

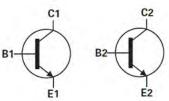
DUAL 50V NPN SILICON LOW SATURATION SWITCHING TRANSISTOR

Features

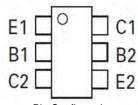
- BV_{CEO} = 50V
- R_{SAT} = 160mV
- I_C = 1A Continuous Collector Current
- Low Equivalent On Resistance
- Low Saturation Voltage
- SOT23-6 package
- Lead, Halogen and Antimony Free, RoHS Compliant (Note 1)
- "Green" Devices (Note 2)

Mechanical Data

- Case: SOT23-6
- Case material: Molded Plastic. "Green" Molding Compound.
- UL Flammability Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Matte Tin Finish
- Weight: 0.018 grams (approximate)


Applications

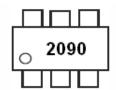
- LCD Backlighting inverter circuits
- Boost functions in DC-DC converters


SOT-223

Top View

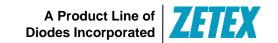
Device symbol

Pin Configuration


Ordering Information

Product	Marking	Reel size (inches)	Tape width (mm)	Quantity per reel
ZXTD2090E6TA	2090	7	8	3000

Notes:


- 1. No purposefully added lead. Halogen and Antimony Free.
- 2. Diodes Inc.'s "Green" Policy can be found on our website at http://www.diodes.com.

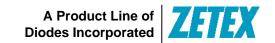
Marking Information

2090 = Product type Marking Code

DUAL 50V NPN SILICON LOW SATURATION SWITCHING TRANSISTOR

Maximum Ratings @T_A = 25°C unless otherwise specified

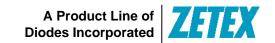
Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	50	V
Collector-Emitter Voltage	V _{CEO}	50	V
Emitter-Base Voltage	V _{EBO}	5	V
Continuous Collector Current (Note 5)	Ic	1	Α
Base current	I _B	200	mA
Peak Pulse Current	I _{CM}	2	Α


Thermal Characteristics

Characteristic	Symbol	Value	Unit
Power Dissipation at T _A = 25°C (Notes 3 & 6) Linear derating factor	P _D	0.90 7.2	W mW /°C
Power Dissipation at T _A = 25°C (Notes 3 & 7) Linear derating factor	P _D	1.1 8.8	W mW /°C
Power Dissipation at T _A = 25°C (Notes 4 & 6) Linear derating factor	P _D	1.7 13.6	W mW /°C
Thermal Resistance, Junction to Ambient (Notes 3 & 6)	$R_{ hetaJA}$	139	°C/W
Thermal Resistance, Junction to Ambient (Notes 4 & 6)	$R_{ heta JA}$	73	°C/W
Thermal Resistance, Junction to Ambient (Notes 3 & 7)	$R_{ heta JA}$	113	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

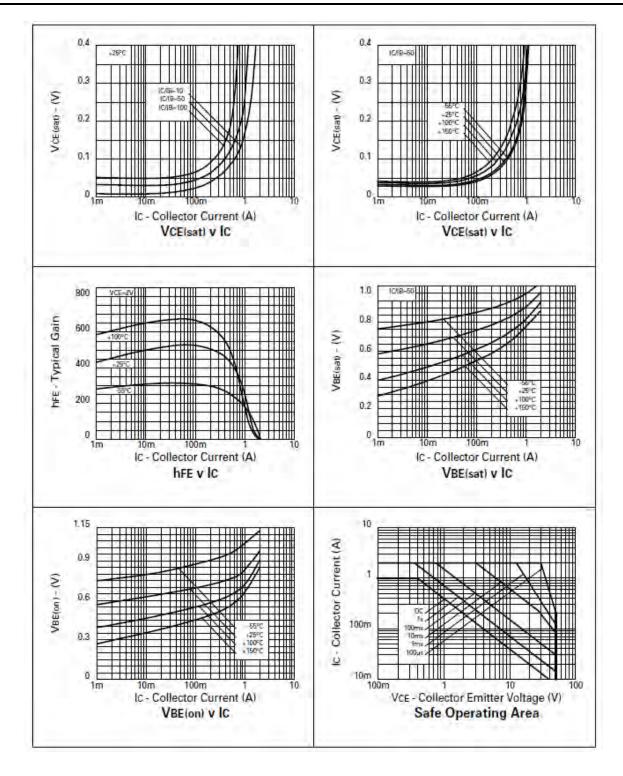
Notes:

- 3. For a device surface mounted on 25mm X 25mm FR4 PCB with high coverage of single sided 1 oz copper, in still air conditions
- 4. For a device surface mounted on FR4 PCB measured at < 5sec
- 5. Repetitive rating pulse width limited by maximum junction temperature. Refer to transient thermal impedance graph 6. For a device with one active die
- 7. For a device with two die running at equal power

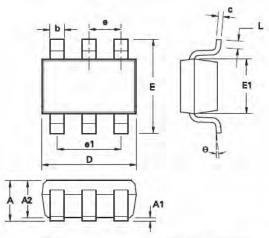

DUAL 50V NPN SILICON LOW SATURATION SWITCHING TRANSISTOR

Electrical Characteristics @TA = 25°C unless otherwise specified

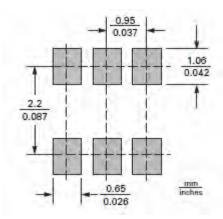
Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Collector-Base Breakdown Voltage	$V_{(BR)CBO}$	50			V	$I_{C} = 100 \mu A$
Collector-Emitter Breakdown Voltage (Note 8)	V _{(BR)CEO}	50			V	$I_C = 10mA$
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	5			V	I _E = 100μA
Collector-Base Cutoff Current	I _{CBO}			10	nA	V _{CB} = 40V
Collector-Emitter Cutoff Current	I _{CES}			10	nA	V _{CES} = 40V
Emitter Cutoff Current	I _{EBO}			10	. nA	$V_{EB} = 4V$
DC Current Gain (Note 8)	h _{FE}	200 300 200 75 20	420 450 350 130 60			$\begin{split} &I_{C} = 10\text{mA}, \ V_{CE} = 2\text{V} \\ &I_{C} = 100\text{mA}, \ V_{CE} = 2\text{V} \\ &I_{C} = 500\text{mA}, \ V_{CE} = 2\text{V} \\ &I_{C} = 1\text{A}, \ V_{CE} = 2\text{V} \\ &I_{C} = 1.5\text{A}, \ V_{CE} = 2\text{V} \end{split}$
Collector-Emitter Saturation Voltage (Note 8)	VCE(SAT)		24 60 120 160	35 80 200 270	mV mV mV	$I_C = 100$ mA, $I_B = 10$ mA $I_C = 250$ mA, $I_B = 10$ mA $I_C = 500$ mA, $I_B = 10$ mA $I_C = 1$ A, $I_B = 50$ mA
Base-Emitter Saturation Voltage (Note 8)	$V_{BE(sat)}$		940	1100	mV	$I_C = 1A, I_B = 50mA$
Base-Emitter Turn-On Voltage (Note 8)	V _{BE(ON)}		850	1100	mV	I _C = 1A, V _{CE} = 2V
Output Capacitance	C_obo		10		pF	V _{CB} = 10V. f = 1MHz
Current Gain-Bandwidth Product	f _T		215		MHz	V _{CE} = 10V, I _C = 50mA f = 100MHz
Turn-On Time	t _{on}		150		ns	V _{CC} = 10V, I _C = 1A
Turn-Off Time	t _{off}		425		ns	$I_{B1} = -I_{B2} = 100 \text{mA}$

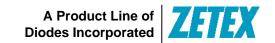

Notes: 8. Measured under pulsed conditions. Pulse width \leq 300 μ s. Duty cycle \leq 2%

DUAL 50V NPN SILICON LOW SATURATION SWITCHING TRANSISTOR


Typical Characteristics

DUAL 50V NPN SILICON LOW SATURATION SWITCHING TRANSISTOR


Package Outline Dimensions


DIM	Millimeters		Inches			
	Min.	Max.	Min.	Max.		
Α	0.90	1.45	0.0354	0.0570		
A1	0.00	0.15	0.00	0.0059		
A2	0.90	1.30	0.0354	0.0511		
b	0.35	0.50	0.0078	0.0196 0.0102 0.1220		
C	0.09	0.26 3.10	0.0035 0.1062			
D	2.70					
E	2.20	3.20	0.0866	0.1181		
E1	1.30	1.80	0.0511	0.0708 0.0236		
L	0.10	0.60	0.0039			
е	0.95 REF		0.0374 REF			
e1	1.90	1.90 REF		0.0748 REF		
L	0°	30°	0°	30°		

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Suggested Pad Layout

DUAL 50V NPN SILICON LOW SATURATION SWITCHING TRANSISTOR

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices-or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2009, Diodes Incorporated

www.diodes.com

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru