pin 5PMBCTRL3/GPIO5 3 I/O (input/output, with internal pullup enabled)

Used as either the 2nd PMBUS CONTROL line (output) or as GPIO pin 4PMBCTRL2/GPIO4 4 I/O (input/output, with internal pullup enabled)

This pin can provide a 3.3-V output power supply at up to 100 mA. Any slave
+3.3V 5 PWR device(s) can use this power supply as long as the total current consumption is less

than 100 mA.

Ground 6 GND Common ground for the entire evaluation board

Used as either the 1st PMBUS CONTROL line (output) or as GPIO pin 3PMBCTRL1/GPIO3 7 I/O (input/output, with internal pullup enabled)

Used as either the ALERT line (input) for PMBUS or SMBUS communications, or as
PMBALERT/SMBALERT/GPIO2 8 I/O GPIO pin 2 (input/output, with internal pullup disabled, and with an external

programmable pullup)

Used as either the CLOCK line (output) for PMBUS or SMBUS or I2C
PMBC/SMBC/SCL/GPIO1 9 I/O communications, or as GPIO pin 1 (input/output, with internal pullup disabled, and

with an external programmable pullup)

Used as either the DATA line (input/output) for PMBUS or SMBUS or I2C
PMBD/SMBD/SDA/GPIO0 10 I/O communications, or as GPIO pin 0 (input/output, with internal pullup disabled, and

with an external programmable pullup)

SLLU093–August 2006 Summary of Hardware Design 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

2.3 Configuration of Pullup Resistors for Pins 8, 9, and 10

2.4 EEPROM

2.5 LED Indication of USB Attached

Configuration of Pullup Resistors for Pins 8, 9, and 10

The pullups for pins 8, 9, and 10 (see the schematic in Chapter 6) are configurable through
communications with the embedded firmware in the TUSB3210 (see the command Set Pullup Resistors in
Chapter 3). The default setting is for all these three pins to have pullups of 2.2 kΩ. Table 2-2 lists the
possible options for each pin.

Table 2-2. Configurable Options of Pullup Resistors for Pins 8, 9, and 10

PULLUP RESISTOR OPTION 1 OPTION 2 OPTION 3 OPTION 4
OPTION (BYTE VALUE) (0x00) (0x01) (DEFAULT) (0x02) (0x03)

Pin 8 of J2: ALERT line No pullup (open) 2.2 kΩ N/A N/A

Pin 9 of J2: CLOCK line No pullup (open) 2.2 kΩ 1 kΩ 688 Ω

Pin 10 of J2: DATA line No pullup (open) 2.2 kΩ 1 kΩ 688 Ω

The embedded firmware is stored in a 64-Kbits EEPROM (see U1 in the schematic in Chapter 6). The
firmware is field programmable (see Chapter 5 for more information). Jumper shunt J1 is normally closed
and is used for firmware development only. On power up, the TUSB3210 downloads the firmware image
from the EEPROM to the internal static RAM and starts firmware execution (first with USB enumeration)
from there.

A green LED is mounted next to the USB connector on the evaluation board. Every time the USB interface
adapter is attached to a PC via a USB cable, and if the host PC detects it and goes through USB
enumeration successfully, the embedded firmware illuminates the green LED (D1) to indicate that;
otherwise, the LED remains off. After unplugging the USB cable, the LED turns off immediately.

12 Summary of Hardware Design SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

3.1 Firmware Features Summary

3.2 Firmware Version Command and Response

Chapter 3
SLLU093–August 2006

Firmware Programming and Communications Protocol

The following sections describe the embedded firmware, as well as the
communications protocol supported in the USB interface adapter and how to use each
command in the protocol.

The embedded firmware in the TUSB3210 supports the following major features:
• Supports USB1.1 full speed at 12 Mbit/s. The USB interface adapter is recognized by the host as a

generic human interface device (HID), so no proprietary USB or HID driver is needed. Therefore, the
USB interface adapter can be treated as a USB plug-and-play device.

• Supports firmware programming in the external EEPROM so that firmware can be updated in the field.
See the TI website (www.ti.com) for more detailed information on firmware programming.

• Configures different pullup resistors for ALERT, DATA, and CLOCK lines
• Supports flexible I2C read or write transactions. The USB interface adapter is used as the I2C master.
• Selects different clock speeds (either 100 kHz or 400 kHz) for I2C, PMBUS, or SMBUS

communications
• Provides firmware version information (see Chapter 4 for details on firmware versioning scheme)

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Firmware
Version 0x00 See Chapter 4
(Get Version)

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from
Firmware 0x00 See Chapter 4
Version

See Chapter 4 for a detailed explanation of how the Family Code, Major Version, and Minor Version bytes
are assigned/interpreted.

SLLU093–August 2006 Firmware Programming and Communications Protocol 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

3.3 I2C Write Command and Response

3.4 I2C Read Command and Response

I2C Write Command and Response

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

C number of bytes (from 1 up to 60 bytes) to0x14 A B CI2C Write write

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 00x94 Fail: 1I2C Write

The following describes the detailed bit banking of this command: I2C Start → write A (= slave address
shifted left by 1 bit + write bit of 0) → slave ACK → write B (which is usually either a command
byte or a register address byte) → slave ACK → repeat (write 1 byte → slave ACK) for C number of
times → I2C stop. There is another more generic I2C Write transaction command in Section 3.10.

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

D (from 1 to0x15 A B CI2C Read 62 bytes)

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 00x95 D number of bytes readFail: 1I2C Read

The following describes the detailed bit banking of this command: I2C start → write A (= slave address
shifted left by 1 bit + write bit of 0) → slave ACK → write B (which is usually either a command
byte or a register address byte) → slave ACK → repeated start → write C (= slave address shifted
left by 1 bit + read bit of 1) → slave ACK → read D number of bytes (with master ACKs in between)
from a slave → master NACK → I2C stop. There is another more generic I2C Read transaction
command in Section 3.11.

Firmware Programming and Communications Protocol14 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

3.5 Read/Write Port 0 Command and Response

3.6 EEPROM Program Command and Response

Read/Write Port 0 Command and Response

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

B does not
A apply to port 0

(bit.x=1 for read. EachRead/Write B0x16 read/input, GPIO can bePort 0 (byte to write)bit.x=0 for configured as
write /output) input or

output.

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 0 Byte readRead/Write 0x96 Fail: 1 from port 0Port 0

Each individual GPIO pin of the TUSB3210 port 0 can be configured as either an input or an output (see
the schematic in Chapter 6).

GPIO pins 3 to 7 are configured to have internal pullups turned on so no special external pullups are
needed unless stronger I/O drives are necessary.

GPIO pins 0, 1, and 2 are configured to be open-drain I/O ports. Use the software-configurable pullups to
support I/O functions.

When pin 0 or pin 1 is used as a GPIO, the I2C does not function properly anymore. Only after a power-on
reset can the I2C function be used again without using pins 0 and 1 as GPIOs. Therefore, it is
recommended that no more than six GPIO pins are used, reserve pins 0 and 1 exclusively for I2C
applications.

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

EEPROM A = Starting B = Starting C (# of bytes Data to be programmed into EEPROM (up to0x18Program address MSB address LSB to program) 32 bytes)

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 0EPROM 0x98 Fail: 1Program

This command is used for programming a firmware image to the EEPROM (U1 on schematic) of the EVM.
It is recommended that the whole firmware image be split into multiple blocks of 32 bytes and call this
command repeatedly until the programming is completed.

SLLU093–August 2006 Firmware Programming and Communications Protocol 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

3.7 EEPROM Read Command and Response

3.8 Set Pullup Resistors Command and Response

EEPROM Read Command and Response

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

A = Starting B = Starting C (# of bytesEEPROM Read 0x19 C ≤ 60address MSB address LSB to read)

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 00x99 C number of bytes read back from EEPROM (up to 32 bytes)EEPROM Read Fail: 1

This command works with the EEPROM Program command to verify if the firmware image has been
programmed into the EEPROM correctly. For the best efficiency, try to read a block of 32 bytes at a time
by calling this command.

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

0x00 for no
pullups
(switched off),
0x01 for
2.2 kΩ, 0x02

Set Pullup for 1 kΩ, 0x030x1A A (for SDA) B (for SCL) C (for ALERT)Resistors for 688 Ω.
For ALERT,
the option is
either open
(0x00) or
2.2 kΩ (0x01).

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Pullups haveSuccess: 0Set Pullup 0x9A beenFail: 1Resistors configured

Byte A is for the DATA line for I2C, PMBUS, or SMBUS communications; byte B is for the CLOCK line for
I2C, PMBUS, or SMBUS communications; byte C is for the ALERT line for PMBUS communications. If a
slave device can provide one or multiple pullup resistors, switch off the pullups for DATA, SCL, or ALERT
line accordingly.

Firmware Programming and Communications Protocol16 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

3.9 Set I2C-PMBUS-SMBUS Speed Command and Response

3.10 Generic I2C Write Command and Response

Set I2C-PMBUS-SMBUS Speed Command and Response

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

A (0 forSet
100 kHz,0x1BI2C-PMBUS- otherwise

SMBUS Speed 400 kHz)

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from
Done withSet

0x9B speed
I2C-PMBUS- selection
SMBUS Speed

For I2C, PMBUS, or SMBUS communications, the clock speed can be set to either 100 kHz or 400 kHz.
As an I2C, PMBUS, or SMBUS master, the USB interface adapter supports clock stretching (up to 25 ms
per transaction). The firmware sets the default clock speed to 100 kHz.

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

The first byte
of data to
write is usuallyGeneric I2C 0x1C A A number of bytes (from 2 up to 62) to write (deviceWrite
address < 1 +
write bit of 0).

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from
Success: 00x9CGeneric I2C Fail: 1

Write

This is a generic I2C Write transaction command that can be applied to majority of I2C applications. The
detailed bit-banking is as follows: I2C start → repeat (write 1 data byte, slave ACK) for A number of
times → I2C stop.

Basically, all the transaction bytes are placed one after another, such as address byte (7-bit slave address
shifted left by 1 bit + write bit of 0), one or multiple command bytes, one or multiple data bytes into the A
number of bytes buffer space, then the USB interface adapter carries out the bit banking. For maximum
flexibility, this generic command for any I2C write transaction is recommended.

SLLU093–August 2006 Firmware Programming and Communications Protocol 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

3.11 Generic I2C Read Command and Response

3.12 Board Test Command and Response

3.13 Other Commands for Different Applications

Generic I2C Read Command and Response

USB PACKET USB USB USB USB USBCOMMAND BYTE 0 USB PACKETPACKET PACKET PACKET PACKET PACKET COMMENTSDESCRIPTION COMMAND BYTES 6–63BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5CODE

Y = 1st X # of The 1st byte
byte to bytes (1 of data to
write + to 62) to write is usuallyGeneric I2C 0x1D A A number of bytes (2 to 60) to write read bit 1 read back (deviceRead
USB USB address < 1 +

byte 62 byte 63 write bit of 0).

USB PACKET USB USB USB USB USBCOMMAND BYTE 0 USB PACKETPACKET PACKET PACKET PACKET PACKET COMMENTSDESCRIPTION COMMAND BYTES 6-63BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5CODE

Response from
Success: 00x9D X number of bytes (1 to 62) read back from slaveGeneric I2C Fail: 1

Read

This is a generic I2C Read transaction command that can be applied to majority of I2C applications. The
detailed bit-banking is as follows: I2C start → repeat (write 1 data byte, slave ACK) for A number of
times → repeated start → write Y → slave ACK → read X number of bytes (with master ACKs in
between) from a slave → master NACK → I2C stop.

Basically, all the transaction bytes are placed one after another, such as address byte (7-bit slave address
shifted left by 1 bit + write bit of 0), one or multiple command bytes, then repeated start, write address
byte Y (7-bit slave address shifted left by 1 bit + read bit of 1), and read back x number of bytes from the
slave device being addressed. The USB interface adapter carries out the bit banking. For maximum
flexibility, this generic command for any I2C read transactions is recommended.

USB
PACKET USB USB USB USB USB USBCOMMAND BYTE 0 PACKET PACKET PACKET PACKET PACKET PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6-63

CODE

Start toggling eight
LEDs connected to theBoard Test 0x7F eight GPIO pins
simultaneously for 5 s.

USB
PACKET USB USB USB USB USB USBCOMMAND BYTE 0 PACKET PACKET PACKET PACKET PACKET PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6-63

CODE

Response from 0xFF Board test is doneBoard Test

This command is for internal testing of USB interface adapter evaluation boards during production only.
Do not use this command for any other application.

For applications other than I2C/GPIO, such as PMBUS, SMBUS, HDQ, etc., see the corresponding
literature for more details.

18 Firmware Programming and Communications Protocol SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

4.1 Introduction

Chapter 4
SLLU093–August 2006

Firmware Versioning Scheme

This chapter briefly describes the firmware versioning scheme for the USB interface
adapter. Understanding the versioning scheme is critical for using the device in the
preset configuration. This topic is important for those who would like to make a custom
implementation of firmware or to understand how the firmware version is validated by
the host client software.

The firmware can be no more than 8K bytes. This limits the amount of functionality that any single
firmware image can have. All the functions needed for every application could not possibly be
implemented in this space. In order to make the device extensible and to allow its use in many
applications, it was designed in a way for a host application to reprogram the device with its own custom
firmware whenever needed.

For example, some end devices may require protocol X to send and receive data, but the standard
firmware does not support protocol X. In this case, the programmer of the GUI software that supports this
end device writes custom firmware that conforms to the rules in Section 4.2. At run time, the GUI software
finds the USB interface adapter and retrieves its firmware version number. If the version number is not
compatible with the protocols needed, the GUI software then reprograms the device with its own version
of firmware so that it can use it.

If all GUI software complies with this versioning system, then the same hardware can be reused for many
applications without inhibiting other compliant software. This also ensures that all implementations will
be backward compatible with older GUI software.

SLLU093–August 2006 Firmware Versioning Scheme 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

4.2 Rules for Implementing Compliant Custom Firmware

4.3 Compliant Versioning

Rules for Implementing Compliant Custom Firmware

In order for custom firmware to be compatible with this versioning scheme, it must comply with the
following rules:

1. The custom firmware must support pairs of commands listed in Table 4-1 (see Chapter 3 for the
default implementation).

Table 4-1. List of Pairs of Commands Needed for Firmware Versioning

CODES (hex) DESCRIPTION INFORMATION

0x00 and 0x80 Firmware Version (Get Version) Required to communicate its unique identity to the GUI software

Required for the GUI software to reprogram the firmware on the0x18 and 0x98 EEPROM Pro embedded EEPROM

Required for the GUI software to validate the firmware image on the0x19 and 0x99 EEPROM Read EEPROM

2. The custom firmware must have a unique, compliant version number that describes its functionality.

Note: Together, these two rules describe an interface that all GUI software can expect to be
implemented. If GUI software cannot call the Firmware Version command, it cannot
identify the firmware and should not attempt to use it as the outcome is unpredictable. If
GUI software needs to reprogram the USB interface adapter, it expects command 0x18 to
be an EEPROM programming. Conforming to this standard ensures that the firmware
does not break the validation and reprogramming cycle.

The versioning scheme uses three bytes to make up a unique identifier that the device can return (as the
data part) in response to the Firmware Version command (see Chapter 3 for more details).

The first byte is the Family Code and it describes who is responsible for the firmware. These codes are
given out in blocks to various groups with TI. For instance, the Digital Power Group owns codes 01–16 (or
0x01–0x10 in hex). Some Family Codes are reserved. Family codes 240–255 (or 0xF0–0xFF in hex) have
been set aside for custom implementations by end users or anyone wanting to make a compliant version
of custom firmware for their own private use.

This Family Code also denotes the permutations of protocols supported, such as Family Code 1 supports
I2C, PMBus, and SMBus, while Family Code 2 might support I2C and Protocol X.

The second byte is the Major Version and it describes a revision to the permutations of protocols. If the
protocols supported need new functionality or have changes to the way that they are called (signature
changed) then this byte denotes the change.

The third byte is the Minor Version and it describes a revision to the permutations of protocols. If the
firmware code has changed to fix a bug in the functions but no new public functions have been added and
no changes have been made to the function signatures, this byte should be changed to denote the new
version.

Table 4-2 summarizes the significance of the three-byte code.

Table 4-2. Three Bytes for Firmware Versioning

BYTE ORDER MOST SIGNIFICANT BYTE MIDDLE BYTE LEAST SIGNIFICANT BYTE

Byte Meaning Family Code Major Version Minor Version

01 = Major revision01 = Owned by Digital Power 01 = Minor revision of the permutation ofExample Value of the permutation ofPMBus, SMBus, I2C supported protocolsprotocols

Firmware Versioning Scheme20 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

Compliant Versioning

To implement this versioning scheme properly, a Windows™ application calls a Firmware Version
command that, along with some others, is reserved and must be present in each implementation of the
device. If the Family Code does not match the code that the application is looking for, it should not
assume anything about what protocols are supported. The Family Code should immediately attempt to
reprogram the firmware with its own version (binary image distributed with the application).

A Windows application that correlates Family Code and Major Version with the firmware implementation
should then, theoretically, only have to check that the Minor Version is greater than or equal to its target
Minor Version. A firmware programmer should be careful to never remove functionality from an
implementation with the same Family Code/Major Version, or an older Windows application may attempt
to make a malformed call to it when it attempts to communicate. In the case that such a drastic change is
made, it is recommend that the firmware developer change the Family Code byte.

Table 4-3. Initial Family Codes

FAMILY CODE (DECIMAL) GROUP/TEAM

00 Reserved

01–16 Digital Power + POE

17–32 HPA Design Tools team

33–48 Battery Management

49–239 Unassigned

240–255 Open for custom implementations (user defined)

SLLU093–August 2006 Firmware Versioning Scheme 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

Start

Call Get Version
Comand

Is first byte in response equal
to the required family code?

Is second byte in response
equal to the required Major

version code?

Is third byte greater than or
equal to the required Minor

version code?

Use the version that already on the
board (Bugs have been fixed)

Yes

Yes

Yes

No

No

No

End

Reprogram the USB
Interface Adapter

with required version

Compliant Versioning

GUI applications may use the flow chart in Figure 4-1 to determine whether or not to reprogram the
firmware on the USB interface adapter.

Figure 4-1. Flow Chart for Determining Firmware Programing

22 Firmware Versioning Scheme SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

Compliant Versioning

Figure 4-2 shows an example of how the firmware programming into EEPROM should function between
applications.

Figure 4-2. Interactions of Applications During Firmware Programming

SLLU093–August 2006 Firmware Versioning Scheme 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

Compliant Versioning

Firmware Versioning Scheme24 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

.NET Framework

GUI Application:
− VB .NET solution that uses Device Transport (DLL) and .NET
framework
− No other dependencies
− Strictly managed code for Windows form control

Device Transport:
− .NET DLL (managed code) that is also a VB .NET solution
− Interfaces with standard Windows USB HID driver
(usbhid.sys)
− Allows abstraction of application level GUI from interface and
can be re−used in any application using the adapter

.NET Framework:
− Standard installation of .NET framework (version 1.1)
− Installed on all PCs shipping with Windows for last few years
− Standard libraries for application control

Windows XP:
− Standard installation that ships with PCs
− .NET framework and application should also work with
previous versions of Windows as well

− Standard installation that ships with PCs
− Talks to USB hardware using Windows

USB HID Driver

.NET Framework

Windows XP

GUI Application

Device Transport

GUI Application:
− VB .NET solution that uses Device Transport (DLL) and .NET

framework
− No other dependencies
− Strictly managed code for Windows form control

Device Transport:
− .NET DLL (managed code) that is also a VB .NET solution
− Interfaces with standard Windows USB HID driver

(usbhid.sys)
− Allows abstraction of application level GUI from interface and

can be reused in any application using the adapter

.NET Framework:
− Standard installation of .NET framework (version 1.1)
− Installed on all PCs shipping with Windows for last few years
− Standard libraries for application control

Sold and supported by Microsoft

Windows XP:
− Standard installation that ships with PCs
− .NET framework and application should also work with

previous versions of Windows as well

USB HID Driver:
− Standard installation that ships with PCs
− Talks to USB hardware using Windows

.NET Framework

Chapter 5
SLLU093–August 2006

GUI and PC Libraries

The adapter solution includes a set of PC libraries and a GUI that can be used to allow
PC applications access to the adapter and target devices that the adapter supports.

The GUI and PC libraries are designed using the Microsoft® .NET Framework, in order
to leverage as many standard libraries as possible. As previously described in this
document, the adapter presents itself as a USB HID to Windows. Because of this, no
custom driver is required, and the application software on the PC can use the standard
Microsoft Windows USB driver (usbhid.sys).

Like the adapter, the Windows libraries support all the different types of device
interfaces: I2C, SMBus, PMBus, and GPIO. In addition, the libraries support
configuration and control of the adapter itself by allowing PC programs to update the
EERPROM in the adapter, select switching in and out of resistors on data and clock
lines, etc.

Figure 5-1 represents the software architecture for the PC that is used.

Figure 5-1. USB Adapter Software Architecture

The major pieces of the software architecture are as follows:

• Windows XP™
• .NET Framework
• Device transport
• GUI application

SLLU093–August 2006 GUI and PC Libraries 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

5.1 Windows XP

Windows XP

Windows XP provides the standard USB HID support to the application’s libraries through a standard USB
HID driver that comes with Microsoft Windows.

The .NET Framework is a set of libraries that Microsoft provides that allows Windows applications a rich
set of services to use. Functionality such as form and window management, memory management, and
database are all supported by the .NET Framework. Most recent applications written for Windows use the
.NET Framework.

The .NET Framework is the only dependency that the device transport libraries and the GUI application
have; there are no custom drivers required by this application. The .NET Framework is installed on all new
PCs, so there should be nothing to do except unzip and run the GUI application that is delivered for the
adapter Framework.

The current version of the device transport libraries and GUI Application use version 1.1 of the Microsoft
.NET Framework. Depending on the version of development tools used to generate GUI libraries and
applications, an update to the .NET Framework from Microsoft may be required.

The URL to update the Microsoft .NET Framework on your PC may be found at the following URL:

http://www.microsoft.com/downloads/details.aspx?FamilyID=0856EACB-4362-4B0D-8EDD-
AAB15C5E04F5&displaylang=en

GUI and PC Libraries26 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

5.2 Device Transport

Device Transport

In order to enable new applications to be created with minimal effort by users of the adapter, a device
transport library is provided.

This library is a .NET DLL that was generated using Microsoft Developer Studio® 2003 and is basically a
set of .NET managed code. This library requires version 1.1 of the .NET Framework to be present on the
machine that uses it.

This library is included in the sample GUI application that is provided with the adapter and is intended to
be used by other applications, as well as to manage a target through the adapter.

To use this library, simply include it in the project being developed as a dependency.

This library provides the following functionality:

• Primitives that support all I/O types of the adapter

– I2C

• I2C read (variable length)
• I2C write (variable length)

– SMBus

• Receive byte
• Read byte
• Read word
• Block read
• Send byte
• Write byte
• Write word
• Block write
• Process call
• Block write block read process call
• PEC enable/disable

– PMBus

• Group command
• Assert/deassert CONTROL line
• Poll ALERT# signal

– GPIO (read/write)
• General functionality

– Reset adapter
– Get device version
– Select internal pullup resistors
– Update/read EEPROM contents
– Select 100-kHz/400-kHz bus speed

SLLU093–August 2006 GUI and PC Libraries 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

5.3 GUI Application

GUI Application

The sample application that is available with the adapter uses the device transport to communicate with
the adapter, as well as the target devices behind the adapter. A screenshot is shown in Figure 5-2.

Figure 5-2. Sample GUI Application

From the main menu, update the firmware for the adapter, select the bus speed of the device (100 kHz or
400 kHz), and select whether PEC is enabled or disabled when communicating with the device.

The main portion of the form is split into five sections: I2C, SMBus, PMBus, GPIO, and pullup resistors.
From the I2C, SMBus, and PMBus group boxes, the user can select each of the available transaction
types that the adapter supports. The result of the transaction to the device is also communicated here as
an acknowledge (ACK) or not acknowledge (NACK).

In the GPIO group box, each of the eight GPIO pins can be enabled and programmed as read or write. In
addition, the state of the pin can be read or asserted to the desired value from this group box as well.

Finally, the GUI allows users to select the values of the pullup resistors used for the SDA/SCL lines. The
adapter and the GUI allow users to select from 668 Ω, 1.1 kΩ, 2.2 kΩ, or open drain.

28 GUI and PC Libraries SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

Chapter 6
SLLU093–August 2006

Schematic, Bill of Materials, PCB Layout

This chapter contains information on schematic design, with related information on bill
of materials (BOM) and printed circuit board (PCB) layout for the USB interface
adapter.

SLLU093–August 2006 Schematic, Bill of Materials, PCB Layout 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

6.1 Schematic

Schematic

Figure 6-1. Schematic

Schematic, Bill of Materials, PCB Layout30 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

6.2 Bill of Materials (BOM)
Bill of Materials (BOM)

Table 6-1. Bill of Materials
REFQTY VALUE DESCRIPTION SIZE PART NUMBER MANUFACTURERDESIGNATOR

C1, C5, C6, C8, Capacitor, Ceramic, 0.1 µF, 25 V,6 0.1 µF 0603 C1608X7R1E104KT TDKC10, C11 X7R, 10%

Capacitor, Ceramic, 22 pF, 50 V,2 C2, C3 22 pF 0603 C1608C0G1H220KT TDKC0G, 10%

Capacitor, Ceramic, 1000 pF,1 C4 1000 pF 0805 Std Std100 V, C0G, 5%

Capacitor, Tantalum, 1 µF, 16 V,1 C7 1 µF 3216 293D105X0016A2T Vishay20%

Capacitor, Tantalum, 10 µF, 10 V,2 C9, C12 10 µF 3216 293D106X0010A2T Vishay20%

1 D1 SSF-LXH305GD-TR Diode, LED, 2.6 V, 25 mA 0.25 × 0.25 SSF-LXH305GD-TR Lumex

1 D2 MBRA130 Diode, Schottky, 1 A, 30 V SMA MBRA130 IR

1 D3 7.5 V Diode, Zener, 7.5 V, 3 W SMB 1SMB5922BT3 On Semi

D4, D5, D6, D7, Diode, TVS diode,8 D8, D9, D10, GL05T SOT23 GL05T GeneralLow CapacitanceD11

Header, 2-pin, 100 mil spacing,1 J1 PTC36SAAN 0.1 × 2 PTC36SAAN Sullins(36-pin strip)

Connector, Male Right Angle1 J2 86479-3 0.607 × 0.484 86479-3 AMP2×5 pin, 100 mil spacing, 4 Wall

Connector, Recpt, USB-B, Mini,1 J3 UX60-MB-5ST 0.354 × 0.303 UX60-MB-5ST Hirose5-pins, SMT

Transistor, NPN, High1 Q1 MMBT2222A SOT-23 MMBT2222A FairchildPerformance, 500 mA

Q2, Q3, Q4, MOSFET, Pch, –50 V, –0.13 A,5 BSS84 SOT-23 BSS84 FairchildQ5, Q6 10 Ω

Resistor, Chip, 1.5 kΩ, 1/16 W,3 R1, R2, R25 1.5 kΩ 0603 Std Std5%

Resistor, Chip, 2.2 kΩ, 1/16 W,3 R17, R19, R31 2.2 kΩ 0603 Std Std5%

2 R18, R20 1 kΩ Resistor, Chip, 1 kΩ, 1/16 W, 5% 0603 Std Std

Resistor, Chip, 200 Ω, 1/16 W,1 R29 200 Ω 0603 Std Std5%

1 R3 1 MΩ Resistor, Chip, 1 MΩ, 1/16 W, 1% 0603 Std Std

Resistor, Chip, 15 kΩ, 1/16 W,2 R4, R28 15 kΩ 0603 Std Std5%

R5, R14, R15, Resistor, Chip, 100 kΩ, 1/16 W,5 100 kΩ 0603 Std StdR16, R30 5%

R6, R7, R8, R9,
R10, R11, R12,

14 R13, R21, R22, 33 Ω Resistor, Chip, 33 Ω, 1/16 W, 5% 0603 Std Std
R23, R24, R26,
R27, R32

IC, Serial EEPROM 64 kΩ,1 U1 24LC64 SO8 24LC64 Microchip1.8 V to 5.5 V, 400 kHz Max

IC, USB, General Purpose,1 U2 TUSB3210PM 0.48 × 0.48 TUSB3210PM TIDevice Controller

IC, Micro-Power 150 mA LDO1 U3 TPS76333DBV SOT23-5 TPS76xxxDBV TIRegulator

1 Y1 12 MHz 0.185 × 0.532 CY12BPSMD Crystek

Ribbon Cable, Socket-to-Socket,1 M3DDA-1018J-ND 18 M3DDA-1018J-ND 3M10 pin

1 Shunt, 100 mil, Black 0.1 929950-00 3M

PCB,1 HPA172E2 Any3.12 in × 1.6 in × 0.062 in

SLLU093–August 2006 Schematic, Bill of Materials, PCB Layout 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

Bill of Materials (BOM)

Note: These assemblies are ESD sensitive, so ESD precautions shall be observed.

These assemblies must be clean and free from flux and all contaminants. Use of no clean
flux is not acceptable.

These assemblies must comply with workmanship standards IPC-A-610 Class 2.

Ref designators marked with an asterisk ('**') cannot be substituted. All other components
can be substituted with equivalent manufacturer's components.

Schematic, Bill of Materials, PCB Layout32 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

6.3 Printed Circuit Board (PCB) Layout

Printed Circuit Board (PCB) Layout

Figure 6-2 through Figure 6-5 show the PCB layout.

Figure 6-2. PCB Layout — Top L1 (Copper Layer) — Assembly TA

SLLU093–August 2006 Schematic, Bill of Materials, PCB Layout 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

Printed Circuit Board (PCB) Layout

Figure 6-3. PCB Layout — Top S1 (Silkscreen Layer)

34 Schematic, Bill of Materials, PCB Layout SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

Printed Circuit Board (PCB) Layout

Figure 6-4. PCB Layout — Top L1 (Copper Layer)

SLLU093–August 2006 Schematic, Bill of Materials, PCB Layout 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

Printed Circuit Board (PCB) Layout

Figure 6-5. PCB Layout — Bottom L2 (Copper Layer)

36 Schematic, Bill of Materials, PCB Layout SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

A.1 Host PC to USB Interface Adapter Commands

Appendix A
SLLU093–August 2006

Lists of Communication Protocol

This appendix contains a list of communication commands that can be sent from a host
PC to the USB interface adapter, as well as a list of communication commands that
can be sent from the USB interface adapter to the host PC.

USB
PACKET USB USB USB USB USBCOMMAND USB PACKETBYTE 0 PACKET PACKET PACKET PACKET PACKET COMMENTSDESCRIPTION BYTES 6-63COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5

CODE

Firmware 0x00 See Chapter 4Version

C number of bytes (from 1 up to0x14 A B CI2C Write 60 bytes) to write

D (from 1 to0x15 A B CI2C Read 62 bytes)

B does not
A (bit.x=1 for apply to port 0

Read/Write read/input, B (byte to read. Each0x16Port 0 bit.x=0 for write) GPIO can be
write/output) configured as

input or output.

EEPROM A = Starting B = Starting C (# of bytes Data to be programmed into EEPROM0x18Program address MSB address LSB to program) (up to 32 bytes)

A = Starting B = Starting C (# of bytesEEPROM Read 0x19 C ≤ 60address MSB address LSB to program)

0x00 for no
pullups (switch
off), 0x01 for
2.2 kΩ, 0x02

Set Pullup C (for for 1 kΩ, 0x030x1A A (for SDA) B (for SCL)Resistors ALERT) for 688 Ω. For
ALERT, the
option is either
open (0x00) or
2.2 kΩ (0x01).

A (0 forSet
100 kHz,0x1BI2C/PMBUS/SM otherwise

BUS Speed 400 kHz)

The first byte of
data to write is

Generic I2C 0x1C A A number of bytes (from 2 up to 62) to write usually (device
Write address << 1) +

write bit 0.

X # ofY = 1st bytes The first byte ofbyte to (1 to 62) data to write iswrite +Generic I2C 0x1D A A number of bytes (2 to 60) to write to read usually (deviceread bit 1Read back address << 1) +USB USB write bit 0.Byte 62 Byte 63

SLLU093–August 2006 Lists of Communication Protocol 37
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

A.2 USB Interface Adapter to Host PC Response Commands

USB Interface Adapter to Host PC Response Commands

USB
PACKET USB USB USB USB USBCOMMAND USB PACKETBYTE 0 PACKET PACKET PACKET PACKET PACKET COMMENTSDESCRIPTION BYTES 6-63COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5

CODE

Start toggling
eight LEDs
connected to

Board Test 0x1F the eight GPIO
pins
simultaneously
for 5 s.

Note: See Chapter 3 for detailed explanation of each command.

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6-63

CODE

Response from Family Main version Minor versionFirmware 0x80 number (0 to 255) (0 to 255)Version (0 to 255)

Response from Success: 00x94 Fail: 1I2C Write

Response from Success: 00x95 D number of bytes readFail: 1I2C Read

Response from Success: 0 Byte readRead/Write 0x96 Fail: 1 from port 0Port 0

Response from Success: 0EEPROM 0x98 Fail: 1Program

Response from Success: 00x99 C number of bytes read back from EEPROM (up to 32 bytes)EEPROM Read Fail: 1

Response from Success: 0 Pullups haveSet Pullup 0x9A Fail: 1 been set.Resistors

Response from
Done withSet

0x9B speed
I2C/PMBUS/SM selection.
BUS Speed

Response from
Success: 00x9CGeneric I2C Fail: 1

Write

Response from
Success: 00x9D X number of bytes (1 to 62) read back from slaveGeneric I2C Fail: 1

Read

Response from Board test is0xFFBoard Test done.

Note: See Chapter 3 for detailed explanation of each command.

38 Lists of Communication Protocol SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

B.1 Overview

B.2 Basic SMBUS Transaction Types Supported

B.3 Special Signals Used for PMBUS/SMBUS Communications

Appendix B
SLLU093–August 2006

PMBUS/SMBUS Communications

This appendix describes the support for USB-to-PMBUS/SMBUS communications in
the USB Interface Adapter and how to use it for your applications.

The default firmware for USB Interface Adapter provides support for USB to PMBUS (revision 1.0) and
SMBUS (revision 2.0) communications. Similar to its I2C application, the USB Interface Adapter acts as a
PMBUS/SMBUS master, which can talk with one or multiple PMBUS/SMBUS slave devices daisy-chained
to a 10-pin ribbon cable.

Because PMBUS communication is derived from SMBUS communication, they share basic SMBUS
transaction types in common. These basic SMBUS transaction types include:

• Send byte
• Receive byte
• Write byte
• Read byte
• Write word
• Read word
• Block write
• Block read
• Process call
• Block read – block write process call

In addition, PMBUS communication also supports Group command.

All these commands are implemented in the USB Interface Adapter firmware.

Refer to Table 2-2 for special signal lines used for PMBUS/SMBUS communications.

Specifically, a slave device can assert an ALERT signal (by pulling it low) to report a fault or a warning
condition to the USB Interface Adapter; the host PC can obtain the ALERT signal by polling the USB
Interface Adapter. Note that the USB Interface Adapter does not support any Host Notify Protocol. This
means that the USB Interface Adapter cannot become a PMBUS/SMBUS slave and, therefore, cannot
support a slave to temporarily become a master and notify the host about the fault or the warning
condition.

For PMBUS communications, the USB Interface Adapter provides five CONTROL signals, each of which
can be used to enable/disable the powering up of one or multiple slave device(s).

Write Protect signal is not supported; neither is the RESET signal.

SLLU093–August 2006 PMBUS/SMBUS Communications 39
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

B.4 Packet Error Checking (PEC) Implementation

B.5 Communication Clock Speed and Clock Stretching

B.6 Configuration of Pullup Resistors for ALERT, DATA, and CLOCK Lines

B.7 Limitations

Packet Error Checking (PEC) Implementation

By default, the USB Interface Adapter firmware implements PEC for all the different commands. However,
the implementation of PEC byte is optional. There is a special host PC to USB Interface Adapter
command that can be used to turn PEC on or off (see Section B.23).

If PEC is on or enabled, the firmware in the USB Interface Adapter either appends a PEC byte to a
command sent to one or multiple slave devices or checks the validity of a PEC byte received from a slave
device.

The default clock speed is 100 kHz, which is compatible with PMBUS 1.0 and SMBUS 2.0. For
compatibility with future PMBUS specs, the clock speed can be increased to 400 kHz (see Section 3.9).

For each PMBUS/SMBUS transaction, the accumulative time of clock stretching cannot be more 25 ms.

Refer to Section 3.8 for more details on this topic.

Because of the limited capabilities of the TUSB3210 USB peripheral chip, the USB Interface Adapter has
the following limitations:

• Extended Command is not supported. Only the first 256 commands are supported.
• For any block write or block read command, the number of data bytes is limited to 32 bytes only, even

though the PMBUS specs support up to 256 bytes of data per transaction.
• Address Resolution Protocol (ARP) is not supported, so no multiple masters are allowed.
• Host Notify Protocol is not supported (see Section B.3).

PMBUS/SMBUS Communications40 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

B.8 List of Host PC to USB Interface Adapter Commands

List of Host PC to USB Interface Adapter Commands

Table B-1. Host PC to USB Interface Adapter Commands
USB PACKET

COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63
CODE

Send Byte 0x01 A B

Receive Byte 0x02 A

Write Byte 0x03 A B C

Write Word 0x04 A B C D

Read Byte 0x05 A B C

Read Word 0x06 A B C

Process Call 0x07 A B C D E

Block Write 0x08 A B C C number of bytes (from 1 to 32 bytes) to write

Block Read 0x09 A B C

Block Read – C number of bytes (from 1 toBlock Write 0x0A A B C D 31 bytes) to writeProcess Call

Write 0 to D ifGroup D (0xFF for C number of bytes (from 1 to0x0B A B C not for the lastCommand last packet) 32 bytes) to write packet

Bit logic 1 forAssert\Deassert Bit 0 for line 1, assert, bitCONTROL 0x0C ..., logic 0 forLines bit 4 for line 5 deassert

Poll PMBUS 0x0FSignal Lines

Turn On/Off 0 for off,0x11PEC otherwise on

SLLU093–August 2006 PMBUS/SMBUS Communications 41
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

B.9 List of USB Interface Adapter to Host PC Response Commands

List of USB Interface Adapter to Host PC Response Commands

Table B-2. USB Interface Adapter to Host PC Response Commands
USB PACKET

COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63
CODE

Response from Success: 00x81Send Byte Fail: 1

Response from Success: 0 Byte read0x82Receive Byte Fail: 1 from slave

Response from Success: 00x83Write Byte Fail: 1

Response from Success: 00x84Write Word Fail: 1

Response from Success: 0 Byte read0x85Read Byte Fail: 1 from slave

Low byte of High byte ofResponse from Success: 00x86 word read word readRead Word Fail: 1 from slave from slave

Low byte of High byte ofResponse from Success: 00x87 word read word readProcess Call Fail: 1 from slave from slave

Response from Success: 00x88Block Write Fail: 1

Response from Success: 00x89 X X number of bytes read from slave (up to 32 bytes)Block Read Fail: 1

Response from
Block Read – Success: 00x8A X X number of bytes read from slave (up to 31 bytes)Block Write Fail: 1
Process Call

Response from Success: 0Group 0x8B Fail: 1Command

Response from
Assert/Deassert Success: 00x8CCONTROL Fail: 1
Lines

Bit 0 for
CONTROL 1,

…,
Response from bit 4 for Logic high for
Poll PMBUS 0x8F CONTROL 5, 1, logic low for
Signal Lines bit 5 for 0

ALERT,
bits 6 and 7

not used

Response from Success: 0Turn On/Off 0x91 Fail: 1PEC

See the following sections for detailed explanation of each command.

PMBUS/SMBUS Communications42 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

B.10 Send Byte Command and Response

B.11 Receive Byte Command and Response

B.12 Write Byte Command and Response

Send Byte Command and Response

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Send Byte 0x01 A B

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 00x81Send Byte Fail: 1

The following describes the detailed bit banking of the Send Byte command (with PEC on):
PMBUS/SMBUS start → write A (= slave address shifted left by 1 bit + write bit of 0) → slave ACK
→ write B (a command byte defined by PMBUS or SMBUS) → slave ACK → write PEC byte → slave
ACK → PMBUS/SMBUS stop

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Receive Byte 0x02 A

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 0 Byte read0x82Receive Byte Fail: 1 from slave

The following describes the detailed bit banking of the Receive Byte command (with PEC on):
PMBUS/SMBUS start → write A (= slave address shifted left by 1 bit + read bit of 1) → slave ACK →
read in 1 data byte from slave → master ACK → read in PEC byte from slave → master NACK →
PMBUS/SMBUS stop

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Write Byte 0x03 A B C

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 00x83Write Byte Fail: 1

The following describes the detailed bit banking of the Write Byte command (with PEC on):
PMBUS/SMBUS start → write A (= slave address shifted left by 1 bit + write bit of 0) → slave ACK
→ write B (a command byte defined by PMBUS or SMBUS) → slave ACK → write C (a data byte) →
slave ACK → write PEC byte → slave ACK → PMBUS/SMBUS stop

SLLU093–August 2006 PMBUS/SMBUS Communications 43
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

B.13 Write Word Command and Response

B.14 Read Byte Command and Response

Write Word Command and Response

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Write Word 0x04 A B C D

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 00x84Write Word Fail: 1

The following describes the detailed bit banking of the Write Word command (with PEC on):
PMBUS/SMBUS start → write A (= slave address shifted left by 1 bit + write bit of 0) → slave ACK
→ write B (a command byte defined by PMBUS or SMBUS) → slave ACK → write C (low byte of a
data word) → slave ACK → write D (high byte of the data word) → slave ACK → write PEC byte →
slave ACK → PMBUS/SMBUS stop

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Read Byte 0x05 A B C

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 0 Byte read0x85Read Byte Fail: 1 from slave

The following describes the detailed bit banking of the Read Byte command (with PEC on):
PMBUS/SMBUS start → write A (= slave address shifted left by 1 bit + write bit of 0) → slave ACK
→ write B (a command byte defined by PMBUS or SMBUS) → slave ACK → repeated start → write
C (= slave address shifted left by 1 bit + read bit of 1) → slave ACK → read in 1 data byte from
slave → master ACK → read in PEC byte from slave → master NACK → PMBUS/SMBUS stop

PMBUS/SMBUS Communications44 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

B.15 Read Word Command and Response

B.16 Process Call Command and Response

Read Word Command and Response

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Read Word 0x06 A B C

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Low byte of High byte ofResponse from Success: 00x86 word read word readRead Word Fail: 1 from slave from slave

The following describes the detailed bit banking of the Read Word command (with PEC on):
PMBUS/SMBUS start → write A (= slave address shifted left by 1 bit + write bit of 0) → slave ACK
→ write B (a command byte defined by PMBUS or SMBUS) → slave ACK → repeated start → write
C (= slave address shifted left by 1 bit + read bit of 1) → slave ACK → read in the low byte of a data
word from slave → master ACK → read in the high byte of the data word from slave → master ACK
→ read in PEC byte from slave → master NACK → PMBUS/SMBUS stop

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Process Call 0x07 A B C D E

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Low byte of High byte ofResponse from Success: 00x87 word read word readProcess Call Fail: 1 from slave from slave

The following describes the detailed bit banking of the Process Call command (with PEC on):
PMBUS/SMBUS start → write A (= slave address shifted left by 1 bit + write bit of 0) → slave ACK
→ write B (a command byte defined by PMBUS or SMBUS) → slave ACK → write C (low byte of a
data word) → slave ACK → write D (high byte of the data word) → slave ACK → repeated start →
write E (= slave address shifted left by 1 bit + read bit of 1) → slave ACK → read in the low byte of
a data word from slave → master ACK → read in the high byte of the data word from slave →
master ACK → read in PEC byte from slave → master NACK → PMBUS/SMBUS stop

SLLU093–August 2006 PMBUS/SMBUS Communications 45
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

B.17 Block Write Command and Response

B.18 Block Read Command and Response

Block Write Command and Response

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

C number of bytes (from 1 up to 32 bytes) toBlock Write 0x08 A B C write

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 00x88Block Write Fail: 1

The following describes the detailed bit banking of the Block Write command (with PEC on):
PMBUS/SMBUS start → write A (= slave address shifted left by 1 bit + write bit of 0) → slave ACK
→ write B (a command byte defined by PMBUS or SMBUS) → slave ACK → write C (number of
bytes to write to slave) → slave ACK → repeat (write next byte → slave ACK) for C number of times
→ write PEC byte → slave ACK → PMBUS/SMBUS stop

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Block Read 0x09 A B C

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 00x89 X X number of bytes read from slave (up to 32 bytes)Block Read Fail: 1

The following describes the detailed bit banking of the Block Read command (with PEC on):
PMBUS/SMBUS start → write A (= slave address shifted left by 1 bit + write bit of 0) → slave ACK
→ write B (a command byte defined by PMBUS or SMBUS) → slave ACK → repeated start → write
C (= slave address shifted left by 1 bit + read bit of 1) → slave ACK → read in X (number of data
bytes to read from slave) → master ACK → repeat (read in next byte → master ACK) for X number
of times → read in PEC byte from slave → master NACK → PMBUS/SMBUS stop

PMBUS/SMBUS Communications46 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

B.19 Block Read – Block Write Process Call Command and Response

B.20 Group Command and Response

Block Read – Block Write Process Call Command and Response

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Block Read – C number of bytes (from 1 upBlock Write 0x0A A B C D to 31 bytes) to writeProcess Call

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from
Block Read – Success: 00x8A X X number of bytes read from slave (up to 31 bytes)Block Write Fail: 1
Process Call

The following describes the detailed bit banking of the Block Read – Block Write Process Call command
(with PEC on):
PMBUS/SMBUS start → write A (= slave address shifted left by 1 bit + write bit of 0) → slave ACK
→ write B (a command byte defined by PMBUS or SMBUS) → slave ACK → write C (number of data
bytes to write) → slave ACK → repeat (write next data byte → slave ACK) for C number of times →
repeated start → write D (= slave address shifted left by 1 bit + read bit of 1) → slave ACK → read
in X (number of data bytes to read from slave) → master ACK → repeat (read in next byte →
master ACK) for X number of times → read in PEC byte from slave → master NACK →
PMBUS/SMBUS stop

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Write 0 to D ifGroup D (0xFF for C number of bytes (from 1 up0x0B A B C not for the lastCommand last packet) to 32 bytes) to write packet

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 0Group 0x8B Fail: 1Command

The following describes the detailed bit banking of the Group command (with PEC on):
PMBUS/SMBUS start → write A (= slave address shifted left by 1 bit + write bit of 0) → slave ACK
→ write B (a command byte defined by PMBUS or SMBUS) → slave ACK → write C (number of
bytes to write to slave) → slave ACK → repeat (write next byte → slave ACK) for C number of times
→ write PEC byte → slave ACK → if byte D = 0xFF, then (PMBUS/SMBUS stop); otherwise, wait to
receive the next USB packet for more writing to slave(s)

SLLU093–August 2006 PMBUS/SMBUS Communications 47
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

B.21 Assert/Deassert CONTROL Lines Command and Response

B.22 Poll PMBUS Signal Lines Command and Response

Assert/Deassert CONTROL Lines Command and Response

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Bit logic 1 forAssert/Deassert Bit 0 for line 1, assert,CONTROL 0x0C …, bit logic 0 forLines bit 4 for line 5 deassert

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from
Assert/Deassert Success: 00x8CCONTROL Fail: 1
Lines

Each CONTROL line can be used to enable/disable the powering up of one of multiple slaves.

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Poll PUMBUS 0x0FSignal Lines

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Bit 0 for
CONTROL 1,

…,
Response from bit 4 for Logic high for
Poll PMBUS 0x8F CONTROL 5, 1, logic low for
Signal Lines bit 5 for 0

ALERT,
bits 6 and 7

not used

Note that there is currently no support for RESET signal or WRITE_PROTECT signal.

PMBUS/SMBUS Communications48 SLLU093–August 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

www.ti.com

B.23 Turn On/Off PEC Command and Response

Turn On/Off PEC Command and Response

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Turn On/Off 0 for off,0x11PEC otherwise on

USB PACKET
COMMAND BYTE 0 USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET USB PACKET COMMENTSDESCRIPTION COMMAND BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTES 6–63

CODE

Response from Success: 0Turn On/Off 0x91 Fail: 1PEC

The default is PEC on. For data integrity and hence power-system reliability during PMBUS/SMBUS
communications in switching power environments, TI strongly recommends the adoption of PEC byte for
every PMBUS/SMBUS communication transaction.

SLLU093–August 2006 PMBUS/SMBUS Communications 49
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLLU093

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2006, Texas Instruments Incorporated

 Tел: +7 (812) 336 43 04 (многоканальный)
 Email: org@lifeelectronics.ru

 www.lifeelectronics.ru

ООО “ЛайфЭлектроникс” “LifeElectronics” LLC
ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и
отечественного производства от производителей и со складов крупных дистрибьюторов Европы,
Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению
коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные,
электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

 Конкурентоспособные цены и скидки постоянным клиентам.

 Специальные условия для постоянных клиентов.

 Подбор аналогов.

 Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.

 Приемлемые сроки поставки, возможна ускоренная поставка.

 Доставку товара в любую точку России и стран СНГ.

 Комплексную поставку.

 Работу по проектам и поставку образцов.

 Формирование склада под заказчика.

 Сертификаты соответствия на поставляемую продукцию (по желанию клиента).

 Тестирование поставляемой продукции.

 Поставку компонентов, требующих военную и космическую приемку.

 Входной контроль качества.

 Наличие сертификата ISO.

 В составе нашей компании организован Конструкторский отдел, призванный помогать
разработчикам, и инженерам.

 Конструкторский отдел помогает осуществить:

 Регистрацию проекта у производителя компонентов.

 Техническую поддержку проекта.

 Защиту от снятия компонента с производства.

 Оценку стоимости проекта по компонентам.

 Изготовление тестовой платы монтаж и пусконаладочные работы.

mailto:org@lifeelectronics.ru
http://lifeelectronics.ru/

