Grove - Gas Sensor (MQ2) User Manual Release date: 2015/9/22 Version: 1.0 Wiki: http://seeedstudio.com/wiki/Twig - Gas Sensor%28MQ2%29 Bazaar: http://www.seeedstudio.com/depot/Grove-Gas-SensorMQ2- p-937.html # **Document Revision History** | Revision | Date | Author | Description | |----------|--------------|------------|-------------| | 1.0 | Sep 22, 2015 | Jiankai.li | Create file | | | | | | # Contents | 9 | Licensing ······错 | 误!未定义书签。 | |----|--|----------| | | 8.1 Gas Sensor Demo ····· | 12 | | 8. | Related Projects ····· | | | | | | | | Version Tracker ····· | | | | 5.3 How to use | | | | 5.2 Hardware Installation | | | | 5.1 Suggest Reading for Starter | 6 | | 5. | Usage ····· | 6 | | | 4.1 Electronic Characteristics · · · · · · · · · · · · · · · · · · · | | | 4. | Mechanic Dimensions ····· | | | 3. | Application Ideas ······ | 4 | | | Features ····· | | | 1. | Introduction ····· | 2 | | | ocument Revision History | | #### Disclaimer For physical injuries and possessions loss caused by those reasons which are not related to product quality, such as operating without following manual guide, natural disasters or force majeure, we take no responsibility for that. Under the supervision of Seeed Technology Inc., this manual has been compiled and published which covered the latest product description and specification. The content of this manual is subject to change without notice. #### Copyright The design of this product (including software) and its accessories is under tutelage of laws. Any action to violate relevant right of our product will be penalized through law. Please consciously observe relevant local laws in the use of this product. #### 1. Introduction The Grove - Gas Sensor(MQ2) module is useful for gas leakage detecting(in home and industry). It can detect H2, LPG, CH4, CO, Alcohol, Smoke, Propane. Based on its fast response time. Measurements can be taken as soon as possible. Also the sensitivity can be adjusted by the potentiometer. # 2. Features - Wide detecting scope - Stable and long life - Fast response and High sensitivity # 3. Application Ideas - Gas leakage detecting - Toys # 4. Mechanic Dimensions # **4.1 Electronic Characteristics** | Items | Parameter name | Min | Type | Max | Unit | | | |------------------------|---------------------|-----|------------|-----|------|--|--| | System Characteristics | | | | | | | | | VCC | Working Voltage | 4.9 | 5 | 5.1 | V | | | | РН | Heating consumption | 0.5 | - | 800 | mW | | | | RL | Load resistance | | can adjust | | | | | | RH | Heater resistance | - | 33 | - | Ω | | | | Rs | Sensing Resistance | 3 | - | 30 | kΩ | | | #### 5. Usage #### 5.1 Suggest Reading for Starter - Download Arduino and install Arduino driver - Getting Started with Seeeduino - How to choose a Gas Sensor - What's LEL #### 5.2 Hardware Installation Grove products have a eco system and all have a same connector which can plug onto the Base Shield. Connect this module to the A0 port of Base Shield, however, you can also connect Gas sensor to Arduino without Base Shield by jumper wires. | Arduino UNO | Gas Sensor | |-------------|------------| | 5V | VCC | | GND | GND | | NC | NC | | Analog A0 | SIG | You can gain the present voltage through the SIG pin of sensor. The higher the concentration of the gas, the bigger the output voltage of the SIG pin. Sensitivity can be regulated by rotating the potentiometer. Please note the best preheat time of the sensor is above 24 hours. For the detailed information about the MQ-2 sensor please refer to the datasheet. #### 5.3 How to use There're two steps you need to do before getting the concentration of gas. First, connect the module with Grove Shield using A0 like the picture above. And put the sensor in a clear air and use the program below. ``` void setup() { Serial.begin(9600); void loop() { float sensor_volt; float RS_air; // Get the value of RS via in a clear air float RO; // Get the value of RO via in H2 float sensorValue; /*--- Get a average data by testing 100 times ---*/ for(int x = 0; x < 100; x^{++}) sensorValue = sensorValue + analogRead(A0); sensorValue = sensorValue/100.0; sensor_volt = sensorValue/1024*5.0; RS_air = (5.0-sensor_volt)/sensor_volt; // omit *RL RO = RS_air/10.0; // The ratio of RS/RO is 10 in a clear air Serial.print("sensor_volt = "); Serial.print(sensor_volt); Serial.println("V"); Serial.print("R0 = "); ``` ``` Serial.println(R0); delay(1000); ``` Then, open the monitor of Arduino IDE, you can see some data are printed, write down the value of R0 and you need to use it in the following program. During this step, you may pay a while time to test the value of R0. Second, put the sensor in one gas where the environment you want to test in. However, don't forget to replace the R0 below with value of R0 tested above. ``` void setup() { Serial.begin(9600); void loop() { float sensor_volt; float RS_gas; // Get value of RS in a GAS float ratio; // Get ratio RS_GAS/RS_air int sensorValue = analogRead(A0); sensor_volt=(float)sensorValue/1024*5.0; RS_gas = (5.0-sensor_volt)/sensor_volt; // omit *RL /*-Replace the name "RO" with the value of RO in the demo of First Test -*/ ratio = RS_gas/R0; // ratio = RS/R0 Serial.print("sensor_volt = "); Serial.println(sensor_volt); Serial.print("RS_ratio = "); Serial.println(RS_gas); Serial.print("Rs/R0 = "); Serial.println(ratio); Serial.print("\n\n"); delay(1000); ``` Now, we can get the concentration of gas from the below figure According to the figure, we can see that the minimum concentration we can test is 100ppm and the maximum is 10000ppm, in a other word, we can get a concentration of gas between 0.01% and 1%. However, we can't provide a formula because the relation between ratio and concentration is nonlinear. # 6. Version Tracker | Revision | Descriptions | Release | | |----------|-------------------------|-------------|--| | v0.9b | Initial public release | 16,Aug,2011 | | | v1.4 | Replace some components | 27,Aug,2014 | | # 7. Resources - File:Gas Sensor Eagle files.zip - File:Gas Sensor Schematic.pdf - File:MQ-2.pdf # 8. Related Projects If you want to make some awesome projects by Gas Sensor(MQ2) , here's some projects for reference. ### 8.1 Gas Sensor Demo This is a demo about Air Quality Box make by Gas Sensor. I want to make it. OOO «ЛайфЭлектроникс" "LifeElectronics" LLC ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703 Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии. С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров #### Мы предлагаем: - Конкурентоспособные цены и скидки постоянным клиентам. - Специальные условия для постоянных клиентов. - Подбор аналогов. - Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям. - Приемлемые сроки поставки, возможна ускоренная поставка. - Доставку товара в любую точку России и стран СНГ. - Комплексную поставку. - Работу по проектам и поставку образцов. - Формирование склада под заказчика. - Сертификаты соответствия на поставляемую продукцию (по желанию клиента). - Тестирование поставляемой продукции. - Поставку компонентов, требующих военную и космическую приемку. - Входной контроль качества. - Наличие сертификата ISO. В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам. Конструкторский отдел помогает осуществить: - Регистрацию проекта у производителя компонентов. - Техническую поддержку проекта. - Защиту от снятия компонента с производства. - Оценку стоимости проекта по компонентам. - Изготовление тестовой платы монтаж и пусконаладочные работы. Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru