DIRECT DIGITAL SYNTHESIZER, WAVEFORM GENERATOR

AD9830

FEATURES

+5 V Power Supply
50 MHz Speed
On-Chip SINE Look-Up Table
On-Chip 10-Bit DAC
Parallel Loading
Power-Down Option
72 dB SFDR
250 mW Power Consumption
48-Pin LQFP
APPLICATIONS
DDS Tuning
Digital Demodulation

GENERAL DESCRIPTION

T his DDS device is a numerically controlled oscillator employing a phase accumulator, a sine look-up table and a 10-bit D/A converter integrated on a single CM OS chip. M odulation capabilities are provided for phase modulation and frequency modulation.
Clock rates up to 50 M Hz are supported. F requency accuracy can be controlled to one part in 4 billion. M odulation is effected by loading registers through the parallel microprocessor interface.
A power-down pin allows external control of a power-down mode. The part is available in a 48-pin LQFP package.
Similar DDS products can be found at
http://www.analog.com/DDS.

FUNCTIONAL BLOCK DIAGRAM

REV. B

Parameter	AD98304	Units	Test Conditions/Comments
SIGNAL DAC SPECIFICATIONS Resolution U pdate Rate ($\mathrm{f}_{\text {MAX }}$) Iout Full Scale Output Compliance DC Accuracy Integral N onlinearity Differential N onlinearity	$\begin{aligned} & 10 \\ & 50 \\ & 20 \\ & 1 \\ & \\ & \pm 1 \\ & \pm 0.5 \end{aligned}$	Bits M SPS max mA max V max LSB typ LSB typ	
DDS SPECIFICATIONS ${ }^{2}$ D ynamic Specifications Signal-to-N oise Ratio T otal H armonic D istortion Spurious F ree Dynamic Range (SF DR) ${ }^{3}$ Narrow Band $(\pm 50 \mathrm{kHz})$ ($\pm 200 \mathrm{kHz}$) Wide Band ($\pm 2 \mathrm{MHz}$) Clock Feedthrough Wake Up Time Power-D own Option	$\begin{aligned} & 50 \\ & -53 \\ & \\ & -72 \\ & -68 \\ & -50 \\ & -55 \\ & 1 \\ & \text { Yes } \end{aligned}$	dB min dBc max dBc min dBc min dBc min dBctyp ms typ	$\begin{aligned} & f_{\text {MCLK }}=f_{\text {MAX }}, f_{\text {OUT }}=2 \mathrm{MHz} \\ & f_{\text {MCLK }}=f_{\text {MAX }}, f_{\text {OUT }}=2 \mathrm{MHz} \\ & f_{\text {MCLK }}=6.25 \mathrm{MHz}, \text { fout }^{2}=2.11 \mathrm{M} \mathrm{~Hz} \end{aligned}$
VOLTAGE REFERENCE Internal Reference @ $+25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ REFIN Input Impedance Reference TC REFOUT Impedance	$\begin{aligned} & 1.21 \\ & 1.21 \pm 7 \% \\ & 10 \\ & 100 \\ & 300 \end{aligned}$	Volts typ Volts min/max M Ω typ ppm $/{ }^{\circ} \mathrm{C}$ typ Ω typ	
LOGIC INPUTS $\mathrm{V}_{\text {INH }}$, Input High Voltage $V_{\text {INL }}$, Input Low Voltage $I_{\text {INH }}$, Input Current $\mathrm{C}_{\text {IN }}$, Input C apacitance	$\begin{aligned} & V_{D D}-0.9 \\ & 0.9 \\ & 10 \\ & 10 \end{aligned}$	V min V max $\mu \mathrm{A}$ max pF max	
POWER SUPPLIES AVDD DVDD $I_{A A}$ $I_{D D}$ $I_{A A}+I_{D D}{ }^{4}$ Low Power Sleep M ode ${ }^{5}$	$\begin{aligned} & 4.75 / 5.25 \\ & 4.75 / 5.25 \\ & 25 \\ & 6+0.5 / \mathrm{M} \mathrm{~Hz} \\ & 60 \\ & 0.25 \\ & 1 \end{aligned}$	$\mathrm{V} \min / V \max$ $V \min / V \max$ mA max mA typ mA max mA typ mA max	$\mathrm{f}_{\text {OUT }}=2 \mathrm{MHz}$ $1 \mathrm{M} \Omega$ Resistor T ied Between REFOUT and AGND

NOTES

${ }^{1}$ O perating temperature range is as follows: A Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ All dynamic specifications are measured using IOUT. 100\% production tested.
${ }^{3} \mathrm{f}_{\text {MCLK }}=6.25 \mathrm{M} \mathrm{Hz}$, Frequency W ord $=5671 \mathrm{C} 71 \mathrm{CHEX}, \mathrm{f}_{\text {OUT }}=2.11 \mathrm{M} \mathrm{Hz}$.
${ }^{4} \mathrm{M}$ easured with the digital inputs static and equal to 0 V or DVDD.
${ }^{5}$ T he L ow Power Sleep M ode current is 2 mA typically when a $1 \mathrm{M} \Omega$ resistor is not tied from REFOUT to AGND.
The AD 9830 is tested with a capacitive load of 50 pF . T he part can be operated with higher capacitive loads, but the magnitude of the analog output will be attenuated. F or example, a 10 M Hz output signal will be attenuated by 3 dB when the load capacitance equals 250 pF .
Specifications subject to change without notice.

Figure 1. Test Circuit with Which Specifications Are Tested

TIMING CHARACTERISTICS $\left(N_{00}=+5 \mathrm{~V} \pm 5 \%\right.$; $A G N D=D G N D=0 V$, unless otherwise noted $)$

Parameter	Limit at $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ (A Version)	Units	Test Conditions/Comments
t_{1}	20	ns min	M CLK Period
t_{2}	8	$n s$ min	M CLK High D uration
t_{3}	8	ns min	MCLK Low Duration
$\mathrm{t}_{4}{ }^{1}$	8	$n s$ min	WR R ising Edge B efore M CLK Rising Edge
$\mathrm{t}_{4 \mathrm{~A}}{ }^{1}$	8	$n s \min$	$\overline{\text { WR }}$ R ising Edge After M CLK R ising Edge
t_{5}	8	ns min	$\overline{\text { WR Pulse W idth }}$
t_{6}	t_{1}	$n s$ min	D uration B etween C onsecutive $\overline{\mathrm{WR}}$ Pulses
t_{7}	5	ns min	D ata/Address Setup T ime
t_{8}	3	ns min	D ata/Address H old T ime
$\mathrm{t}_{9}{ }^{1}$	8	$n s$ min	FSELECT, PSEL0, PSEL 1 Setup T ime Before M CLK Rising Edge
$\mathrm{t}_{9 \mathrm{~A}}{ }^{1}$	8	$n s$ min	FSELECT, PSEL0, PSEL 1 Setup T ime After M CLK Rising Edge
t_{10}	t_{1}	ns min	RESET Pulse D uration

NOTES
${ }^{1}$ See Pin D escription section.
Guaranteed by design, but not production tested.

Figure 2. $\overline{W R}-M C L K$ Relationship

Figure 3. Writing to a Phase/Frequency Register

Figure 4. Control Timing

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
AVDD to AGND . -0.3 V to +7 V
DVDD to DGND . -0.3 V to +7 V
AVDD to DVDD . 0.3 V to +0.3 V
AGND to DGND . 0.3 V to +0.3 V
Digital I/O Voltage to DGND -0.3 V to DVDD +0.3 V
A nalog I/O Voltage to AGND -0.3 V to AVDD +0.3 V
Operating T emperature Range
Industrial (A Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

*Stresses above those listed under "Absolute M aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this device features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

PIN DESCRIPTION

Mnemonic	Function			
POWER SUPPLY				
AVDD		$	$	Positive power supply for the analog section. A $0.1 \mu F$ capacitor should be connected between AVD D and
:---				
AGND. AVDD has a value of +5 V $\pm 5 \%$.				

AD9830

TERMINOLOGY

Integral Nonlinearity

This is the maximum deviation of any code from a straight line passing through the endpoints of the transfer function. The endpoints of the transfer function are zero scale, a point 0.5 LSB below the first code transition ($000 \ldots 00$ to $000 \ldots$. . 01) and full scale, a point 0.5 LSB above the last code transition (111 . . . 10 to 111 . . . 11). The error is expressed in LSBs.

Differential Nonlinearity

This is the difference between the measured and the ideal 1 LSB change between two adjacent codes in the DAC.

Signal to (Noise + Distortion)

Signal to (N oise + D istortion) is measured signal to noise at the output of the DAC. The signal is the rms magnitude of the fundamental. N oise is the rms sum of all the nonfundamental signals up to half the sampling frequency ($\mathrm{f}_{\mathrm{MCLK}} / 2$) but excluding the dc component. Signal to (N oise + Distortion) is dependent on the number of quantization levels used in the digitization process; the more levels, the smaller the quantization noise. The theoretical Signal to (N oise + Distortion) ratio for a sine wave input is given by

$$
\text { Signal to (N oise + Distortion) }=(6.02 \mathrm{~N}+1.76) \mathrm{dB}
$$

where N is the number of bits. Thus, for an ideal 10-bit converter, Signal to $(\mathrm{N}$ oise +D istortion $)=61.96 \mathrm{~dB}$.

Total Harmonic Distortion

T otal Harmonic Distortion (THD) is the ratio of the rms sum of harmonics to the rms value of the fundamental. For the AD 9830, THD is defined as

$$
T H D=20 \log \frac{\sqrt{\mathrm{~V}_{2}^{2}+\mathrm{V}_{3}^{2}+\mathrm{V}_{4}^{2}+\mathrm{V}_{5}^{2}+\mathrm{V}_{6}^{2}}}{\mathrm{~V}_{1}}
$$

where V_{1} is the rms amplitude of the fundamental and V_{2}, V_{3}, V_{4}, V_{5} and V_{6} are the rms amplitudes of the second through the sixth harmonic.

Output Compliance

The output compliance refers to the maximum voltage which can be generated at the output of the DAC to meet the specifications. When voltages greater than that specified for the output compliance are generated, the AD 9830 may not meet the specifications listed in the data sheet. F or the AD 9830, the maximum voltage which can be generated by the DAC is IV.

Spurious Free Dynamic Range

Along with the frequency of interest, harmonics of the fundamental frequency and images of the M CLK frequency will be present at the output of a DDS device. The spurious free dynamic range (SFDR) refers to the largest spur or harmonic which is present in the band of interest. The wideband SFDR gives the magnitude of the largest harmonic or spur relative to the magnitude of the fundamental frequency in the bandwidth $\pm 2 \mathrm{M} \mathrm{Hz}$ about the fundamental frequency. T he narrowband SFDR gives the attenuation of the largest spur or harmonic in a bandwidth of $\pm 200 \mathrm{kHz}$ and $\pm 50 \mathrm{kHz}$ about the fundamental frequency.

Clock Feedthrough

There will be feedthrough from the M CLK input to the analog output. The clock feedthrough refers to the magnitude of the MCLK signal relative to the fundamental frequency in the AD 9830's output spectrum.

Typical Performance Characteristics- AD9830

Figure 5. Typical Current Consumption vs. MCLK Frequency

Figure 6. Narrow Band SFDR vs. MCLK Frequency

Figure 7. Wide Band SFDR vs. MCLK Frequency

Figure 8. WB SFDR vs. $f_{\text {OUT }} / f_{\text {MCLK }}$ for Various MCLK Frequencies

Figure 9. SNR vs. MCLK Frequency

Figure 10. SNR vs. $f_{O U T /} / f_{M C L K}$ for Various MCLK Frequencies

Figure 11. $f_{M C L K}=50 \mathrm{MHz}, f_{\text {OUT }}=2.1 \mathrm{MHz}$, Frequency Word $=$ ACO8312

Figure 12. $f_{M C L K}=50 \mathrm{MHz}, f_{\text {OUT }}=3.1 \mathrm{MHz}$, Frequency Word $=$ FDF3B64

Figure 13. $f_{\text {MCLK }}=50 \mathrm{MHz}, f_{\text {OUt }}=7.1 \mathrm{MHz}$, Frequency Word $=245 A 1 C A C$

Figure 14. $f_{M C L K}=50 \mathrm{MHz}, f_{\text {OUT }}=9.1 \mathrm{MHz}$, Frequency Word $=2$ E978D50

Figure 15. $f_{\text {MCLK }}=50 \mathrm{MHz}, f_{\text {OUT }}=11.1 \mathrm{MHz}$, Frequency Word $=38$ D4FDF4

Figure 16. $f_{\text {MCLK }}=50 \mathrm{MHz}, f_{\text {OUT }}=13.1 \mathrm{MHz}$, Frequency Word $=43126$ E98

Figure 17. $f_{\text {MCLK }}=50 \mathrm{MHz}, f_{\text {OUT }}=16.5 \mathrm{MHz}$, Frequency Word $=547 \mathrm{AE} 148$

Register	Size	Description
FREQ0 REG	32 Bits	F requency Register 0. This defines the output frequency, when FSELECT $=0$, as a fraction of the MCLK frequency.
FREQ1 REG	32 Bits	F requency Register 1. This defines the output frequency, when FSELECT =1, as a fraction of the MCLK frequency.
PHASE0 REG	12 Bits	Phase 0 ffset Register 0 . When PSELO = PSEL $1=0$, the contents of this register are added to the output of the phase accumulator.
PHASE1 REG	12 Bits	Phase Offset Register 1. When PSEL $0=1$ and PSEL $1=0$, the contents of this register are added to the output of the phase accumulator.
PHASE2 REG	12 Bits	Phase Offset Register 2. When PSEL $0=0$ and PSEL $1=1$, the contents of this register are added to the output of the phase accumulator.
PHASE3 REG	12 Bits	Phase Offset Register 3. When PSELO = PSEL1 = 1 , the contents of this register are added to the output of the phase accumulator.

A2	A1	A0	Destination Register
0	0	0	FREQ0 REG 16 LSBs
0	0	1	FREQ0 REG 16 M SBs
0	1	0	FREQ1 REG 16 LSBs
0	1	1	FREQ1 REG 16 M SBs
1	0	0	PHASE0 REG
1	0	1	PHASE1 REG
1	1	0	PHASE2 REG
1	1	1	PHASE3 REG

Figure 19. Addressing the Control Registers

D15		D0
M SB		LSB

Figure 20. Frequency Register Bits

D 15	D 14	D 13	D 12	D 11		D0
X	X	X	X	M SB		LSB

Figure 21. Phase Register Bits

Figure 18. AD9830 Control Registers

CIRCUIT DESCRIPTION

The AD 9830 provides an exciting new level of integration for the RF/C ommunications system designer. The AD 9830 combines the N umerical C ontrolled Oscillator (NCO), SINE Look-Up table, Frequency and Phase M odulators, and a Digital-to-A nalog C onverter on a single integrated circuit.
The internal circuitry of the AD 9830 consists of three main sections. These are:

N umerical Controlled Oscillator (NCO) + Phase M odulator SINE Look-Up Table
Digital-to-A nalog Converter
The AD 9830 is a fully integrated D irect Digital Synthesis (DDS) chip. The chip requires one reference clock, two low precision resistors and eight decoupling capacitors to provide digitally created sine waves up to 25 M Hz . In addition to the generation of this RF signal, the chip is fully capable of a broad range of simple and complex modulation schemes. T hese modulation schemes are fully implemented in the digital domain allowing accurate and simple realization of complex modulation algorithms using D SP techniques.

THEORY OF OPERATION

Sine waves are typically thought of in terms of their magnitude form a $(\mathrm{t})=\sin (\omega \mathrm{t})$. H owever, these are nonlinear and not easy to generate except through piece wise construction. On the other hand, the angular information is linear in nature. That is, the phase angle rotates through a fixed angle for each unit of time. The angular rate depends on the frequency of the signal by the traditional rate of $\omega=2 \pi f$

Figure 22. Sine Wave
K nowing that the phase of a sine wave is linear and given a reference interval (clock period), the phase rotation for that period can be determined.

$$
\Delta \text { Phase }=\omega \delta \mathrm{t}
$$

Solving for ω

$$
\omega=\Delta \mathrm{Phase} / \delta \mathrm{t}=2 \pi \mathrm{f}
$$

Solving for f and substituting the reference clock frequency for the reference period $\left(1 / f_{\text {MCLK }}=\delta \mathrm{t}\right)$

$$
\mathrm{f}=\Delta \mathrm{P} \text { hase } \times \mathrm{f}_{\mathrm{MCLK}} / 2 \pi
$$

The AD 9830 builds the output based on this simple equation. A simple DD S chip can implement this equation with three major subcircuits.

Numerical Controlled Oscillator + Phase Modulator

This consists of two frequency select registers, a phase accumulator and four phase offset registers. The main component of the NCO is a 32-bit phase accumulator which assembles the phase component of the output signal. Continuous time signals have a phase range of 0 to 2π. Outside this range of numbers, the sinusoid functions repeat themselves in a periodic manner. T he digital implementation is no different. The accumulator simply scales the range of phase numbers into a multibit digital word. The phase accumulator in the AD 9830 is implemented with 32 bits. Therefore, in the AD 9830, $2 \pi=2^{32}$. Likewise, the Δ P hase term is scaled into this range of numbers $0<\Delta \mathrm{P}$ hase $<2^{32}-1$. M aking these substitutions into the equation above

$$
f=\Delta P \text { hase } \times f_{\text {MCLK }} / 2^{32}
$$

where $0<\Delta$ Phase $<2^{32}$
With a clock signal of 50 M Hz and a phase word of 051EB852 hex

$$
f=51 E B 852 \times 50 \mathrm{M} \mathrm{~Hz} / 2^{32}=1.0000000000931 \mathrm{M} \mathrm{~Hz}
$$

The input to the phase accumulator (i.e., the phase step) can be selected either from the FREQ 0 Register or FREQ1 Register and this is controlled by the FSELECT pin. NCOs inherently generate continuous phase signals, thus avoiding any output discontinuity when switching between frequencies. M ore complex frequency modulation schemes can be implemented by updating the contents of these registers. This facilitates complex frequency modulation schemes, such as G M SK.
F ollowing the NCO, a phase offset can be added to perform phase modulation using the 12-bit PH ASE Registers. The contents of this register are added to the most significant bits of the NCO. The AD 9830 has four PH ASE registers. The resolution of the phase registers equals $2 \pi / 4096$.

Sine Look-Up Table (LUT)

T o make the output useful, the signal must be converted from phase information into a sinusoidal value. Since phase information maps directly into amplitude, a ROM LUT converts the phase information into amplitude. To do this, the digital phase information is used to address a sine ROM LUT. Although the NCO contains a 32-bit phase accumulator, the output of the NCO is truncated to 12 bits. U sing the full resolution of the phase accumulator is impractical and unnecessary as this would require a look-up table of 2^{32} entries.
It is necessary only to have sufficient phase resolution in the LUTs such that the dc error of the output waveform is dominated by the quantization error in the DAC. T his requires the look-up table to have two more bits of phase resolution than the 10-bit DAC.

Digital-to-Analog Converter

T he AD 9830 includes a high impedance current source 10-bit DAC, capable of driving a wide range of loads at different speeds. Full-scale output current can be adjusted, for optimum power and external load requirements, through the use of a single external resistor ($\mathrm{R}_{\mathrm{SET}}$).
The DAC can be configured for single or differential ended operation. $\overline{\text { IOUT }}$ can be tied directly to AGND for single ended operation or through a load resistor to develop an output voltage. The load resistor can be any value required, as long as the
full-scale voltage developed across it does not exceed the voltage compliance range. Since full-scale current is controlled by $\mathrm{R}_{\text {SET }}$, adjustments to $R_{\text {SET }}$ can balance changes made to the load resistor. H owever, if the DAC full-scale output current is significantly less than 20 mA , the linearity of the DAC may degrade.

DSP and MPU Interfacing

The AD 9830 has a parallel interface, with 16 bits of data being loaded during each write cycle.
The frequency or phase registers are loaded by asserting the $\overline{\mathrm{WR}}$ signal. The destination register for the 16 -bit data is selected using the address inputs A0, A1 and A2. The phase registers are 12 bits wide so, only the 12 LSBs need to be valid-the 4 M SBs of the 16 bit word do not have to contain valid data. D ata is loaded into the AD 9830 by pulsing $\overline{\mathrm{WR}}$ low, the data being latched into the AD 9830 on the rising edge of $\overline{\mathrm{WR}}$. The values of inputs $\mathrm{A} 0, \mathrm{~A} 1$ and A 2 are also latched into the AD 9830 on the $\overline{\mathrm{WR}}$ rising edge. The appropriate register is updated on the next MCLK rising edge. To ensure that the AD 9830 contains valid data at the rising edge of MCLK, the rising edge of the $\overline{\mathrm{WR}}$ pulse should not coincide with the rising MCLK edge. The WR pulse must occur several nanoseconds before the MCLK rising edge. If the $\overline{\mathrm{WR}}$ rising edge occurs at the MCLK rising edge, there is an uncertainty of one MCLK cycle regarding the loading of the destination register-the destination register may be loaded with the new data immediately or the destination register may be updated on the next M CLK rising edge. To avoid any uncertainty, the times listed in the specifications should be complied with.

FSELECT, PSELO and PSEL1 are sampled on the M CLK rising edge. Again, these inputs should be valid when an M CLK rising edge occurs as there will be an uncertainty of one M CLK cycle introduced otherwise. When these inputs change value, there will be a pipeline delay before control is transferred to the selected register-there will be a pipeline delay before the analog output is controlled by the selected register. Similarly, there is a delay when a new word is written to a register. PSEL 0 , PSEL 1, FSELECT and WR have latencies of six M CLK cycles.
The flow chart in Figure 23 shows the operating routine for the AD 9830. When the AD 9830 is powered up, the part should be reset using RESET. This will reset the phase accumulator to zero so that the analog output is at midscale. $\overline{\text { RESET }}$ does not reset the phase and frequency registers. These registers will contain invalid data and, therefore, should be set to zero by the user.
The registers to be used should be loaded, the analog output being $f_{M C L K} / 2^{32} \times F$ REG where F REG is the value contained in the selected frequency register. This signal will be phase shifted by an amount $2 \pi / 4096 \times$ PHASEREG where PHASEREG is the value contained in the selected phase register. When FSELECT, PSELO and PSEL1 are programmed, there will be a pipeline de lay of approximately 6 M CLK cycles before the analog output reacts to the change on these inputs.

Figure 23. Flow Chart for AD9830 Initialization and Operation

APPLICATIONS

T he AD 9830 contains functions which make it suitable for modulation applications. T he part can be used to perform simple modulation such as FSK. M ore complex modulation schemes such as GM SK and QPSK can also be implemented using the AD 9830. In a FSK application, the two frequency registers of the AD 9830 are loaded with different values, one frequency will represent the space frequency while the other will represent the mark frequency. The digital data stream is fed to the FSELECT pin which will cause the AD 9830 to modulate the carrier frequency between the two values.
The AD 9830 has four phase registers which enable the part to perform PSK. With phase shift keying, the carrier frequency is phase shifted, the phase being altered by an amount which is
related to the bit stream being input to the modulator. The presence of four shift registers eases the interaction needed between the DSP and the AD 9830.
The frequency and phase registers can be written to continuously, if required. T he maximum update rate equals the frequency of the M CLK. H owever, if a selected register is loaded with a new word, there will be a delay of 6 M CLK cycles before the analog output will change accordingly.
The AD 9830 is also suitable for signal generator applications. With its low current consumption, the part is suitable for mobile applications in which it can be used as a local oscillator. Figure 24 shows the interface between the AD 9830 and AD 6459 which is a down converter used on the receive side of mobile phones or basestations.

Figure 24. AD9830 and AD6459 Receiver Circuit

Grounding and Layout

The printed circuit board that houses the AD 9830 should be designed so that the analog and digital sections are separated and confined to certain areas of the board. This facilitates the use of ground planes which can be separated easily. A minimum etch technique is generally best for ground planes as it gives the best shielding. Digital and analog ground planes should only be joined in one place. If the AD 9830 is the only device requiring an AGND to DGND connection, then the ground planes should be connected at the AGND and DGND pins of the AD 9830. If the AD 9830 is in a system where multiple devices require AGND to DGND connections, the connection should be made at one point only, a star ground point that should be established as close as possible to the AD 9830.
Avoid running digital lines under the device as these will couple noise onto the die. The analog ground plane should be allowed to run under the AD 9830 to avoid noise coupling. The power supply lines to the AD 9830 should use as large a track as is possible to provide low impedance paths and reduce the effects of glitches on the power supply line. F ast switching signals like clocks should be shielded with digital ground to avoid radiating noise to other sections of the board. Avoid crossover of digital and analog signals. T races on opposite sides of the board should run at right angles to each other. This will reduce the effects of feedthrough through the board. A microstrip technique is by far the best but is not always possible with a double-sided board. In this technique, the component side of the board is dedicated to ground planes while signals are placed on the other side.
Good decoupling is important. The analog and digital supplies to the AD 9830 are independent and separately pinned out to minimize coupling between analog and digital sections of the device. All analog and digital supplies should be decoupled to AGND and DGND respectively with $0.1 \mu \mathrm{~F}$ ceramic capacitors in parallel with $10 \mu \mathrm{~F}$ tantalum capacitors. To achieve the best from the decoupling capacitors, they should be placed as close as possible to the device, ideally right up against the device. In systems where a common supply is used to drive both the AVDD and DVDD of the AD 9830, it is recommended that the system's AVDD supply be used. This supply should have the recommended analog supply decoupling between the AVDD pins of the AD 9830 and AGND and the recommended digital supply decoupling capacitors between the DVDD pins and DGND.

AD9830

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-026-BBC
Figure 1. 48-Lead Low Profile Quad Flat Package [LQFP] (ST-48)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD9830ASTZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 -Lead Low Profile Quad Flat Package [LQFP]	ST-48
AD9830ASTZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 -Lead Low Profile Quad Flat Package [LQFP]	ST-48

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

REVISION HISTORY

11/11-Rev. A to Rev. B
Changed Title from CMOS Complete DDS to Direct Digital Synthesizer, Waveform Generator. .. 1
Changed TQFP to LQFP Throughout.1
Changes to General Description Section1Deleted AD9830 Evaluation Board Section, Using the AD9830Evaluation Board Section, Prototyping Area Section, XO vs.External Clock Section, and Power Supply Section.13
Deleted Figure 25; Renumbered Sequentially 13
Deleted Figure 26 and Components List Section 14
Updated Outline Dimensions 14
Changes to Ordering Guide 14

NOTES

AD9830

NOTES

 DEVICESLifeElectronics
Живое партнерство

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

> Тел: +7 (812) 3364304 (многоканальный)
> Email: org@lifeelectronics.ru

