NB3N1200K/NB3W1200L Evaluation Board User's Manual ON Semiconductor® http://onsemi.com ### **EVAL BOARD USER'S MANUAL** #### Introduction The NB3N1200KMNGEVB and the NB3W1200LMNG EVB evaluation boards were developed with a common PCB layout design to accommodate the NB3N1200K (standard HCSL outputs) and the NB3W1200L (HCSL Push-Pull outputs) devices. Each board comes fully assembled and tested and is ready to evaluate in the lab. This evaluation board was designed to provide a flexible and convenient platform to quickly evaluate, characterize and verify the operation of the NB3N1200K or NB3W1200L devices. To minimize the board size, six differential outputs are accessed with SMA connectors. The other six differential outputs are loaded, terminated and can be monitored with a high impedance probe as explained later in the manual. The NB3N1200K Evaluation Board schematic is the same as the NB3W1200L schematic except the "1200L" has some components depopulated (DNI) per the "1200L" BOM. - The NB3W1200LMNGEVB does not have RP resistors installed on its differential Push-Pull outputs. - The NB3W1200LMNGEVB does not have FB_OUT/FB_OUT# resistors installed. - The NB3W1200LMNGEVB does not have R_{REF} resistor R107 installed. This manual should be used in conjunction with the device datasheet which contains full technical details on the device specifications and operation. This evaluation board manual contains: - Information on the NB3N1200K/NB3W1200L Evaluation Board - Assembly Instructions - Test and Measurement Setup Procedures - Board Schematic and Bill of Materials **Top View** **Bottom View** Figure 1. NB3N1200KMNGEVB and NB3W1200LMNGEVB Evaluation Board #### QUICK START LAB SET-UP USER'S GUIDE #### Pre-Power-Up - The NB3N1200K and NB3W1200L have positive power supply pins VDD and VDDIO. Connect power supply cables to VDD, VDDIO and GND banana jacks; (do not turn power on, yet) - 2. Connect a signal generator to the SMA connectors for the CLK_IN & CLK_IN# inputs. - 3. 50-ohm termination resistors are installed for a signal generator on the board. Set appropriate input signal levels; (HCSL input, VIL = 0 V, VIH = 700 mV, Frequency 100 or 133.33 MHz) - 4. Ensure the PWRGD/PWRDN# pin is in the Low state before power up (PWRDN#). There is a jumper on pin 6 to easily select between High and Low. See Figure 8. - 5. The 100M_133M# and HBW_BYPASS_LBW pins need to be hardware selected with jumpers. See Figures 4 and 7. - 6. To monitor the DIF_n/DIF_n# outputs, connect the DIF_n/DIF_n# outputs to the appropriate oscilloscope. **Table 1. POWER SUPPLY CONNECTIONS** | Device Pin
Power Supply Connector | Power Supply | |--------------------------------------|-----------------| | VDD | 3.3 V | | VDDIO | 1.05 V to 3.3 V | | GND | 0 V | **Figure 2. Power Supply Connections** Figure 3. Typical Lab Test Set-Up #### **Power -Up Sequence** - 1. Turn on power supply, 3.3 V (VDD & VDDIO). - 2. Move PWRGD/PWRDN# jumper from Low to logic High, PWRGD position. - Turn on the Differential Clock Signal for the CLK_IN inputs. The differential Clock signal for the CLK_IN inputs can be ON or active before or after PWRGD is set HIGH. - 4. Monitor DIF_n/DIF_n# outputs on oscilloscope. #### Optional ### Graphical User Interface (see page 7) There is a stand-alone Graphical User Interface software package and user's manual that will interface with the DUT via the USB connector. - 1. Connect the USB port on the evaluation board to a USB port on the PC via cable. - 2. See the stand-alone GUI instructions document. - 3. Allow Windows to install the necessary drivers for the eval board USB interface hardware. - 4. Start the GUI program. #### **Power Supplies** Each VDD, VDDIO and GND power supply has a separate side-launch banana jack located on bottom side. This board is capable of measuring device IDD & IDDIO. This board is capable of measuring device IDD & IDDIO separately. Board Layer #2 = SMA Ground = Device GND = 0 V. GND Banana Jack = negative power supply for DUTGND and SMAGND. **Exposed Pad (EP):** The exposed pad footprint on the board is soldered to the exposed pad of the QFN-64 package, and is electrically connected to GND power supply. # Board Layer #3 = VDD and VDDIO Power Supplies VDD = positive power supply for core and inputs; VDD/VDDA/VDDR (pins #1, 8, 24, 40, 57) VDDIO = positive power supply for outputs; VDDIO (pins #25, 32, 49, 56) VDD & VDDIO have the power supply filtering per datasheet by the banana jacks. All VDD/VDDA/VDDR/VDDIO device pins have a $0.1~\mu F$ bypass capacitor installed on top side next to package pins. #### **Control Pins** Each control pin can be managed manually with a H/L jumper header; H = VDD, L = GND. *Tri-Level Input Pins - HBW_BYPASS_LBW#, SA0 and SA1*The three tri-level input pins, HBW_BYPASS_LBW#, SA0 and SA1, have selectable (with jumper) 4.7 k-ohm pull-up to VDD and 4.7 k-ohm pull-down to GND resistors; No jumper defaults to open/float. - For a HIGH Level Put Jumper to High - For a LOW Level Put Jumper to Low - For a MID Level Put Jumper to both High and Low; this will Enable both Pull-up and Pull-down Resistors #### HBW BYPASS LBW# At J65 and J66 headers, there is a 4.7 k Ω pull-up to VDD and a 4.7 k Ω pull-down resistor to GND for manual control. See Figure 4. #### SA0 & SA1 At J67 and J69 headers, there are 4.7 k Ω pull-ups to VDD and at J68 and J70, there are 4.7 k Ω pull-down resistors to GND for manual control. See Figure 5. Figure 4. HBW_BYPASS_LBW# Schematic/PCB Configuration Figure 5. SA0 & SA1 Schematic/PCB Configuration #### Control Pins (Continued) OE_n# Pins (Output Enable/Disable Function) Six of the twelve differential outputs that have metal traces going to SMA connectors have OE_n# pins on the left side of the board that can be controlled manually using the convenient High/Low OE_n# jumpers. See Figure 6. All twelve of the OE_n#s can be controlled individually/ automatically by using the software GUI. GUI control is accomplished via the USB when the OE_n# jumper is installed on the middle header position. See Figure 6. Figure 6. OE_n# Pins Schematic/PCB Configuration 100M_133M# - Frequency Selection (J55) The $100M_133M\#$ frequency selection pin can be controlled manually with the High/Low header jumper J55, H = 100 MHz, L = 133 MHz. Figure 7. 100M_133M# Pin Schematic/PCB Configuration #### PWRGD/PWRDN# (J56) The PWRGD/PWRDN# pin can be controlled manually with the High/Low header jumper J56; H = PWRGD, L = PWRDN#. Figure 8. PWRGD/PWRDN# Pin Schematic/PCB Configuration #### **Differential Clock Inputs and Outputs** #### CLK_IN & CLK_IN# - Differential Clock Inputs The differential Clock input traces, CLK_IN/CLK_IN#, are equal length routed straight from the SMA connectors on the left side directly to the DUT; there are no vias on metal traces CLK_IN & CLK_IN# have resistor pads (R51 & R52) to GND to terminate a signal generator, if used. 50-ohm resistors are installed. **Remove these resistors** if CLK_IN & CLK_IN# are driven by another IC device. #### DIF n and DIF n# - Differential Outputs NB3N1200KMNGEVB and NB3W1200LMNGEVB were designed with a flexible PCB layout configuration to measure the differential HCSL (1200K) or Push-Pull (1200L) outputs with a 50-ohm scope head or high-impedance FET probe. (See Output Layout in Figures 8 and 9) Six of the twelve differential outputs are designed to have equal length metal traces from the device pins to the SMA connectors. The other six differential outputs have shortened metal traces, do not have SMA connectors and can be observed with a high-impedance probe on the metal pads provided. Each DIF_n/DIF_n# output has a provision for C_{Load}; **2 pF capacitors are installed on all outputs**. Rs & Rp pads are located close to the DUT. Rs = $33-\Omega$ is installed for both the NB3N1200K and NB3W1200L. #### NB3N1200K (HCSL Outputs) RP is not installed on the six output pair with long metal traces to SMA connectors; Use $50-\Omega$ to GND of the oscilloscope head for RP. Rp is installed (50- Ω to GND) on the short metal traces without SMA connectors and will use Hi-Z probes. #### NB3W1200L (Push-Pull Outputs) Rp is not installed Table 2. NB3N1200KMNGEVB AND NB3W1200LMNGEVB OUTPUT LOAD AND TERMINATION VS. OSCILLOSCOPE MEASUREMENT | Device | Output Traces | Rs | Rp | CLoad | Scope | |--------|---------------|------|------------|-------|-------| | 1200K | Long | 33-Ω | Open (DNI) | 2 pF | 50-Ω | | 1200K | Short | 33-Ω | 50-Ω | 2 pF | Hi-Z | | 1200L | Long or Short | 33-Ω | Open (DNI) | 2 pF | Hi-Z | Figure 9. Differential Outputs Schematic/PCB Configuration: Long vs. Short Metal Traces #### **HCSL Output Measurement** HCSL outputs are typically terminated with $50-\Omega$ to ground. Measuring HCSL outputs can be easily accomplished by: NB3N1200K (HCSL Outputs) – 50-Ω Oscilloscope Head With R_P removed from board, connect the HCSL outputs through the SMA connectors to the 50- Ω internal impedance of the oscilloscope sampling head. #### NB3N1200K (HCSL Outputs) – Use Hi-Z Probe With R_P installed, use a high-impedance probe on the output's metal trace. Holes for headers to connect to Hi-Z probes are available, but the header pins are not installed. - Single-ended Hi-Z probes or, - Differential Hi-Z probe; (see layout below) NB3W1200L (Push-Pull Outputs) – Use Hi-Z Probe Rp is not installed - A 0-Ω series resistor is installed between the end of the transmission line and the SMA connector. This resistor can be removed, if needed, to eliminate any SMA impedance/stub when using Hi-Z probes. - As a feature, an optional component can be installed on each output, ie. additional capacitance loading etc. The following figures describe the boards' output features: Figure 10. Differential Outputs Schematic/PCB Configuration: Use Hi-Z Probe Scope for NB3W1200L #### Misc. Pins FB_OUT & FB_OUT# – External Termination of Feedback Pins FB_OUT & FB_OUT# have convenient "test point anvils" to monitor these pins with Hi-Z probe. #### NB3N1200K (HCSL): Since the FB_OUT & FB_OUT# pins do not drive transmission lines (no SMAs), the board layout has these pins loaded/terminated at the DUT per datasheet; $83-\Omega$ to GND is installed for the $100-\Omega$ board. ### NB3W1200L (Push-Pull): FB_OUT & FB_OUT# resistors are not installed. #### IREF Pin #### NB3N1200K (HCSL): The R_{REF} resistor (R107) to GND for the HCSL output part device. $R_{REF} = 475-\Omega$ is installed for the 100- Ω board. #### NB3W1200L (Push-Pull) R_{REF} is not installed for the NB3W1200L device. #### **Graphical User Interface (GUI)** #### USB & I²C/SMBus Interface The NB3N1200K EVB has an on-board I²C/SMBus interface circuitry located in the upper left section of the board. This circuitry will interface with the software program and the device via the SDA and SCL input pins, and can control all twelve of the OE_n# pins, PLL Mode and Frequency Select directly from the GUI. #### SCL & SDA The SMBus Clock (SCL) and Data (SDA) pins are exercised through the on-board I²C interface. In order to enable the I^2C control of the DUT, header jumpers J63 & J64 must be shorted. The I²C/SMBus interface circuitry is powered separately from the USB type-B connection and is isolated from device VDD and VDDIO. The SDA and SCL pins can also be externally accessed by an off-board programmer, allowing other SMBus emulators to be used to program the DUT. If used, remove both jumpers J63 & J64. "Test-point anvils" TP5 & TP6 are available for external control of the device with the use with mini-grabber cables. #### **BOARD FEATURES** # Single Board Design/Layout for NB3N1200K or NB3W1200L: - The single board design and layout accommodates the electrical characterization of either the NB3N1200K (standard HCSL outputs) or the NB3W1200L (HCSL Push-Pull outputs). - Incorporates on-board I²C/SMBus interface circuitry powered from a USB connection, minimizing cabling. - Convenient and compact board layout. - 3.3 V power supply device operation. - Differential inputs/outputs signals are accessed via SMA connectors or high impedance probes. # Other Board Features There are no vias on the high-speed differential I/O metal traces so as to eliminate via impedance and stub affects. Board stand-offs are installed. #### Board Layout The NB3N1200K QFN-64 Evaluation Board provides a high bandwidth, 50- Ω controlled trace impedance environment (100- Ω line-to-line differential) and is implemented in four layers. - All layers are constructed with FR4 dielectric material. - The first layer is the primary signal layer, including all of the differential inputs and outputs. - The second layer is the ground plane. It is dedicated for the DUT ground/SMA ground plane. - The third layer is dedicated as the power plane. A portion of this 3rd layer is designated for the device VDD and VDDIO power planes. - The fourth layer contains control lines, power supply banana jacks and device power pin bypass capacitors. ### Layer Stack - L1 (Top) Signal - L2 Device Ground and SMA Ground - L3 VDD, VDDIO (Separate Device Power Supplies) - L4 (Bottom), Power Supply By-pass Capacitors, Control Pin Traces and Banana Jacks # 4-LAYER STACK-UP Figure 11. NB3N1200KMNGEVB and NB3W1200LMNGEVB Evaluation Board Layer Stack-Up #### NB3N1200K/NB3W1200L EVALUATION BOARD SCHEMATIC Figure 12. NB3N1200KMNGEVB & NB3W1200LMNGEVB Board Schematic Figure 13. USB Circuitry Schematic Table 3. BILL OF MATERIALS FOR THE NB3N1200KMNGEVB EVALUATION BOARD | Designator | Qty. | Description | Value | Tolerance | Footprint | Manufacturer | Manufacturer
Part Number | Substi-
tution
Allowed | Lead
Free | |---|------|--|--------------------------------|-----------|--------------------------------|------------------------|-----------------------------|------------------------------|--------------| | B1 | 1 | PC Board,
Demo Board | _ | _ | - | - | _ | - | Yes | | C1-C21, C23,
C26, C31 | 24 | Capacitor | 2.0 pF | 12% | 0402 | TDK | C1005C0G1H020C | Yes | Yes | | C22, C32 | 2 | Capacitor | 10 μF | 10% | 1206 | Vishay | TR3A106K010C2000 | Yes | Yes | | C24, C25,
C2-C30,
C34-C41,
C43-C45, C47,
C49, C52, C58 | 20 | Capacitor | 100 nF | 10% | 0402 | AVX | 0402ZD104KAT2A | Yes | Yes | | C27, C33 | 2 | Capacitor | 10 μF | 20% | 0603 | TDK | C1608X5R1A106M | Yes | Yes | | C42, C46, C48 | 3 | Capacitor | 4.7 μF | 20% | 0402 | TDK | C1005X5R0J475M | Yes | Yes | | C50 | 1 | Capacitor | 10 nF | 10% | 0402 | AVX | 0402YC103KAT2A | Yes | Yes | | C51, C53 | 2 | Capacitor | 10 pF | 5% | 0402 | Murata | GRM1555C1H100JZ01D | Yes | Yes | | C55-C57, C59 | 4 | Capacitor | 1 μF | 20% | 0402 | Murata | GRM155R61A105ME15D | Yes | Yes | | D1 | 1 | ESD
Suppressor
4 CHANNEL
PROTECTION | PACDN004 | - | SOT-143 | ON Semiconductor | PACDN004SR | No | Yes | | FB1, FB2 | 2 | EMI Filter
Bead | 600 Ω | _ | 0603 | Murata | BLM18KG601SN1D | Yes | Yes | | FB3, FB4 | 2 | EMI Filter
Bead | 600 Ω | 25% | 0402 | Murata | BLM15AG601SN1D | Yes | Yes | | J3-J6, J11-J14,
J19-J22, J37,
J38 | 14 | RF Connectors
PC END MT
JCK GLD
.062" | - | - | SMA_END_LA
UNCH_0.062" | Johnson
Components | 142-0701-801 | Yes | Yes | | J43, J44, J47,
J48, J51, J52 | 6 | Header | _ | _ | Header
Thru-Hole 2 × 3 | FCI | 67996-206HLF | Yes | Yes | | J56, J55 | 2 | Header | Header
3-pin | - | 3-pin Header,
thru-hole 0.1 | 3M | 961103-6404-AR | Yes | Yes | | J59 | 1 | Banana Jack,
Thru-Hole,
Red | - | - | CON2_571-050
0_DELTRON | Deltron | 571-0500 | Yes | Yes | | J60 | 1 | Banana Jack,
Thru-Hole,
Yellow | - | - | CON2_571-050
0_DELTRON | Deltron | 571-0700 | Yes | Yes | | J61 | 1 | Banana Jack,
Thru-Hole,
Black | _ | - | CON2_571-050
0_DELTRON | Deltron | 571-0100 | Yes | Yes | | J62 | 1 | CONN USB
TYPE B R/A
HORIZ SMD | - | - | SMT USB
Conn B | On Shore
Technology | USB-B1SMHSW6 | Yes | Yes | | J63-J70 | 8 | Header | Header
2-pin | - | 2-pin Header,
thru-hole 0.1 | 3M | 961102-6404-AR | Yes | Yes | | LED1 | 1 | LED GREEN
CLEAR 0603
SMD | LED, Green | - | 0603 LED | Lite-On | LTST-C190KGKT | Yes | Yes | | M1-M8, M10,
M12, M14,
M17, M19,
M21, M23-M25 | 17 | CONN
JUMPER
SHORTING
.100" GOLD | Shunt | - | 2.54 × 5.97
(mm) | Sullins | QPC02SXGN-RC | Yes | Yes | | M9, M11, M13,
M15 | 4 | STANDOFF
4-40
ALUMINUM
5/8" | Standoff,
4-40
1/4 × 5/8 | - | - | Keystone | 1808 | Yes | Yes | | M16, M18,
M20, M22 | 4 | Screw,
4-40 x 0.25,
PHP | - | - | - | Building Fasteners | PMS 440 0025 PH | Yes | Yes | | R1,R5,R9, R13,
R17, R21, R25,
R29, R33, R37,
R41, R45, R49,
R55, R61, R65,
R69, R73, R77,
R83, R89, R95,
R99, R103 | 24 | Resistor | 33 Ω | 1% | 0402 | Panasonic | ERJ-2RKF33R0X | Yes | Yes | Table 3. BILL OF MATERIALS FOR THE NB3N1200KMNGEVB EVALUATION BOARD (continued) | Designator | Qty. | Description | Value | Tolerance | Footprint | Manufacturer | Manufacturer
Part Number | Substi-
tution
Allowed | Lead
Free | |--|------|-------------|--------------------|-----------|-----------------------|------------------|-----------------------------|------------------------------|--------------| | R3, R7, R11,
R15, R19, R23,
R27, R31, R35,
R39, R43, R47,
R53, R59, R63,
R67, R71, R75,
R80, R86, R91,
R97, R101,
R105 | 24 | Resistor | 49.9 Ω | 1% | 0402 | Panasonic | ERJ-2RKF49R9X | Yes | Yes | | R10, R14, R18,
R22, R42, R46,
R50, R56, R78,
R84, R90, R96 | 12 | Resistor | 0 Ω | Jumper | 0402 | Vishay | CRCW04020000Z0ED | Yes | Yes | | R51, R52 | 2 | Resistor | 49.9 Ω | 1% | 0603 | Panasonic | ERJ-3EKF49R9V | Yes | Yes | | R57, R58, R79,
R82, R85, R88 | 6 | Resistor | 4.7 kΩ | 5% | 0603 | Panasonic | ERJ-3GEYJ472V | Yes | Yes | | R94, R93 | 2 | Resistor | 2.2 Ω | 5% | 0603 | Panasonic | ERJ-3GEYJ2R2V | Yes | Yes | | R107 | 1 | Resistor | 475 Ω | 1% | 0402 | Panasonic | ERJ-2RKF4750X | Yes | Yes | | R108, R109 | 2 | Resistor | 82.5 Ω | 1% | 0402 | Panasonic | ERJ-2RKF82R5X | Yes | Yes | | R110, R111,
R114,
R116-R118 | 6 | Resistor | 10 kΩ | 5% | 0402 | Panasonic | ERJ-2GEJ103X | Yes | Yes | | R112, R113,
R121-R132 | 14 | Resistor | 0 Ω | Jumper | 0201 | Panasonic | ERJ-1GE0R00C | Yes | Yes | | R115 | 1 | Resistor | 12 kΩ | 1% | 0402 | Panasonic | ERJ-2RKF1202X | Yes | Yes | | R119 | 1 | Resistor | 470 Ω | 5% | 0402 | Panasonic | ERJ-2GEJ471X | Yes | Yes | | R120 | 1 | Resistor | 2.2 kΩ | 5% | 0402 | Panasonic | ERJ-2GEJ222X | Yes | Yes | | TP1, TP2, TP3,
TP4, TP5, TP6,
TP13, TP14 | 8 | Test Point | Test Point,
SMT | - | TP_5015_KEY
STONE | Keystone | 5015 | Yes | Yes | | U1 | 1 | = | NB3N1200K | - | 64-QFN 9 mm | ON Semiconductor | NB3W1200KMNG | No | Yes | | U2 | 1 | = | FT2232H | - | 64-QFN | FTDI | FT2232HQ-REEL | No | Yes | | U3 | 1 | - | 93LC46B | - | 8-TSSOP | Microchip | 93LC46BT-I/ST | No | Yes | | U4 | 1 | - | NCP4586,
3.3 V | - | SOT-23-5 | ON Semiconductor | NCP4586DSN33T1G | No | Yes | | Y1 | 1 | - | 12 MHz | - | 2.5 × 3.2 (mm)
SMT | Abracon Corp | ABM8G-12.000MHZ-4Y-T3 | Yes | Yes | Table 4. BILL OF MATERIALS FOR THE NB3W1200LMNGEVB EVALUATION BOARD | Designator | Qty. | Description | Value | Tolerance | Footprint | Manufacturer | Manufacturer
Part Number | Substi-
tution
Allowed | Lead
Free | |---|------|--|--------------------------------|-----------|--------------------------------|------------------------|-----------------------------|------------------------------|--------------| | B1 | 1 | PC Board,
Demo Board | _ | - | - | - | - | - | Yes | | C1-C21, C23,
C26, C31 | 24 | Capacitor | 2.0 pF | 12% | 0402 | TDK | C1005C0G1H020C | Yes | Yes | | C22, C32 | 2 | Capacitor | 10 μF | 10% | 1206 | Vishay | TR3A106K010C2000 | Yes | Yes | | C24, C25,
C28-C30,
C34-C41,
C43-C45, C47,
C49, C52, C58 | 20 | Capacitor | 100 nF | 10% | 0402 | AVX | 0402ZD104KAT2A | Yes | Yes | | C27, C33 | 2 | Capacitor | 10 μF | 20% | 0603 | TDK | C1608X5R1A106M | Yes | Yes | | C42, C46, C48 | 3 | Capacitor | 4.7 μF | 20% | 0402 | TDK | C1005X5R0J475M | Yes | Yes | | C50 | 1 | Capacitor | 10 nF | 10% | 0402 | AVX | 0402YC103KAT2A | Yes | Yes | | C51, C53 | 2 | Capacitor | 10 pF | 5% | 0402 | Murata | GRM1555C1H100JZ01D | Yes | Yes | | C55-C57, C59 | 4 | Capacitor | 1 μF | 20% | 0402 | Murata | GRM155R61A105ME15D | Yes | Yes | | D1 | 1 | ESD
Suppressor
4 CHANNEL
PROTECTION | PACDN004 | - | SOT-143 | ON Semiconductor | PACDN004SR | No | Yes | | FB1, FB2 | 2 | EMI Filter
Bead | 600 Ω | | 0603 | Murata | BLM18KG601SN1D | Yes | Yes | | FB3, FB4 | 2 | EMI Filter
Bead | 600 Ω | 25% | 0402 | Murata | BLM15AG601SN1D | Yes | Yes | | J3-J6, J11-J14,
J19-J22, J37,
J38 | 14 | RF Connectors
PC END MT
JCK GLD
.062" | - | - | SMA_END_LA
UNCH_0.062" | Johnson
Components | 142-0701-801 | Yes | Yes | | J43, J44, J47,
J48, J51, J52 | 6 | Header | _ | - | Header
Thru-Hole 2 × 3 | FCI | 67996-206HLF | Yes | Yes | | J56, J55 | 2 | Header | Header
3-pin | - | 3-pin Header,
thru-hole 0.1 | 3M | 961103-6404-AR | Yes | Yes | | J59 | 1 | Banana Jack,
Thru-Hole,
Red | _ | - | CON2_571-050
0_DELTRON | Deltron | 571-0500 | Yes | Yes | | J60 | 1 | Banana Jack,
Thru-Hole,
Yellow | _ | - | CON2_571-050
0_DELTRON | Deltron | 571-0700 | Yes | Yes | | J61 | 1 | Banana Jack,
Thru-Hole,
Black | _ | - | CON2_571-050
0_DELTRON | Deltron | 571-0100 | Yes | Yes | | J62 | 1 | CONN USB
TYPE B R/A
HORIZ SMD | - | - | SMT USB
Conn B | On Shore
Technology | USB-B1SMHSW6 | Yes | Yes | | J63-J70 | 8 | Header | Header
2-pin | _ | 2-pin Header,
thru-hole 0.1 | 3M | 961102-6404-AR | Yes | Yes | | LED1 | 1 | LED GREEN
CLEAR 0603
SMD | LED, Green | - | 0603 LED | Lite-On | LTST-C190KGKT | Yes | Yes | | M1-M8, M10,
M12, M14,
M17, M19,
M21, M23-M25 | 17 | CONN
JUMPER
SHORTING
.100" GOLD | Shunt | - | 2.54 × 5.97
(mm) | Sullins | QPC02SXGN-RC | Yes | Yes | | M9, M11, M13,
M15 | 4 | STANDOFF
4-40
ALUMINUM
5/8" | Standoff,
4-40
1/4 × 5/8 | - | - | Keystone | 1808 | Yes | Yes | | M16, M18,
M20, M22 | 4 | Screw,
4-40 × 0.25,
PHP | - | - | - | Building Fasteners | PMS 440 0025 PH | Yes | Yes | | R1, R5, R9,
R13, R17, R21,
R25, R29, R33,
R37, R41, R45,
R49, R55, R61,
R65, R69, R73,
R77, R83, R89,
R95, R99, R103 | 24 | Resistor | 33 Ω | 1% | 0402 | Panasonic | ERJ-2RKF33R0X | Yes | Yes | Table 4. BILL OF MATERIALS FOR THE NB3W1200LMNGEVB EVALUATION BOARD (continued) | Designator | Qty. | Description | Value | Tolerance | Footprint | Manufacturer | Manufacturer
Part Number | Substi-
tution
Allowed | Lead
Free | |--|------|-------------|--------------------|-----------|-----------------------|------------------|-----------------------------|------------------------------|--------------| | R3, R7, R11,
R15, R19, R23,
R27, R31, R35,
R39, R43, R47,
R53, R59, R63,
R67, R71, R75,
R80, R86, R91,
R97, R101, | 0 | DNI | - | - | 0402 | - | - | - | Yes | | R10, R14, R18,
R22, R42, R46,
R50, R56, R78,
R84, R90, R96 | 12 | Resistor | 0 Ω | Jumper | 0402 | Vishay | CRCW04020000Z0ED | Yes | Yes | | R51, R52 | 2 | Resistor | 49.9 Ω | 1% | 0603 | Panasonic | ERJ-3EKF49R9V | Yes | Yes | | R57, R58, R79,
R82, R85, R88 | 6 | Resistor | 4.7 kΩ | 5% | 0603 | Panasonic | ERJ-3GEYJ472V | Yes | Yes | | R93, R94 | 2 | Resistor | 2.2 Ω | 5% | 0603 | Panasonic | ERJ-3GEYJ2R2V | Yes | Yes | | R107 | 1 | Resistor | 475 Ω | 1% | 0402 | Panasonic | ERJ-2RKF4750X | Yes | Yes | | R108, R109 | 0 | DNI | - | _ | 0402 | - | - | - | Yes | | R110, R111,
R114,
R116-R118 | 6 | Resistor | 10 kΩ | 5% | 0402 | Panasonic | ERJ-2GEJ103X | Yes | Yes | | R112, R113,
R121-R132 | 14 | Resistor | 0 Ω | Jumper | 0201 | Panasonic | ERJ-1GE0R00C | Yes | Yes | | R115 | 1 | Resistor | 12 kΩ | 1% | 0402 | Panasonic | ERJ-2RKF1202X | Yes | Yes | | R119 | 1 | Resistor | 470 Ω | 5% | 0402 | Panasonic | ERJ-2GEJ471X | Yes | Yes | | R120 | 1 | Resistor | 2.2 kΩ | 5% | 0402 | Panasonic | ERJ-2GEJ222X | Yes | Yes | | TP1-TP6,
TP13, TP14 | 8 | Test Point | Test Point,
SMT | _ | TP_5015_
KEYSTONE | Keystone | 5015 | Yes | Yes | | U1 | 1 | - | NB3W1200L | _ | 64-QFN 9 mm | ON Semiconductor | NB3W1200LMNG | No | Yes | | U2 | 1 | - | FT2232H | - | 64-QFN | FTDI | FT2232HQ-REEL | No | Yes | | U3 | 1 | - | 93LC46B | - | 8-TSSOP | Microchip | 93LC46BT-I/ST | No | Yes | | U4 | 1 | - | NCP4586,
3.3 V | - | SOT-23-5 | ON Semiconductor | NCP4586DSN33T1G | No | Yes | | Y1 | 1 | - | 12 MHz | - | 2.5 × 3.2 (mm)
SMT | Abracon Corp | ABM8G-12.000MHZ-4Y-T3 | Yes | Yes | ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC which is a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the Failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Aff #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative OOO «ЛайфЭлектроникс" "LifeElectronics" LLC ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703 Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии. С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров ### Мы предлагаем: - Конкурентоспособные цены и скидки постоянным клиентам. - Специальные условия для постоянных клиентов. - Подбор аналогов. - Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям. - Приемлемые сроки поставки, возможна ускоренная поставка. - Доставку товара в любую точку России и стран СНГ. - Комплексную поставку. - Работу по проектам и поставку образцов. - Формирование склада под заказчика. - Сертификаты соответствия на поставляемую продукцию (по желанию клиента). - Тестирование поставляемой продукции. - Поставку компонентов, требующих военную и космическую приемку. - Входной контроль качества. - Наличие сертификата ISO. В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам. Конструкторский отдел помогает осуществить: - Регистрацию проекта у производителя компонентов. - Техническую поддержку проекта. - Защиту от снятия компонента с производства. - Оценку стоимости проекта по компонентам. - Изготовление тестовой платы монтаж и пусконаладочные работы. Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru