
μC/ USB DeviceTM

Universal Serial Bus Device Stack

User’s Manual
V4.00

Micriμm
1290 Weston Road, Suite 306
Weston, FL 33326
USA
www.micrium.com

Designations used by companies to distinguish their products are often claimed as trademarks.
In all instances where Micriμm Press is aware of a trademark claim, the product name appears in
initial capital letters, in all capital letters, or in accordance with the vendor’s capitalization
preference. Readers should contact the appropriate companies for more complete information
on trademarks and trademark registrations. All trademarks and registered trademarks in this
book are the property of their respective holders.

Copyright © 2012 by Micriμm except where noted otherwise. All rights reserved. Printed in the
United States of America. No part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher; with the exception that the program listings may be entered, stored,
and executed in a computer system, but they may not be reproduced for publication.

The programs and code examples in this book are presented for instructional value. The
programs and examples have been carefully tested, but are not guaranteed to any particular
purpose. The publisher does not offer any warranties and does not guarantee the accuracy,
adequacy, or completeness of any information herein and is not responsible for any errors or
omissions. The publisher assumes no liability for damages resulting from the use of the
information in this book or for any infringement of the intellectual property rights of third parties
that would result from the use of this information.

100-uC-USB-Device-001

3

Table of Contents

Chapter 1 About USB .. 15
1-1 Introduction .. 15
1-1-1 Bus Topology ... 15
1-1-2 USB Host .. 16
1-1-3 USB Device .. 16
1-2 Data Flow Model .. 17
1-2-1 Endpoint ... 17
1-2-2 Pipes ... 18
1-2-3 Transfer Types ... 18
1-3 Physical Interface and Power Management 21
1-3-1 Speed ... 21
1-3-2 Power Distribution ... 22
1-4 Device Structure and Enumeration ... 22
1-4-1 USB Device Structure .. 22
1-4-2 Device States ... 24
1-4-3 Enumeration ... 25

Chapter 2 Getting Started ... 27
2-1 Prerequisites .. 28
2-2 Downloading the Source Code Files ... 28
2-3 Installing the Files .. 30
2-4 Building the Sample Application ... 31
2-4-1 Understanding Micrium Examples .. 31
2-4-2 Copying and Modifying Template Files .. 33
2-4-3 Including USB Device Stack Source Code ... 37
2-4-4 Modifying Application Configuration File .. 38
2-5 Running the Sample Application ... 40

4

Table of Contents

Chapter 3 Host Operating Systems .. 45
3-1 Microsoft Windows .. 46
3-1-1 About INF Files ... 46
3-1-2 Using GUIDs ... 51

Chapter 4 Architecture .. 53
4-1 Modules Relationship .. 55
4-1-1 Application ... 55
4-1-2 Libraries .. 55
4-1-3 USB Class Layer .. 56
4-1-4 USB Core Layer ... 56
4-1-5 Endpoint Management Layer .. 56
4-1-6 Real-Time Operating System (RTOS) Abstraction Layer 57
4-1-7 Hardware Abstraction Layer .. 57
4-1-8 CPU Layer .. 58
4-2 Task Model ... 58
4-2-1 Sending and Receiving Data ... 59
4-2-2 Processing USB Requests and Bus Events 61
4-2-3 Processing Debug Events ... 63

Chapter 5 Configuration .. 65
5-1 Static Stack Configuration ... 65
5-1-1 Generic Configuration .. 66
5-1-2 USB Device Configuration ... 66
5-1-3 Interface Configuration .. 66
5-1-4 String Configuration ... 67
5-1-5 Debug Configuration .. 68
5-1-6 Communication Device Class (CDC) Configuration 68
5-1-7 CDC Abstract Control Model (ACM) Serial Class Configuration 68
5-1-8 Human Interface Device (HID) Class Configuration 68
5-1-9 Mass Storage Class (MSC) Configuration .. 69
5-1-10 Personal Healthcare Device Class (PHDC) Configuration 69
5-1-11 Vendor Class Configuration ... 69
5-2 Application Specific Configuration ... 69
5-2-1 Task Priorities .. 69
5-2-2 Task Stack Sizes .. 70
5-3 Device and Device Controller Driver Configuration 71
5-4 Configuration Examples .. 71

5

5-4-1 Simple Full-Speed USB device ... 72
5-4-2 Composite High-Speed USB device ... 73
5-4-3 Complex Composite High-Speed USB device 74

Chapter 6 Device Driver Guide ... 77
6-1 Device Driver Architecture ... 77
6-2 Device Driver Model ... 78
6-3 Device Driver API ... 78
6-4 Interrupt Handling .. 81
6-4-1 Single USB ISR Vector with ISR Handler Argument 81
6-4-2 Single USB ISR Vector ... 82
6-4-3 Multiple USB ISR Vectors with ISR Handler Arguments 82
6-4-4 Multiple USB ISR Vectors .. 83
6-4-5 USBD_DrvISR_Handler() .. 83
6-5 Device Configuration ... 85
6-5-1 Endpoint Information Table ... 86
6-6 Memory Allocation ... 88
6-7 CPU and Board Support .. 88
6-8 USB Device Driver Functional Model .. 89
6-8-1 Device Synchronous Receive .. 89
6-8-2 Device Asynchronous Receive .. 91
6-8-3 Device Synchronous Transmit .. 93
6-8-4 Device Asynchronous Transmit ... 95
6-8-5 Device Set Address ... 97

Chapter 7 USB Classes ... 99
7-1 Class Instance Concept ... 99
7-2 Class Instance Structures .. 108
7-3 Class and Core Layers Interaction through Callbacks 111

Chapter 8 Communications Device Class .. 115
8-1 Overview ... 116
8-2 Architecture .. 119
8-3 Configuration .. 120
8-3-1 General Configuration .. 120
8-4 ACM Subclass .. 121
8-4-1 Overview ... 121

6

Table of Contents

8-4-2 General Configuration .. 123
8-4-3 Subclass Instance Configuration .. 123
8-4-4 Subclass Notification and Management ... 127
8-4-5 Subclass Instance Communication ... 128
8-4-6 Using the Demo Application .. 129

Chapter 9 Human Interface Device Class .. 135
9-1 Overview ... 136
9-1-1 Report ... 136
9-2 Architecture .. 142
9-3 Configuration .. 143
9-3-1 General Configuration .. 143
9-3-2 Class Instance Configuration .. 144
9-3-3 Class Instance Communication ... 150
9-3-4 Synchronous Communication ... 150
9-3-5 Asynchronous Communication ... 152
9-4 Using the Demo Application .. 154
9-4-1 Configuring PC and Device Applications .. 154
9-4-2 Running the Demo Application ... 156
9-5 Porting the HID Class to a RTOS .. 160
9-6 Periodic Input Reports Task .. 161

Chapter 10 Mass Storage Class ... 165
10-1 Overview ... 166
10-1-1 Mass Storage Class Protocol .. 166
10-1-2 Endpoints ... 167
10-1-3 Mass Storage Class Requests .. 167
10-1-4 Small Computer System Interface (SCSI) ... 168
10-2 Architecture .. 169
10-2-1 MSC Architecture ... 169
10-2-2 SCSI Commands .. 170
10-2-3 Storage Layer and Storage Medium ... 171
10-3 RTOS Layer .. 171
10-3-1 Mass Storage Task Handler .. 171
10-4 Configuration .. 173
10-4-1 General Configuration .. 173
10-4-2 Class Instance Configuration .. 174
10-5 Using the Demo Application .. 176

7

10-5-1 USB Device Application ... 177
10-5-2 USB Host Application .. 179
10-6 Porting MSC to a Storage Layer ... 180
10-7 Porting MSC to a RTOS ... 181

Chapter 11 Personal Healthcare Device Class .. 183
11-1 Overview ... 184
11-1-1 Data characteristics ... 184
11-1-2 Operational model ... 185
11-2 Configuration .. 187
11-2-1 General configuration .. 187
11-2-2 Class instance configuration ... 189
11-3 Class Instance Communication ... 192
11-3-1 Communication with metadata preamble ... 192
11-3-2 Communication without metadata preamble 196
11-4 RTOS QoS-based scheduler ... 196
11-5 Using the Demo Application .. 200
11-5-1 Setup the Application .. 200
11-5-2 Running the Demo Application ... 202
11-6 Porting PHDC to a RTOS ... 203

Chapter 12 Vendor Class .. 205
12-1 Overview ... 206
12-2 Configuration .. 207
12-2-1 General Configuration .. 207
12-2-2 Class Instance Configuration .. 208
12-2-3 Class Instance Communication ... 210
12-2-4 Synchronous Communication ... 211
12-2-5 Asynchronous Communication ... 212
12-3 USBDev_API ... 214
12-3-1 Device and Pipe Management .. 215
12-3-2 Device Communication .. 218
12-4 Using the Demo Application .. 220
12-4-1 Configuring PC and Device Applications .. 220
12-4-2 Editing an INF File .. 222
12-4-3 Running the Demo Application ... 224
12-4-4 GUID ... 228

8

Table of Contents

Chapter 13 Debug and Trace ... 231
13-1 Using Debug Traces .. 232
13-1-1 Debug Configuration .. 232
13-1-2 Debug Trace Output .. 232
13-1-3 Debug Format .. 233
13-2 Handling Debug Events ... 234
13-2-1 Debug Event Pool .. 234
13-2-2 Debug Task .. 234
13-2-3 Debug Macros .. 234

Chapter 14 Porting μC/USB-Device to your RTOS .. 237
14-1 Overview ... 238
14-2 Porting Modules to a RTOS ... 239
14-3 Core Layer RTOS Model .. 240
14-3-1 Synchronous Transfer Completion Signals 240
14-3-2 Core Events Management ... 241
14-3-3 Debug Events Management .. 241
14-4 Porting The Core Layer to a RTOS .. 242

Appendix A Core API Reference ... 245
A-1 Device Functions ... 246
A-1-1 USBD_Init() ... 246
A-1-2 USBD_DevStart() .. 247
A-1-3 USBD_DevStop() .. 248
A-1-4 USBD_DevGetState() ... 249
A-1-5 USBD_DevAdd() ... 251
A-2 Configuration Functions .. 253
A-2-1 USBD_CfgAdd() .. 253
A-3 Interface functions ... 255
A-3-1 USBD_IF_Add() ... 255
A-3-2 USBD_IF_AltAdd() .. 257
A-3-3 USBD_IF_Grp() ... 259
A-4 Endpoints Functions .. 261
A-4-1 USBD_CtrlTx() .. 261
A-4-2 USBD_CtrlRx() .. 263
A-4-3 USBD_BulkAdd() .. 265
A-4-4 USBD_BulkRx() .. 267

9

A-4-5 USBD_BulkRxAsync() .. 269
A-4-6 USBD_BulkTx() ... 271
A-4-7 USBD_BulkTxAsync() ... 273
A-4-8 USBD_IntrAdd() .. 276
A-4-9 USBD_IntrRx() .. 278
A-4-10 USBD_IntrRxAsync() .. 280
A-4-11 USBD_IntrTx() ... 282
A-4-12 USBD_IntrTxAsync() ... 284
A-4-13 USBD_EP_RxZLP() ... 287
A-4-14 USBD_EP_TxZLP() ... 289
A-4-15 USBD_EP_Abort() ... 291
A-4-16 USBD_EP_Stall() ... 292
A-4-17 USBD_EP_IsStalled() .. 294
A-4-18 USBD_EP_GetMaxPktSize() .. 295
A-4-19 USBD_EP_GetMaxPhyNbr() .. 296
A-4-20 USBD_EP_GetMaxNbrOpen() .. 297
A-5 Core OS Functions ... 298
A-5-1 USBD_OS_Init() .. 298
A-5-2 USBD_CoreTaskHandler() .. 300
A-5-3 USBD_DbgTaskHandler() ... 301
A-5-4 USBD_OS_EP_SignalCreate() .. 302
A-5-5 USBD_OS_EP_SignalDel() ... 304
A-5-6 USBD_OS_EP_SignalPend() .. 305
A-5-7 USBD_OS_EP_SignalAbort() .. 307
A-5-8 USBD_OS_EP_SignalPost() ... 308
A-5-9 USBD_OS_CoreEventPut() .. 309
A-5-10 USBD_OS_CoreEventGet() .. 310
A-5-11 USBD_OS_DbgEventRdy() ... 311
A-5-12 USBD_OS_DbgEventWait () ... 312
A-6 Device Drivers Callbacks Functions ... 313
A-6-1 USBD_EP_RxCmpl() ... 313
A-6-2 USBD_EP_TxCmpl() ... 314
A-6-3 USBD_EventConn() .. 315
A-6-4 USBD_EventDisconn() ... 316
A-6-5 USBD_EventReset() ... 317
A-6-6 USBD_EventHS() .. 318
A-6-7 USBD_EventSuspend() .. 319

10

Table of Contents

A-6-8 USBD_EventResume() ... 320
A-7 Trace Functions ... 321
A-7-1 USBD_Trace() ... 321

Appendix B Device Controller Driver API Reference .. 323
B-1 Device Driver Functions ... 324
B-1-1 USBD_DrvInit() ... 324
B-1-2 USBD_DrvStart() ... 326
B-1-3 USBD_DrvStop() ... 328
B-1-4 USBD_DrvAddrSet() ... 329
B-1-5 USBD_DrvAddrEn() .. 330
B-1-6 USBD_DrvCfgSet() ... 331
B-1-7 USBD_DrvCfgClr() .. 332
B-1-8 USBD_DrvGetFrameNbr() .. 333
B-1-9 USBD_DrvEP_Open() ... 334
B-1-10 USBD_DrvEP_Close() ... 336
B-1-11 USBD_DrvEP_RxStart() .. 337
B-1-12 USBD_DrvEP_Rx() .. 339
B-1-13 USBD_DrvEP_RxZLP() ... 341
B-1-14 USBD_DrvEP_Tx() .. 342
B-1-15 USBD_DrvEP_TxStart() .. 344
B-1-16 USBD_DrvEP_TxZLP() ... 346
B-1-17 USBD_DrvEP_Abort() ... 347
B-1-18 USBD_DrvEP_Stall() ... 348
B-1-19 USBD_DrvISR_Handler() .. 349
B-2 Device Driver BSP Functions .. 350
B-2-1 USBD_BSP_Init() .. 350
B-2-2 USBD_BSP_Conn() .. 351
B-2-3 USBD_BSP_Disconn() .. 352

Appendix C CDC API Reference .. 353
C-1 CDC Functions ... 354
C-1-1 USBD_CDC_Init() .. 354
C-1-2 USBD_CDC_Add() .. 355
C-1-3 USBD_CDC_CfgAdd() .. 358
C-1-4 USBD_CDC_IsConn() ... 360
C-1-5 USBD_CDC_DataIF_Add() ... 361
C-1-6 USBD_CDC_DataRx() .. 363

11

C-1-7 USBD_CDC_DataTx() ... 365
C-1-8 USBD_CDC_Notify() ... 367
C-2 CDC ACM Subclass Functions .. 369
C-2-1 USBD_ACM_SerialInit() .. 369
C-2-2 USBD_ACM_SerialAdd() .. 370
C-2-3 USBD_ACM_SerialCfgAdd() .. 371
C-2-4 USBD_ACM_SerialIsConn() ... 373
C-2-5 USBD_ACM_SerialRx() ... 374
C-2-6 USBD_ACM_SerialTx() ... 376
C-2-7 USBD_ACM_SerialLineCtrlGet() .. 378
C-2-8 USBD_ACM_SerialLineCtrlReg() ... 379
C-2-9 USBD_ACM_SerialLineCodingGet() .. 381
C-2-10 USBD_ACM_SerialLineCodingSet() .. 382
C-2-11 USBD_ACM_SerialLineCodingReg() ... 383
C-2-12 USBD_ACM_SerialLineStateSet() .. 385
C-2-13 USBD_ACM_SerialLineStateClr() ... 386

Appendix D HID API Reference ... 387
D-1 HID Class Functions .. 388
D-1-1 USBD_HID_Init() ... 388
D-1-2 USBD_HID_Add() .. 389
D-1-3 USBD_HID_CfgAdd() .. 391
D-1-4 USBD_HID_IsConn() ... 393
D-1-5 USBD_HID_Rd() .. 394
D-1-6 USBD_HID_RdAsync() ... 396
D-1-7 USBD_HID_Wr() .. 398
D-1-8 USBD_HID_WrAsync() .. 400
D-2 HID OS Functions ... 402
D-2-1 USBD_HID_OS_Init() .. 402
D-2-2 USBD_HID_OS_InputLock() ... 403
D-2-3 USBD_HID_OS_InputUnlock() ... 404
D-2-4 USBD_HID_OS_InputDataPend() .. 405
D-2-5 USBD_HID_OS_InputDataPendAbort() ... 407
D-2-6 USBD_HID_OS_InputDataPost() .. 408
D-2-7 USBD_HID_OS_OutputLock() .. 409
D-2-8 USBD_HID_OS_OutputUnlock() .. 410
D-2-9 USBD_HID_OS_OutputDataPend() .. 411
D-2-10 USBD_HID_OS_OutputDataPendAbort() .. 413

12

Table of Contents

D-2-11 USBD_HID_OS_OutputDataPost() ... 414
D-2-12 USBD_HID_OS_TxLock() ... 415
D-2-13 USBD_HID_OS_TxUnlock() .. 416
D-2-14 USBD_HID_OS_TmrTask() ... 417

Appendix E MSC API Reference ... 419
E-1 Mass Storage Class Functions .. 420
E-1-1 USBD_MSC_Init() ... 420
E-1-2 USBD_MSC_Add() .. 421
E-1-3 USBD_MSC_CfgAdd() .. 422
E-1-4 USBD_MSC_LunAdd() ... 424
E-1-5 USBD_MSC_IsConn() ... 426
E-1-6 USBD_MSC_TaskHandler() .. 427
E-2 MSC OS Functions ... 428
E-2-1 USBD_MSC_OS_Init() .. 428
E-2-2 USBD_MSC_OS_CommSignalPost() ... 429
E-2-3 USBD_MSC_OS_CommSignalPend() .. 430
E-2-4 USBD_MSC_OS_CommSignalDel() ... 431
E-2-5 USBD_MSC_OS_EnumSignalPost() .. 432
E-2-6 USBD_MSC_OS_EnumSignalPend() ... 433
E-3 MSC Storage Layer Functions .. 434
E-3-1 USBD_StorageInit() .. 434
E-3-2 USBD_StorageCapacityGet() ... 435
E-3-3 USBD_StorageRd() ... 436
E-3-4 USBD_StorageWr() ... 437
E-3-5 USBD_StorageStatusGet() ... 439

Appendix F PHDC API Reference ... 441
F-1 PHDC Functions ... 442
F-1-1 USBD_PHDC_Init() ... 442
F-1-2 USBD_PHDC_Add() .. 443
F-1-3 USBD_PHDC_CfgAdd() .. 445
F-1-4 USBD_PHDC_IsConn() ... 447
F-1-5 USBD_PHDC_RdCfg() .. 448
F-1-6 USBD_PHDC_WrCfg() .. 450
F-1-7 USBD_PHDC_11073_ExtCfg() ... 452
F-1-8 USBD_PHDC_RdPreamble() .. 454
F-1-9 USBD_PHDC_Rd() .. 456

13

F-1-10 USBD_PHDC_Wrpreamble() .. 458
F-1-11 USBD_PHDC_Wr() .. 460
F-1-12 USBD_PHDC_Reset() ... 462
F-2 PHDC OS Layer Functions .. 463
F-2-1 USBD_PHDC_OS_Init() .. 463
F-2-2 USBD_PHDC_OS_RdLock() ... 464
F-2-3 USBD_PHDC_OS_RdUnLock() .. 466
F-2-4 USBD_PHDC_OS_WrIntrLock() ... 467
F-2-5 USBD_PHDC_OS_WrIntrUnLock() ... 468
F-2-6 USBD_PHDC_OS_WrBulkLock() ... 469
F-2-7 USBD_PHDC_OS_WrBulkUnLock() ... 471

Appendix G Vendor Class API Reference ... 473
G-1 Vendor Class Functions ... 474
G-1-1 USBD_Vendor_Init() .. 474
G-1-2 USBD_Vendor_Add() .. 475
G-1-3 USBD_Vendor_CfgAdd() .. 477
G-1-4 USBD_Vendor_IsConn() ... 479
G-1-5 USBD_Vendor_Rd() .. 481
G-1-6 USBD_Vendor_Wr() .. 483
G-1-7 USBD_Vendor_RdAsync() .. 485
G-1-8 USBD_Vendor_WrAsync() .. 487
G-1-9 USBD_Vendor_IntrRd() ... 489
G-1-10 USBD_Vendor_IntrWr() ... 491
G-1-11 USBD_Vendor_IntrRdAsync() .. 493
G-1-12 USBD_Vendor_IntrWrAsync() ... 495
G-2 USBDev_API Functions ... 497
G-2-1 USBDev_GetNbrDev() .. 497
G-2-2 USBDev_Open() ... 499
G-2-3 USBDev_Close() ... 500
G-2-4 USBDev_GetNbrAltSetting() .. 501
G-2-5 USBDev_GetNbrAssociatedIF() ... 503
G-2-6 USBDev_SetAltSetting() ... 504
G-2-7 USBDev_GetCurAltSetting() .. 506
G-2-8 USBDev_IsHighSpeed() ... 508
G-2-9 USBDev_BulkIn_Open() ... 509
G-2-10 USBDev_BulkOut_Open() .. 510
G-2-11 USBDev_IntrIn_Open() ... 511

14

Table of Contents

G-2-12 USBDev_IntrOut_Open() .. 512
G-2-13 USBDev_PipeGetAddr() ... 513
G-2-14 USBDev_PipeClose() .. 514
G-2-15 USBDev_PipeStall() .. 515
G-2-16 USBDev_PipeAbort() .. 516
G-2-17 USBDev_CtrlReq() .. 517
G-2-18 USBDev_PipeWr() .. 520
G-2-19 USBDev_PipeRd() .. 522
G-2-20 USBDev_PipeRdAsync() .. 524

Appendix H Error Codes .. 527
H-1 Generic Error Codes .. 528
H-2 Device Error Codes .. 528
H-3 Configuration Error Codes ... 528
H-4 Interface Error Codes .. 529
H-5 Endpoint Error Codes .. 529
H-6 OS Layer Error Codes .. 529

Appendix I Memory Footprint .. 531
I-0-1 Communications Device Class .. 532
I-0-2 Human Interface Device Class .. 533
I-0-3 Mass Storage Class ... 534
I-0-4 Personal Healthcare Device Class .. 535
I-0-5 Vendor Class .. 537

15

Chapter

1
About USB

This chapter presents a quick introduction to USB. The first section in this chapter

introduces the basic concepts of the USB specification Revision 2.0. The second section

explores the data flow model. The third section gives details about the device operation.

Lastly, the fourth section describes USB device logical organization.

The full protocol is described extensively in the USB Specification Revision 2.0 at

http://www.usb.org.

1-1 INTRODUCTION

The Universal Serial Bus (USB) is an industry standard maintained by the USB Implementers

Forum (USB-IF) for serial bus communication. The USB specification contains all the

information about the protocol such as the electrical signaling, the physical dimension of

the connector, the protocol layer, and other important aspects. USB provides several

benefits compared to other communication interfaces such as ease of use, low cost, low

power consumption and, fast and reliable data transfer.

1-1-1 BUS TOPOLOGY

USB can connect a series of devices using a tiered star topology. The key elements in USB

topology are the host, hubs, and devices, as illustrated in Figure 1-1. Each node in the

illustration represents a USB hub or a USB device. At the top level of the graph is the root

hub, which is part of the host. There is only one host in the system. The specification allows

up to seven tiers and a maximum of five non-root hubs in any path between the host and a

device. Each tier must contain at least one hub except for the last tier where only devices

are present. Each USB device in the system has a unique address assigned by the host

through a process called enumeration (see section 1-4-3 on page 25 for more details on

enumeration).

16

Chapter 1

1

The host learns about the device capabilities during enumeration, which allows the host

operating system to load a specific driver for a particular USB device. The maximum

number of peripherals that can be attached to a host is 127, including the root hub.

Figure 1-1 Bus topology

1-1-2 USB HOST

The USB host communicates with the devices using a USB host controller. The host is

responsible for detecting and enumerating devices, managing bus access, performing error

checking, providing and managing power, and exchanging data with the devices.

1-1-3 USB DEVICE

A USB device implements one or more USB functions where a function provides one

specific capability to the system. Examples of USB functions are keyboards, webcam,

speakers, or a mouse. The requirements of the USB functions are described in the USB class

specification. For example, keyboards and mice are implemented using the Human

Interface Device (HID) specification.

USB devices must also respond to requests from the host. For example, on power up, or

when a device is connected to the host, the host queries the device capabilities during

enumeration, using standard requests.

17

Data Flow Model

1

1-2 DATA FLOW MODEL

This section defines the elements involved in the transmission of data across USB.

1-2-1 ENDPOINT

Endpoints function as the point of origin or the point of reception for data. An endpoint is a

logical entity identified using an endpoint address. The endpoint address of a device is

fixed, and is assigned when the device is designed, as opposed to the device address,

which is assigned by the host dynamically during enumeration. An endpoint address

consists of an endpoint number field (0 to 15), and a direction bit that indicates if the

endpoint sends data to the host (IN) or receives data from the host (OUT). The maximum

number of endpoints allowed on a single device is 32.

Endpoints contain configurable characteristics that define the behavior of a USB device:

■ Bus access requirements

■ Bandwidth requirement

■ Error handling

■ Maximum packet size that the endpoint is able to send or receive

■ Transfer type

■ Direction in which data is sent and receive from the host

ENDPOINT ZERO REQUIREMENT

Endpoint zero (also known as Default Endpoint) is a bi-directional endpoint used by the

USB host system to get information, and configure the device via standard requests. All

devices must implement an endpoint zero configured for control transfers (see section

“Control Transfers” on page 18 for more information).

18

Chapter 1

1

1-2-2 PIPES

A USB pipe is a logical association between an endpoint and a software structure in the USB

host software system. USB pipes are used to send data from the host software to the

device’s endpoints. A USB pipe is associated to a unique endpoint address, type of transfer,

maximum packet size, and interval for transfers.

The USB specification defines two types of pipes based on the communication mode:

■ Stream Pipes: Data carried over the pipe is unstructured.

■ Message Pipes: Data carried over the pipe has a defined structure.

The USB specification requires a default control pipe for each device. A default control pipe

uses endpoint zero. The default control pipe is a bi-directional message pipe.

1-2-3 TRANSFER TYPES

The USB specification defines four transfer types that match the bandwidth and services

requirements of the host and the device application using a specific pipe. Each USB transfer

encompasses one or more transactions that sends data to and from the endpoint. The

notion of transactions is related to the maximum payload size defined by each endpoint

type in that when a transfer is greater than this maximum, it will be split into one or more

transactions to fulfill the action.

CONTROL TRANSFERS

Control transfers are used to configure and retrieve information about the device

capabilities. They are used by the host to send standard requests during and after

enumeration. Standard requests allow the host to learn about the device capabilities; for

example, how many and which functions the device contains. Control transfers are also

used for class-specific and vendor-specific requests.

A control transfer contains three stages: Setup, Data, and Status. These stages are detailed in

Table 1-1.

19

Data Flow Model

1

Table 1-1 Control Transfer Stages

BULK TRANSFERS

Bulk transfers are intended for devices that exchange large amounts of data where the

transfer can take all of the available bus bandwidth. Bulk transfers are reliable, as error

detection and retransmission mechanisms are implemented in hardware to guarantee data

integrity. However, bulk transfers offer no guarantee on timing. Printers and mass storage

devices are examples of devices that use bulk transfers.

INTERRUPT TRANSFERS

Interrupt transfers are designed to support devices with latency constrains. Devices using

interrupt transfers can schedule data at any time. Devices using interrupt transfer provides a

polling interval which determines when the scheduled data is transferred on the bus.

Interrupt transfers are typically used for event notifications.

ISOCHRONOUS TRANSFERS

Isochronous transfers are used by devices that require data delivery at a constant rate with a

certain degree of error-tolerance. Retransmission is not supported by isochronous transfers.

Audio and video devices use isochronous transfers.

USB DATA FLOW MODEL

Table 1-2 shows a graphical representation of the data flow model.

Stage Description

Setup The Setup stage includes information about the request. This SETUP stage represents

one transaction.

Data The Data stage contains data associated with request. Some standard and class-

specific request may not require a Data stage. This stage is an IN or OUT directional

transfer and the complete Data stage represents one ore more transactions.

Status The Status stage, representing one transaction, is used to report the success or failure

of the transfer. The direction of the Status stage is opposite to the direction of the Data

stage. If the control transfer has no Data stage, the Status stage always is from the

device (IN).

20

Chapter 1

1

Figure 1-2 USB data flow

F1-2(1) The host software uses standard requests to query and configure the device

using the default pipe. The default pipe uses endpoint zero (EP0).

F1-2(2) USB pipes allow associations between the host application and the device’s

endpoints. Host applications send and receive data through USB pipes.

F1-2(3) The host controller is responsible for the transmission, reception, packing and

unpacking of data over the bus.

F1-2(4) Data is transmitted via the physical media.

F1-2(5) The device controller is responsible for the transmission, reception, packing

and unpacking of data over the bus. The USB controller informs the USB

device software layer about several events such as bus events and transfer

events.

F1-2(6) The device software layer responds to the standard request, and implements

one or more USB functions as specified in the USB class document.

��
�����

	
�
�
�
�

��
������

��
�����

��
������

��
������

��
�������

��
�����

��
������

��
�����

��
������

��
������

��
�������

	
�
�
�
�

�������

����������

!

�������

����������

�

���������	�

�	

��	
��	� �������

��!
"
 ���� #�

��!
"
 ���� #!

�
$��
#�� ����
� %

�� ��&
�����

�����������	�

������	� ������	�

�������
�

�����������	�

�	 ���������	���	�

�����

�

�
$��

'�� %��%
�
(

'�

�

!

"
#

��	
��	�

21

Physical Interface and Power Management

1

TRANSFER COMPLETION

The notion of transfer completion is only relevant for control, bulk and interrupt transfers as

isochronous transfers occur continuously and periodically by nature. In general, control,

bulk and interrupt endpoints must transmit data payload sizes that are less than or equal to

the endpoint’s maximum data payload size. When a transfer’s data payload is greater than

the maximum data payload size, the transfer is split into several transactions whose payload

is maximum-sized except the last transaction which contains the remaining data. A transfer

is deemed complete when:

■ The endpoint transfers exactly the amount of data expected.

■ The endpoint transfers a short packet, that is a packet with a payload size less than the

maximum.

■ The endpoint transfers a zero-length packet.

1-3 PHYSICAL INTERFACE AND POWER MANAGEMENT

USB transfers data and provides power using four-wire cables. The four wires are: Vbus, D
+,

D- and Ground. Signaling occurs on the D+ and D- wires.

1-3-1 SPEED

The USB 2.0 specification defines three different speeds.

■ Low Speed: 1.5 Mb/s

■ Full Speed: 12 Mb/s

■ High Speed: 480 Mb/s

22

Chapter 1

1

1-3-2 POWER DISTRIBUTION

The host can supply power to USB devices that are directly connected to the host. USB

devices may also have their own power supplies. USB devices that use power from the

cable are called bus-powered devices. Bus-powered device can draw a maximum of 500

mA from the host. USB devices that have alternative source of power are called self-

powered devices.

1-4 DEVICE STRUCTURE AND ENUMERATION

Before the host application can communicate with a device, the host needs to understand

the capabilities of the device. This process takes place during device enumeration. After

enumeration, the host can assign and load a specific driver to allow communication

between the application and the device.

During enumeration, the host assigns an address to the device, reads descriptors from the

device, and selects a configuration that specifies power and interface requirements. In order

for the host learns about the device’s capabilities, the device must provide information

about itself in the form of descriptors.

This section describes the device logical organization from the USB host’s point of view.

1-4-1 USB DEVICE STRUCTURE

From the host point of view, USB devices are internally organized as a collection of

configurations, interfaces and endpoints.

CONFIGURATION

A USB configuration specifies the capabilities of a device. A configuration consists of a

collection of USB interfaces that implement one or more USB functions. Typically only one

configuration is required for a given device. However, the USB specification allows up to

255 different configurations. During enumeration, the host selects a configuration. Only one

configuration can be active at a time. The device uses a configuration descriptor to inform

the host about a specific configuration’s capabilities.

23

Device Structure and Enumeration

1

INTERFACE

A USB interface or a group of interfaces provides information about a function or class

implemented by the device. An interface can contain multiple mutually exclusive settings

called alternate settings. The device uses an interface descriptor to inform the host about a

specific interface’s capabilities. Each interface descriptor contains a class, subclass, and

protocol codes defined by the USB-IF, and the number of endpoints required for a

particular class implementation.

ALTERNATE SETTINGS

Alternate settings are used by the device to specify mutually exclusive settings for each

interface. The default alternate settings contain the default settings of the device. The device

also uses an interface descriptor to inform the host about an interface’s alternate settings.

ENDPOINT

An interface requires a set of endpoints to communicate with the host. Each interface has

different requirements in terms of the number of endpoints, transfer type, direction,

maximum packet size, and maximum polling interval. The device sends an endpoint

descriptor to notify the host about endpoint capabilities.

Figure 1-3 shows the hierarchical organization of a USB device. Configurations are grouped

based on the device’s speed. A high-speed device might have a particular configuration in

both high-speed and low/full speed.

24

Chapter 1

1

Figure 1-3 USB device structure

1-4-2 DEVICE STATES

The USB 2.0 specification defines six different states and are detailed in Table 1-2.

Device States Description

Attached The device is in the Attached state when it is connected to the host or a hub port. The

hub must be connected to the host or to another hub.

Powered A device is considered in the Powered state when it starts consuming power from the

bus. Only bus-powered devices use power from the host. Self-powered devices are in

the Powered state after port attachment.

Default After the device has been powered, it should not respond to any request or

transactions until it receives a reset signal from the host. The device enters in the

Default state when it receives a reset signal from the host. In the Default state, the

device responds to standard requests at the default address 0.

Address During enumeration, the host assigns a unique address to the device. When this

occurs, the device moves from the Default state to the Address state.

����$
�����$
�

�
$��

)�

���
�*#�

��%�&����

��	$��$	�

+�&
�

+�&
�

�"
� �"

 ,�

���
�*#�

���
�* ,�

�"
�

+�&
 ,�

'��(�$

&���

��	$��$	�

�
$��

-�."�

���
�*#�

+�&
�

+�&
�

�"
� �"

 ,�

���
�*#� ���

�* ,�

�"
�

+�&
 ,�

��
�

��
/

��
 ,�

)���	������%$	�����

�����%$	������

*���	�����(�
�����

��
�

��
/

��
 ,� +�
������

*���	�����
,
��	�����������%�

25

Device Structure and Enumeration

1

Table 1-2 USB Device States

1-4-3 ENUMERATION

Enumeration is the process where the host configures the device and learns about the

device’s capabilities. The host starts enumeration after the device is attached to one of the

root or external hub ports. The host learns about the device’s manufacturer, vendor/product

IDs and release versions by sending a Get Descriptor request to obtain the device descriptor

and the maximum packet size of the default pipe (control endpoint 0). Once that is done,

the host assigns a unique address to the device which will tell the device to only answer

requests at this unique address. Next, the host gets the capabilities of the device by a series

of Get Descriptor requests. The host iterates through all the available configurations to

retrieve information about number of interfaces in each configuration, interfaces classes,

and endpoint parameters for each interface and will lastly finish the enumeration process by

selecting the most suitable configuration.

Configurated After the host assigns an address to the device, the host must select a configuration.

After the host selects a configuration, the device enters the Configured state. In this

state, the device is ready to communicate with the host applications.

Suspended The device enters in Suspended state when no traffic has been seen in the bus for a

specific period of time. The device retains the address assigned by the host in the

Suspended state. The device returns to the previous state after traffic is present in the

bus.

Device States Description

26

Chapter 1

1

27

Chapter

2
Getting Started

This chapter gives you some insight into how to install and use the μC/USB-Device stack.

The following topics are explained in this chapter:

■ Prerequisites

■ Downloading the source code files

■ Installing the files

■ Building the sample application

■ Running the sample application

After the completion of this chapter, you should be able to build and run your first USB

application using the μC/USB-Device stack.

28

Chapter 22

2-1 PREREQUISITES

Before running your first application, you must ensure that you have the minimal set of

required tools and components:

■ Toolchain for your specific microcontroller.

■ Development board.

■ μC/USB-Device stack with the source code of at least one of the Micriμm USB classes.

■ USB device controller driver compatible with your hardware for the μC/USB-Device

stack.

■ Board support package (BSP) for your development board.

■ Example project for your selected RTOS (that is μC/OS-II or μC/OS-III).

If Micriμm does not support your USB device controller or BSP, you will have to write your

own device driver. Refer to Chapter 6, “Device Driver Guide” on page 77 for more

information on writing your own USB device driver.

2-2 DOWNLOADING THE SOURCE CODE FILES

μC/USB-Device can be downloaded from the Micriμm customer portal. The distribution

package includes the full source code and documentation. You can log into the Micriμm

customer portal at the address below to begin your download (you must have a valid

license to gain access to the file):

http://micrium.com/login

μC/USB-Device depends on other modules, and you need to install all the required

modules before building your application. Depending on the availability of support for your

hardware platform, ports and drivers may or may not be available for download from the

customer portal. Table 2-1 shows the module dependency for μC/USB-Device.

29

Downloading the Source Code Files 2

Table 2-1 μC/USB-Device Module Dependency

Table 2-1 indicates that all the μC/USB-Device classes are optional because there is no

mandatory class to purchase with the μC/USB-Device Core and Driver. The class you will

have purchased will depend on your needs. But don’t forget that you need a class to build a

complete USB project. Table 2-1 also indicates that μC/OS-II and -III Core and Port are

optional. Indeed, μC/USB-Device stack does not assume a specific real-time operating

system to work with but it still requires one.

Module Name Required Note(s)

μC/USB-Device Core YES Hardware independent USB stack.

μC/USB-Device Driver YES USB device controller driver. Available only if Micriμm supports

your controller, otherwise you have to develop it yourself.

μC/USB-Device Vendor Class Optional Available only if you purchased Vendor class.

μC/USB-Device MSC Optional Available only if you purchased Mass Storage Class (MSC).

μC/USB-Device HID Class Optional Available only if you purchased Human Interface Device (HID)

class.

μC/USB-Device CDC ACM Optional Available only if you purchased Communication Device Class

(CDC) with the Abstract Control Model (ACM) subclass.

μC/USB-Device PHDC Optional Available only if you purchased Personal Healthcare Device

Class (PHDC).

μC/CPU Core YES

μC/CPU Port YES Available only if Micriμm has support for your target architecture

(ARM, AVR32, MSP430, etc)

μC/LIB Core YES Micriμm run-time library.

μC/LIB Port Optional Available only if Micriμm has support for your target architecture

(ARM, AVR32, MSP430, etc)

μC/OS-II Core Optional Available only if your application is using μC/OS-II

μC/OS-II Port Optional Available only if Micriμm has support for your target architecture

(ARM, AVR32, MSP430, etc)

μC/OS-III Core Optional Available only if your application is using μC/OS-III

μC/OS-III Port Optional Available only if Micriμm has support for your target architecture

(ARM, AVR32, MSP430, etc)

30

Chapter 22

2-3 INSTALLING THE FILES

Once all the distribution packages have been downloaded to your host machine, extract all

the files at the root of your C:\ drive for instance. The package may be extracted to any

location. After extracting all the files, the directory structure should look as shown in

Figure 2-1. In the example, all Micriμm products sub-folders shown in Figure 2-1 will be

located in C:\Micrium\Software\.

Figure 2-1 Directory Tree for μC/USB-Device

������
��	
��
�

�	��

������

��	
��
�

�	��
��	
�

������������
��	
�

���	
�
�����������
����

���
���
� !��

���
"��
#��
�"��
��$%�	

��
�	���	�

���	
��

��

��	
��
�

�	��

31

Building the Sample Application 2

2-4 BUILDING THE SAMPLE APPLICATION

This section describes all the steps required to build a USB-based application. The

instructions provided in this section are not intended for any particular toolchain, but

instead are described in a generic way that can be adapted to any toolchain.

The best way to start building a USB-based project is to start from an existing project. If you

are using μC/OS-II or μC/OS-III, Micriμm provides example projects for multiple

development boards and compilers. If your target board is not listed on Micriμm’s web site,

you can download an example project for a similar board or microcontroller.

The purpose of the sample project is to allow a host to enumerate your device. You will add

a USB class instance to both, full-speed and high-speed configurations (if both are

supported by your controller). Refer to section 7-1 “Class Instance Concept” on page 99 for

more details about the class instance concept. After you have successfully completed and

run the sample project, you can use it as a starting point to run other USB class demos you

may have purchased.

μC/USB-Device requires a Real-Time Operating System (RTOS). The following assumes that

you have a working example project running on μC/OS-II or μC/OS-III.

2-4-1 UNDERSTANDING MICRIUM EXAMPLES

A Micriμm example project is usually placed in the following directory structure.

\Micrium

 \Software

 \EvalBoards

 \<manufacturer>

 \<board_name>

 \<compiler>

 \<project name>

 .

Note that Micriμm does not provide by default an example project with the μC/USB-Device

distribution package. Micriμm examples are provided to customers in specific situations. If it

happens that you receive a Micriμm example, the directory structure shown above is

generally used by Micriμm. You may use a different directory structure to store the

application and toolchain projects files.

32

Chapter 22

\Micrium

This is where Micriμm places all software components and projects. This directory is

generally located at the root directory.

\Software

This sub-directory contains all software components and projects.

\EvalBoards

This sub-directory contains all projects related to evaluation boards supported by Micriμm.

\<manufacturer>

This is the name of the manufacturer of the evaluation board. In some cases this can be also

the name of the microcontroller manufacturer.

\<board name>

This is the name of the evaluation board.

\<compiler>

This is the name of the compiler or compiler manufacturer used to build the code for the

evaluation board.

\<project name>

The name of the project that will be demonstrated. For example a simple μC/USB-Device

with μC/OS-III project might have the project name ‘uCOS-III-USBD’.

.

These are the source files for the project. This directory contains configuration files

app_cfg.h, os_cfg.h, os_cfg_app.h, cpu_cfg.h and other project-required sources files.

os_cfg.h is a configuration file used to configure μC/OS-III (or μC/OS-II) parameters

such as the maximum number of tasks, events, objects, which μC/OS-III services are

enabled (semaphores, mailboxes, queues), and so on. os_cfg.h is a required file for

any μC/OS-III application. See the μC/OS-III documentation and books for further

information.

app.c contains the application code for the example project. As with most C programs,

code execution starts at main(). At a minimum, app.c initializes μC/OS-III and creates

a startup task that initializes other Micriμm modules.

33

Building the Sample Application 2

app_cfg.h is a configuration file for your application. This file contains #defines to

configure the priorities and stack sizes of your application and the Micriμm modules’

tasks.

app_<module>.c and app_<module>.h These optional files contain the Micriμm

modules’ (μC/TCP-IP, μC/FS, μC/USB-Host, etc) initialization code. They may or may

not be present in the example projects.

2-4-2 COPYING AND MODIFYING TEMPLATE FILES

Copy the files from the application template and configuration folders into your application

as shown in Figure 2-2.

Figure 2-2 Copying Template Files.

app_usbd.* is the master template for USB application-specific initialization code. This file

contains the function App_USBD_Init(), which initializes the USB stack and class-specific

demos.

app_usbd_<class>.c contains a template to initialize and use a certain class. This file

contains the class demo application. In general, the class application initializes the class,

creates a class instance, and adds the instance to the full-speed and high-speed

configurations. Refer to the chapter(s) of the class(es) you purchased for more details about

the class demos.

�����������
����
���

���

��
�������

&�'� !
�

��������

(�! ��!	%�
�'!$��!

�	�	�

�)�!	%*$!'��
�
�'�� �	�

��	�+�

*$!'��

*!��,��)%,�
 !���-

*!��,��)%-�
*!��,��)%-

��)%,%��,
��-

��)%,%��,
��-�
��)%,
��-�

����
�

34

Chapter 22

usbd_cfg.h is a configuration file used to setup μC/USB-Device stack parameters such as

the maximum number of configurations, interfaces, or class-related parameters.

usbd_dev_cfg.c and usbd_dev_cfg.h are configuration files used to set device parameters

such as vendor ID, product ID, and device release number. They also serve to configure the

USB device controller driver parameters, such as base address, dedicated memory base

address and size, controller’s speed, and endpoint capabilities.

MODIFY DEVICE CONFIGURATION

Modify the device configuration file (usbd_cfg.c) as needed for your application. See

below for details.

Listing 2-1 Device Configuration Template

L2-1(1) Give your device configuration a meaningful name by replacing the word

“Template”.

L2-1(2) Assign the Vendor ID, Product ID and Device Release Number. For

development purposes you can use the default values, but once you decide to

release your product, you must contact USB-IF in order to get valid IDs. USB-IF

maintains all USB Vendor ID and Product ID numbers.

L2-1(3) Specify human readable Vendor ID, Product ID, and Device Release Number

strings.

L2-1(4) A USB device can store strings in multiple languages. Specify the language

used in your strings. The #defines for the other languages are defined in the file

usbd_core.h in the section “Language Identifiers”.

USBD_DEV_CFG USBD_DevCfg_Template = { (1)

 0xFFFE, (2)

 0x1234,

 0x0100,

 "OEM MANUFACTURER", (3)

 "OEM PRODUCT",

 "1234567890ABCDEF",

 USBD_LANG_ID_ENGLISH_US (4)

};

35

Building the Sample Application 2

MODIFY DRIVER CONFIGURATION

Modify the driver configuration (usbd_dev_cfg.c) as needed for your controller. See

Listing 2-2 below for details.

Listing 2-2 Driver Configuration Template

L2-2(1) Give your driver configuration a meaningful name by replacing the word

“Template”.

L2-2(2) Specify the base address of your USB device controller.

L2-2(3) If your target has dedicated memory for the USB controller, you can specify its

base address and size here. Depending on the USB controller, dedicated

memory can be used to allocate driver buffers or DMA descriptors.

L2-2(4) Specify the USB device controller speed: USBD_DEV_SPD_HIGH if your controller

supports high-speed or USBD_DEV_SPD_FULL if your controller supports only

full-speed.

L2-2(5) Specify the endpoint information table. The endpoint information table should

be defined in your USB device controller BSP files. Refer to section 6-5-1

“Endpoint Information Table” on page 86 for more details about the endpoint

information table.

MODIFY USB APPLICATION INITIALIZATION CODE

Listing 2-3 shows the code that you should modify based on your specific configuration done

previously. You should modify the parts that are highlighted by the bold text. The code

snippet is extracted from the function App_USBD_Init() defined in app_usbd.c. The

complete initialization sequence performed by App_USBD_Init() is presented in Listing 2-5.

USBD_DRV_CFG USBD_DrvCfg_Template = { (1)

 0x00000000, (2)

 0x00000000, (3)

 0u,

 USBD_DEV_SPD_FULL, (4)

 USBD_DrvEP_InfoTbl_Template (5)

};

36

Chapter 22

Listing 2-3 App_USBD_Init() in app_usbd.c

L2-3(1) Include the USB driver BSP header file that is specific to your board. This file

can be found in the following folder:

\Micrium\Software\uC-USB-Device\Drivers\<controller>\BSP\<board name>

L2-3(2) Initialize the USB device stack’s internal variables, structures and core RTOS

port.

L2-3(3) Specify the address of the device configuration structure that you modified in

the section “Modify Device Configuration” on page 34.

#include <usbd_bsp_template.h> (1)

CPU_BOOLEAN App_USBD_Init (void)

{

 CPU_INT08U dev_nbr;

 CPU_INT08U cfg_fs_nbr;

 USBD_ERR err;

 USBD_Init(&err); (2)

 dev_nbr = USBD_DevAdd(&USBD_DevCfg_Template, (3)

 &App_USBD_BusFncts,

 &USBD_DrvAPI_Template, (4)

 &USBD_DrvCfg_Template, (5)

 &USBD_DrvBSP_Template, (6)

 &err);

 if (USBD_DrvCfg_Template.Spd == USBD_DEV_SPD_HIGH) { (7)

 cfg_hs_nbr = USBD_CfgAdd(dev_nbr,

 USBD_DEV_ATTRIB_SELF_POWERED,

 100u,

 USBD_DEV_SPD_HIGH,

 "HS configuration",

 &err);

 }

....

}

37

Building the Sample Application 2

L2-3(4) Specify the address of the driver API structure. The driver’s API structure is

defined in the driver’s header file named usbd_drv_<controller>.h.

L2-3(5) Specify the address of the driver configuration structure that you modified in

the section “Modify Driver Configuration” on page 35.

L2-3(6) Specify the endpoint information table. The endpoint information table should

be defined in your USB device controller BSP files.

L2-3(7) If the device controller supports high-speed, create a high-speed configuration

for the specified device.

2-4-3 INCLUDING USB DEVICE STACK SOURCE CODE

First, include the following files in your project from the μC/USB-Device source code

distribution, as indicated in Figure 2-3.

Figure 2-3 μC/USB-Device Source Code

�����������
����
� !��

�	���	

�
 !���

�
�$
	� �	�

��)%,�
 !���-

��)%,%	�,�
�$
	� �	�-

���

��)%,)��,�
�$
	� �	�-

�)�!	%*$!'��

��
�.&���
��)%,��-

���	
�
��)%,��-

��)%,��-

��)%,
�	�-

38

Chapter 22

Second, add the following include paths to your project settings:

\Micrium\Software\uC-USB-Device\Source\

\Micrium\Software\uC-USB-Device\Class\<class>\

\Micrium\Software\uC-USB-Device\Drivers\<controller>

\Micrium\Software\uC-USB-Device\Drivers\<controller>\BSP\<board name>

2-4-4 MODIFYING APPLICATION CONFIGURATION FILE

The USB application initialization code templates assume the presence of app_cfg.h. The

following #defines must be present in app_cfg.h in order to build the sample application.

Listing 2-4 Application Configuration #defines

#define APP_CFG_USBD_EN DEF_ENABLED (1)

#define USBD_OS_CFG_CORE_TASK_PRIO 6u (2)

#define USBD_OS_CFG_TRACE_TASK_PRIO 7u

#define USBD_OS_CFG_CORE_TASK_STK_SIZE 256u

#define USBD_OS_CFG_TRACE_TASK_PRIO 256u

#define APP_CFG_USBD_XXXX_EN DEF_ENABLED (3)

#define LIB_MEM_CFG_OPTIMIZE_ASM_EN DEF_DISABLED (4)

#define LIB_MEM_CFG_ARG_CHK_EXT_EN DEF_ENABLED

#define LIB_MEM_CFG_ALLOC_EN DEF_ENABLED

#define LIB_MEM_CFG_HEAP_SIZE 1024u

#define TRACE_LEVEL_OFF 0u (5)

#define TRACE_LEVEL_INFO 1u

#define TRACE_LEVEL_DBG 2u

#define APP_CFG_TRACE_LEVEL TRACE_LEVEL_DBG (6)

#define APP_CFG_TRACE printf (7)

#define APP_TRACE_INFO(x) \

((APP_CFG_TRACE_LEVEL >= TRACE_LEVEL_INFO) ? (void)(APP_CFG_TRACE x) : (void)0)

#define APP_TRACE_DBG(x) \

((APP_CFG_TRACE_LEVEL >= TRACE_LEVEL_DBG) ? (void)(APP_CFG_TRACE x) : (void)0)

39

Building the Sample Application 2

L2-4(1) APP_CFG_USBD_EN enables or disables the USB application initialization code.

L2-4(2) These #defines relate to the μC/USB-Device OS port. The μC/USB-Device core

requires only one task to manage control requests and asynchronous transfers,

and a second, optional task to output trace events (if trace capability is

enabled). To properly set the priority of the core and debug tasks, refer to

section 5-2-1 “Task Priorities” on page 69.

L2-4(3) This #define enables the USB class-specific demo. The token XXXX in the

constant APP_CFG_USBD_XXXX_EN is the name of the class and can be replaced

by CDC, HID, MSC, PHDC or VENDOR.

L2-4(4) Configure the desired size of the heap memory. Heap memory is only used for

μC/USB-Device drivers that use internal buffers and DMA descriptors which are

allocated at run-time. Refer to the μC/LIB documentation for more details on

the other μC/LIB constants.

L2-4(5) Most Micriμm examples contain application trace macros to output human-

readable debugging information. Two levels of tracing are enabled: INFO and

DBG. INFO traces high-level operations, and DBG traces high-level operations

and return errors. Application-level tracing is different from μC/USB-Device

tracing (refer to Chapter 13, “Debug and Trace” on page 231 for more details).

L2-4(6) Define the application trace level.

L2-4(7) Specify which function should be used to redirect the output of human-

readable application tracing. You can select the standard output via printf(),

or another output such as a text terminal using a serial interface.

40

Chapter 22

2-5 RUNNING THE SAMPLE APPLICATION

The first step to integrate the demo application into your application code is to call

App_USBD_Init(). This function is responsible for the following steps:

■ Initializing the USB device stack.

■ Creating and adding a device instance.

■ Creating and adding configurations.

■ Calling USB class-specific application code.

■ Starting the USB device stack.

The App_USBD_Init() function is described in Listing 2-5.

CPU_BOOLEAN App_USBD_Init (void)

{

 CPU_INT08U dev_nbr;

 CPU_INT08U cfg_hs_nbr;

 CPU_INT08U cfg_fs_nbr;

 CPU_BOOLEAN ok;

 USBD_ERR err;

 USBD_Init(&err); (1)

 if (err!= USBD_ERR_NONE) {

 /* $$$$ Handle error. */

 return (DEF_FAIL);

 }

 dev_nbr = USBD_DevAdd(&USBD_DevCfg_<controller>, (2)

 &App_USBD_BusFncts,

 &USBD_DrvAPI_<controller>,

 &USBD_DrvCfg_<controller>,

 &USBD_DrvBSP_<board name>,

 &err);

 if (err != USBD_ERR_NONE) {

 /* $$$$ Handle error. */

 return (DEF_FAIL);

 }

 cfg_hs_nbr = USBD_CFG_NBR_NONE;

 cfg_fs_nbr = USBD_CFG_NBR_NONE;

41

Running the Sample Application 2

Listing 2-5 App_USBD_Init() Function

 if (USBD_DrvCfg_<controller>.Spd == USBD_DEV_SPD_HIGH) {

 cfg_hs_nbr = USBD_CfgAdd(dev_nbr, (3)

 USBD_DEV_ATTRIB_SELF_POWERED,

 100u,

 USBD_DEV_SPD_HIGH,

 "HS configuration",

 &err);

 if (err != USBD_ERR_NONE) {

 /* $$$$ Handle error. */

 return (DEF_FAIL);

 }

 }

 cfg_fs_nbr = USBD_CfgAdd(dev_nbr, (4)

 USBD_DEV_ATTRIB_SELF_POWERED,

 100u,

 USBD_DEV_SPD_FULL,

 "FS configuration",

 &err);

 if (err != USBD_ERR_NONE) {

 /* $$$$ Handle error. */

 return (DEF_FAIL);

 }

#if (APP_CFG_USBD_XXXX_EN == DEF_ENABLED) (5)

 ok = App_USBD_XXXX_Init(dev_nbr,

 cfg_hs_nbr,

 cfg_fs_nbr);

 if (ok != DEF_OK) {

 /* $$$$ Handle error. */

 return (DEF_FAIL);

 }

#endif

#if (APP_CFG_USBD_XXXX_EN == DEF_ENABLED) (5)

 .

 .

 .

endif

 USBD_DevStart(dev_nbr, &err); (6)

 (void)ok;

 return (DEF_OK);

}

42

Chapter 22

L2-5(1) USBD_Init() initializes the USB device stack. This must be the first USB

function called by your application’s initialization code. If μC/USB-Device is

used with μC/OS-II or -III, OSInit() must be called prior to USBD_Init() in

order to intialize the kernel services.

L2-5(2) USBD_DevAdd() creates and adds a USB device instance. A given USB device

instance is associated with a single USB device controller. μC/USB-Device can

support multiple USB device controllers concurrently. If your target supports

multiple controllers, you can create multiple USB device instances for them.

The function USBD_DevAdd() returns a device instance number; this number is

used as a parameter for all subsequent operations.

L2-5(3) Create and add a high-speed configuration to your device. USBD_CfgAdd()

creates and adds a configuration to the USB device stack. At a minimum, your

USB device application only needs one full-speed and one high-speed

configuration if your device is a high-speed capable device. For a full-speed

device, only a full-speed configuration will be required. You can create as

many configurations as needed by your application, and you can associate

multiple instances of USB classes to these configurations. For example, you can

create a configuration to contain a mass storage device, and another

configuration for a human interface device such as a keyboard, and a vendor

specific device.

L2-5(4) Create and add a full-speed configuration to your device.

L2-5(5) Initialize the class-specific application demos by calling the function

App_USBD_XXXX_Init() where XXXX can be CDC, HID, MSC, PHDC or

VENDOR. Class-specific demos are enabled and disabled using the

APP_CFG_USB_XXXX_EN #define.

L2-5(6) After all the class instances are created and added to the device configurations,

the application should call USBD_DevStart(). This function connects the

device with the host by enabling the pull-up resistor on the D+ line.

43

Running the Sample Application 2

Table 2-2 lists the sections you should refer to for more details about each

App_USBD_XXXX_Init() function.

Table 2-2 List of Sections to Refer to for Class Demos Information

After building and downloading the application into your target, you should be able to

successfully connect your target to a host PC through USB. Once the USB sample

application is running, the host detects the connection of a new device and starts the

enumeration process. If you are using a Windows PC, it will load a driver which will

manage your device. If no driver is found for your device, Windows will display “found new

hardware” wizard so that you can specify which driver to load. Once the driver is loaded,

your device is ready for communication. Table 2-3 lists the different section(s) you should

refer to for more details on each class demo.

Table 2-3 List of Sections to Refer to for Class Demos Information

Class Function Refer to...

CDC ACM App_USBD_CDC_Init() section 8-3-1 “General Configuration” on page 120

HID App_USBD_HID_Init() section 9-3-2 “Class Instance Configuration” on page 144

MSC App_USBD_MSC_Init() section 10-4-2 “Class Instance Configuration” on page 174

PHDC App_USBD_PHDC_Init() section 11-2-2 “Class instance configuration” on page 189

Vendor App_USBD_Vendor_Init() section 12-2-2 “Class Instance Configuration” on page 208

Class Refer to...

CDC ACM section 8-4-6 “Using the Demo Application” on page 129

HID section 9-4 “Using the Demo Application” on page 154

MSC section 10-5 “Using the Demo Application” on page 176

PHDC section 11-5 “Using the Demo Application” on page 200

Vendor section 12-4 “Using the Demo Application” on page 220

44

Chapter 22

45

Chapter

3
Host Operating Systems

The major host operating systems (OS), such as Microsoft Windows, Apple Mac OS and

Linux, recognize a wide range of USB devices belonging to standard classes defined by the

USB Implementers Forum. Upon connection of the USB device, any host operating systems

perform the following general steps:

1 Enumerating the USB device to learn about its characteristics.

2 Loading a proper driver according to its characteristics’ analysis in order to manage the

device.

3 Communicating with the device.

Step 2, where a driver is loaded to handle the device is performed differently by each major

host operating system. Usually, a native driver provided by the operating system manages a

device complying to a standard class (for instance, Audio, HID, MSC, Video, etc.) In this

case, the native driver loading is transparent to you. In general, the OS won’t ask you for

specific actions during the driver loading process. On the other hand, a vendor-specific

device requires a vendor-specific driver provided by the device manufacturer. Vendor-

specific devices don’t fit into any standard class or don’t use the standard protocols for an

existing standard class. In this situation, the OS may explicitly ask your intervention during

the driver loading process.

During step 3, your application may have to find the USB device attached to the OS before

communication with it. Each major OS uses a different method to allow you to find a

specific device.

This chapter gives you the necessary information in case your intervention is required

during the USB device driver loading and in case your application needs to find a device

attached to the computer. For the moment, this chapter describes this process only for the

Windows operating system.

46

Chapter 3

3

3-1 MICROSOFT WINDOWS

Microsoft offers class drivers for some standard USB classes. These drivers can also be

called native drivers. A complete list of the native drivers can be found in the MSDN

online documentation on the page titled “Drivers for the Supported USB Device Classes”

(http://msdn.microsoft.com/en-us/library/ff538820(VS.85).aspx). If a connected

device belongs to a class for which a native driver exists, Windows automatically loads

the driver without any additional actions from you. If a vendor-specific driver is required

for the device, a manufacturer’s INF file giving instructions to Windows for loading the

vendor-specific driver is required. In some cases, a manufacturer’s INF file may also be

required to load a native driver.

When the device has been recognized by Windows and is ready for communication, your

application may need to use a Globally Unique IDentifier (GUID) to retrieve a device

handle that allows your application to communicate with the device.

These sections explain the use of INF files and GUIDs. Table 3-1 shows the USB classes to

which the information in the following sub-sections applies.

Table 3-1 Micriμm Classes Concerned by Windows USB Device Management

3-1-1 ABOUT INF FILES

An INF file is a setup information file that contains information used by Windows to install

software and drivers for one or more devices. The INF file also contains information to store

in the registry. Each of the drivers provided natively with the operating system has an

associated INF file stored in C:\WINDOWS\inf. For instance, when a HID or MSC device is

connected to the PC, Windows enumerates the device and implicitly finds an INF file

associated to a HID or MSC class that permits loading the proper driver. INF files for native

drivers are called system INF files. Any new INF files provided by manufacturers for vendor-

specific devices are copied into the folder C:\WINDOWS\inf. These INF files can be called

vendor-specific INF files. An INF file allows Windows to load one or more drivers for a

device. A driver can be native or provided by the device manufacturer.

Section Micriμm classes

section 3-1-1 “About INF Files” on page 46 CDC, PHDC and Vendor

section 3-1-2 “Using GUIDs” on page 51 HID, PHDC and Vendor.

47

Microsoft Windows

3

Table 3-2 shows the Windows driver(s) loaded for each Micriμm class:

Table 3-2 Windows Drivers Loaded for each Micriμm Class

When a device is first connected, Windows searches for a match between the information

contained in system INF files and the information retrieved from device descriptors. If there

is no match, Windows asks you to provide an INF file for the connected device.

An INF file is arranged in sections whose names are surrounded by square brackets []. Each

section contains one or several entries. If the entry has a predefined keyword such as

“Class”, “Signature”, etc, the entry is called a directive. Listing 3-1 presents an example of an

INF file structure:

Micriμm class Windows driver Driver type INF file type

CDC ACM usbser.sys Native Vendor-specific INF file

HID Hidclass.sys

Hidusb.sys

Native System INF file

MSC Usbstor.sys Native System INF file

PHDC winusb.sys (for getting

started purpose only).

Native Vendor-specific INF file

Vendor winusb.sys Native Vendor-specific INF file

; =================== Version section =====================

[Version] (1)

Signature = "$Windows NT$"

Class = Ports

ClassGuid = {4D36E978-E325-11CE-BFC1-08002BE10318}

Provider=%ProviderName%

DriverVer=01/01/2012,1.0.0.0

; ========== Manufacturer/Models sections =================

[Manufacturer] (2)

%ProviderName% = DeviceList, NTx86, NTamd64

[DeviceList.NTx86] (3)

%PROVIDER_CDC% = DriverInstall, USB\VID_fffe&PID_1234&MI_00

48

Chapter 3

3

Listing 3-1 Example of INF File Structure

L3-1(1) The section [Version] is mandatory and informs Windows about the provider,

the version and other descriptive information about the driver package.

L3-1(2) The section [Manufacturer] is mandatory. It identifies the device’s

manufacturer.

L3-1(3) The following two sections are called Models sections and are defined on a

per-manufacturer basis. They gives more detailed instructions about the

driver(s) to install for the device(s). A section name can use extensions to

specify OSes and/or CPUs the entries apply to. In this example, .NTx86 and

.NTamd64 indicate that the driver can be installed on an NT-based Windows

(that is Windows 2000 and later), on x86- and x64-based PC respectively.

L3-1(4) The installation sections actually install the driver(s) for each device described

in the Model section(s). The driver installation may involve reading existing

information from the Windows registry, modifying existing entries of the

registry or creating new entries into the registry.

[DeviceList.NTamd64] (3)

%PROVIDER_CDC% = DriverInstall, USB\VID_fffe&PID_1234&MI_00

; ================ Installation sections ================== (4)

[DriverInstall]

include = mdmcpq.inf

CopyFiles = FakeModemCopyFileSection

AddReg = LowerFilterAddReg,SerialPropPageAddReg

[DriverInstall.Services]

include = mdmcpq.inf

AddService = usbser, 0x00000002, LowerFilter_Service_Inst

[SerialPropPageAddReg]

HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"

; ================== Strings section ======================

[Strings] (5)

ProviderName = "Micrium"

PROVIDER_CDC = "Micrium CDC Device"

49

Microsoft Windows

3

L3-1(5) The section [Strings] is mandatory and it is used to define each string key

token indicated by %string name% in the INF file.

Refer to the MSDN online documentation on this web page for more details about INF

sections and directives: http://msdn.microsoft.com/en-us/library/ff549520.aspx.

You will be able to modify some sections in order to match the INF file to your device

characteristics, such as Vendor ID, Product ID and human-readable strings describing the

device. The sections are:

■ Models section

■ [Strings] section

To identify possible drivers for a device, Windows looks in the Models section for a device

identification string that matches a string created from information in the device’s

descriptors. Every USB device has a device ID, that is a hardware ID created by the

Windows USB host stack from information contained in the Device descriptor. A device ID

has the following form:

USB\Vid_xxxx&Pid_yyyy

xxxx, yyyy, represent the value of the Device descriptor fields “idVendor” and “idProduct”

respectively (refer to the Universal Serial Bus Specification, revision 2.0, section 9.6.1 for

more details about the Device descriptor fields). This string allows Windows to load a driver

for the device. You can modify xxxx and yyyy to match your device’s Vendor and Product

IDs. In Listing 2-1, the hardware ID defines the Vendor ID 0xFFFE and the Product ID

0x1234.

Composite devices, formed of several functions, can specify a driver for each function. In

this case, the device has a device ID for each interface that represents a function. A device

ID for an interface has the following form:

USB\Vid_xxxx&Pid_yyyy&MI_ww

50

Chapter 3

3

ww is equal to the “bInterfaceNumber” field in the Interface descriptor (refer to the Universal

Serial Bus Specification, revision 2.0, section 9.6.5 for more details on the Interface

descriptor fields). You can modify ww to match the position of the interface in the

Configuration descriptor. If the interface has the position #2 in the Configuration descriptor,

ww is equals to 02.

The [Strings] section contains a description of your device. In Listing 3-1, the strings

define the name of the device driver package provider and the device name. You can see

these device description strings in the Device Manager. For instance, Figure 3-1 shows a

virtual COM port created with the INF file from Listing 3-1. The string “Micrium” appears

under the “Driver Provider” name in the device properties. The string “Micrium CDC

Device” appears under the “Ports” group and in the device properties dialog box.

Figure 3-1 Windows Device Manager Example for a CDC Device

51

Microsoft Windows

3

3-1-2 USING GUIDS

A Globally Unique IDentifier (GUID) is a 128-bit value that uniquely identifies a class or

other entity. Windows uses GUIDs for identifying two types of device classes:

■ Device setup class

■ Device interface class

A device setup GUID encompasses devices that Windows installs in the same way and using

the same class installer and co-installers. Class installers and co-installers are DLLs that

provide functions related to device installation. There is a GUID associated with each device

setup class. System-defined setup class GUIDs are defined in devguid.h. The device setup

class GUID defines the ..\CurrentControlSet\Control\Class\ClassGuid registry key

under which to create a new subkey for any particular device of a standard setup class. A

complete list of system-defined device setup classes offered by Microsoft Windows® is

available on MSDN online documentation (http://msdn.microsoft.com/en-us/

library/windows/hardware/ff553426(v=vs.85).aspx).

A device interface class GUID provides a mechanism for applications to communicate with

a driver assigned to devices in a class. A class or device driver can register one or more

device interface classes to enable applications to learn about and communicate with devices

that use the driver. Each device interface class has a device interface GUID. Upon a device;s

first attachment to the PC, the Windows I/O manager associates the device and the device

interface class GUID with a symbolic link name, also called a device path. The device path

is stored in the registry and persists across system reboot. An application can retrieve all the

connected devices within a device interface class. If the application has gotten a device path

for a connected device, this device path can be passed to a function that will return a

handle. This handle is passed to other functions in order to communicate with the

corresponding device.

Three of Micriμm’s USB classes are provided with Visual Studio 2010 projects. These Visual

Studio projects build applications that interact with a USB device. They use a device

interface class GUID to detect any attached device belonging to the class. Table 3-3 shows

the Micriμm class and the corresponding device interface class GUID used in the class

Visual Studio project.

52

Chapter 3

3

Table 3-3 Micriμm Class and Device Interface Class GUID

The interface class GUID for the HID class is provided by Microsoft as part of system-

defined device interface classes, whereas the interface class GUID for PHDC and Vendor

classes has been generated with Visual Studio 2010 using the utility tool, guidgen.exe. This

tool is accessible from the menu Tools and the option Create GUID or, through the

command-line by selecting the menu Tools, option Visual Studio Command Prompt and by

typing guidgen at the prompt.

Micriμm class Device interface class GUID Defined in

HID {4d1e55b2-f16f-11cf-88cb-001111000030} app_hid_common.h

PHDC {143f20bd-7bd2-4ca6-9465-8882f2156bd6} usbdev_guid.h

Vendor {143f20bd-7bd2-4ca6-9465-8882f2156bd6} usbdev_guid.h

53

Chapter

4
Architecture

μC/USB-Device was designed to be modular and easy to adapt to a variety of Central

Processing Units (CPUs), Real-Time Operating Systems (RTOS), USB device controllers, and

compilers.

Figure 4-1 shows a simplified block diagram of all the μC/USB-Device modules and their

relationships.

54

Chapter 4

4

Figure 4-1 μC/USB-Device Architecture Block Diagram

���������	

�����������	
 ��
�����	
 �������	
 ������	

���	� ��
���������	��
 ����������	��

����������
�	�

��

��
�����	��

�
��

	���
��
��
������	��

��	�����������
��
���������	��

�

��
�����	��

�
��������
�������	

��
������������	��

���
��
��
��	��

���

��
���
��	��
 ��
�	�

��
��������	��

	��
��
������	��

�
��	�
�
��
�����
�

��
����	�

�������
	
��	����
������

��
������������	��

�������
	
��	����
���

��
��
���������	��

�������	��
��
����

��
��������	��

�� �
!
	���"���#

��
����	��

�� �
!
������#

��
��
�����	��

��
���
�����	��

��
��������	��

����$���

�����
�����

������	�

-.)�
��

��	
��	��,���	������

,��
��������'���	

��
%�����&�'���(
�����
����	

�����
����	��
����
������	�
�����
����	��

�)
��������	��
 ���	

�����	�
�����	�

55

Modules Relationship

4

4-1 MODULES RELATIONSHIP

4-1-1 APPLICATION

Your application layer needs to provide configuration information to μC/USB-Device in the

form of four C files: app_cfg.h, usbd_cfg.h, usbd_dev_cfg.c and usbd_dev_cfg.h:

■ app_cfg.h is an application-specific configuration file. It contains #defines to specify

task priorities and the stack size of each of the task within the application and the task

required by μC/USB-Device. Some small Micriμm modules like μC/LIB (run-time

library) use app_cfg.h to configure parameters such as the heap size.

■ Configuration data in usbd_cfg.h consists of specifying the number of devices

supported in the stack, the maximum number of configurations, the maximum number

of interfaces and alternate interfaces, maximum number of opened endpoints per

device, class-specific configuration parameters and more. In all, there are approximately

20 #defines to set.

■ Finally, usbd_dev_cfg.c/.h consists of device-specific configuration requirements

such as vendor ID, product ID, device release number and its respective strings. It also

contains device controller specific configurations such as base address, dedicated

memory base address and size, and endpoint management table.

Refer to Chapter 5, “Configuration” on page 65 for more information on how to configure

μC/USB-Device.

4-1-2 LIBRARIES

Given that μC/USB-Device is designed to be used in safety critical applications, some of the

“standard” library functions such as strcpy(), memset(), etc. have been rewritten to

conform to the same quality standards as the rest of the USB device stack. All these standard

functions are part of a separate Micriμm’s product, μC/LIB. μC/USB-Device depends on this

product. In addition, some data objects in USB controller drivers are created at run-time

which implies the use of memory allocation from the heap function Mem_HeapAlloc().

56

Chapter 4

4

4-1-3 USB CLASS LAYER

Your application will interface with μC/USB-Device using the class layer API. In this layer,

four classes defined by the USB-IF are implemented. In case you need to implement a

vendor-specific class, a fifth class, the “vendor” class, is available. This class provides

functions for simple communication via endpoints. The classes that μC/USB-Device

currently supports are the following:

■ Communication Device Class (CDC)

■ CDC Abstract Control Model (ACM) subclass

■ Human Interface Device Class (HID)

■ Mass Storage Class (MSC)

■ Personal Healthcare Device Class (PHDC)

■ Vendor Class

You can also create other classes defined by the USB-IF. Refer to Chapter 7, “USB Classes”

on page 99 for more information on how a USB class interacts with the core layer.

4-1-4 USB CORE LAYER

USB core layer is responsible for creating and maintaining the logical structure of a USB

device. The core layer manages the USB configurations, interfaces, alternate interfaces and

allocation of endpoints based on the application or USB classes requirements and the USB

controller endpoints available. Standard requests, bus events (reset, suspend, connect and

disconnect) and enumeration process are also handled by the Core layer.

4-1-5 ENDPOINT MANAGEMENT LAYER

The endpoint management layer is responsible for sending and receiving data using

endpoints. Control, interrupt and bulk transfers are implemented in this layer. This layer

provides synchronous API for control, bulk and interrupt I/O operations and asynchronous

API for bulk and interrupt I/O operations.

57

Modules Relationship

4

4-1-6 REAL-TIME OPERATING SYSTEM (RTOS) ABSTRACTION
LAYER

μC/USB-Device assumes the presence of a RTOS, and a RTOS abstraction layer allows μC/

USB-Device to be independent of a specific RTOS. The RTOS abstraction layer is composed

of several RTOS ports, a core layer port and some class layer ports.

CORE LAYER PORT

At the very least, the RTOS for the core layer:

■ Create at least one task for the core operation and one optional task for the debug trace

feature.

■ Provide semaphore management (or the equivalent). Semaphores are used to signal

completion or error in synchronous I/O operations and trace events.

■ Provide queue management for I/O and bus events.

μC/USB-Device is provided with ports for μC/OS-II and μC/OS-III. If a different RTOS is

used, you can use the files for μC/OS-II or μC/OS-III as template to interface to the RTOS

chosen. For more information on how to port μC/USB-Device to a RTOS, see Chapter 14,

“Porting μC/USB-Device to your RTOS” on page 237.

CLASS LAYER PORTS

Some classes requires a RTOS port (i.e., MSC, PHDC and HID). Refer to Table 14-2 on

page 239 for a list of sections containing more informations on the RTOS port of each of

these classes.

4-1-7 HARDWARE ABSTRACTION LAYER

μC/USB-Device works with nearly any USB device controller. This layer handles the

specifics of the hardware, e.g., how to initialize the device, how to open and configure

endpoints, how to start reception and transmission of USB packets, how to read and write

USB packets, how to report USB events to the core, etc. The USB device driver controller

functions are encapsulated and implemented in the usbd_drv_<controller>.c file.

58

Chapter 4

4

In order to have independent configuration for clock gating, interrupt controller and general

purpose I/O, a USB device controller driver needs an additional file. This file is called a

Board Support Package (BSP). The name of this file is usbd_bsp_<controller>.c. This file

contains all the details that are closely related to the hardware on which the product is used.

This file also defines the endpoints information table. This table is used by the core layer to

allocate endpoints according to the hardware capabilities.

4-1-8 CPU LAYER

μC/USB-Device can work with either an 8, 16, 32 or even 64-bit CPU, but it must have

information about the CPU used. The CPU layer defines such information as the C data type

corresponding to 16-bit and 32-bit variables, whether the CPU has little or big endian

memory organization, and how interrupts are disabled and enabled on the CPU.

CPU-specific files are found in the \uC-CPU directory and are used to adapt μC/USB-Device

to a different CPU.

4-2 TASK MODEL

μC/USB-Device requires two tasks: One core task and one optional task for tracing debug

events. The core task has three main responsibilities:

■ Process USB bus events: Bus events such as reset, suspend, connect and disconnect are

processed by the core task. Based on the type of bus event, the core task sets the state

of the device.

■ Process USB requests: USB requests are sent by the host using the default control

endpoint. The core task processes all USB requests. Some requests are handled by the

USB class driver, for those requests the core calls the class-specific request handler.

■ Process I/O asynchronous transfers: Asynchronous I/O transfers are handled by the

core. Under completion, the core task invokes the respective callback for the transfer.

Figure 4-2 shows a simplified task model of μC/USB-Device along with application tasks.

59

Task Model

4

Figure 4-2 μC/USB-Device Task Model

4-2-1 SENDING AND RECEIVING DATA

Figure 4-3 shows a simplified task model of μC/USB-Device when data is transmitted and

received through the USB device controller. With μC/USB-Device, data can be sent

asynchronously or synchronously. In a synchronous operation, the application blocks

execution until the transfer operation completes, or an error or a time-out has occurred. In

an asynchronous operation, the application does not block. The core task notifies the

application when the transfer operation has completed through a callback function.

App
Task

App
Task

App
Task

Core
Task

Trace
Task

Bus Events

Endpoint I/O
Operation

USB Class API

Setup Packet

I/O Events

Device
Controller

Application
Output Function

60

Chapter 4

4

Figure 4-3 Sending and Receiving a Packet

F4-3(1) An application task that wants to receive or send data interfaces with μC/USB-

Device through the USB classes API. The USB classes API interface with the

core API and the core interfaces with the endpoint layer API.

F4-3(2) The endpoint layer API prepares the data depending on the endpoint

characteristics.

F4-3(3) When the USB device controller is ready, the driver prepares the transmission

or the reception.

App
Task

USB Class

Core

Endpoint

USB Device
Controller

Tx/Rx
ISR

Core
Task

Application
Callback

(2)

(3)
(4)

(5) (5)

(6)

(6)

(7)

USB Events
QueueTransfer Ready

Semaphore

Asynchronous I/O
Datapath

Synchronous I/O
Datapath

(1)

Device driver

Universal Serial Bus

61

Task Model

4

F4-3(4) Once the transfer has completed, the USB device controller generates an

interrupt. Depending of the operation (transmission or reception) the USB

device controller’s driver ISR invokes the transmit complete or receive complete

function from the core.

F4-3(5) If the operation is synchronous, the transmit or receive complete function will

signal the transfer ready counting semaphore. If the operation is asynchronous,

the transmit or receive complete function will put a message in the USB core

event queue for deferred processing by the USB core task.

F4-3(6) If the operation is synchronous, the endpoint layer will wait on the counting

semaphore. The operation repeats steps 2 to 5 until the whole transfer has

completed.

F4-3(7) The core task waits on events to be put in the core event queue. In

asynchronous transfers, the core task will call the endpoint layer until the

operation is completed.

F4-3(8) In asynchronous mode, after the transfer has completed the core task will call

the application completion callback to notify the end of the I/O operation.

4-2-2 PROCESSING USB REQUESTS AND BUS EVENTS

USB requests are processed by the core task. Figure 4-4 shows a simplified task diagram of

a USB request processing. USB bus events such as reset, resume, connect, disconnect, and

suspend are processed in the same way as the USB requests. The core process the USB bus

events to modify and update the current state of the device.

62

Chapter 4

4

Figure 4-4 Processing USB Requests

F4-4(1) USB requests are sent using control transfers. During the setup stage of the

control transfer, the USB device controller generates an interrupt to notify the

driver that a new setup packet has arrived.

F4-4(2) The USB device controller driver ISR notifies the core by pushing the event in

the core event queue.

F4-4(3) The core task receives the message from the queue, and starts the parsing of

the USB request by calling the request handler.

F4-4(4) The request handler analyzes the request type and determines if the request is

a standard, vendor or class specific request.

F4-4(5) Standard requests are processed by the core layer. Vendor and class specific

requests are processed by the class driver, in the class layer.

USB Device
Controller

Setup
Packet ISR

Core
Task

Request Handler

(1)

(2)

Standard
Request Handler

Class
Request Handler

(3) (4)

(5)

63

Task Model

4

4-2-3 PROCESSING DEBUG EVENTS

μC/USB-Device contains an optional debug and trace feature. Debug events are managed in

the core layer using a dedicated task. Figure 4-5 describes how the core manage the debug

events.

Figure 4-5 Processing USB Debug Events

F4-5(1) The debug and trace module in the core contains a free list of USB debug

events. The debug events objects contain useful information such as the

endpoint number, interface number or the layer that generates the events.

F4-5(2) Multiple μC/USB-Device layers take available debug event objects to trace

useful information about different USB related events.

F4-5(3) Trace and debug information events are pushed in the debug event list.ggg

F4-5(4) The debug task is dormant until a new debug event is available in the debug

event list. The debug task will parse the information contained in the debug

event object and it will output it in a human readable format using the

application specific output trace function USBD_Trace().

F4-5(5) The application specific output function outputs the debug trace information.

For more information on the debug and trace module, see Chapter 13, “Debug and Trace”

on page 231.

���
�����	
���

�����
����

/�0

�����������
��������	������

/ 0
/!0

���
��
�	
���

���
�
���
	
���

���$%�+����
'���

/"0

�	������$%
+������'���

/�0

64

Chapter 4

4

65

Chapter

5
Configuration

Prior to usage, μC/USB-Device must be properly configured. There are three groups of

configuration parameters:

■ Static stack configuration

■ Application specific configuration

■ Device and device controller driver configuration

This chapter explains how to setup all these groups of configuration. The last section of this

chapter also provides examples of configuration following examples of typical usage.

5-1 STATIC STACK CONFIGURATION

μC/USB-Device is configurable at compile time via approximately 20 #defines in the

application’s copy of usbd_cfg.h. μC/USB-Device uses #defines when possible because

they allow code and data sizes to be scaled at compile time based on enabled features and

the configured number of USB objects. This allows the Read-Only Memory (ROM) and

Random-Access Memory (RAM) footprints of μC/USB-Device to be adjusted based on

application requirements.

It is recommended that the configuration process begins with the recommended or default

configuration values which in the next sections will be shown in bold.

The sections in this chapter are organized following the order in μC/USB-Device’s template

configuration file, usbd_cfg.h.

66

Chapter 5

5

5-1-1 GENERIC CONFIGURATION

USBD_CFG_OPTIMIZE_SPD

Selected portions of μC/USB-Device code may be optimized for either better performance

or for smallest code size by configuring USBD_CFG_OPTIMIZE_SPD:

DEF_ENABLED Optimizes μC/USB-Device for best speed performance

DEF_DISABLED Optimizes μC/USB-Device for best binary image size

USBD_CFG_MAX_NBR_DEV

USBD_CFG_MAX_NBR_DEV configures the maximum number of devices. This value should be

set to the number of device controllers used on your platform. Default value is 1.

5-1-2 USB DEVICE CONFIGURATION

USBD_CFG_MAX_NBR_CFG

USBD_CFG_MAX_NBR_CFG sets the maximum number of USB configurations used by your

device. Keep in mind that if you use a high-speed USB device controller, you will need at

least two USB configurations, one for low and full-speed and another for high-speed. Refer

to the Universal Serial Bus specification, Revision 2.0, section 9.2.3 for more details on USB

configuration. Default value is 2.

5-1-3 INTERFACE CONFIGURATION

USBD_CFG_MAX_NBR_IF

USBD_CFG_MAX_NBR_IF configures the maximum number of interfaces available. This value

should at least be equal to USBD_CFG_MAX_NBR_CFG and greatly depends on the USB

class(es) used. Each class instance requires at least one interface, while CDC-ACM requires

two. Refer to the Universal Serial Bus specification, Revision 2.0, section 9.2.3 for more

details on USB interfaces. Default value is 2.

67

Static Stack Configuration

5
USBD_CFG_MAX_NBR_IF_ALT

USBD_CFG_MAX_NBR_IF_ALT defines the maximum number of alternate interfaces (alternate

settings) available. This value should at least be equal to USBD_CFG_MAX_NBR_IF. Refer to

the Universal Serial Bus specification, Revision 2.0, section 9.2.3 for more details on

alternate settings. Default value is 2.

USBD_CFG_MAX_NBR_IF_GRP

USBD_CFG_MAX_NBR_IF_GRP sets the maximum number of interface groups or associations

available. For the moment, Micriμm offers only one USB class (CDC-ACM) that requires

interface groups. Refer to the Interface Association Descriptors USB Engineering Change

Notice for more details about interface associations. Default value is 0 (should be equal to

the number of instances of CDC-ACM).

USBD_CFG_MAX_NBR_EP_DESC

USBD_CFG_MAX_NBR_EP_DESC sets the maximum number of endpoint descriptors available.

This value greatly depends on the USB class(es) used. For information on how many

endpoints are needed for each class, refer to the class specific chapter. Keep in mind that

control endpoints do not need any endpoint descriptors. Default value is 2.

USBD_CFG_MAX_NBR_EP_OPEN

USBD_CFG_MAX_NBR_EP_OPEN configures the maximum number of opened endpoints per

device. If you use more than one device, set this value to the worst case. This value greatly

depends on the USB class(es) used. For information on how many endpoints are needed for

each class, refer to the class specific chapter. Default value is 4 (2 control plus 2 other

endpoints).

5-1-4 STRING CONFIGURATION

USBD_CFG_MAX_NBR_STR

USBD_CFG_MAX_NBR_STR configures the maximum number of string descriptors supported.

Default value is 3 (1 Manufacturer string, 1 product string and 1 serial number string). This

value can be increased if, for example, you plan to add interface specific strings.

68

Chapter 5

5

5-1-5 DEBUG CONFIGURATION

Configurations in this section only need to be set if you use the core debugging service. For

more information on that service, see Chapter 13, “Debug and Trace” on page 231.

USBD_CFG_DBG_TRACE_EN

USBD_CFG_DBG_TRACE_EN enables or disables the core debug trace engine.

DEF_ENABLED Core debug trace engine is enabled.

DEF_DISABLED Core debug trace engine is disabled.

USBD_CFG_DBG_TRACE_NBR_EVENTS

USBD_CFG_DBG_TRACE_NBR_EVENTS indicates the maximum number of debug trace events

that can be queued by the core debug trace engine. Default value is 10.

This configuration constant has no effect and will not allocate any memory if

USBD_CFG_DBG_TRACE_EN is set to DEF_DISABLED.

5-1-6 COMMUNICATION DEVICE CLASS (CDC)
CONFIGURATION

For information on CDC configuration, refer to section 8-3 “Configuration” on page 120.

5-1-7 CDC ABSTRACT CONTROL MODEL (ACM) SERIAL CLASS
CONFIGURATION

For information on CDC-ACM class configuration, refer to section 8-4-2 “General

Configuration” on page 123.

5-1-8 HUMAN INTERFACE DEVICE (HID) CLASS
CONFIGURATION

For information on HID class configuration, refer to Section 9-3, “Configuration” on

page 143.

69

Application Specific Configuration

5

5-1-9 MASS STORAGE CLASS (MSC) CONFIGURATION

For information on MSC configuration, refer to Section 10-4, “Configuration” on page 173.

5-1-10 PERSONAL HEALTHCARE DEVICE CLASS (PHDC)
CONFIGURATION

For information on PHDC configuration, refer to section 11-2 “Configuration” on page 187.

5-1-11 VENDOR CLASS CONFIGURATION

For information on vendor class configuration, refer to Section 12-2, “Configuration” on

page 207.

5-2 APPLICATION SPECIFIC CONFIGURATION

This section defines the configuration constants related to μC/USB-Device but that are

application-specific. All these configuration constants relate to the RTOS. For many OSs, the

μC/USB-Device task priorities and stack sizes will need to be explicitly configured for the

particular OS (consult the specific OS’s documentation for more information).

These configuration constants should be defined in an application’s app_cfg.h file.

5-2-1 TASK PRIORITIES

As mentioned in section 4-2 “Task Model” on page 58, μC/USB-Device needs one core task

and one optional debug task for its proper operation. The priority of μC/USB-Device’s core

task greatly depends on the USB requirements of your application. For some applications, it

might be better to set it at a high priority, especially if your application requires a lot of

tasks and is CPU intensive. In that case, if the core task has a low priority, it might not be

able to process the bus and control requests on time. On the other hand, for some

applications, you might want to give the core task a low priority, especially if you plan using

asynchronous communication and if you know you will have quite a lot of code in your

callback functions. For more information on the core task, see section 4-2 “Task Model” on

page 58.

70

Chapter 5

5
The priority of the debug task should generally be low since it is not critical and the task

performed can be executed in the background.

For the μC/OS-II and μC/OS-III RTOS ports, the following macros must be configured

within app_cfg.h:

■ USBD_OS_CFG_CORE_TASK_PRIO

■ USBD_OS_CFG_TRACE_TASK_PRIO

Note: if USBD_CFG_DBG_TRACE_EN is set to DEF_DISABLED, USBD_OS_CFG_TRACE_TASK_PRIO

should not be defined.

5-2-2 TASK STACK SIZES

For the μC/OS-II and μC/OS-III RTOS ports, the following macros must be configured

within app_cfg.h to set the internal task stack sizes:

■ USBD_OS_CFG_CORE_TASK_STK_SIZE 1000

■ USBD_OS_CFG_TRACE_TASK_STK_SIZE 1000

Note: if USBD_CFG_DBG_TRACE_EN is set to DEF_DISABLED, USBD_OS_CFG_TRACE_TASK_STK_SIZE

should not be defined.

The arbitrary stack size of 1000 is a good starting point for most applications.

The only guaranteed method of determining the required task stack sizes is to calculate the

maximum stack usage for each task. Obviously, the maximum stack usage for a task is the

total stack usage along the task’s most-stack-greedy function path plus the (maximum) stack

usage for interrupts. Note that the most-stack-greedy function path is not necessarily the

longest or deepest function path.

The easiest and best method for calculating the maximum stack usage for any task/function

should be performed statically by the compiler or by a static analysis tool since these can

calculate function/task maximum stack usage based on the compiler’s actual code

generation and optimization settings. So for optimal task stack configuration, we

recommend to invest in a task stack calculator tool compatible with your build toolchain.

71

Device and Device Controller Driver Configuration

5

5-3 DEVICE AND DEVICE CONTROLLER DRIVER
CONFIGURATION

In order to finalize the configuration of your device, you need to declare two structures, one

will contain information about your device (Vendor ID, Product ID, etc.) and another that

will contain information useful to the device controller driver. A reference to both of these

structures needs to be passed to the USBD_DevAdd() function, which allocates a device

controller.

For more information on how to modify device and device controller driver configuration,

see section 2-4-2 “Copying and Modifying Template Files” on page 33.

5-4 CONFIGURATION EXAMPLES

This section provides examples of configuration for μC/USB-Device stack based on some

typical usages. This section will only give examples of static stack configuration, as the

application-specific configuration greatly depends on your application. Also, the device

configuration is related to your product’s context, and the device controller driver

configuration depends on the hardware you use.

The examples of typical usage that will be treated are the following:

■ A simple full-speed USB device. This device uses Micriμm’s vendor class.

■ A composite high-speed USB device. This device uses Micriμm’s PHDC and MSC

classes.

■ A complex composite high-speed USB device. This device uses an instance of Micriμm’s

HID class in two different configurations plus a different instance of Micriμm’s CDC-

ACM class in each configuration. This device also uses an instance of Micriμm’s vendor

class in the second configuration.

72

Chapter 5

5

5-4-1 SIMPLE FULL-SPEED USB DEVICE

Table 5-1 shows the values that should be set for the different configuration constants

described earlier if you build a simple full-speed USB device using Micriμm’s vendor class.

Table 5-1 Configuration Example of a Simple Full-Speed USB Device

Configuration Value Explanation

USBD_CFG_MAX_NBR_CFG 1 Since device is full speed, only one configuration is

needed.

USBD_CFG_MAX_NBR_IF 1 Since device only uses the vendor class, only one

interface is needed.

USBD_CFG_MAX_NBR_IF_ALT 1 No alternate interfaces are needed, but this value must at

least be equal to USBD_CFG_MAX_NBR_IF.

USBD_CFG_MAX_NBR_IF_GRP 0 No interface association needed.

USBD_CFG_MAX_NBR_EP_DESC 2 or 4 Two bulk endpoints and two optional interrupt endpoints.

USBD_CFG_MAX_NBR_EP_OPEN 4 or 6 Two control endpoints for device’s standard requests.

Two bulk endpoints and two optional interrupt endpoints.

USBD_VENDOR_CFG_MAX_NBR_DEV 1 Only one instance of vendor class is needed.

USBD_VENDOR_CFG_MAX_NBR_CFG 1 Vendor class instance will only be used in one

configuration.

73

Configuration Examples

5

5-4-2 COMPOSITE HIGH-SPEED USB DEVICE

Table 5-2 shows the values that should be set for the different configuration constants

described earlier if you build a composite high-speed USB device using Micriμm’s PHDC

and MSC classes. The structure of this device is described in Figure 5-1.

Figure 5-1 Composite High-Speed USB Device Structure

	�+#� '�� �
�)�+#� '�� �

)�&0,'�

%#
��!#%
$��

"
��,'�

%#
�� ��&
�����

)�&0,'�

%#
�� ��&
�����

�)�+
� �
����

	�+
� �
����

!
�1#��

 %��� �

!
�1#���

 %��� �

!
�1#��

 %��� �

� �
��
��#��

 %��� �2

!
�1#���

 %��� �

2� %��� �#�'#����� ��

74

Chapter 5

5

Table 5-2 Configuration Example of a Composite High-Speed USB Device

5-4-3 COMPLEX COMPOSITE HIGH-SPEED USB DEVICE

Table 5-3 shows the values that should be set for the different configuration constants

described earlier if you build a composite high-speed USB device using a single instance of

Micriμm’s HID class in two different configurations plus a different instance of Micriμm’s CDC-

ACM class in each configuration. The device also uses an instance of Micriμm’s vendor class in

its second configuration. See Figure 5-2 for a graphical description of this USB device.

Configuration Value Explanation

USBD_CFG_MAX_NBR_CFG 2 One configuration for full/low-speed and another for high-

speed.

USBD_CFG_MAX_NBR_IF 4 One interface for PHDC and another for MSC. A different

interface for each configuration is also needed.

USBD_CFG_MAX_NBR_IF_ALT 4 No alternate interface needed, but this value must at least

be equal to USBD_CFG_MAX_NBR_IF.

USBD_CFG_MAX_NBR_IF_GRP 0 No interface association needed.

USBD_CFG_MAX_NBR_EP_DESC 4 or 5 Two bulk endpoints for MSC.

Two bulk plus one optional interrupt endpoint for PHDC.

USBD_CFG_MAX_NBR_EP_OPEN 6 or 7 Two control endpoints for device’s standard requests.

Two bulk endpoints for MSC.

Two bulk plus 1 optional interrupt endpoint for PHDC.

USBD_PHDC_CFG_MAX_NBR_DEV 1 Only one instance of PHDC is needed. It will be shared

between all the configurations.

USBD_PHDC_CFG_MAX_NBR_CFG 2 PHDC instance can be used in both of device’s

configurations.

USBD_MSC_CFG_MAX_NBR_DEV 1 Only one instance of MSC is needed. It will be shared

between all the configurations.

USBD_MSC_CFG_MAX_NBR_CFG 2 MSC instance can be used in both of device’s

configurations.

75

Configuration Examples

5

Figure 5-2 Complex Composite High-Speed USB Device Structure

+� ��&
����� #�

+� ��&
����� #/

)��#���''#� '�� �

)�&0,'�

%#
��!#%
$��

"
��,'�

%#
�� ��&
�����

)�&0,'�

%#
�� ��&
�����

)��
� �
����

� �
��
��#��

 %��� �

� �
��
��#���

 %��� �2

2� %��� �#�'#����� ��

"
��,'�

%#
�� ��&
�����

)�&0,'�

%#
�� ��&
�����

+�+,�+	#���''#� '�� �
#�

+���
 ������
� �
����

!
�1#��

 %��� �

� �
��
��#��

 %��� �

!
�1#���

 %��� �

����#� �
����

+�+,�+	#���''#� '�� �
#/

+���
 ������
� �
����

!
�1#��

 %��� �

� �
��
��#��

 %��� �

!
�1#���

 %��� �

����#� �
����

3
 %��#���''#� '�� �

3
 %��
� �
����
 � �
��
��#��

 %��� �2

� �
��
��#���

 %��� �2

!
�1#��

 %��� �

!
�1#���

 %��� �

76

Chapter 5

5

Table 5-3 Configuration Example of a Complex Composite High-Speed USB Device

Configuration Value Explanation

USBD_CFG_MAX_NBR_CFG 4 Two configurations for full/low-speed and two others for

high-speed.

USBD_CFG_MAX_NBR_IF 7 First configuration:

 One interface for HID.

 Two interfaces for CDC-ACM.

Second configuration:

 One interface for HID.

 Two interfaces for CDC-ACM.

 One interface for vendor.

USBD_CFG_MAX_NBR_IF_ALT 7 No alternate interface needed, but this value must at least

be equal to USBD_CFG_MAX_NBR_IF.

USBD_CFG_MAX_NBR_IF_GRP 2 CDC-ACM needs to group its communication and data

interfaces into a single USB function. Since there are two

CDC-ACM class instances, there will be two interface

groups.

USBD_CFG_MAX_NBR_EP_DESC 9, 10, 11

or 12

One IN and (optional) OUT interrupt endpoint for HID.

Three endpoints for first CDC-ACM class instance.

Three endpoints for second CDC-ACM class instance.

Two bulk plus two optional interrupt endpoints for vendor.

USBD_CFG_MAX_NBR_EP_OPEN 8, 9, 10

or 11

In the worst case (host enables second configuration):

Two control endpoints for device’s standard requests.

One IN and (optional) OUT interrupt endpoint for HID.

Three endpoints for second CDC-ACM class instance.

Two bulk plus two optional interrupt endpoints for vendor.

USBD_HID_CFG_MAX_NBR_DEV 1 Only one instance of HID class is needed. It will be shared

between all the configurations.

USBD_HID_CFG_MAX_NBR_CFG 4 HID class instance can be used in all of device’s

configurations.

USBD_CDC_CFG_MAX_NBR_DEV 2 Two CDC base class instances are used.

USBD_CDC_CFG_MAX_NBR_CFG 2 Each CDC base class instance can be used in one full-

speed and one high-speed configuration.

USBD_ACM_SERIAL_CFG_MAX_NBR_DEV 2 Two ACM subclass instances are used.

USBD_VENDOR_CFG_MAX_NBR_DEV 1 Only one vendor class instance is used.

USBD_VENDOR_CFG_MAX_NBR_CFG 2 The vendor class instance can be used in one full-speed

and one high-speed configuration.

77

Chapter

6
Device Driver Guide

There are many USB device controllers available on the market and each requires a driver to

work with μC/USB-Device. The amount of code necessary to port a specific device to μC/

USB-Device greatly depends on the device’s complexity.

If not already available, a driver can be developed, as described in this chapter. However, it

is recommended to modify an already existing device driver with the new device’s specific

code following the Micriμm coding convention for consistency. It is also possible to adapt

drivers written for other USB device stacks, especially if the driver is short and it is a matter

of simply copying data to and from the device.

6-1 DEVICE DRIVER ARCHITECTURE

This section describes the hardware (device) driver architecture for μC/USB-Device,

including:

■ Device Driver API Definition(s)

■ Device Configuration

■ Memory Allocation

■ CPU and Board Support

Micriμm provides sample configuration code free of charge; however, the sample code will

likely require modification depending on the combination of processor, evaluation board,

and USB device controller(s).

78

Chapter 6

6 6-2 DEVICE DRIVER MODEL

No particular memory interface is required by μC/USB-Device's driver model. Therefore, the

USB device controller may use the assistance of a Direct Memory Access (DMA) controller

to transfer data or handle the data transfers directly.

6-3 DEVICE DRIVER API

All device drivers must declare an instance of the appropriate device driver API structure as

a global variable within the source code. The API structure is an ordered list of function

pointers utilized by μC/USB-Device when device hardware services are required.

A sample device driver API structure is shown below.

Listing 6-1 Device Driver Interface API

Note: It is the device driver developers’ responsibility to ensure that all of the functions

listed within the API are properly implemented and that the order of the functions within

the API structure is correct. The different function pointers are:

const USBD_DRV_API USBD_DrvAPI_<controller> = { USBD_DrvInit, (1)

 USBD_DrvStart, (2)

 USBD_DrvStop, (3)

 USBD_DrvAddrSet, (4)

 USBD_DrvAddrEn, (5)

 USBD_DrvCfgSet, (6)

 USBD_DrvCfgClr, (7)

 USBD_DrvGetFrameNbr, (8)

 USBD_DrvEP_Open, (9)

 USBD_DrvEP_Close, (10)

 USBD_DrvEP_RxStart, (11)

 USBD_DrvEP_Rx, (12)

 USBD_DrvEP_RxZLP, (13)

 USBD_DrvEP_Tx, (14)

 USBD_DrvEP_TxStart, (15)

 USBD_DrvEP_TxZLP, (16)

 USBD_DrvEP_Abort, (17)

 USBD_DrvEP_Stall, (18)

 USBD_DrvISR_Handler (19)

};

79

Device Driver API

6L6-1(1) Device initialization/add

L6-1(2) Device start

L6-1(3) Device stop

L6-1(4) Assign device address

L6-1(5) Enable device address

L6-1(6) Set device configuration

L6-1(7) Clear device configuration

L6-1(8) Retrieve frame number

L6-1(9) Open device endpoint

L6-1(10) Close device endpoint

L6-1(11) Configure device endpoint to receive data

L6-1(12) Receive from device endpoint

L6-1(13) Receive zero-length packet from device endpoint

L6-1(14) Configure device endpoint to transmit data

L6-1(15) Transmit to device endpoint

L6-1(16) Transmit zero-length packet to device endpoint

L6-1(17) Abort device endpoint transfer

L6-1(18) Stall device endpoint

L6-1(19) Device interrupt service routine (ISR) handler

80

Chapter 6

6 The details of each device driver API function are described in Appendix B, “Device

Controller Driver API Reference” on page 323.

Note: μC/USB-Device device driver API function names may not be unique. Name clashes

between device drivers are avoided by never globally prototyping device driver functions

and ensuring that all references to functions within the driver are obtained by pointers

within the API structure. The developer may arbitrarily name the functions within the source

file so long as the API structure is properly declared. The user application should never

need to call API functions. Unless special care is taken, calling device driver functions may

lead to unpredictable results due to reentrancy.

When writing your own device driver, you can assume that each driver API function accepts

a pointer to a structure of the type USBD_DRV as one of its parameters. Through this

structure, you will be able to access the following fields:

Listing 6-2 USB Device Driver Data Type

L6-2(1) Unique index to identify device.

L6-2(2) Pointer to USB device controller driver API.

L6-2(3) Pointer to USB device controller driver configuration.

L6-2(4) Pointer to USB device controller driver specific data.

L6-2(5) Pointer to USB device controller BSP.

typedef struct usbd_drv USBD_DRV;

typedef usb_drv {

 CPU_INT08U DevNbr; (1)

 USBD_DRV_API *API_Ptr; (2)

 USBD_DRV_CFG *CfgPtr; (3)

 void *DataPtr; (4)

 USBD_DRV_BSP_API *BSP_API_Ptr; (5)

};

81

Interrupt Handling

66-4 INTERRUPT HANDLING

Interrupt handling is accomplished using the following multi-level scheme.

1 Processor level kernel-aware interrupt handler

2 Device driver interrupt handler

During initialization, the device driver registers all necessary interrupt sources with the BSP

interrupt management code. You can also accomplish this by plugging an interrupt vector

table during compile time. Once the global interrupt vector sources are configured and an

interrupt occurs, the system will call the first-level interrupt handler. The first-level interrupt

handler is responsible for performing all kernel required steps prior to calling the USB

device driver interrupt handler: USBD_DrvISR_Handler(). Depending on the platform

architecture (that is the way the kernel handles interrupts) and the USB device controller

interrupt vectors, the device driver interrupt handler implementation may follow the models

below.

6-4-1 SINGLE USB ISR VECTOR WITH ISR HANDLER
ARGUMENT

If the platform architecture allows parameters to be passed to ISR handlers and the USB

device controller has a single interrupt vector for the USB device, the first-level interrupt

handler may be defined as:

PROTOTYPE

void USBD_BSP_<controller>_IntHandler (void *p_arg);

ARGUMENTS

p_arg Pointer to USB device driver structure that must be typecast to a pointer to

USBD_DRV.

82

Chapter 6

6 6-4-2 SINGLE USB ISR VECTOR

If the platform architecture does not allow parameters to be passed to ISR handlers and the

USB device controller has a single interrupt vector for the USB device, the first-level

interrupt handler may be defined as:

PROTOTYPE

void USBD_BSP_<controller>_IntHandler (void);

ARGUMENTS

None.

NOTES / WARNINGS

In this configuration, the pointer to the USB device driver structure must be stored globally

in the driver. Since the pointer to the USB device structure is never modified, the BSP

initialization function, USBD_BSP_Init(), can save its address for later use.

6-4-3 MULTIPLE USB ISR VECTORS WITH ISR HANDLER
ARGUMENTS

If the platform architecture allows parameters to be passed to ISR handlers and the USB

device controller has multiple interrupt vectors for the USB device (e.g., USB events, DMA

transfers), the first-level interrupt handler may need to be split into multiple sub-handlers.

Each sub-handler would be responsible for managing the status reported to the different

vectors. For example, the first-level interrupt handlers for a USB device controller that

redirects USB events to one interrupt vector and the status of DMA transfers to a second

interrupt vector may be defined as:

PROTOTYPE

void USBD_BSP_<controller>_EventIntHandler (void *p_arg);

void USBD_BSP_<controller>_DMAIntHandler (void *p_arg);

ARGUMENTS

p_arg Pointer to USB device driver structure that must be typecast to a pointer to

USBD_DRV.

83

Interrupt Handling

66-4-4 MULTIPLE USB ISR VECTORS

If the platform architecture does not allow parameters to be passed to ISR handlers and the

USB device controller has multiple interrupt vectors for the USB device (e.g., USB events,

DMA transfers), the first-level interrupt handler may need to be split into multiple sub-

handlers. Each sub-handler would be responsible for managing the status reported to the

different vectors. For example, the first-level interrupt handlers for a USB device controller

that redirects USB events to one interrupt vector and the status of DMA transfers to a second

interrupt vector may be defined as:

PROTOTYPE

void USBD_BSP_<controller>_EventIntHandler (void);

void USBD_BSP_<controller>_DMAIntHandler (void);

ARGUMENTS

None.

NOTES / WARNINGS

In this configuration, the pointer to the USB device driver structure must be stored globally

in the driver. Since the pointer to the USB device structure is never modified, the BSP

initialization function, USBD_BSP_Init(), can save its address for later use.

6-4-5 USBD_DrvISR_HANDLER()

The device driver interrupt handler must notify the USB device stack of various status

changes. Table 6-1 shows each type of status change and the corresponding notification

function.

Connect Event USBD_EventConn()

Disconnect Event USBD_EventDisconn()

Reset Event USBD_EventReset()

Suspend Event USBD_EventSuspend()

Resume Event USBD_EventResume()

High-Speed Handshake Event USBD_EventHS()

84

Chapter 6

6

Table 6-1 Status Notification API

Each status notification API queues the event type to be processed by the USB stack’s event

processing task. Upon reception of an USB event, the interrupt service routine may perform

some operations associated to the event before notifying the stack. For example, the USB

device controller driver must perform the proper actions for the bus reset when an interrupt

request for that event is triggered. Additionally, it must also notify the USB device stack

about the bus reset event by invoking the proper status notification API. In general, the

device driver interrupt handler must perform the following functions:

1 Determine which type of interrupt event occurred by reading an interrupt status

register.

2 If a receive event has occurred, the driver must post the successful completion or the

error status to the USB device stack by calling USBD_EP_RxCmpl() for each transfer

received.

3 If a transmit complete event has occurred, the driver must post the successful

completion or the error status to the USB device stack by calling USBD_EP_TxCmpl() for

each transfer transmitted.

4 If a setup packet event has occurred, the driver must post the setup packet data in little-

endian format to the USB device stack by calling USBD_EventSetup().

5 All other events must be posted to the USB device stack by a call to their corresponding

status notification API from Table 1. This allows the USB device stack to broadcast these

event notifications to the classes.

6 Clear local interrupt flags.

Setup Packet USBD_EventSetup()

Receive Packet Completed USBD_EP_RxCmpl()

Transmit Packet Completed USBD_EP_TxCmpl()

85

Device Configuration

66-5 DEVICE CONFIGURATION

The USB device characteristics must be shared with the USB device stack through

configuration parameters. All of these parameters are provided through two global

structures of type USBD_DRV_CFG and USBD_DEV_CFG. These structures are declared in the

file usbd_dev_cfg.h, and defined in the file usbd_dev_cfg.c (refer to section 2-4-2

“Copying and Modifying Template Files” on page 33 for an example of initialization of these

structures). These files are distributed as templates, and you should modify them to have the

proper configuration for your USB device controller. The fields of the following structure

are the parameters needed to configure the USB device controller driver:

Listing 6-3 USB Device Controller Driver Configuration Structure

L6-3(1) Base address of the USB device controller hardware registers.

L6-3(2) Base address of the USB device controller dedicated memory.

L6-3(3) Size of the USB device controller dedicated memory.

L6-3(4) Speed of the USB device controller. Can be set to either USBD_DEV_SPD_LOW,

USBD_DEV_SPD_FULL or USBD_DEV_SPD_HIGH.

L6-3(5) USB device controller endpoint information table (see section 6-5-1 “Endpoint

Information Table” on page 86).

The fields of the following structure are the parameters needed to configure the USB device:

typedef const struct usb_drv_cfg {

 CPU_ADDR BaseAddr; (1)

 CPU_ADDR, MemAddr; (2)

 CPU_ADDR, MemSize; (3)

 USBD_DEV_SPD, Spd; (4)

 USBD_DRV_EP_INFO *EP_InfoTbl; (5)

} USBD_DRV_CFG;

86

Chapter 6

6

Listing 6-4 USB Device Configuration Structure

L6-4(1) Vendor ID.

L6-4(2) Product ID.

L6-4(3) Device release number.

L6-4(4) Pointer to manufacturer string.

L6-4(5) Pointer to product string.

L6-4(6) Pointer to serial number ID.

L6-4(7) Language ID.

6-5-1 ENDPOINT INFORMATION TABLE

The endpoint information table provides the hardware endpoint characteristics to the USB

device stack. When an endpoint is opened, the USB device stack’s core iterates through the

endpoint information table entries until the endpoint type and direction match the

requested endpoint characteristics. The matching entry provides the physical endpoint

number and maximum packet size information to the USB device stack. The entries on the

endpoint information table are organized as follows:

typedef const struct usb_dev_cfg {

 CPU_INT16U VendorID; (1)

 CPU_INT16U ProductID; (2)

 CPU_INT16U DeviceBCD; (3)

 const CPU_CHAR *ManufacturerStrPtr; (4)

 const CPU_CHAR *ProductStrPtr; (5)

 const CPU_CHAR *SerialNbrStrPtr; (6)

 CPU_INT16U LangID; (7)

} USBD_DEV_CFG;

87

Device Configuration

6

Listing 6-5 Endpoint Information Table Entry

L6-5(1) The endpoint Attrib is a combination of the endpoint type

USBD_EP_INFO_TYPE and endpoint direction USBD_EP_INFO_DIR attributes.

The endpoint type can be defined as: USBD_EP_INFO_TYPE_CTRL,

USBD_EP_INFO_TYPE_INTR, USBD_EP_INFO_TYPE_BULK, or USBD_EP_INFO_TYPE_ISOC.

The endpoint direction can be defined as either USBD_EP_INFO_DIR_IN or

USBD_EP_INFO_DIR_OUT.

L6-5(2) The endpoint Nbr is the physical endpoint number used by the USB device

controller.

L6-5(3) The endpoint MaxPktSize defines the maximum packet size supported by

hardware. The maximum packet size used by the USB device stack is validated

to follow the USB standard guidelines.

An example of an endpoint information table for a high-speed capable device is provided

below.

Listing 6-6 Example of Endpoint Information Table Configuration

L6-6(1) The last entry on the endpoint information table must be an empty entry to

allow the USB device stack to determine the end of the table.

typedef const struct usbd_drv_ep_info {

 CPU_INT08U Attrib; (1)

 CPU_INT08U Nbr; (2)

 CPU_INT16U MaxPktSize; (3)

} USBD_DRV_EP_INFO;

const USBD_DRV_EP_INFO USBD_DrvEP_InfoTbl_<controller>[] = {

 {USBD_EP_INFO_TYPE_CTRL | USBD_EP_INFO_DIR_OUT, 0u, 64u},

 {USBD_EP_INFO_TYPE_CTRL | USBD_EP_INFO_DIR_IN, 0u, 64u},

 {USBD_EP_INFO_TYPE_BULK | USBD_EP_INFO_TYPE_INTR | USBD_EP_INFO_DIR_OUT, 1u, 1024u},

 {USBD_EP_INFO_TYPE_BULK | USBD_EP_INFO_TYPE_INTR | USBD_EP_INFO_DIR_IN, 1u, 1024u},

 {DEF_BIT_NONE , 0u, 0u} (1)

};

88

Chapter 6

6 6-6 MEMORY ALLOCATION

Memory allocation in the driver can be simplified by the use of memory allocation functions

available from μC/LIB. μC/LIB’s memory allocation functions provide allocation of memory

from dedicated memory space (e.g., USB RAM) or general purpose heap. The driver may

use the pool functionality offered by μC/LIB. Memory pools use fixed-sized blocks that can

be dynamically allocated and freed during application execution. Memory pools may be

convenient to manage objects needed by the driver. The objects could be for instance data

structures mandatory for DMA operations. For more information on using μC/LIB memory

allocation functions, consult the μC/LIB documentation.

6-7 CPU AND BOARD SUPPORT

The USB device stack supports big-endian and little-endian CPU architectures. The setup

packet received as part of a control transfer must provide the content of the setup packet in

little-endian format to the stack. Therefore, if the USB device controller provides the content

in big-endian format, device drivers must swap the endianness of the setup packet’s

content.

In order for device drivers to be platform-independent, it is necessary to provide a layer of

code that abstracts details such as clocks, interrupt controllers, general-purpose input/

output (GPIO) pins, and other hardware modules configuration. With this board support

package (BSP) code layer, it is possible for the majority of the USB device stack to be

independent of any specific hardware, and for device drivers to be reused on different

architectures and bus configurations without the need to modify stack or driver source

code. These procedures are also referred as the USB BSP for a particular development

board.

A sample device BSP interface API structure is shown below.

Listing 6-7 Device BSP Interface API

const USBD_DRV_BSP_API USBD_DrvBSP_<controller> = { USBD_BSP_Init, (1)

 USBD_BSP_Conn, (2)

 USBD_BSP_Disconn (3)

};

89

USB Device Driver Functional Model

6L6-7(1) Device BSP initialization function pointer

L6-7(2) Device BSP connect function pointer

L6-7(3) Device BSP disconnect function pointer

The details of each device BSP API function are described in section B-2 “Device Driver BSP

Functions” on page 350.

6-8 USB DEVICE DRIVER FUNCTIONAL MODEL

The USB device controller can operate in distinct modes while transferring data. This

section describes the common sequence of operations for the receive and transmit API

functions in the device driver, highlighting potential differences when the controller is

operating on FIFO or DMA mode. While there are some controllers that are strictly FIFO

based or DMA based, there are controllers that can operate in both modes depending on

hardware characteristics. For this type of controller, the device driver will employ the

appropriate sequence of operations depending, for example, on the endpoint type.

6-8-1 DEVICE SYNCHRONOUS RECEIVE

The device synchronous receive operation is initiated by the calls: USBD_BulkRx(),

USBD_CtrlRx(), and USBD_IntrRx(). Figure 6-1 shows an overview of the device

synchronous receive operation.

Figure 6-1 Device Synchronous Receive Diagram

��������	
��

������
����	
���
���

������
����	
��

�������	
�
������

���

���

���

���

�����������
����

���

���������	�������
��

��������	
������

���

�	�

90

Chapter 6

6 F6-1(1) The upper layer API’s, USBD_BulkRx(), USBD_CtrlRx(), and USBD_IntrRx(),

call USBD_EP_Rx(), where USBD_DrvEP_RxStart() is invoked.

On DMA-based controllers, this device driver API is responsible for queuing a

receive transfer. The queued receive transfer does not need to satisfy the whole

requested transfer length at once. If multiple transfers are queued only the last

queued transfer must be signaled to the USB device stack. This is required

since the USB device stack iterates through the receive process until all

requested data or a short packet has been received.

On FIFO-based controllers, this device driver API is responsible for enabling

data to be received into the endpoint FIFO, including any related ISR’s.

F6-1(2) While data is being received, the device synchronous receive operation waits

on the device receive signal.

F6-1(3) The USB device controller triggers an interrupt request when it is finished

receiving the data. This invokes the USB device driver interrupt service routine

(ISR) handler, directly or indirectly, depending on the architecture.

F6-1(4) Inside the USB device driver ISR handler, the type of interrupt request is

determined to be a receive interrupt. USBD_EP_RxCmpl() is called to unblock

the device receive signal.

F6-1(5) The device receive operation reaches the USBD_EP_Rx(), which internally calls

USBD_DrvEP_Rx().

On DMA-based controllers, this device driver API is responsible for de-queuing

the completed receive transfer and returning the amount of data received. In

case the DMA-based controller requires the buffered data to be placed in a

dedicated USB memory region, the buffered data must be transferred into the

application buffer area.

On FIFO-based controllers, this device driver API is responsible for reading the

amount of data received by copying it into the application buffer area and

returning the data back to its caller.

F6-1(6) The device receive operation iterates through the process until the amount of

data received matches the amount requested, or a short packet is received.

91

USB Device Driver Functional Model

66-8-2 DEVICE ASYNCHRONOUS RECEIVE

The device asynchronous receive operation is initiated by the calls: USBD_BulkRxAsync()

and USBD_IntrRxAsync(). Figure 6-2 shows an overview of the device asynchronous

receive operation.

Figure 6-2 Device Asynchronous Receive Diagram

F6-2(1) The upper layer API’s, USBD_BulkRxAsync() and USBD_IntrRxAsync(), call

USBD_EP_Rx() passing a receive complete callback function as an argument. In

USBD_EP_Rx(), the USBD_DrvEP_RxStart() function is invoked in the same

way as for the synchronous operation.

On DMA-based controllers, this device driver API is responsible for queuing a

receive transfer. The queued receive transfer does not need to satisfy the whole

requested transfer length at once. If multiple transfers are queued only the last

queued transfer must be signaled to the USB device stack. This is required

since the USB device stack iterates through the receive process until all

requested data or a short packet has been received.

On FIFO-based controllers, this device driver API is responsible for enabling

data to be received into the endpoint FIFO, including any related ISRs.

The call to USBD_EP_Rx() returns immediately to the application (without

blocking) while data is being received.

��������	
��

������
����	
���
���

���

�����������
����

���

���������	�������
��

��������	
������

���

���
��
�� �!"

������
����	
��

������
����	
���
���

	��������������������#��"

�	�

���

���

���$����

92

Chapter 6

6 F6-2(2) The USB device controller triggers an interrupt request when it is finished

receiving the data. This invokes the USB device driver interrupt service routine

(ISR) handler, directly or indirectly, depending on the architecture.

F6-2(3) Inside the USB device driver ISR handler, the type of interrupt request is

determined to be a receive interrupt. USBD_EP_RxCmpl() is called to queue the

endpoint that had its transfer completed.

F6-2(4) The core task de-queues the endpoint that completed a transfer and invokes

USBD_EP_Process(), which internally calls USBD_DrvEP_Rx().

On DMA-based controllers, this device driver API is responsible for de-queuing

the completed receive transfer and returning the amount of data received. In

case the DMA-based controller requires the buffered data to be placed in a

dedicated USB memory region, the buffered data must be transferred into the

application buffer area.

On FIFO-based controllers, this device driver API is responsible for reading the

amount of data received by copying it into the application buffer area and

returning the data back to its caller.

F6-2(5) If the overall amount of data received is less than the amount requested and

the current transfer is not a short packet, USBD_DrvEP_RxStart() is called to

request the remaining data.

On DMA-based controllers, this device driver API is responsible for queuing a

receive transfer. The queued receive transfer does not need to satisfy the whole

requested transfer length at once. If multiple transfers are queued only the last

queued transfer must be signaled to the USB device stack. This is required

since the USB device stack iterates through the receive process until all

requested data or a short packet has been received.

On FIFO-based controllers, this device driver API is responsible for enabling

data to be received into the endpoint FIFO, including any related ISRs.

F6-2(6) The receive operation finishes when the amount of data received matches the

amount requested, or a short packet is received. The receive complete callback

is invoked to notify the application about the completion of the process.

93

USB Device Driver Functional Model

66-8-3 DEVICE SYNCHRONOUS TRANSMIT

The device synchronous transmit operation is initiated by the calls: USBD_BulkTx(),

USBD_CtrlTx(), and USBD_IntrTx(). Figure 6-3 shows an overview of the device

synchronous transmit operation.

Figure 6-3 Device Synchronous Transmit Diagram

F6-3(1) The upper layer API’s, USBD_BulkTx(), USBD_CtrlTx(), and USBD_IntrTx(),

call USBD_EP_Tx(), where USBD_DrvEP_Tx() is invoked.

On DMA-based controllers, this device driver API is responsible for preparing

the transmit transfer/descriptor and returning the amount of data to transmit. In

case the DMA-based controller requires the buffered data to be placed in a

dedicated USB memory region, the contents of the application buffer area must

be transferred into the dedicated memory region.

On FIFO-based controllers, this device driver API is responsible for writing the

amount of data to transfer into the FIFO and returning the amount of data to

transmit.

��������
��

������
����
��

�������
�
������

���

���

���

�����������
����

���

���������	�������
��

��������
������

�	�

���

������
����
���
���

���

94

Chapter 6

6 F6-3(2) The USBD_DrvEP_TxStart() API starts the transmit process.

On DMA-based controllers, this device driver API is responsible for queuing the

DMA transmit descriptor and enabling DMA transmit complete ISR’s.

On FIFO-based controllers, this device driver API is responsible for enabling

transmit complete ISR’s.

F6-3(3) While data is being transmitted, the device synchronous transmit operation

waits on the device transmit signal.

F6-3(4) The USB device controller triggers an interrupt request when it is finished

transmitting the data. This invokes the USB device driver interrupt service

routine (ISR) handler, directly or indirectly, depending on the architecture.

F6-3(5) Inside the USB device driver ISR handler, the type of interrupt request is

determined as a transmit interrupt. USBD_EP_TxCmpl() is called to unblock the

device transmit signal.

On DMA-based controllers, the transmit transfer is de-queued from a list of

completed transfers.

F6-3(6) The device transmit operation iterates through the process until the amount of

data transmitted matches the requested amount.

95

USB Device Driver Functional Model

66-8-4 DEVICE ASYNCHRONOUS TRANSMIT

The device asynchronous transmit operation is initiated by the calls: USBD_BulkTxAsync()

and USBD_IntrTxAsync(). Figure 6-4 shows an overview of the device asynchronous

transmit operation

.

Figure 6-4 Device Asynchronous Transmit Diagram

F6-4(1) The upper layer API’s, USBD_BulkTxAsync() and USBD_IntrTxAsync(), call

USBD_EP_Tx() passing a transmit complete callback function as an argument.

In USBD_EP_Tx(), the USBD_DrvEP_Tx() function is invoked in the same way

as for the synchronous operation.

On DMA-based controllers, this device driver API is responsible for preparing

the transmit transfer/descriptor and returning the amount of data to transmit. In

case the DMA-based controller requires the buffered data to be placed in a

dedicated USB memory region, the contents of the application buffer area must

be transferred into the dedicated memory region.

On FIFO-based controllers, this device driver API is responsible for writing the

amount of data to transfer into the FIFO and returning the amount of data to

transmit.

��������
��

������
����
��

���

�����������
����

���

���������	�������
��

��������
������

���

�	�
��
�� �!"

������
����
��

��!�����������������#��" ����
�

���

���$����

���

������
����
���
���

������
����
���
���

96

Chapter 6

6 F6-4(2) The USBD_DrvEP_TxStart() API starts the transmit process.

On DMA-based controllers, this device driver API is responsible for queuing the

DMA transmit descriptor and enabling DMA transmit complete ISR’s.

On FIFO-based controllers, this device driver API is responsible for enabling

transmit complete ISR’s.

The call to USBD_EP_Tx() returns immediately to the application (without

blocking) while data is being transmitted.

F6-4(3) The USB device controller triggers an interrupt request when it is finished

transmitting the data. This invokes the USB device driver interrupt service

routine (ISR) handler, directly or indirectly, depending on the architecture.

F6-4(4) Inside the USB device driver ISR handler, the type of interrupt request is

determined as a transmit interrupt. USBD_EP_TxCmpl() is called to queue the

endpoint that had its transfer completed.

On DMA-based controllers, the transmit transfer is de-queued from the list of

completed transfers.

F6-4(5) The core task de-queues the endpoint that completed a transfer.

F6-4(6) If the overall amount of data transmitted is less than the amount requested,

USBD_DrvEP_Tx() and USBD_DrvEP_TxStart() are called to transmit the

remaining amount of data.

F6-4(7) The device transmit operation finishes when the amount of data transmitted

matches the amount requested. The transmit complete callback is invoked to

notify the application about the completion of the process.

97

USB Device Driver Functional Model

66-8-5 DEVICE SET ADDRESS

The device set address operation is performed by the setup transfer handler when a

SET_ADDRESS request is received. Figure 6-5 shows an overview of the device set address

operation.

Figure 6-5 Device Set Address Diagram

F6-5(1) Once the arguments of the setup request are validated, USBD_DrvAddrSet() is

called to inform the device driver layer of the new address. For controllers that

have hardware assistance in setting the device address after the status stage,

this device driver API is used to configure the device address and enable the

transition after the status stage. For controllers that activate the device address

as soon as configured, this device driver API should not perform any action.

F6-5(2) The setup request status stage is transmitted to acknowledge the address

change.

F6-5(3) After the status stage, the USBD_DrvAddrEn() is called to inform the device

driver layer to enable the new device address. For controllers that activate the

device address as soon as configured, this device driver API is responsible for

setting and enabling the new device address. For controllers that have

hardware assistance in setting the device address after the status stage, this

device driver API should not perform any action, since USBD_DrvAddrSet()

has already taken care of setting the new device.

������
��!%�
&&����'��
�!!

������
�'��
�����

���

������
��!%�
&&
������!

������
�'��
����

���

���

98

Chapter 6

6

99

Chapter

7
USB Classes

The USB classes available for the μC/USB-Device stack have some common characteristics.

This chapter explains these characteristics and the interactions with the core layer allowing

you to better understand the operation of classes.

7-1 CLASS INSTANCE CONCEPT

The USB classes available with the μC/USB-Device stack implement the concept of class

instances. A class instance represents one function within a device. The function can be

described by one interface or by a group of interfaces and belongs to a certain class.

Each USB class implementation has some configuration and functions in common based on

the concept of class instance. The common configuration and functions are presented in

Table 7-1. In the column heading 'Constants or Function', XXXX below can be replaced by

the name of the class: CDC, HID, MSC, PHDC or VENDOR (Vendor for function names). .

Table 7-1 Constants and Functions Related to the Concept of Multiple Class Instances

In terms of code implementation, the class will declare a local global table that contains a

class control structure. The size of the table is determined by the constant

USBD_XXXX_CFG_MAX_NBR_DEV. This class control structure is associated with one class

Constant or function Description

USBD_XXXX_CFG_MAX_NBR_DEV Configures the maximum number of class instances.

USBD_XXXX_CFG_MAX_NBR_CFG Configures the maximum number of configurations per device. During the class

initialization, a created class instance will be added to one or more

configurations.

USBD_XXXX_Add() Creates a new class instance.

USBD_XXXX_CfgAdd() Adds an existing class instance to the specified device configuration.

100

Chapter 7

7

instance and will contain certain information to manage the class instance. See section 7-2

“Class Instance Structures” on page 108 for more details about this class control structure.

The following illustrations present several case scenarios. Each illustration is followed by a

code listing showing the code corresponding to the case scenario. Figure 7-1 represents a

typical USB device. The device is Full-Speed (FS) and contains one single configuration.

The function of the device is described by one interface composed of a pair of endpoints

for the data communication. One class instance is created and it will allow you to manage

the entire interface with its associated endpoint.

Figure 7-1 Multiple Class Instances - FS Device (1 Configuration with 1 Interface)

The code corresponding to Figure 7-1 is shown in Listing 7-1.

(��������

��
�������
�����

���%���
������)

����
%����)

��%���������
%���
'���
�����)

����������* ���������+�

101

Class Instance Concept

7

Listing 7-1 Multiple Class Instances - FS Device (1 Configuration with 1 Interface) - Code

L7-1(1) Initialize the class. Any internal variables, structures, and class Real-Time

Operating System (RTOS) port will be initialized.

L7-1(2) Create the class instance, class_0. The function USBD_XXXX_Add() allocates a

class control structure associated to class_0. Depending on the class, besides

the parameter for an error code, USBD_XXXX_Add() may have additional

parameters representing class-specific information stored in the class control

structure.

L7-1(3) Add the class instance, class_0, to the specified configuration number, cfg_0.

USBD_XXXX_CfgAdd() will create the interface 0 and its associated endpoints

IN and OUT. Hence, the class instance encompasses the interface 0 and its

endpoints. Any communication done on the interface 0 will use the class

instance number, class_0.

Figure 7-2 represents an example of a high-speed capable device. The device can support

High-Speed (HS) and Full-Speed (FS). The device will contain two configurations: one valid

if the device operates at full-speed and another if it operates at high-speed. In each

configuration, interface 0 is the same but its associated endpoints are different. The

difference will be the endpoint maximum packet size which varies according to the speed.

USBD_ERR err;

CPU_INT08U class_0;

USBD_XXXX_Init(&err); (1)

if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

}

class_0 = USBD_XXXX_Add(&err); (2)

if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

}

USBD_XXXX_CfgAdd(class_0, dev_nbr, cfg_0, &err); (3)

if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

}

102

Chapter 7

7

If a high-speed host enumerates this device, by default, the device will work in high-speed

mode and thus the high-speed configuration will be active. The host can learn about the

full-speed capabilities by getting a Device_Qualifier descriptor followed by an

Other_Speed_Configuration descriptor. These two descriptors describe a configuration of a

high-speed capable device if it were operating at its other possible speed (refer to Universal

Serial Bus 2.0 Specification revision 2.0, section 9.6, for more details about these

descriptors). In our example, the host may want to reset and enumerate the device again in

full-speed mode. In this case, the full-speed configuration is active. Whatever the active

configuration, the same class instance is used. Indeed, the same class instance can be added

to different configurations. A class instance cannot be added several times to the same

configuration.

Figure 7-2 Multiple Class Instances - HS/FS Device (2 Configurations and 1 Single Interface)

The code corresponding to Figure 7-2 is shown in Listing 7-2.

��,(��������

��
�������
�����

���%���
������)
�%���-!�����

����
%����)

��%���������
%���
'���
�����)

����������* ���������+�

��
�������
�����

���%���
������)
�.��.-!�����

����
%����)

��%���������
%���
'���
�����)

����������* ���������+�

103

Class Instance Concept

7

Listing 7-2 Multiple Class Instances - HS/FS Device (2 Configurations and 1 Single Interface) - Code

L7-2(1) Initialize the class. Any internal variables, structures, and class RTOS port will

be initialized.

L7-2(2) Create the class instance, class_0. The function USBD_XXXX_Add() allocates a

class control structure associated to class_0. Depending on the class, besides

the parameter for an error code, USBD_XXXX_Add() may have additional

parameters representing class-specific information stored in the class control

structure.

L7-2(3) Add the class instance, class_0, to the full-speed configuration, cfg_0_fs.

USBD_XXXX_CfgAdd() will create the interface 0 and its associated endpoints

IN and OUT. If the full-speed configuration is active, any communication done

on the interface 0 will use the class instance number, class_0.

L7-2(4) Add the class instance, class_0, to the high-speed configuration, cfg_0_hs.

USBD_ERR err;

CPU_INT08U class_0;

USBD_XXXX_Init(&err); (1)

if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

}

class_0 = USBD_XXXX_Add(&err); (2)

if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

}

USBD_XXXX_CfgAdd(class_0, dev_nbr, cfg_0_fs, &err); (3)

if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

}

USBD_XXXX_CfgAdd(class_0, dev_nbr, cfg_0_hs, &err); (4)

if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

}

104

Chapter 7

7

In the case of the high-speed capable device presented in Figure 7-2, in order to enable the

use of Device_Qualifier and Other_Speed_Configuration descriptors, the function

USBD_CfgOtherSpeed() should be called during the μC/USB-Device initialization.

Listing 2-5 presents the function App_USBD_Init() defined in app_usbd.c. This function

shows an example of the μC/USB-Device initialization sequence. USBD_CfgOtherSpeed()

should be called after the creation of a high-speed and a full-speed configurations with

USBD_CfgAdd(). Listing 7-3 below shows the use USBD_CfgOtherSpeed() based on

Listing 2-5. Error handling is omitted for clarity.

Listing 7-3 Use of USBD_CfgOtherSpeed()

CCPU_BOOLEAN App_USBD_Init (void)

{

 CPU_INT08U dev_nbr;

 CPU_INT08U cfg_0_fs;

 CPU_INT08U cfg_0_hs;

 USBD_ERR err;

 ... (1)

 if (USBD_DrvCfg_<controller>.Spd == USBD_DEV_SPD_HIGH) {

 cfg_0_hs = USBD_CfgAdd(dev_nbr, (2)

 USBD_DEV_ATTRIB_SELF_POWERED,

 100u,

 USBD_DEV_SPD_HIGH,

 "HS configuration",

 &err);

 }

 cfg_0_fs = USBD_CfgAdd(dev_nbr, (3)

 USBD_DEV_ATTRIB_SELF_POWERED,

 100u,

 USBD_DEV_SPD_FULL,

 "FS configuration",

 &err);

 USBD_CfgOtherSpeed(dev_nbr, (4)

 cfg_0_hs,

 cfg_0_fs,

 &err);

 return (DEF_OK);

}

105

Class Instance Concept

7

L7-3(1) Refer to Listing 2-5 for the beginning of the initialization.

L7-3(2) Create the high-speed configuration, cfg_0_hs, to your high-speed capable

device.

L7-3(3) Create the full-speed configuration, cfg_0_fs, to your high-speed capable

device.

L7-3(4) Associate the high-speed configuration cfg_0_hs with its other-speed

counterpart, cfg_0_fs.

Figure 7-3 represents a more complex example. A full-speed device is composed of two

configurations. The device has two functions which belong to the same class. Each function

is described by two interfaces. Each interface has a pair of bidirectional endpoints. In this

example, two class instances are created. Each class instance is associated with a group of

interfaces as opposed to Figure 7-1 and Figure 7-2 where the class instance was associated

to a single interface.

106

Chapter 7

7

Figure 7-3 Multiple Class Instances - FS Device (2 Configurations and Multiple Interfaces)

The code corresponding to Figure 7-3 is shown in Listing 7-4. The error handling is omitted

for clarity.

(��������

��
�������
�����
'���
�����/

'���
�����0

���%���
������)

����
%����) ��%���������
%���
'���
�����)

���������
�*

���������
+�

����
%����0 ��%���������
%���
'���
�����)

���������
�*

���������
+�

��
�������
�����
'���
�����/

'���
�����0

����
%����/ ��%���������
%���
'���
�����)

���������
�*

���������
+�

����
%����1 ��%���������
%���
'���
�����)

���������
�*

���������
+�

��
�������
�����
'���
�����/

'���
�����0

���%���
������0

����
%����) ��%���������
%���
'���
�����)

���������
�*

���������
+�

����
%����0 ��%���������
%���
'���
�����)

���������
�*

���������
+�

��
�������
�����
'���
�����/

'���
�����0

����
%����/ ��%���������
%���
'���
�����)

���������
�*

���������
+�

����
%����1 ��%���������
%���
'���
�����)

���������
�*

���������
+�

107

Class Instance Concept

7

Listing 7-4 Multiple Class Instances - FS Device (2 Configurations and Multiple Interfaces) - Code

L7-4(1) Initialize the class. Any internal variables, structures, and class RTOS port will

be initialized.

L7-4(2) Create the class instance, class_0. The function USBD_XXXX_Add() allocates a

class control structure associated to class_0.

L7-4(3) Create the class instance, class_1. The function USBD_XXXX_Add() allocates

another class control structure associated to class_1.

L7-4(4) Add the class instance, class_0, to the configuration, cfg_0.

USBD_XXXX_CfgAdd() will create the interface 0, interface 1, alternate

interfaces, and the associated endpoints IN and OUT. The class instance

number, class_0, will be used for any data communication on interface 0 or

interface 1.

L7-4(5) Add the class instance, class_1, to the configuration, cfg_0.

USBD_XXXX_CfgAdd() will create the interface 2, interface 3 and their

associated endpoints IN and OUT. The class instance number, class_1, will be

used for any data communication on interface 2 or interface 3.

L7-4(6) Add the same class instances, class_0 and class_1, to the other

configuration, cfg_1.

USBD_ERR err;

CPU_INT08U class_0;

CPU_INT08U class_1;

USBD_XXXX_Init(&err); (1)

class_0 = USBD_XXXX_Add(&err); (2)

class_1 = USBD_XXXX_Add(&err); (3)

USBD_XXXX_CfgAdd(class_0, dev_nbr, cfg_0, &err); (4)

USBD_XXXX_CfgAdd(class_1, dev_nbr, cfg_0, &err); (5)

USBD_XXXX_CfgAdd(class_0, dev_nbr, cfg_1, &err); (6)

USBD_XXXX_CfgAdd(class_1, dev_nbr, cfg_1, &err); (6)

108

Chapter 7

7

You can refer to section 5-4 “Configuration Examples” on page 71 for some configuration

examples showing multiple class instances applied to composite devices. Composite

devices uses at least two different classes provided by the μC/USB-Device stack. The section

5-4-2 “Composite High-Speed USB device” on page 73 gives a concrete example based on

Figure 7-2. See section 5-4-3 “Complex Composite High-Speed USB device” on page 74 for

a hybrid example that corresponds to Figure 7-2 and Figure 7-3.

7-2 CLASS INSTANCE STRUCTURES

When a class instance is created, a control structure is allocated and associated to a specific

class instance. The class uses this control structure for its internal operations. All the

Micriμm USB classes define a class control structure data type. Listing 7-5 shows the

structure declaration with the common fields.

Listing 7-5 Class Instance Control Structure

L7-5(1) The device number to which the class instance is associated with.

L7-5(2) The class instance number.

L7-5(3) The class instance state.

L7-5(4) A pointer to a class instance communication structure. This structure holds

information regarding the interface’s endpoints used for data communication.

Listing 7-6 presents the communication structure.

L7-5(5) Class-specific fields.

struct usbd_xxxx_ctrl {

 CPU_INT08U DevNbr; (1)

 CPU_INT08U ClassNbr; (2)

 USBD_XXXX_STATE State; (3)

 USBD_XXXX_COMM *CommPtr; (4)

 ... (5)

};

109

Class Instance Structures

7

During the communication phase, the class communication structure is used by the class for

data transfers on the endpoints. It allows you to route the transfer to the proper endpoint

within the interface. There will be one class communication structure per configuration to

which the class instance has been added. Listing 7-6 presents this structure.

Listing 7-6 Class Instance Communication Structure

L7-6(1) A pointer to the class instance control structure to which the communication

relates to.

L7-6(2) Class-specific fields. In general, this structure stores mainly endpoint addresses

related to the class. Depending on the class, the structure may store other types

of information. For instance, the Mass Storage Class stores information about

the Command Block and Status Wrappers.

Micriμm’s USB classes define a class state for each class instance created. The class state

values are implemented in the form of an enumeration:

Figure 7-4 defines a class state machine which applies to all the Micriμm classes. Three class

states are used.

struct usbd_xxxx_comm {

 USBD_XXXX_CTRL *CtrlPtr; (1)

 CPU_INT08U ClassEpInAddr; (2)

 CPU_INT08U ClassEpOutAdd2; (2)

 ... (2)

};

typedef enum usbd_xxxx_state {

 USBD_XXXX_STATE_NONE = 0,

 USBD_XXXX_STATE_INIT,

 USBD_XXXX_STATE_CFG

} USBD_XXXX_STATE;

110

Chapter 7

7

Figure 7-4 Class State Machine

F7-4(1) A class instance has been added to a configuration, the class instance state

transitions to the ‘Init’ state. No data communication on the class endpoint(s)

can occur yet.

F7-4(2) The host has sent the SET_CONFIGURATION request to activate a certain

configuration. The Core layer calls a class callback informing about the

completion of the standard enumeration. The class instance state transitions to

the ‘Cfg’ state. This state indicates that the device has transitioned to the

‘Configured’ state defined by the Universal Serial Bus Specification revision 2.0.

The data communication may begin. Some classes such as the MSC class may

require that the host sends some class-specific requests before the

communication on the endpoints really starts.

F7-4(3) The Core layer calls another class callback informing that the host has sent a

SET_CONFIGURATION request with a new configuration number or with the

value 0 indicating a configuration reset, or that the device has been physically

disconnected from the host. In all these cases, the current active configuration

becomes inactive. The class instance state transitions to the ‘Init’ state. Any

ongoing transfers on the endpoints managed by the class instance have been

aborted by the Core layer. No more communication is possible until the host

sends a new SET_CONFIGURATION request with a non-null value or until the

device is plugged again to the host.

����

����

���

�0�

�/��1�

111

Class and Core Layers Interaction through Callbacks

7

7-3 CLASS AND CORE LAYERS INTERACTION THROUGH
CALLBACKS

Upon reception of standard, class-specific and/or vendor requests, the Core layer can notify

the Class layer about the event associated with the request via the use of class callbacks.

Each Micriμm class must define a class callbacks structure of type USBD_CLASS_DRV that

contains function pointers. Each callback allows the class to perform a specific action if it is

required. Listing 7-7 shows a generic example of class callback structure. In the listing, XXXX

could be replaced with CDC, HID, MSC, PHDC or Vendor.

Listing 7-7 Class Callback Structure

L7-7(1) Notify the class that a configuration has been activated.

L7-7(2) Notify the class that a configuration has been deactivated.

L7-7(3) Notify the class that an alternate interface setting has been updated.

L7-7(4) Notify the class that an endpoint state has been updated by the host. The state

is generally stalled or not stalled.

L7-7(5) Ask the class to build the interface class-specific descriptors.

L7-7(6) Ask the class for the total size of interface class-specific descriptors.

L7-7(7) Ask the class to build endpoint class-specific descriptors.

static USBD_CLASS_DRV USBD_XXXX_Drv = {

 USBD_XXXX_Conn, (1)

 USBD_XXXX_Disconn, (2)

 USBD_XXXX_UpdateAltSetting, (3)

 USBD_XXXX_UpdateEPState, (4)

 USBD_XXXX_IFDesc, (5)

 USBD_XXXX_IFDescGetSize, (6)

 USBD_XXXX_EPDesc, (7)

 USBD_XXXX_EPDescGetSize, (8)

 USBD_XXXX_IFReq, (9)

 USBD_XXXX_ClassReq, (10)

 USBD_XXXX_VendorReq (11)

};

112

Chapter 7

7

L7-7(8) Ask the class for the total size of endpoint class-specific descriptors.

L7-7(9) Ask the class to process a standard request whose recipient is an interface.

L7-7(10) Ask the class to process a class-specific request.

L7-7(11) Ask the class to process a vendor-specific request.

A class is not required to provide all the callbacks. If a class for instance does not define

alternate interface settings and does not process any vendor requests, the corresponding

function pointer will be a null-pointer. Listing 7-8 presents the callback structure for that case.

Listing 7-8 Class Callback Structure with Null Function Pointers

If a class is composed of one interface then one class callback structure is required. If a

class is composed of several interfaces then the class may define several class callback

structures. In that case, a callback structure may be linked to one or several interfaces. For

instance, the Communication Device Class (CDC) is composed of one Communication

Interface and one or more Data Interfaces. The Communication interface will be linked to a

callback structure. The Data interfaces may be linked to another callback structure common

to all Data interfaces.

The class callbacks are called by the core task when receiving a request from the host sent

over control endpoints (refer to section 4-2 “Task Model” on page 58 for more details on the

core task). Table 7-2 indicates which callbacks are mandatory and optional and upon

reception of which request the core task calls a specific callback.

static USBD_CLASS_DRV USBD_XXXX_Drv = {

 USBD_XXXX_Conn,

 USBD_XXXX_Disconn,

 0,

 USBD_XXXX_UpdateEPState,

 USBD_XXXX_IFDesc,

 USBD_XXXX_IFDescGetSize,

 USBD_XXXX_EPDesc,

 USBD_XXXX_EPDescGetSize,

 USBD_XXXX_IFReq,

 USBD_XXXX_ClassReq,

 0

};

113

Class and Core Layers Interaction through Callbacks

7

Table 7-2 Class Callbacks and Requests Mapping

Request type Callback Request Mandatory? / Note

Standard Conn() SET_CONFIGURATION Yes / Host selects a non-null configuration

number.

Standard Disconn() SET_CONFIGURATION Yes / Host resets the current configuration or

device physically detached from host.

Standard UpdateAltSetting() SET_INTERFACE No / Callback skipped if no alternate

settings are defined for one or more

interfaces.

Standard UpdateEPState() SET_FEATURE

CLEAR_FEATURE

No / Callback skipped if the state of the

endpoint is not used.

Standard IFDesc() GET_DESCRIPTOR No / Callback skipped if no class-specific

descriptors for one or more interfaces.

Standard IFDescGetSize() GET_DESCRIPTOR No / Callback skipped if no class-specific

descriptors for one or more interfaces.

Standard EPDesc() GET_DESCRIPTOR No / Callback skipped if no class-specific

descriptors for one or more endpoints.

Standard EPDescGetSize() GET_DESCRIPTOR No / Callback skipped if no class-specific

descriptors for one or more endpoints.

Standard IFReq() GET_DESCRIPTOR No / Callback skipped if no standard

descriptors provided by a class.

Class ClassReq() - No / Callback skipped if no class-specific

requests defined by the class specification.

Vendor VendorReq() - No / Callback skipped if no vendor requests.

114

Chapter 7

7

115

Chapter

8
Communications Device Class

This chapter describes the Communications Device Class (CDC) class and the associated

CDC subclass supported by μC/USB-Device. μC/USB-Device currently supports the Abstract

Control Model (ACM) subclass, which is especially used for serial emulation.

The CDC and the associated subclass implementation complies with the following

specifications:

■ Universal Serial Bus, Class Definitions for Communications Devices, Revision 1.2,

November 3 2010.

■ Universal Serial Bus, Communications, Subclass for PSTN Devices, revision 1.2,

February 9, 2007.

CDC includes various telecommunication and networking devices. Telecommunication

devices encompass analog modems, analog and digital telephones, ISDN terminal adapters,

etc. Networking devices contain, for example, ADSL and cable modems, Ethernet adapters

and hubs. CDC defines a framework to encapsulate existing communication services

standards, such as V.250 (for modems over telephone network) and Ethernet (for local area

network devices), using a USB link. A communication device is in charge of device

management, call management when needed and data transmission. CDC defines seven

major groups of devices. Each group belongs to a model of communication which may

include several subclasses. Each group of devices has its own specification besides the CDC

base class. The seven groups are:

■ Public Switched Telephone Network (PSTN), devices including voiceband modems,

telephones and serial emulation devices.

■ Integrated Services Digital Network (ISDN) devices, including terminal adaptors and

telephones.

116

Chapter 8

8

■ Ethernet Control Model (ECM) devices, including devices supporting the IEEE 802

family (for instance cable and ADSL modems, WiFi adaptors).

■ Asynchronous Transfer Mode (ATM) devices, including ADLS modems and other

devices connected to ATM networks (workstations, routers, LAN switches).

■ Wireless Mobile Communications (WMC) devices, including multi-function

communications handset devices used to manage voice and data communications.

■ Ethernet Emulation Model (EEM) devices which exchange Ethernet-framed data.

■ Network Control Model (NCM) devices, including high-speed network devices (High

Speed Packet Access modems, Line Terminal Equipment)

8-1 OVERVIEW

A CDC device is composed of several interfaces to implement a certain function, that is

communication capability. It is formed by the following interfaces:

■ Communications Class Interface (CCI)

■ Data Class Interface (DCI)

A CCI is responsible for the device management and optionally the call management. The

device management enables the general configuration and control of the device and the

notification of events to the host. The call management enables calls establishment and

termination. Call management might be multiplexed through a DCI. A CCI is mandatory for

all CDC devices. It identifies the CDC function by specifying the communication model

supported by the CDC device. The interface(s) following the CCI can be any defined USB

class interface, such as Audio or a vendor-specific interface. The vendor-specific interface is

represented specifically by a DCI.

A DCI is responsible for data transmission. The data transmitted and/or received do not follow

a specific format. Data could be raw data from a communication line, data following a

proprietary format, etc. All the DCIs following the CCI can be seen as subordinate interfaces.

117

Overview

8

A CDC device must have at least one CCI and zero or more DCIs. One CCI and any

subordinate DCI together provide a feature to the host. This capability is also referred to as

a function. In a CDC composite device, you could have several functions. Hence, the device

would be composed of several sets of CCI and DCI(s) as shown in Figure 8-1.

Figure 8-1 CDC Composite Device

A CDC device is likely to use the following combination of endpoints:

■ A pair of control IN and OUT endpoints called the default endpoint.

■ An optional bulk or interrupt IN endpoint.

■ A pair of bulk or isochronous IN and OUT endpoints.

Table 8-1 indicates the usage of the different endpoints and by which interface of the CDC

they are used:

Table 8-1 CDC Endpoint Usage

Endpoint Direction Interface Usage

Control IN Device-to-host CCI Standard requests for enumeration, class-specific

requests, device management and optionally call

management.

Control OUT Host-to-device CCI Standard requests for enumeration, class-specific

requests, device management and optionally call

management.

Interrupt or bulk IN Device-to-host CCI Events notification, such as ring detect, serial line

status, network status.

Bulk or isochronous IN Device-to-host DCI Raw or formatted data communication.

Bulk or isochronous OUT Host-to-device DCI Raw or formatted data communication.

����������

(��������2/

���

���

���

(��������20

���

���

(��������21

���

'����

118

Chapter 8

8

Most communication devices use an interrupt endpoint to notify the host of events.

Isochronous endpoints should not be used for data transmission when a proprietary

protocol relies on data retransmission in case of USB protocol errors. Isochronous

communication can inherently loose data since it has no retry mechanisms.

The seven major models of communication encompass several subclasses. A subclass

describes the way the device should use the CCI to handle the device management and call

management. Table 8-2 shows all the possible subclasses and the communication model

they belong to.

Table 8-2 CDC Subclasses

Subclass
Communication

model
Example of devices using this subclass

Direct Line Control Model PSTN Modem devices directly controlled by the USB host

Abstract Control Model PSTN Serial emulation devices, modem devices controlled through

a serial command set

Telephone Control Model PSTN Voice telephony devices

Multi-Channel Control Model ISDN Basic rate terminal adaptors, primary rate terminal adaptors,

telephones

CAPI Control Model ISDN Basic rate terminal adaptors, primary rate terminal adaptors,

telephones

Ethernet Networking Control

Model

ECM DOC-SIS cable modems, ADSL modems that support

PPPoE emulation, Wi-Fi adaptors (IEEE 802.11-family), IEEE

802.3 adaptors

ATM Networking Control

Model

ATM ADSL modems

Wireless Handset Control

Model

WMC Mobile terminal equipment connecting to wireless devices

Device Management WMC Mobile terminal equipment connecting to wireless devices

Mobile Direct Line Model WMC Mobile terminal equipment connecting to wireless devices

OBEX WMC Mobile terminal equipment connecting to wireless devices

Ethernet Emulation Model EEM Devices using Ethernet frames as the next layer of transport.

Not intended for routing and Internet connectivity devices

Network Control Model NCM IEEE 802.3 adaptors carrying high-speed data bandwidth on

network

119

Architecture

8

8-2 ARCHITECTURE

Figure 8-2 shows the general architecture between the host and the device using CDC

available from Micriμm.

Figure 8-2 General Architecture between a Host and Micriμm’s CDC

The host operating system (OS) enumerates the device using the control endpoints. Once the

enumeration phase is done, the host can configure the device by sending class-specific requests

to the Communications Class Interface (CCI) via the control endpoints. The class-specific

requests vary according to the CDC subclasses. Micriμm’s CDC base class offers the possibility to

allocate an interrupt endpoint for event notification, depending on the subclass needs.

Following enumeration and configuration of the device, the host can start the transmission/

reception of data to/from the device using the bulk endpoints belonging to the Data Class

Interface (DCI). Isochronous endpoints are not supported in the current implementation.

The CDC base class enables you to have several DCIs along with the CCI. The application

can communicate with the host using the communication API offered by the CDC subclass.

� ��� !�"
���#��$���%

'����������

������!��!���"

&'(�������

���

����
���)
�*�3�+�

����

���
�*4

���

���"�
�*

���"�
+�

���4���

���"�
�*

���"�
+�

����')*��
��

'����������

4���������

120

Chapter 8

8

8-3 CONFIGURATION

8-3-1 GENERAL CONFIGURATION

Some constants are available to customize the CDC base class. These constants are located

in the USB device configuration file, usbd_cfg.h. Table 8-3 shows their description.

Table 8-3 CDC Class Configuration Constants

Listing 8-1 shows the App_USBD_CDC_Init() function defined in the application template

file app_usbd_cdc.c. This function performs CDC and associated subclass initialization.

Listing 8-1 CDC Initialization Example

Constant Description

USBD_CDC_CFG_MAX_NBR_DEV Configures the maximum number of class instances. Each associated

subclass also defines a maximum number of subclass instances. The sum of

all the maximum numbers of subclass instances must not be greater than

USBD_CDC_CFG_MAX_NBR_DEV.

USBD_CDC_CFG_MAX_NBR_CFG Configures the maximum number of configurations in which CDC class is

used. Keep in mind that if you use a high-speed device, two configurations

will be built, one for full-speed and another for high-speed.

USBD_CDC_CFG_MAX_NBR_DATA_IF Configures the maximum number of Data interfaces. The minimum value is 1.

CPU_BOOLEAN App_USBD_CDC_Init (CPU_INT08U dev_nbr,

 CPU_INT08U cfg_hs,

 CPU_INT08U cfg_fs)

{

 USBD_ERR err;

 USBD_CDC_Init(&err); (1)

 ... (2)

}

121

ACM Subclass

8

L8-1(1) Initialize CDC internal structures and variables. This is the first function you

should call and you should do it only once.

L8-1(2) Call all the required functions to initialize the subclass(es). Refer to section 8-4-

2 “General Configuration” on page 123 for ACM subclass initialization.

8-4 ACM SUBCLASS

The ACM subclass is used by two types of communication devices:

■ Devices supporting AT commands (for instance, voiceband modems).

■ Serial emulation devices which are also called Virtual COM port devices.

Micriμm’s ACM subclass implementation complies with the following specification:

■ Universal Serial Bus, Communications, Subclass for PSTN Devices, revision 1.2,

February 9, 2007.

8-4-1 OVERVIEW

The general characteristics of the CDC base class in terms of Communications Class

Interface (CCI) and Data Class Interface (DCI) were presented in section 8-1 “Overview” on

page 116. In this section, a CCI of type ACM is considered. It will consist of a default

endpoint for the management element and an interrupt endpoint for the notification

element. A pair of bulk endpoints is used to carry unspecified data over the DCI.

Several subclass-specific requests exists for the ACM subclass. They allow you to control and

configure the device. The complete list and description of all ACM requests can be found in

the specification “Universal Serial Bus, Communications, Subclass for PSTN Devices, revision

1.2, February 9, 2007”, section 6.2.2. From this list, Micriμm’s ACM subclass supports:

122

Chapter 8

8

Table 8-4 ACM Requests Supported by Micriμm

Micriμm’s ACM subclass uses the interrupt IN endpoint to notify the host about the current

serial line state. The serial line state is a bitmap informing the host about:

■ Data discarded because of overrun

■ Parity error

■ Framing error

■ State of the ring signal detection

■ State of break detection mechanism

■ State of transmission carrier

■ State of receiver carrier detection

Subclass request Description

SetCommFeature The host sends this request to control the settings for a particular communications

feature. Not used for serial emulation.

GetCommFeature The host sends this request to get the current settings for a particular communications

feature. Not used for serial emulation.

ClearCommFeature The host sends this request to clear the settings for a particular communications

feature. Not used for serial emulation.

SetLineCoding The host sends this request to configure the ACM device settings in terms of baud rate,

number of stop bits, parity type and number of data bits. For a serial emulation, this

request is sent automatically by a serial terminal each time you configure the serial

settings for an open virtual COM port.

GetLineCoding The host sends this request to get the current ACM settings (baud rate, stop bits, parity,

data bits). For a serial emulation, serial terminals send this request automatically during

virtual COM port opening.

SetControlLineState The host sends this request to control the carrier for half duplex modems and indicate

that Data Terminal Equipment (DTE) is ready or not. In the serial emulation case, the DTE

is a serial terminal. For a serial emulation, certain serial terminals allow you to send this

request with the controls set.

SetBreak The host sends this request to generate an RS-232 style break. For a serial emulation,

certain serial terminals allow you to send this request.

123

ACM Subclass

8

8-4-2 GENERAL CONFIGURATION

Table 8-5 shows the constant available to customize the ACM serial emulation subclass. This

constant is located in the USB device configuration file, usbd_cfg.h.

Table 8-5 ACM Serial Emulation Subclass Configuration Constants

8-4-3 SUBCLASS INSTANCE CONFIGURATION

Before starting the communication phase, your application needs to initialize and configure

the class to suit its needs. Table 8-6 summarizes the initialization functions provided by the

ACM subclass. For more details about the functions’ parameters, refer to section C-2 “CDC

ACM Subclass Functions” on page 369.

Table 8-6 ACM Subclass Initialization API Summary

Constant Description

USBD_ACM_SERIAL_CFG_MAX_NBR_DEV Configures the maximum number of subclass instances. The constant

value cannot be greater than USBD_CDC_CFG_MAX_NBR_DEV. Unless you

plan on having multiple configurations or interfaces using different

class instances, this can be set to 1.

Function name Operation

USBD_ACM_SerialInit() Initializes ACM subclass internal structures and variables.

USBD_ACM_SerialAdd() Creates a new instance of ACM subclass.

USBD_ACM_SerialCfgAdd() Adds an existing ACM instance to the specified device configuration.

USBD_ACM_SerialLineCodingReg() Registers line coding notification callback.

USBD_ACM_SerialLineCtrlReg() Registers line control notification callback.

124

Chapter 8

8

You need to call these functions in the order shown below to successfully initialize the ACM

subclass:

1 Call USBD_ACM_SerialInit()

This function initializes all internal structures and variables that the ACM subclass needs.

You should call this function only once even if you use multiple class instances.

2 Call USBD_ACM_SerialAdd()

This function allocates an ACM subclass instance. Internally, this function allocates a

CDC class instance. It also allows you to specify the line state notification interval

expressed in milliseconds.

3 Call USBD_ACM_SerialLineCodingReg()

This function allows you to register a callback used by the ACM subclass to notify the

application about a change in the serial line coding settings (that is baud rate, number

of stop bits, parity and number of data bits).

4 Call USBD_ACM_SerialLineCtrlReg()

This function allows you to register a callback used by the ACM subclass to notify the

application about a change in the serial line state (that is carrier control and a flag

indicating that data equipment terminal is present or not).

5 Call USBD_ACM_SerialCfgAdd()

Finally, once the ACM subclass instance has been created, you must add it to a specific

configuration.

125

ACM Subclass

8

Listing 8-2 illustrates the use of the previous functions for initializing the ACM subclass. Note

that the error handling has been omitted for clarity.

Listing 8-2 CDC ACM Subclass Initialization Example

 (4)

static void App_USBD_CDC_SerialLineCtrl (CPU_INT08U subclass_nbr,

 CPU_INT08U events,

 CPU_INT08U events_chngd,

 void *p_arg);

 (5)

static CPU_BOOLEAN App_USBD_CDC_SerialLineCoding(CPU_INT08U subclass_nbr,

 USBD_ACM_SERIAL_LINE_CODING *p_line_coding,

 void *p_arg);

CPU_BOOLEAN App_USBD_CDC_Init (CPU_INT08U dev_nbr,

 CPU_INT08U cfg_hs,

 CPU_INT08U cfg_fs)

{

 USBD_ERR err;

 CPU_INT08U subclass_nbr;

 USBD_CDC_Init(&err); (1)

 USBD_ACM_SerialInit(&err); (2)

 subclass_nbr = USBD_ACM_SerialAdd(100u, &err); (3)

 (4)

 USBD_ACM_SerialLineCodingReg(subclass_nbr,

 App_USBD_CDC_SerialLineCoding,

 (void *)0,

 &err);

 (5)

 USBD_ACM_SerialLineCtrlReg(subclass_nbr,

 App_USBD_CDC_SerialLineCtrl,

 (void *)0,

 &err);

 if (cfg_hs != USBD_CFG_NBR_NONE) {

 USBD_ACM_SerialCfgAdd(subclass_nbr, dev_nbr, cfg_hs, &err); (6)

 }

 if (cfg_fs != USBD_CFG_NBR_NONE) {

 USBD_ACM_SerialCfgAdd(subclass_nbr, dev_nbr, cfg_fs, &err); (7)

 }

}

126

Chapter 8

8

L8-2(1) Initialize CDC internal structures and variables.

L8-2(2) Initialize CDC ACM internal structures and variables.

L8-2(3) Create a new CDC ACM subclass instance. In this example, the line state

notification interval is 100 ms. In the CCI, an interrupt IN endpoint is used to

asynchronously notify the host of the status of the different signals forming the

serial line. The line state notification interval corresponds to the interrupt

endpoint’s polling interval.

L8-2(4) Register the application callback, App_USBD_CDC_SerialLineCoding(). It is

called by the ACM subclass when the class-specific request SET_LINE_CODING

has been received by the device. This request allows the host to specify the

serial line settings (baud rate, stop bits, parity and data bits). Refer to “CDC

PSTN Subclass, revision 1.2”, section 6.3.10 for more details about this class-

specific request.

L8-2(5) Register the application callback, App_USBD_CDC_SerialLineCtrl(). It is

called by the ACM subclass when the class-specific request

SET_CONTROL_LINE_STATE has been received by the device. This request

generates RS-232/V.24 style control signals. Refer to “CDC PSTN Subclass,

revision 1.2”, section 6.3.12 for more details about this class-specific request.

L8-2(6) Check if the high-speed configuration is active and proceed to add the ACM

subclass instance to this configuration.

L8-2(7) Check if the full-speed configuration is active and proceed to add the ACM

subclass instance to this configuration.

Listing 8-2 also illustrates an example of multiple configurations. The functions

USBD_ACM_SerialAdd() and USBD_ACM_SerialCfgAdd() allow you to create multiple

configurations and multiple instances architecture. Refer to section 7-1 “Class Instance

Concept” on page 99 for more details about multiple class instances.

127

ACM Subclass

8

8-4-4 SUBCLASS NOTIFICATION AND MANAGEMENT

You have access to some functions provides in the ACM subclass which relate to the ACM

requests and the serial line state previously presented in section 8-4-1 “Overview” on

page 121. Table 8-7 shows these functions. Refer to section C-2 “CDC ACM Subclass

Functions” on page 369 for more details about the functions’ parameters.

Table 8-7 ACM Subclass Functions Related to the Subclass Requests and Notifications

Micriμm’s ACM subclass always uses the interrupt endpoint to notify the host of the serial

line state. You cannot disable the interrupt endpoint.

Function Relates to... Description

USBD_ACM_SerialLineCodingGet() SetLineCoding Application can get the current line coding

settings set either by the host with

SetLineCoding requests or by

USBD_ACM_SerialLineCodingSet()

USBD_ACM_SerialLineCodingSet() GetLineCoding Application can set the line coding. The host can

retrieve the settings with the GetLineCoding

request.

USBD_ACM_SerialLineCodingReg() SetLineCoding Application registers a callback called by the

ACM subclass upon reception of the

SetLineCoding request. Application can

perform any specific operations.

USBD_ACM_SerialLineCtrlGet() SetControlLineState Application can get the current control line state

set by the host with the SetControlLineState

request.

USBD_ACM_SerialLineCtrlReg() SetControlLineState Application registers a callback called by the

ACM subclass upon reception of the

SetControlLineState request. Application can

perform any specific operations.

USBD_ACM_SerialLineStateSet() Serial line state Application can set any line state event(s). While

setting the line state, an interrupt IN transfer is

sent to the host to inform about it a change in

the serial line state.

USBD_ACM_SerialLineStateClr() Serial line state Application can clear two events of the line

state: transmission carrier and receiver carrier

detection. All the other events are self-cleared

by the ACM serial emulation subclass.

128

Chapter 8

8

8-4-5 SUBCLASS INSTANCE COMMUNICATION

Micriμm’s ACM subclass offers the following functions to communicate with the host. For

more details about the functions’ parameters, refer to section C-2 “CDC ACM Subclass

Functions” on page 369.

Table 8-8 CDC ACM Communication API Summary

USBD_ACM_SerialRx() and USBD_ACM_SerialTx() provide synchronous communication

which means that the transfer is blocking. Upon calling the function, the application blocks

until transfer completion with or without an error. A timeout can be specified to avoid

waiting forever. Listing 8-3 presents a read and write example to receive data from the host

using the bulk OUT endpoint and to send data to the host using the bulk IN endpoint.

Listing 8-3 Serial Read and Write Example

Function name Operation

USBD_ACM_SerialRx() Receives data from host through a bulk OUT endpoint. This function is blocking.

USBD_ACM_SerialTx() Sends data to host through a bulk IN endpoint. This function is blocking.

CPU_INT08U rx_buf[2];

CPU_INT08U tx_buf[2];

USBD_ERR err;

(void)USBD_ACM_SerialRx(subclass_nbr, (1)

 &rx_buf[0], (2)

 2u,

 0u, (3)

 &err);

if (err != USBD_ERR_NONE) {

 /* Handle the error. */

}

(void)USBD_ACM_SerialTx(subclass_nbr, (1)

 &tx_buf[0], (4)

 2u,

 0u, (3)

 &err);

if (err != USBD_ERR_NONE) {

 /* Handle the error. */

}

129

ACM Subclass

8

L8-3(1) The class instance number created with USBD_ACM_SerialAdd() will serve

internally to the ACM subclass to route the transfer to the proper bulk OUT or

IN endpoint.

L8-3(2) The application must ensure that the buffer provided to the function is large

enough to accommodate all the data. Otherwise, synchronization issues might

happen.

L8-3(3) In order to avoid an infinite blocking situation, a timeout expressed in

milliseconds can be specified. A value of ‘0’ makes the application task wait

forever.

L8-3(4) The application provides the initialized transmit buffer.

8-4-6 USING THE DEMO APPLICATION

Micriμm provides a demo application that lets you test and evaluate the class

implementation. Source template files are provided for the device.

CONFIGURING DEVICE APPLICATION

The serial demo allows you to send and/or receive serial data to and/or from the device

through a virtual COM port. The demo is implemented in the application file,

app_usbd_cdc.c, provided for μC/OS-II and μC/OS-III. app_usbd_cdc.c is located in

these two folders:

■ \Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-II

■ \Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-III

130

Chapter 8

8

Table 8-9 describes the constants usually defined in app_cfg.h which allows you to use the

serial demo.

Table 8-9 Device Application Configuration Constants

RUNNING THE DEMO APPLICATION

In this section, we will assume Windows as the host operating system. Upon connection of

your CDC ACM device, Windows will enumerate your device and load the native driver

usbser.sys to handle the device communication. The first time you connect your device to

the host, you will have to indicate to Windows which driver to load using an INF file (refer

to section 3-1-1 “About INF Files” on page 46 for more details about INF). The INF file tells

Windows to load the usbser.sys driver. Indicating the INF file to Windows has to be done

only once. Windows will then automatically recognize the CDC ACM device and load the

proper driver for any new connection. The process of indicating the INF file may vary

according to the Windows operating system version:

■ Windows XP directly opens the Found New Hardware Wizard. Follow the different steps

of the wizard until you reach the page where you can indicate the path of the INF file.

■ Windows Vista and later won’t open a “Found New Hardware Wizard”. It will just

indicate that no driver was found for the vendor device. You have to manually open the

wizard. When you open the Device Manager, your CDC ACM device should appear

with a yellow icon. Right-click on your device and choose ‘Update Driver Software...’ to

open the wizard. Follow the different steps of the wizard until the page where you can

indicate the path of the INF file.

Constant Description

APP_CFG_USBD_CDC_EN General constant to enable the CDC ACM demo application.

Must be set to DEF_ENABLED.

APP_CFG_USBD_CDC_SERIAL_TEST_EN Constant to enable the serial demo. Must be set to

DEF_ENABLED.

APP_CFG_USBD_CDC_SERIAL_TASK_PRIO Priority of the task used by the serial demo.

APP_CFG_USBD_CDC_SERIAL_TASK_STK_SIZE Stack size of the task used by the serial demo. A default

value can be 256.

131

ACM Subclass

8

The INF file is located in:

\Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\CDC\INF

Refer to section 3-1-1 “About INF Files” on page 46 for more details about how to edit the

INF file to match your Vendor ID (VID) and Product ID (PID). The provided INF files

define, by default, 0xFFFE for VID and 0x1234 for PID. Once the driver is loaded, Windows

creates a virtual COM port as shown in Figure 8-3.

Figure 8-3 Windows Device Manager and Created Virtual COM Port

Figure 8-4 presents the steps to follow to use the serial demo.

132

Chapter 8

8

Figure 8-4 Serial Demo

F8-4(1) Open a serial terminal (for instance, HyperTerminal). Open the COM port

matching to your CDC ACM device with the serial settings (baud rate, stop

bits, parity and data bits) you want. This operation will send a series of CDC

ACM class-specific requests (GET_LINE_CODING, SET_LINE_CODING,

SET_CONTROL_LINE_STATE) to your device. Note that Windows Vista and later

don’t provide HyperTerminal anymore. You may use other free serial

terminals such TeraTerm (http://ttssh2.sourceforge.jp/), Hercules

(http://www.hw-group.com/products/hercules/index_en.html),

RealTerm (http://realterm.sourceforge.net/), etc.

F8-4(2) In order to start the communication with the serial task on the device side, the

Data Terminal Ready (DTR) signal must be set and sent to the device. The DTR

signal prevents the serial task from sending characters if the terminal is not

ready to receive data. Sending the DTR signal may vary depending on your

serial terminal. For example, HyperTerminal sends a properly set DTR signal

automatically upon opening of the COM port. Hercules terminal allows you to

set and clear the DTR signal from the graphical user interface (GUI) with a

checkbox. Other terminals do not permit to set/clear DTR or the DTR set/

clear’s functionality is difficult to find and to use.

F8-4(3) Once the serial task receives the DTR signal, the task sends a menu to the serial

terminal with two options as presented in Figure 8-5.

133

ACM Subclass

8

F8-4(4) The menu option #1 is the Echo 1 demo. It allows you to send one unique

character to the device. This character is received by the serial task and sent

back to the host.

F8-4(5) The menu options #2 is the Echo N demo. It allows you to send several

characters to the device. All the characters are received by the serial task and

sent back to the host. The serial task can receive a maximum of 512 characters.

Figure 8-5 CDC Serial Demo Menu in HyperTerminal

To support the two demos, the serial task implements a state machine as shown in Figure 8-

6. Basically, the state machine has two paths corresponding to the user choice in the serial

terminal menu.

Figure 8-6 Serial Demo State Machine

134

Chapter 8

8

F8-6(1) Once the DTR signal has been received, the serial task is in the MENU state.

F8-6(2) If you choose the menu option #1, the serial task will echo back any single

character sent by the serial terminal as long as “Ctrl+C” is not pressed.

F8-6(3) If you choose the menu option #2, the serial task will echo all the received

characters sent by the serial terminal as long as “Ctrl+C” is not pressed.

Table 8-10 shows four possible serial terminals which you may use to test the CDC ACM

class.

Table 8-10 Serial Terminals and CDC Serial Demo

Terminal DTR set/clear
Menu option(s)

usable

HyperTerminal Yes (properly set DTR signal automatically sent upon COM port

opening)

1 and 2

Hercules Yes (a checkbox in the GUI allows you to set/clear DTR) 1 and 2

RealTerm Yes (Set/Clear DTR buttons in the GUI) 1 and 2

TeraTerm Yes (DTR can be set using a macro. GUI does NOT allows you to set/

clear DTR easily)

1 and 2

135

Chapter

9
Human Interface Device Class

This chapter describes the Human Interface Device (HID) class supported by

μC/USB-Device. The HID implementation complies with the following specifications:

■ Device Class Definition for Human Interface Devices (HID), 6/27/01, Version 1.11.

■ Universal Serial Bus HID Usage Tables, 10/28/2004, Version 1.12.

The HID class encompasses devices used by humans to control computer operations.

Keyboards, mice, pointing devices, game devices are some examples of typical HID devices.

The HID class can also be used in a composite device that contains some controls such as

knobs, switches, buttons and sliders. For instance, mute and volume controls in an audio

headset are controlled by the HID function of the headset. The headset also has an audio

function. HID data can exchange data for any purpose using only control and interrupt

transfers. The HID class is one of the oldest and most popular USB classes. All the major

host operating systems provide a native driver to manage HID devices. That’s why a variety

of vendor-specific devices work with the HID class. This class also includes various types of

output directed to the user information (e.g. LEDs on a keyboard).

136

Chapter 9

9

9-1 OVERVIEW

A HID device is composed of the following endpoints:

■ A pair of control IN and OUT endpoints called the default endpoint.

■ An interrupt IN endpoint.

■ An optional interrupt OUT endpoint.

Table 9-1 describes the usage of the different endpoints:

Table 9-1 HID Class Endpoints Usage

9-1-1 REPORT

A host and a HID device exchange data using reports. A report contains formatted data

giving information about controls and other physical entities of the HID device. A control is

manipulable by the user and operates an aspect of the device. For instance, a control can be

a button on a mouse or a keyboard, a switch, etc. Other entities inform the user about the

state of certain device’s features. For instance, LEDs on a keyboard notify the user about the

caps lock on, about the numeric keypad active, etc.

Endpoint Direction Usage

Control IN Device-to-host Standard requests for enumeration, class-specific requests, and data

communication (Input, Feature reports sent to the host with GET_REPORT

request).

Control OUT Host-to-device Standard requests for enumeration, class-specific requests and data

communication (Output, Feature reports received from the host with

SET_REPORT request).

Interrupt IN Device-to-host Data communication (Input and Feature reports).

Interrupt OUT Host-to-device Data communication (Output and Feature reports).

137

Overview

9

The format and the use of a report data is understood by the host by analyzing the content

of a Report descriptor. Analyzing the content is done by a parser. The Report descriptor

describes the data provided by each control in a device. It is composed of items. An item is

a piece of information about the device and consists of a 1-byte prefix and variable-length

data. Refer to “Device Class Definition for Human Interface Devices (HID) Version 1.11”,

section 5.6 and 6.2.2 for more details about the item format.

There are three principal types of items:

■ Main item defines or groups certain types of data fields.

■ Global item describes data characteristics of a control.

■ Local item describes data characteristics of a control.

Each item type is defined by different functions. An item function can also be called an

item. An item function can be seen as a sub-item that belongs to one of the 3 principal item

types. Table 9-2 gives a brief overview of the item’s functions in each item type. For a

complete description of the items in each category, refer to “Device Class Definition for

Human Interface Devices (HID) Version 1.11”, section 6.2.2.

Item type Item function Description

Main Input Describes information about the data provided by one ore more physical

controls.

Output Describes data sent to the device.

Feature Describes device configuration information sent to or received from the

device which influences the overall behavior of the device or one of its

components.

Collection Group related items (Input, Output or Feature).

End of Collection Closes a collection.

138

Chapter 9

9

Table 9-2 Item’s Function Description for each Item Type

Global Usage Page Identifies a function available within the device.

Logical Minimum Defines the lower limit of the reported values in logical units.

Logical Maximum Defines the upper limit of the reported values in logical units.

Physical Minimum Defines the lower limit of the reported values in physical units, that is the

Logical Minimum expressed in physical units.

Physical Maximum Defines the upper limit of the reported values in physical units, that is the

Logical Maximum expressed in physical units.

Unit Exponent Indicates the unit exponent in base 10. The exponent ranges from -8 to +7.

Unit Indicates the unit of the reported values. For instance, length, mass,

temperature units, etc.

Report Size Indicates the size of the report fields in bits.

Report ID Indicates the prefix added to a particular report.

Report Count Indicates the number of data fields for an item.

Push Places a copy of the global item state table on the CPU stack.

Pop Replaces the item state table with the last structure from the stack.

Local Usage Represents an index to designate a specific Usage within a Usage Page. It

indicates the vendor’s suggested use for a specific control or group of

controls. A usage supplies information to an application developer about

what a control is actually measuring.

Usage Minimum Defines the starting usage associated with an array or bitmap.

Usage Maximum Defines the ending usage associated with an array or bitmap.

Designator Index Determines the body part used for a control. Index points to a designator in

the Physical descriptor.

Designator Minimum Defines the index of the starting designator associated with an array or bitmap.

Designator Maximum Defines the index of the ending designator associated with an array or bitmap.

String Index String index for a String descriptor. It allows a string to be associated with a

particular item or control.

String Minimum Specifies the first string index when assigning a group of sequential strings

to controls in an array or bitmap.

String Maximum Specifies the last string index when assigning a group of sequential strings

to controls in an array or bitmap.

Delimiter Defines the beginning or end of a set of local items.

Item type Item function Description

139

Overview

9

A control’s data must define at least the following items:

■ Input, Output or Feature Main items.

■ Usage Local item.

■ Usage Page Global item.

■ Logical Minimum Global item.

■ Logical Maximum Global item.

■ Report Size Global item.

■ Report Count Global item.

Table 9-1 shows the representation of a Mouse Report descriptor content from a host HID

parser perspective. The mouse has three buttons (left, right and wheel). The code presented

in Listing 9-2 is an example of code implementation corresponding to this mouse Report

descriptor representation.

Figure 9-1 Report Descriptor Content from a Host HID Parser View

�0���!��������&�9���
�����!"���

�:���!��������&������� �;���!��������&�9���
�����!"���

����������&
'����������

����������&�
�.<!����

�!���&�
6��!�

�!���&�
������

������	���
��
������

������	���
�
����!�����

������	���
�
������

�!���&�=

�!���&�>

?�������6��&�
-0/@

?�������6�
&�
0/@

	���
��
�����&�/

	���
����A�&�
B

	���
��
�����&�0

	���
����A�&�
01

�!����6��&�
#������0

�!����6�
&�
#������1

?�������6��&�
)

?�������6�
&�
0

	���
��
�����&�1

	���
����A�&�
0

�/�

�1�

140

Chapter 9

9

F9-1(1) The Usage Page item function specifies the general function of the device. In

this example, the HID device belongs to a generic desktop control.

F9-1(2) The Collection Application groups Main items that have a common purpose

and may be familiar to applications. In the diagram, the group is composed of

three Input Main items. For this collection, the suggested use for the controls is

a mouse as indicated by the Usage item.

F9-1(3) Nested collections may be used to give more details about the use of a single

control or group of controls to applications. In this example, the Collection

Physical, nested into the Collection Application, is composed of the same 3

Input items forming the Collection Application. The Collection Physical is used

for a set of data items that represent data points collected at one geometric

point. In the example, the suggested use is a pointer as indicated by the Usage

item. Here the pointer usage refers to the mouse position coordinates and the

system software will translate the mouse coordinates in movement of the

screen cursor.

F9-1(4) Nested usage pages are also possible and give more details about a certain

aspect within the general function of the device. In this case, two Inputs items

are grouped and correspond to the buttons of the mouse. One Input item

defines the three buttons of the mouse (right, left and wheel) in terms of

number of data fields for the item (Report Count item), size of a data field

(Report Size item) and possible values for each data field (Usage Minimum and

Maximum, Logical Minimum and Maximum items). The other Input item is a

13-bit constant allowing the Input report data to be aligned on a byte

boundary. This Input item is used only for padding purpose.

F9-1(5) Another nested usage page referring to a generic desktop control is defined for the

mouse position coordinates. For this usage page, the Input item describes the data

fields corresponding to the x- and y-axis as specified by the two Usage items.

141

Overview

9

After analyzing the previous mouse Report descriptor content, the host’s HID parser is able

to interpret the Input report data sent by the device with an interrupt IN transfer or in

response to a GET_REPORT request. The Input report data corresponding to the mouse

Report descriptor shown in Figure 9-1 is presented in Table 9-3. The total size of the report

data is 4 bytes. Different types of reports may be sent over the same endpoint. For the

purpose of distinguishing the different types of reports, a 1-byte report ID prefix is added to

the data report. If a report ID was used in the example of the mouse report, the total size of

the report data would be 5 bytes.

Table 9-3 Input Report Sent to Host and Corresponding to the State of a 3-Buttons Mouse.

A Physical descriptor indicates the part or parts of the body intended to activate a control or

controls. An application may use this information to assign a functionality to the control of a

device. A Physical descriptor is an optional class-specific descriptor and most devices have

little gain for using it. Refer to “Device Class Definition for Human Interface Devices (HID)

Version 1.11” section 6.2.3 for more details about this descriptor.

Bit offset Bit count Description

0 1 Button 1 (left button).

1 1 Button 2 (right button).

2 1 Button 3 (wheel button).

3 13 Not used.

16 8 Position on axis X.

24 8 Position on axis Y.

142

Chapter 9

9

9-2 ARCHITECTURE

Figure 9-2 shows the general architecture between the host and the device using the HID

class offered by Micriμm.

Figure 9-2 General Architecture Between a Host and HID Class

The host operating system (OS) enumerates the device using the control endpoints. Once

the enumeration phase is done, the host starts the transmission/reception of reports to/from

the device using the interrupt endpoints.

On the device side, the HID class interacts with an OS layer specific to this class. The HID

OS layer provides specific OS services needed for the internal functioning of the HID class.

This layer does not assume a particular OS. By default, Micriμm provides the HID OS layer

for μC/OS-II and μC/OS-III. If you need to port the HID class to your own OS, refer to

section 9-5 “Porting the HID Class to a RTOS” on page 160 for more details about the HID

OS layer.

During the HID class initialization phase, a report parser module is used to validate the

report provided by the application. If any error is detected during the report validation, the

initialization will fail.

� ��� !�"
���#��$���%

'����������

������!��!���"

&'(�������

'����������

������
��

����

���
�*

����

�����
+�

����
���)
�*�3�+�

����0�! "��
!
"��"

�����'

143

Configuration

9

9-3 CONFIGURATION

9-3-1 GENERAL CONFIGURATION

Some constants are available to customize the class. These constants are located in the USB

device configuration file, usbd_cfg.h . Table 9-4 shows their description.

Table 9-4 HID Class Configuration Constants

The HID class uses an internal class to manage periodic input reports. The task priority and

stack size shown in Table 9-5 are defined in the application configuration file, app_cfg.h.

Refer to section 9-6 “Periodic Input Reports Task” on page 161 for more details about the

HID internal task.

Table 9-5 HID Internal Task’s Configuration Constants

Constant Description

USBD_HID_CFG_MAX_NBR_DEV Configures the maximum number of class instances. Unless you plan

on having multiple configurations or interfaces using different class

instances, this can be set to 1.

USBD_HID_CFG_MAX_NBR_CFG Configures the maximum number of configurations in which HID class

is used. Keep in mind that if you use a high-speed device, two

configurations will be built, one for full-speed and another for

high-speed.

USBD_HID_CFG_MAX_NBR_REPORT_ID Configures the maximum number of report IDs allowed in a report. The

value should be set properly to accommodate the number of report ID

to be used in the report. The minimum value is 1.

USBD_HID_CFG_MAX_NBR_REPORT_PUSHPOP Configures the maximum number of Push and Pop items used in a

report. If the constant is set to 0, no Push and Pop items are present in

the report.

Constant Description

USBD_HID_OS_CFG_TMR_TASK_PRIO Configures the priority of the HID periodic input reports task.

USBD_HID_OS_CFG_TMR_TASK_STK_SIZE Configures the stack size of the HID periodic input reports task.

144

Chapter 9

9

9-3-2 CLASS INSTANCE CONFIGURATION

Before starting the communication phase, your application needs to initialize and configure

the class to suit its needs. Table 9-6 summarizes the initialization functions provided by the

HID class. For more details about the functions parameters, refer to Appendix D, “HID API

Reference” on page 387.

Table 9-6 HID Class Initialization API Summary

You need to call these functions in the order shown below to successfully initialize the HID

class:

1 Call USBD_HID_Init()

This is the first function you should call and you should do it only once even if you use

multiple class instances. This function initializes all internal structures and variables that

the class needs and also the HID OS layer.

2 Call USBD_HID_Add()

This function allocates an HID class instance. It also allows you to specify the following

instance characteristics:

■ The country code of the localized HID hardware.

■ The Report descriptor content and size.

■ The Physical descriptor content and size.

■ The polling internal for the interrupt IN endpoint.

■ The polling internal for the interrupt OUT endpoint.

Function name Operation

USBD_HID_Init() Initializes HID class internal structures, variables and the OS layer.

USBD_HID_Add() Creates a new instance of HID class.

USBD_HID_CfgAdd() Adds an existing HID instance to the specified device configuration.

145

Configuration

9

■ A flag enabling or disabling the Output reports reception with the control endpoint.

When the control endpoint is not used, the interrupt OUT endpoint is used instead

to receive Output reports.

■ A structure that contains 4 application callbacks used for class-specific requests

processing.

3 Call USBD_HID_CfgAdd()

Finally, once the HID class instance has been created, you must add it to a specific

configuration.

Listing 9-1 illustrates the use of the previous functions for initializing the HID class.

static USBD_HID_CALLBACK App_USBD_HID_Callback = { (3)

 App_USBD_HID_GetFeatureReport,

 App_USBD_HID_SetFeatureReport,

 App_USBD_HID_GetProtocol,

 App_USBD_HID_SetProtocol,

};

CPU_BOOLEAN App_USBD_HID_Init (CPU_INT08U dev_nbr,

 CPU_INT08U cfg_hs,

 CPU_INT08U cfg_fs)

{

 USBD_ERR err;

 CPU_INT08U class_nbr;

 USBD_HID_Init(&err); (1)

 if (err != USBD_ERR_NONE) {

 /* Handle the error. */

 }

 (2)

146

Chapter 9

9

Listing 9-1 HID Class Initialization Example

L9-1(1) Initialize HID internal structures, variables and OS layer.

L9-1(2) Create a new HID class instance. In this example, the subclass is “Boot”, the

protocol is “Mouse” and the country code is unknown. A table,

App_USBD_HID_ReportDesc[], representing the Report descriptor is passed to

the function (refer to Listing 9-2 for an example of Report descriptor content

and section 9-1-1 “Report” on page 136 for more details about the Report

descriptor format). No Physical descriptor is provided by the application. The

interrupt IN endpoint is used and has a 2 frames or microframes polling

interval. The use of the control endpoint to receive Output reports is enabled.

The interrupt OUT endpoint will not be used. Hence, the interrupt OUT polling

 class_nbr = USBD_HID_Add(USBD_HID_SUBCLASS_BOOT,

 USBD_HID_PROTOCOL_MOUSE,

 USBD_HID_COUNTRY_CODE_NOT_SUPPORTED,

 &App_USBD_HID_ReportDesc[0],

 sizeof(App_USBD_HID_ReportDesc),

 (CPU_INT08U *)0,

 0u,

 2u,

 2u,

 DEF_YES,

 &App_USBD_HID_Callback, (3)

 &err);

 if (err != USBD_ERR_NONE) {

 /* Handle the error. */

 }

 if (cfg_hs != USBD_CFG_NBR_NONE) {

 USBD_HID_CfgAdd(class_nbr, dev_nbr, cfg_hs, &err); (4)

 if (err != USBD_ERR_NONE) {

 /* Handle the error. */

 }

 }

 if (cfg_fs != USBD_CFG_NBR_NONE) {

 USBD_HID_CfgAdd(class_nbr, dev_nbr, cfg_fs, &err); (5)

 if (err != USBD_ERR_NONE) {

 /* Handle the error. */

 }

 }

}

147

Configuration

9

interval of 2 is ignored by the class. The structure App_USBD_HID_Callback is

also passed and references 4 application callbacks which will be called by the

HID class upon processing of the class-specific requests.

L9-1(3) There are 4 application callbacks for class-specific requests processing. There is

one callback for each of the following requests: GET_REPORT, SET_REPORT,

GET_PROTOCOL and SET_PROTOCOL. Refer to “Device Class Definition for

Human Interface Devices (HID) Version 1.11”, section 7.2 for more details

about these class-specific requests.

L9-1(4) Check if the high-speed configuration is active and proceed to add the HID

instance previously created to this configuration.

L9-1(5) Check if the full-speed configuration is active and proceed to add the HID

instance to this configuration.

Listing 9-1 also illustrates an example of multiple configurations. The functions

USBD_HID_Add() and USBD_HID_CfgAdd() allow you to create multiple configurations and

multiple instances architecture. Refer to section Table 7-1 “Constants and Functions Related

to the Concept of Multiple Class Instances” on page 99 for more details about multiple class

instances.

Listing 9-2 presents an example of table declaration defining a Report descriptor

corresponding to a mouse. The example matches the mouse report descriptor viewed by

the host HID parser in Figure 9-1. The mouse report represents an Input report. Refer to

section 9-1-1 “Report” on page 136 for more details about the Report descriptor format. The

items inside a collection are intentionally indented for code clarity.

148

Chapter 9

9

Listing 9-2 Mouse Report Descriptor Example

L9-2(1) The table representing a mouse Report descriptor is initialized in such way that

each line corresponds to a short item. The latter is formed from a 1-byte prefix

and a 1-byte data. Refer to “Device Class Definition for Human Interface

Devices (HID) Version 1.11”, sections 5.3 and 6.2.2.2 for more details about

short items format. This table content corresponds to the mouse Report

descriptor content viewed by a host HID parser in Figure 9-1.

L9-2(2) The Generic Desktop Usage Page is used.

static CPU_INT08U App_USBD_HID_ReportDesc[] = { (1)

 USBD_HID_GLOBAL_USAGE_PAGE + 1, USBD_HID_USAGE_PAGE_GENERIC_DESKTOP_CONTROLS, (2)

 USBD_HID_LOCAL_USAGE + 1, USBD_HID_CA_MOUSE, (3)

 USBD_HID_MAIN_COLLECTION + 1, USBD_HID_COLLECTION_APPLICATION, (4)

 USBD_HID_LOCAL_USAGE + 1, USBD_HID_CP_POINTER, (5)

 USBD_HID_MAIN_COLLECTION + 1, USBD_HID_COLLECTION_PHYSICAL, (6)

 (7)

 USBD_HID_GLOBAL_USAGE_PAGE + 1, USBD_HID_USAGE_PAGE_BUTTON,

 USBD_HID_LOCAL_USAGE_MIN + 1, 0x01,

 USBD_HID_LOCAL_USAGE_MAX + 1, 0x03,

 USBD_HID_GLOBAL_LOG_MIN + 1, 0x00,

 USBD_HID_GLOBAL_LOG_MAX + 1, 0x01,

 USBD_HID_GLOBAL_REPORT_COUNT + 1, 0x03,

 USBD_HID_GLOBAL_REPORT_SIZE + 1, 0x01,

 USBD_HID_MAIN_INPUT + 1, USBD_HID_MAIN_DATA |

 USBD_HID_MAIN_VARIABLE |

 USBD_HID_MAIN_ABSOLUTE,

 (8)

 USBD_HID_GLOBAL_REPORT_COUNT + 1, 0x01,

 USBD_HID_GLOBAL_REPORT_SIZE + 1, 0x0D,

 USBD_HID_MAIN_INPUT + 1, USBD_HID_MAIN_CONSTANT,

 (9)

 USBD_HID_GLOBAL_USAGE_PAGE + 1, USBD_HID_USAGE_PAGE_GENERIC_DESKTOP_CONTROLS,

 USBD_HID_LOCAL_USAGE + 1, USBD_HID_DV_X,

 USBD_HID_LOCAL_USAGE + 1, USBD_HID_DV_Y,

 USBD_HID_GLOBAL_LOG_MIN + 1, 0x81,

 USBD_HID_GLOBAL_LOG_MAX + 1, 0x7F,

 USBD_HID_GLOBAL_REPORT_SIZE + 1, 0x08,

 USBD_HID_GLOBAL_REPORT_COUNT + 1, 0x02,

 USBD_HID_MAIN_INPUT + 1, USBD_HID_MAIN_DATA |

 USBD_HID_MAIN_VARIABLE |

 USBD_HID_MAIN_RELATIVE,

 USBD_HID_MAIN_ENDCOLLECTION, (10)

 USBD_HID_MAIN_ENDCOLLECTION (11)

};

149

Configuration

9

L9-2(3) Within the Generic Desktop Usage Page, the usage tag suggests that the group

of controls is for controlling a mouse. A mouse collection typically consists of

two axes (X and Y) and one, two, or three buttons.

L9-2(4) The mouse collection is started.

L9-2(5) Within the mouse collection, a usage tag suggests more specifically that the

mouse controls belong to the pointer collection. A pointer collection is a

collection of axes that generates a value to direct, indicate, or point user

intentions to an application.

L9-2(6) The pointer collection is started.

L9-2(7) The Buttons Usage Page defines an Input item composed of three 1-bit fields.

Each 1-bit field represents the mouse’s button 1, 2 and 3 respectively and can

return a value of 0 or 1.

L9-2(8) The Input Item for the Buttons Usage Page is padded with 13 other bits.

L9-2(9) Another Generic Desktop Usage Page is indicated for describing the mouse

position with the axes X and Y. The Input item is composed of two 8-bit fields

whose value can be between -127 and 127.

L9-2(10) The pointer collection is closed.

L9-2(11) The mouse collection is closed.

150

Chapter 9

9

9-3-3 CLASS INSTANCE COMMUNICATION

The HID class offers the following functions to communicate with the host. For more details

about the functions parameters, refer to Appendix D, “HID API Reference” on page 387.

Table 9-7 HID Communication API Summary

9-3-4 SYNCHRONOUS COMMUNICATION

Synchronous communication means that the transfer is blocking. Upon function call, the

applications blocks until the transfer completion with or without an error. A timeout can be

specified to avoid waiting forever.

Listing 9-3 presents a read and write example to receive data from the host using the

interrupt OUT endpoint and to send data to the host using the interrupt IN endpoint.

Function name Operation

USBD_HID_Rd() Receives data from host through interrupt OUT endpoint. This function

is blocking.

USBD_HID_Wr() Sends data to host through interrupt IN endpoint. This function is

blocking.

USBD_HID_RdAsync() Receives data from host through interrupt OUT endpoint. This function

is non-blocking.

USBD_HID_WrAsync() Sends data to host through interrupt IN endpoint. This function is

non-blocking.

151

Configuration

9

Listing 9-3 Synchronous Bulk Read and Write Example

L9-3(1) The class instance number created from USBD_HID_Add() will serve internally

for the HID class to route the transfer to the proper interrupt OUT or IN

endpoint.

L9-3(2) The application must ensure that the buffer provided to the function is large

enough to accommodate all the data. Otherwise, synchronization issues might

happen. Internally, the read operation is done either with the control endpoint

or with the interrupt endpoint depending on the control read flag set when

calling USBD_HID_Add().

L9-3(3) In order to avoid an infinite blocking situation, a timeout expressed in

milliseconds can be specified. A value of ‘0’ makes the application task wait

forever.

L9-3(4) The application provides the initialized transmit buffer.

CPU_INT08U rx_buf[2];

CPU_INT08U tx_buf[2];

USBD_ERR err;

(void)USBD_HID_Rd(class_nbr, (1)

 (void *)&rx_buf[0], (2)

 2u,

 0u, (3)

 &err);

if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

}

(void)USBD_HID_Wr(class_nbr, (1)

 (void *)&tx_buf[0], (4)

 2u,

 0u, (3)

 &err);

if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

}

152

Chapter 9

9

9-3-5 ASYNCHRONOUS COMMUNICATION

Asynchronous communication means that the transfer is non-blocking. Upon function call,

the application passes the transfer information to the device stack and does not block.

Other application processing can be done while the transfer is in progress over the USB

bus. Once the transfer is completed, a callback is called by the device stack to inform the

application about the transfer completion.

Listing 9-4 shows an example of an asynchronous read and write.

void App_USBD_HID_Comm (CPU_INT08U class_nbr)

{

 CPU_INT08U rx_buf[2];

 CPU_INT08U tx_buf[2];

 USBD_ERR err;

 USBD_HID_RdAsync(class_nbr, (1)

 (void *)&rx_buf[0], (2)

 2u,

 App_USBD_HID_RxCmpl, (3)

 (void *) 0u, (4)

 &err);

 if (err != USBD_ERR_NONE) {

 /* Handle the error. */

 }

 USBD_HID_WrAsync(class_nbr, (1)

 (void *)&tx_buf[0], (5)

 2u,

 App_USBD_HID_TxCmpl, (3)

 (void *) 0u, (4)

 &err);

 if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

 }

}

 (3)

static void App_USBD_HID_RxCmpl (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT32U xfer_len,

 void *p_callback_arg,

 USBD_ERR err)

153

Configuration

9

Listing 9-4 Asynchronous Bulk Read and Write Example

L9-4(1) The class instance number serves internally for the HID class to route the

transfer to the proper interrupt OUT or IN endpoint.

L9-4(2) The application must ensure that the buffer provided to the function is large

enough to accommodate all the data. Otherwise, synchronization issues might

happen. Internally, the read operation is done either with the control endpoint

or with the interrupt endpoint depending on the control read flag set when

calling USBD_HID_Add().

{

 (void)class_nbr;

 (void)p_buf;

 (void)buf_len;

 (void)xfer_len;

 (void)p_callback_arg; (4)

 if (err == USBD_ERR_NONE) {

 /* $$$$ Do some processing. */

 } else {

 /* $$$$ Handle the error. */

 }

}

 (3)

static void App_USBD_HID_TxCmpl (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT32U xfer_len,

 void *p_callback_arg,

 USBD_ERR err)

{

 (void)class_nbr;

 (void)p_buf;

 (void)buf_len;

 (void)xfer_len;

 (void)p_callback_arg; (4)

 if (err == USBD_ERR_NONE) {

 /* $$$$ Do some processing. */

 } else {

 /* $$$$ Handle the error. */

 }

}

154

Chapter 9

9

L9-4(3) The application provides a callback passed as a parameter. Upon completion of

the transfer, the device stack calls this callback so that the application can

finalize the transfer by analyzing the transfer result. For instance, upon read

operation completion, the application may do a certain processing with the

received data. Upon write completion, the application may indicate if the write

was successful and how many bytes were sent.

L9-4(4) An argument associated to the callback can be also passed. Then in the

callback context, some private information can be retrieved.

L9-4(5) The application provides the initialized transmit buffer.

9-4 USING THE DEMO APPLICATION

Micriμm provides a demo application that lets you test and evaluate the class

implementation. Source template files are provided for the device. Executable and source

files are provided for Windows host PC.

9-4-1 CONFIGURING PC AND DEVICE APPLICATIONS

The HID class provides two demos:

■ Mouse demo exercises Input reports sent to the host. Each report gives periodically the

current state of a simulated mouse.

■ Vendor-specific demo exercises Input and Output reports. The host sends an Output

report or receives an Input report according to your choice.

On the device side, the demo application file, app_usbd_hid.c, offering the two HID

demos is provided for μC/OS-II and μC/OS-III. It is located in these two folders:

■ \Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-II

■ \Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-III

The use of these constants usually defined in app_cfg.h allows you to use one of the HID

demos.

155

Using the Demo Application

9

Table 9-8 Device Application Constants Configuration

On the Windows side, the mouse demo influences directly the cursor on your monitor

while the vendor-specific demo requires a custom application. The latter is provided by a

Visual Studio solution located in this folder:

■ \Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\HID\Visual Studio 2010

The solution HID.sln contains two projects:

■ “HID - Control” tests the Input and Output reports transferred through the control

endpoints. The class-specific requests GET_REPORT and SET_REPORT allows the host to

receive Input reports and send Output reports respectively.

■ “HID - Interrupt” tests the Input and Output reports transferred through the interrupt IN

and OUT endpoints.

Constant Description

APP_CFG_USBD_HID_EN General constant to enable the Vendor class demo

application. Must be set to DEF_ENABLED.

APP_CFG_USBD_HID_TEST_MOUSE_EN Enables or disables the mouse demo. The possible values

are DEF_ENABLED or DEF_DISABLED. If the constant is set to

DEF_DISABLED, the vendor-specific demo is enabled.

APP_CFG_USBD_HID_MOUSE_TASK_PRIO Priority of the task used by the mouse demo.

APP_CFG_USBD_HID_READ_TASK_PRIO Priority of the read task used by the vendor-specific demo.

APP_CFG_USBD_HID_WRITE_TASK_PRIO Priority of the write task used by the vendor-specific demo.

APP_CFG_USBD_HID_TASK_STK_SIZE Stack size of the tasks used by mouse or vendor-specific

demo. A default value can be 256.

156

Chapter 9

9

An HID device is defined by a Vendor ID (VID) and Product ID (PID). The VID and PID

will be retrieved by the host during the enumeration to build a string identifying the HID

device. The “HID - Control” and “HID - Interrupt” projects contain both a file named

app_hid_common.c. This file declares the following local constant:

Listing 9-5 Windows Application and String to Detect a Specific HID Device

L9-5(1) This constant allows the application to detect a specified HID device connected

to the host. The VID and PID given in App_DevPathStr variable must match

with device side values. The device side VID and PID are defined in the

USBD_DEV_CFG structure in the file usbd_dev_cfg.c. Refer to the section

“Modify Device Configuration” on page 34 for more details about the

USBD_DEV_CFG structure. In this example, VID = fffe and PID = 1234 in

hexadecimal format.

9-4-2 RUNNING THE DEMO APPLICATION

The mouse demo does not require anything on the Windows side. You just need to plug the

HID device running the mouse demo to the PC and see the screen cursor moving.

Figure 9-3 presents the mouse demo with the host and device interactions:

Figure 9-3 HID Mouse Demo

static const TCHAR App_DevPathStr[] = _TEXT("hid#vid_fffe&pid_1234"); (1)

&'(�������

�����������

���
�������
���
�

����1)����
�/

+��, -��.��
� ��

���

157

Using the Demo Application

9

F9-3(1) On the device side, the task App_USBD_HID_MouseTask() simulates a mouse

movement by setting the coordinates X and Y to a certain value and by sending

the Input report that contains these coordinates. The Input report is sent by

calling the USBD_HID_Wr() function through the interrupt IN endpoint. The

mouse demo does not simulate any button clicks; only mouse movement.

F9-3(2) The host Windows PC polls the HID device periodically following the polling

interval of the interrupt IN endpoint. The polling interval is specified in the

Endpoint descriptor matching to the interrupt IN endpoint. The host receives

and interprets the Input report content. The simulated mouse movement is

translated into a movement of the screen cursor. While the device side

application is running, the screen cursor moves endlessly.

The vendor-specific demo requires you to launch a Windows executable. Two executables

are already provided in the following folder:

■ \Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\HID\Visual Studio 2010\exe\

The two executables have been generated with a Visual Studio 2010 project available in

\Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\HID\Visual Studio 2010\.

■ HID - Control.exe for the vendor-specific demo utilizing the control endpoints to send

Output reports or receive Input reports.

■ HID - Interrupt.exe for the vendor-specific demo utilizing the interrupt endpoints to

send Output reports or receive Input reports.

Figure 9-4 presents the vendor-specific demo with the host and device interactions:

158

Chapter 9

9

Figure 9-4 HID Vendor-Specific Demo

F9-4(1) A menu will appear after launching HID - Control.exe. You will have three

choices: “1. Sent get report”, “2. Send set report” and “3. Exit”. Choice 1 will

send a GET_REPORT request to obtain an Input report from the device. The

content of the Input report will be displayed in the console. Choice 2 will send

a SET_REPORT request to send an Output report to the device.

F9-4(2) A menu will appear after launching HID - Interrupt.exe. You will have three

choices: “1. Read from device”, “2. Write from device” and “3. Exit”. The choice

1 will initiate an interrupt IN transfer to obtain an Input report from the device.

The content of the Input report will be displayed in the console. Choice 2 will

initiate an interrupt OUT transfer to send an Output report to the device.

F9-4(3) On the device side, the task App_USBD_HID_ReadTask() is used to receive

Output reports from the host. The synchronous HID read function,

USBD_HID_Rd(), will receive the Output report data. Nothing is done with the

received data. The Output report has a size of 4 bytes.

F9-4(4) Another task, App_USBD_HID_WriteTask(), will send Input reports to the host

using the synchronous HID write function, USBD_HID_Wr(). The Input report

has a size of 4 bytes.

&'(�������

	�������+������

���
�

�����������

���
�

+������
���
�

������	���
�

����0�
,��
�/

�	��+"�����
�/

+��, -��.��
� ��

	��������
�
C
����
���
�!�
%
��,���������

	��������
�
C
����
���
�!�
%
��,���������

����� ��" ��%��)

��������"")!��%��)

159

Using the Demo Application

9

Figure 9-5 and Figure 9-6 show screenshot examples corresponding to HID - Control.exe

and HID - Interrupt.exe respectively.

Figure 9-5 HID - Control.exe (Vendor-Specific Demo)

Figure 9-6 HID - Interrupt.exe (Vendor-Specific Demo)

160

Chapter 9

9

9-5 PORTING THE HID CLASS TO A RTOS

The HID class uses its own RTOS layer for different purposes:

■ A locking system is used to protect a given Input report. A host can get an Input report

by sending a GET_REPORT request to the device using the control endpoint or with an

interrupt IN transfer. GET_REPORT request processing is done by the device stack while

the interrupt IN transfer is done by the application. When the application executes the

interrupt IN transfer, the Input report data is stored internally. This report data stored

will be sent via a control transfer when GET_REPORT is received. The locking system

ensures the data integrity between the Input report data storage operation done within

an application task context and the GET_REPORT request processing done within the

device stack’s internal task context.

■ A locking system is used to protect the Output report processing between an

application task and the device stack’s internal task when the control endpoint is used.

The application provides to the HID class a receive buffer for the Output report in the

application task context. This receive buffer will be used by the device stack’s internal

task upon reception of a SET_REPORT request. The locking system ensures the receive

buffer and related variables integrity.

■ A locking system is used to protect the interrupt IN endpoint access from multiple

application tasks.

■ A synchronization mechanism is used to implement the blocking behavior of

USBD_HID_Rd() when the control endpoint is used.

■ A synchronization mechanism is used to implement the blocking behavior of

USBD_HID_Wr() because the HID class internally uses the asynchronous interrupt API

for HID write.

■ A task is used to process periodic Input reports. Refer to section 9-6 “Periodic Input

Reports Task” on page 161 for more details about this task.

By default, Micriμm will provide an RTOS layer for both μC/OS-II and μC/OS-III. However,

it is possible to create your own RTOS layer. Your layer will need to implement the

functions listed in Table 9-9. For a complete API description, refer to Appendix D, “HID API

Reference” on page 387.

161

Periodic Input Reports Task

9

Table 9-9 HID OS Layer API Summary

9-6 PERIODIC INPUT REPORTS TASK

In order to save bandwidth, the host has the ability to silence a particular report in an

interrupt IN endpoint by limiting the reporting frequency. The host sends the SET_IDLE

request to realize this operation. The HID class implemented by Micriμm contains an

internal task responsible for respecting the reporting frequency limitation applying to one or

several input reports. Figure 9-7 shows the periodic input reports tasks functioning.

Function name Operation

USBD_HID_OS_Init() Creates and initializes the task and semaphores.

USBD_HID_OS_InputLock() Locks Input report.

USBD_HID_OS_InputUnlock() Unlocks Input report.

USBD_HID_OS_InputDataPend() Waits for Input report data write completion.

USBD_HID_OS_InputDataPendAbort() Aborts the wait for Input report data write completion.

USBD_HID_OS_InputDataPost() Signals that Input report data has been sent to the host.

USBD_HID_OS_OutputLock() Locks Output report.

USBD_HID_OS_OutputUnlock() Unlocks Output report.

USBD_HID_OS_OutputDataPend() Waits for Output report data read completion.

USBD_HID_OS_OutputDataPendAbort() Aborts the wait for Output report data read completion.

USBD_HID_OS_OutputDataPost() Signals that Output report data has been received from the host.

USBD_HID_OS_TxLock() Locks class transmit.

USBD_HID_OS_TxUnlock() Unlocks class transmit.

USBD_HID_OS_TmrTask() Task processing periodic input reports. Refer to section 9-6 “Periodic

Input Reports Task” on page 161 for more details about this task.

162

Chapter 9

9

Figure 9-7 Periodic Input Reports Task

F9-7(1) The device receives a SET_IDLE request. This request specifies an idle duration

for a given report ID. Refer to “Device Class Definition for Human Interface

Devices (HID) Version 1.11”, section 7.2.4 for more details about the SET_IDLE

request. A report ID allows you to distinguish among the different types of

reports sent over the same endpoint.

F9-7(2) A report ID structure allocated during the HID class initialization phase is

updated with the idle duration. An idle duration counter is initialized with the

idle duration value. Then the report ID structure is inserted at the end of a

linked list containing input reports ID structures. The idle duration value is

expressed in 4-ms unit which gives a range of 4 to 1020 ms. If the idle duration

is less than the interrupt IN endpoint polling interval, the reports are generated

at the polling interval.

F9-7(3) Every 4 ms, the periodic input report task browses the input reports ID list. For

each input report ID, the task performs one of two possible operations. The

task period matches the 4-ms unit used for the idle duration. If no SET_IDLE

0 / ; B

������
���
�!������!�

D������ ���?�

�	��������������
��
������������

�
�
���������������

���
������

.�"� ,�����!)��
"�! "����
�/

������	���
�

���

���

2!!���
�� ��
�
�/*�C�������	���
�

����
���������
#�%%�

���

163

Periodic Input Reports Task

9

requests have been sent by the host, the input reports ID list is empty and the

task has nothing to process. The task processes only report IDs different from 0

and with an idle duration greater than 0.

F9-7(4) For a given input report ID, the task verifies if the idle duration has elapsed. If

the idle duration has not elapsed, the counter is decremented and no input

report is sent to the host.

F9-7(5) If the idle duration has elapsed, that is the idle duration counter has reached

zero, an input report is sent to the host by calling the USBD_HID_Wr() function

via the interrupt IN endpoint.

F9-7(6) The input report data sent by the task comes from an internal data buffer

allocated for each input report described in the Report descriptor. An

application task can call the USBD_HID_Wr() function to send an input report.

After sending the input report data, USBD_HID_Wr() updates the internal buffer

associated to an input report ID with the data just sent. Then, the periodic

input reports task always sends the same input report data after each idle

duration elapsed and until the application task updates the data in the internal

buffer. There is some locking mechanism to avoid corruption of the input

report ID data in the event of a modification happening at the exact time of

transmission done by the periodic input report task.

The periodic input reports task is implemented in the HID OS layer in the function

USBD_HID_OS_TmrTask(). Refer to section D-2 “HID OS Functions” on page 402 for more

details about this function.

164

Chapter 9

9

165

Chapter

10
Mass Storage Class

This section describes the mass storage device class (MSC) supported by μC/USB-Device.

The MSC implementation offered by μC/USB-Device is in compliance with the following

specifications:

■ Universal Serial Bus Mass Storage Class Specification Overview, Revision 1.3 Sept. 5, 2008.

■ Universal Serial Bus Mass Storage Class Bulk-Only Transport, Revision 1.0 Sept. 31, 1999.

MSC is a protocol that enables the transfer of information between a USB device and a host.

The information is anything that can be stored electronically: executable programs, source

code, documents, images, configuration data, or other text or numeric data. The USB device

appears as an external storage medium to the host, enabling the transfer of files via drag

and drop.

A file system defines how the files are organized in the storage media. The USB mass

storage class specification does not require any particular file system to be used on

conforming devices. Instead, it provides a simple interface to read and write sectors of data

using the Small Computer System Interface (SCSI) transparent command set. As such,

operating systems may treat the USB drive like a hard drive and can format it with any file

system they like.

The USB mass storage device class supports two transport protocols:

■ Bulk-Only Transport (BOT)

■ Control/Bulk/Interrupt (CBI) Transport.

The mass storage device class supported by μC/USB-Device implements the SCSI

transparent command set using the BOT protocol only, which signifies that only bulk

endpoints will be used to transmit data and status information.

166

Chapter 10

10

10-1 OVERVIEW

10-1-1 MASS STORAGE CLASS PROTOCOL

The MSC protocol is composed of three phases:

■ The Command Transport

■ The Data Transport

■ The Status Transport

Mass storage commands are sent by the host through a structure called the Command Block

Wrapper (CBW). For commands requiring a data transport stage, the host will attempt to

send or receive the exact number of bytes from the device as specified by the length and

flag fields of the CBW. After the data transport stage, the host attempts to receive a

Command Status Wrapper (CSW) from the device detailing the status of the command as

well as any data residue (if any). For commands that do not include a data transport stage,

the host attempts to receive the CSW directly after CBW is sent. The protocol is detailed in

Figure 10-1.

Figure 10-1 MSC Protocol

4
�%5

+���� %#��� '����#
�+!6�

����,�
�#�����#)�'�� ����,� #���#)�'��

����
'#��� '����#
�+�6�

167

Overview

10

10-1-2 ENDPOINTS

On the device side, in compliance with the BOT specification, the MSC is composed of the

following endpoints:

■ A pair of control IN and OUT endpoints called default endpoint.

■ A pair of bulk IN and OUT endpoints.

Table 10-1indicates the different usages of the endpoints.

Table 10-1 MSC Endpoint Usage

10-1-3 MASS STORAGE CLASS REQUESTS

There are two defined control requests for the MSC BOT protocol. These requests and their

descriptions are detailed in Table 10-2.

Table 10-2 Mass Storage Class Requests

Endpoint Direction Usage

Control IN

Control OUT

Device to Host

Host to Device

Enumeration and MSC class-specific requests

Bulk IN

Bulk OUT

Device to Host

Host to Device

Send CSW and data

Receive CBW and data

Class Requests Description

Bulk-Only Mass Storage Reset This request is used to reset the mass storage device and its associated

interface. This request readies the device to receive the next command block.

Get Max LUN This request is used to return the highest logical unit number (LUN) supported

by the device. For example, a device with LUN 0 and LUN 1 will return a value

of 1. A device with a single logical unit will return 0 or stall the request. The

maximum value that can be returned is 15.

168

Chapter 10

10

10-1-4 SMALL COMPUTER SYSTEM INTERFACE (SCSI)

SCSI is a set of standards for handling communication between computers and peripheral

devices. These standards include commands, protocols, electrical interfaces and optical

interfaces. Storage devices that use other hardware interfaces such as USB, use SCSI

commands for obtaining device/host information and controlling the device’s operation and

transferring blocks of data in the storage media.

SCSI commands cover a vast range of device types and functions and as such, devices need

a subset of these commands. In general, the following commands are necessary for basic

communication:

■ INQUIRY

■ READ CAPACITY (10)

■ READ(10)

■ REQUEST SENSE

■ TEST UNIT READY

■ WRITE(10)

Refer to Table 10-3 to see the full list of implemented SCSI commands by μC/USB-Device.

169

Architecture

10

10-2 ARCHITECTURE

10-2-1 MSC ARCHITECTURE

Figure 10-2 shows the general architecture of a USB Host and a USB MSC Device.

Figure 10-2 MSC Architecture

On the host side, the application communicates with the MSC device by interacting with the

native mass storage drivers and SCSI drivers. In compliance with the BOT specification, the

host utilizes the default control endpoint to enumerate the device and the Bulk IN/OUT

endpoints to communicate with the device.

����������

��������

)�'�#����1

	�''#�����&
#� %#�+��#���$
�'

	�''#�����&
#+��''

!
�1#��#
� %��� �

!
�1#���#
� %��� �

�+��#-�5
�

�����&
#-�5
�

�����&
#	
%�
�

+� ����#�
��#� %#���
� %��� �

170

Chapter 10

10

10-2-2 SCSI COMMANDS

The host sends SCSI commands to the device via the Command Descriptor Block (CDB).

These commands set specific requests for transfer of blocks of data and status, and control

information such as a device’s capacity and readiness to exchange data. The μC/USB MSC

Device supports the following subset of SCSI Primary and Block Commands detailed in

Table 10-3.

Table 10-3 SCSI Commands

SCSI Command Function

INQUIRY Requests the device to return a structure that contains information

about itself. A structure shall be returned by the device despite of the

media’s readiness to respond to other commands. Refer to SCSI

Primary Commands documentation for the full command description.

TEST UNIT READY Requests the device to return a status to know if the device is ready to

use. Refer to SCSI Primary Commands documentation for the full

command description.

READ CAPACITY (10) Requests the device to return how many bytes a device can store.

Refer to SCSI Block Commands documentation for the full command

description.

READ (10) Requests to read a block of data from the device’s storage media.

Please refer to SCSI Block Commands documentation for the full

command description.

WRITE (10) Requests to write a block of data to the device’s storage media. Refer

to SCSI Block Commands documentation for the full command

description.

VERIFY (10) Requests the device to test one or more sectors. Refer to SCSI Block

Commands documentation for the full command description.

MODE SENSE (6) and (10) Requests parameters relating to the storage media, logical unit or the

device itself. Refer to SCSI Primary Commands documentation for the

full command description.

REQUEST SENSE Requests a structure containing sense data. Refer to SCSI Primary

Commands documentation for the full command description.

PREVENT ALLOW MEDIA REMOVAL Requests the device to prevent or allow users to remove the storage

media from the device. Refer to SCSI Primary Commands

documentation for the full command description.

171

RTOS Layer

10

10-2-3 STORAGE LAYER AND STORAGE MEDIUM

The storage layer is the interface between the μC/USB MSC Device and the file system

storage medium. The storage layer is responsible of initializing, reading and writing to the

storage medium as well as obtaining information regarding its capacity and status. By

default, Micriμm will provide a storage layer implementation (named RAMDisk) by utilizing

the hardware’s platform memory as storage medium. Aside from this implementation, you

have the option to use Micriμm’s μC/FS or even utilize a file system storage medium of your

own. In the event you use a file system storage medium of your own, you will need to

create a storage layer port to communicate your storage medium to the μC/USB MSC

Device. Please refer to section 10-6 “Porting MSC to a Storage Layer” on page 180 to learn

how to implement this storage layer.

10-3 RTOS LAYER

MSC device communication relies on a task handler that implements the MSC protocol. This

task handler needs to be notified when the device is properly enumerated before

communication begins. Once communication begins, the task must also keep track of

endpoint update statuses to correctly implement the MSC protocol. These types of

notification are handled by RTOS signals. For the MSC RTOS layer, there are two

semaphores created. One for enumeration process and one for communication process. By

default, Micriμm will provide RTOS layers for both μC/OS-II and μC/OS-III. However, it is

also possible to create your own RTOS layer. Please refer to section 10-7 “Porting MSC to a

RTOS” on page 181 to learn how to port to a different RTOS.

10-3-1 MASS STORAGE TASK HANDLER

The MSC task handler implements the MSC protocol, responsible for the communication

between the device and the host. The task handler is initialized when USBD_MSC_Init()

is called. The MSC protocol is handled by a state machine comprised of 9 states. The

transition between these states are detailed in Figure 10-3.

172

Chapter 10

10

Figure 10-3 MSC State Machine

Upon detecting that the MSC device is connected, the device will enter an infinite loop

waiting to receive the first CBW from the host. Depending on the command received, the

device will either enter the data phase or transmit CSW phase. In the event of any stall

conditions in the data phase, the host must clear the respective endpoint before

transitioning to the CSW phase. If an invalid CBW is received from the host, the device shall

enter reset recovery state where both endpoints are stalled to complete the full reset with

the host issuing the Bulk-Only Mass Storage Reset Class Request. After a successful CSW

phase or a reset recovery, the task will return to receive the next CBW command. If at any

stage the device is disconnected from the host the state machine will transition to the None

state.

-+�+.�-+�)1+-2
��'3�*4��.,''��5 -+�+.�-+�)1+-2-+�+.�-+�)1+-2

��'3�)�.��.,''

�,.,

��'3�*4��.,''

��'3�)�.��.,''

��5

� $���%#
+!6

3���%#
+!6

4
'����#!
�1#
��

4
'����#!
�1#
���

!
�1#��#� %#
���#�����'#
+�
��
%

�
$��
#�����
��#�����
��#�����

!
�1#��#�����#
+�
��
%

!
�1#���#�����#
+�
��
%

4
�
�$
#�
��#
+!6

��� '�
�#3���%

4)4+

�
$��
#
+�
��
%

����#�����

����#�����

3���%#+!6#
���0#��#����#

�0�'

�
$��
#
��'��
��
%

��� '�
�#
�����

173

Configuration

10

10-4 CONFIGURATION

10-4-1 GENERAL CONFIGURATION

There are various configuration constants necessary to customize the MSC device. These

constants are located in the usbd_cfg.h file. Table 10-4 shows a description of each

constant.

Table 10-4 MSC Configuration Constants

Since MSC device relies on a task handler to implement the MSC protocol, this OS-task’s

priority and stack size constants need to be configured. These constants are summarized in

Table 10-5.

Table 10-5 MSC OS-Task Handler Configuration Constants

Constant Description

USBD_MSC_CFG_MAX_NBR_DEV Configures the maximum number of class instances. Unless you

plan having multiple configuration or interfaces using different

class instances, this should be set to 1.

USBD_MSC_CFG_MAX_NBR_CFG Configures the maximum number of configuration in which MSC

is used. Keep in mind that if you use a high-speed device, two

configurations will be built, one for full-speed and another for

high-speed.

USBD_MSC_CFG_MAX_LUN Configures the maximum number of logical units. This value must

be at least 1.

USBD_MSC_CFG_DATA_LEN Configures the read/write data length in octets. The default value

set is 2048

Constant Description

USBD_MSC_OS_CFG_TASK_PRIO MSC task handler’s priority level. The priority level must be lower

(higher valued) than the start task and core task priorities.

USBD_MSC_OS_CFG_TASK_STK_SIZE MSC task handler’s stack size. Default value is set to 256.

174

Chapter 10

10

10-4-2 CLASS INSTANCE CONFIGURATION

Before starting the communication phase, your application needs to initialize and configure

the class to suit its needs. Table 10-6 summarizes the initialization functions provided by the

MSC implementation. Please refer to section E-1 “Mass Storage Class Functions” on page 420

for a full listing of the MSC API.

.

Table 10-6 Class Instance API Functions

To successfully initialize the MSC, you need to follow these steps:

1 Call USBD_MSC_Init()

This is the first function you should call, and it should be called only once regardless of

the number of class instances you intend to have. This function will initialize all internal

structures and variables that the class will need. It will also initialize the real-time

operating system (RTOS) layer.

2 Call USBD_MSC_Add()

This function will add a new instance of the MSC.

3 Call USBD_MSC_CfgAdd()

Once the class instance is correctly configured and initialized, you will need to add it to

a USB configuration. High speed devices will build two separate configurations, one for

full speed and one for high speed by calling USBD_MSC_CfgAdd() for each speed

configuration.

Function name Operation

USBD_MSC_Init() Initializes MSC internal structures and variables.

USBD_MSC_Add() Adds a new instance of the MSC.

USBD_MSC_CfgAdd() Adds existing MSC instance into USB device configuration.

USBD_MSC_LunAdd() Adds a LUN to the MSC interface.

175

Configuration

10

4 Call USBD_MSC_LunAdd()

Lastly, you add a logical unit to the MSC interface by calling this function. You will

specify the type and volume of the logical unit you want to add as well as device details

such as vendor ID, product ID, product revision level and read only. Logical units are

added by a device driver string name composed of the storage device driver name and

the logical unit number as follows: <device_driver_name>:<logical_unit_number>:.

The logical unit number starts counting from number 0. For example, if a device has

only one logical unit, the <logical_unit_number> specified in this field should be 0.

Listing 10-1 shows how the latter functions are called during MSC initialization.

USBD_ERR err;

CPU_INT08U msc_nbr;

CPU_BOOLEAN valid;

USBD_MSC_Init(&err); (1)

if (err != USBD_ERR_NONE){

 return (DEF_FAIL);

}

msc_nbr = USBD_MSC_Add(&err); (2)

if (cfg_hs != USBD_CFG_NBR_NONE){

 valid = USBD_MSC_CfgAdd (msc_nbr, (3)

 dev_nbr,

 cfg_hs,

 &err);

 if (valid != DEF_YES) {

 return (DEF_FAIL);

 }

}

if (cfg_fs != USBD_CFG_NBR_NONE){

 valid = USBD_MSC_CfgAdd (msc_nbr, (4)

 dev_nbr,

 cfg_fs,

 &err);

 if (valid != DEF_YES) {

 return (DEF_FAIL);

 }

}

176

Chapter 10

10

Listing 10-1 MSC Initialization

L10-1(1) Initialize internal structures and variables used by MSC BOT.

L10-1(2) Add a new instance of the MSC.

L10-1(3) Check if high speed configuration is active and proceed to add an existing MSC

interface to the USB configuration.

L10-1(4) Check if full speed configuration is active and proceed to add an existing MSC

interface to the USB configuration.

L10-1(5) Add a logical unit number to the MSC interface by specifying the type and

volume. Note that in this example the <device_driver_name> string is “ram”

and <logical_unit_number> string is “0”.

10-5 USING THE DEMO APPLICATION

The MSC demo consists of two parts:

■ Any file explorer application (Windows, Linux, Mac) from a USB host. For instance, in

Windows, mass-storage devices appear as drives in My Computer. From Windows

Explorer, users can copy, move, and delete files in the devices.

■ The USB Device application on the target board which responds to the request of the

host.

USBD_MSC_LunAdd((void *)”ram:0:”, (5)

 msc_nbr,

 “Micrium”,

 “MSC RamDisk”,

 0x0000,

 DEF_FALSE,

 &err);

if (err != USBD_ERR_NONE){

 return (DEF_FAIL);

}

return(DEF_OK);

177

Using the Demo Application

10

μC/USB Device allows the explorer application to access a MSC device such as a NAND/

NOR Flash memory, RAM disk, Compact Flash, Secure Digital etc. Once the device is

configured for MSC and is connected to the PC host, the operating system will try to load

the necessary drivers to manage the communication with the MSC device. For example,

Windows loads the built-in drivers disk.sys and PartMgr.sys. You will be able to interact with

the device through the explorer application to validate the device stack with MSC.

10-5-1 USB DEVICE APPLICATION

On the target side, the user configures the application through the app_cfg.h file.

Table 10-7 lists a few preprocessor constants that must be defined.

Table 10-7 Application Preprocessor Constants

If RAMDisk storage is used, ensure that the associated storage layer files are included in the

project and configure the following constants detailed in Table 10-8.

Table 10-8 RAM Disk Preprocessor Constants

Preprocessor Constants Description Default Value

APP_CFG_USBD_EN Enables μC/USB Device in the

application.

DEF_ENABLED

APP_CFG_USBD_MSC_EN Enables MSC in the application. DEF_ENABLED

Preprocessor Constants Description Default Value

USBD_RAMDISK_CFG_NBR_UNITS Number of RAMDISK units. 1

USBD_RAMDISK_CFG_BLK_SIZE RAMDISK block size. 512

USBD_RAMDISK_CFG_NBR_BLKS RAMDISK number of blocks. (4*1024*1)

USBD_RAMDISK_CFG_BASE_ADDR RAMDISK base address in memory.

This constant is optional and is used to

define the data area of the RAMDISK. If

it is defined, RAMDISK’s data area will

be set from this base address directly. If

it is not defined, RAMDISK’s data area

will be represented as a table from the

program’s data area.

0XA000000

178

Chapter 10

10

If μC/FS storage is used, ensure that the associated μC/FS storage layer files are included in

the project and configure the following constants detailed in Table 10-8:

Table 10-9 uC/FS Preprocessor Constants

Preprocessor Constant Description Default Value

APP_CFG_FS_EN Enables μC/FS in the application DEF_ENABLED

APP_CFG_FS_DEV_CNT File system device count. 1

APP_CFG_FS_VOL_CNT File system volume count. 1

APP_CFG_FS_FILE_CNT File system file count. 2

APP_CFG_FS_DIR_CNT File system directory count. 1

APP_CFG_FS_BUF_CNT File system buffer count. (2 * APP_CFG_FS_VOL_CNT)

APP_CFG_FS_DEV_DRV_CNT File system device driver count. 1

APP_CFG_FS_WORKING_DIR_CNT File system working directory count. 0

APP_CFG_FS_MAX_SEC_SIZE File system max sector size. 512

APP_CFG_FS_RAM_NBR_SEC File system number of RAM sectors. 8192

APP_CFG_FS_RAM_SEC_SIZE File system RAM sector size. 512

APP_CFG_FS_NBR_TEST File system number of tests. 10

APP_CFG_FS_IDE_EN Enables IDE device in file system. DEF_DISABLED

APP_CFG_FS_MSC_EN Enables MSC device in file system. DEF_DISABLED

APP_CFG_FS_NOR_EN Enables NOR device in file system. DEF_DISABLED

APP_CFG_FS_RAM_EN Enables RAM device in file system. DEF_ENABLED

APP_CFG_FS_SD_EN Enables SD device in file system. DEF_DISABLED

APP_CFG_FS_SD_CARD_EN Enables SD card device in file system. DEF_ENABLED

179

Using the Demo Application

10

10-5-2 USB HOST APPLICATION

To test the μC/USB-Device stack with MSC, the user can use the Windows Explorer as a

USB Host application.

When the device configured for the MSC demo is connected to the PC, Windows loads the

appropriate drivers as shown in Figure 10-4.

Figure 10-4 MSC Device Driver Detection on Windows Host

Open a Windows Explorer and a removable disk appears as shown in Figure 10-5.

Figure 10-5 MSC Device on Windows 7 Explorer

180

Chapter 10

10

When you open the removable disk, if it is the first time the MSC device is connected to the

PC and is not formatted, Windows will ask to format it to handle files on the mass storage.

When formatting, choose the File System you want. In embedded systems, the most

widespread file system is the FAT.

If the mass storage device is a volatile memory such as a SDRAM, every time the target

board is switched off, the data of the memory is lost, and so is the file system data

information. Hence, the next time the target is switched on, the SDRAM is blank and

reconnecting the mass storage to the PC, you will have to format again the mass storage

device.

Once the device is correctly formatted, you are ready to test the MSC demo. Below are a

few examples of what you can do:

■ You can create one or more text files.

■ You can write data in these files.

■ You can open them to read the content of the files.

■ You can copy/paste data.

■ You can delete one or more files.

All of these actions will generate SCSI commands to write and read the mass storage device.

10-6 PORTING MSC TO A STORAGE LAYER

The storage layer port must implement the API functions summarized in Table 10-10. You

can start by referencing to the storage port template located under:

Micrium\Software\uC-USB-Device-V4\Class\MSC\Storage\Template

Please refer to section E-3 “MSC Storage Layer Functions” on page 434 for a full listing of the

storage layer API.

181

Porting MSC to a RTOS

10

Table 10-10 Storage API Functions

10-7 PORTING MSC TO A RTOS

The RTOS layer must implement the API functions listed in Table 10-11. You can start by

referencing the RTOS port template located under:

Micrium\Software\uC-USB-Device-V4\Class\MSC\OS\Template

Please refer to section E-2 “MSC OS Functions” on page 428 for a full API description.

Table 10-11 RTOS API Functions

Function Name Operation

USBD_StorageInit() Initializes the storage medium.

USBD_StorageCapacityGet() Gets the capacity of the storage medium

USBD_StorageRd() Reads data from the storage medium

USBD_StorageWr() Writes data to the storage medium

USBD_StorageStatusGet() Gets the status of the storage medium. If the storage medium is a removable

device such as an SD/MMC card, this function will return if the storage is

inserted or removed.

Function Operation

USBD_MSC_OS_Init() Initializes MSC OS interface. This function will create both signals

(semaphores) for communication and enumeration processes. Furthermore,

this function will create the MSC task used for the MSC protocol.

USBD_MSC_OS_CommSignalPost() Posts a semaphore used for MSC communication,

USBD_MSC_OS_CommSignalPend() Waits on a semaphore to become available for MSC communication.

USBD_MSC_OS_CommSignalDel() Deletes a semaphore if no tasks are waiting for it for MSC communication.

USBD_MSC_OS_EnumSignalPost() Posts a semaphore used for MSC enumeration process.

USBD_MSC_OS_EnumSignalPend() Waits for a semaphore to become available for MSC enumeration process.

182

Chapter 10

10

183

Chapter

11
Personal Healthcare Device Class

This section describes the Personal Healthcare Device Class (PHDC) supported by

μC/USB-Device. The implementation offered refers to the following USB-IF specification:

■ USB Device Class Definition for Personal Healthcare Devices, release 1.0, Nov. 8 2007.

PHDC allows you to build USB devices that are meant to be used to monitor and improve

personal healthcare. Lots of modern personal healthcare devices have arrived on the market

in recent years. Glucose meter, pulse oximeter and blood-pressure monitor are some

examples. A characteristic of these devices is that they can be connected to a computer for

playback, live monitoring or configuration. One of the typical ways to connect these devices

to a computer is by using a USB connection, and that’s why PHDC has been developed.

Although PHDC is a standard, most modern Operating Systems (OS) do not provide any

specific driver for this class. When working with Microsoft Windows®, developers can use

the WinUsb driver provided by Microsoft to create their own driver. The Continua Health

Alliance also provides an example of a PHDC driver based on libusb (an open source USB

library, for more information, see http://www.libusb.org/). This example driver is part of

the Vendor Assisted Source-Code (VASC).

184

Chapter 11

11

11-1 OVERVIEW

11-1-1 DATA CHARACTERISTICS

Personal healthcare devices, due to their nature, may need to send data in 3 different ways:

■ Episodic: Data is sent sporadically each time user accomplishes a specific action.

■ Store and forward: data is collected and stored on device while it is not connected. The

data is then forwarded to the host once it is connected.

■ Continuous: Data is sent continuously to the host for continuous monitoring.

Considering these needs, data transfers will be defined in terms of latency and reliability.

PHDC defines three levels of reliability and four levels of latency:

■ Reliability: Good, better and best.

■ Latency: Very-high, high, medium and low.

For example, a device that sends continuous data for monitoring will send them as low

latency and good reliability.

PHDC does not support all latency/reliability combinations. Here is a list of supported

combinations:

■ Low latency, good reliability.

■ Medium latency, good reliability.

■ Medium latency, better reliability.

■ Medium latency, best reliability.

■ High latency, best reliability.

■ Very high latency, best reliability.

185

Overview

11

These combinations are called quality of service (QoS).

Table 11-1 QoS Levels Description

11-1-2 OPERATIONAL MODEL

The requirements for data transfer QoS in personal healthcare devices can be accomplished

by PHDC using bulk endpoints and, optionally, an interrupt endpoint. Table 11-2 and

Figure 11-1 show the mapping between QoS and endpoint types.

Table 11-2 Endpoint - QoS Mapping

QoS

(Latency / reliability)
Latency

Raw info

rate

Transfer

direction(s)
Typical use

Low / good < 20ms 50 bits/sec to

1.2M bits/sec

IN Real-time monitoring, with fast

analog sampling rate.

Medium / good < 200ms 50 bits/sec to

1.2M bits/s

IN

Medium / better < 200ms 10s of byte

range

IN Data from measured parameter

collected off-line and replayed or

sent real-time.

Medium / best < 200ms 10s of byte

range

IN, OUT Events, notifications, request,

control and status of physiological

and equipment functionality.

High / best < 2s 10s of byte

range

IN, OUT Physiological and equipment

alarms.

Very high / best < 20s 10s of byte

range to

gigabytes of

data

IN, OUT Transfer reports, histories or off-line

collection of data.

Endpoint Usage

Bulk OUT All QoS host to device data transfers.

Bulk IN Very high, high and medium latency device to host data transfers.

Interrupt IN Low latency device to host data transfers.

186

Chapter 11

11

Figure 11-1 QoS - Endpoint Mapping

PHDC does not define a protocol for data and messaging. It is only intended to be used as

a communication layer. Developers can use either data and messaging protocol defined in

ISO/IEEE 11073-20601 base protocol or a vendor-defined protocol. Figure 11-2 shows the

different software layers needed in a personal healthcare device.

Figure 11-2 Personal Healthcare Device Software Layers

Since transfers having different QoS will have to share a single bulk endpoint, host and

device need a way to inform each other what is the QoS of the current transfer. A metadata

message preamble will then be sent before a single or a group of regular data transfers. This

preamble will contain the information listed in Table 11-3.

)�����3�+�

� �
��
��#��2

!
�1#��

!
�1#���

��!#+�
����

	
%�
�#.#7
'�

)�&0#.#7
'�

3
�5#0�&0#.#7
'�

	
%�
�#.#7
'�

)�&0#.#7
'�

3
�5#0�&0#.#7
'�

	
%�
�#.#&��%

	
%�
�#.#7
��
�

-��#.#&��%

�
�'� ��#0
���0���
#����������

����#�
''�&� &#� %#��������#
��5
�8#�
�8#���.����#���9:#7�'
%#

��#$
 %��#%
��
%�

��!#�
�'� ��#)
���0���
#�
$��
#
+��''#��5
�

187

Configuration

11

Table 11-3 Metadata Preamble

11-2 CONFIGURATION

11-2-1 GENERAL CONFIGURATION

Some constants are available to customize the class. These constants are located in the

usbd_cfg.h file. Table 11-4 shows a description of each of them.

Offset Field Size (bytes) Description

0 aSignature 16 Constant used to verify preamble validity. Always

set to “PhdcQoSSignature” string.

16 bNumTransfers 1 Count of following transfers to which QoS setting

applies.

17 bQoSEncodingVersion 1 QoS information encoding version. Should be 0x01.

18 bmLatencyReliability 1 Bitmap that refers to latency / reliability bin for data.

19 bOpaqueDataSize 1 Length, in bytes, of opaque data.

20 bOpaqueData [0 ..

MaxPacketSize - 21]

Optional data usually application specific that is

opaque to the class.

Constant Description

USBD_PHDC_CFG_MAX_NBR_DEV Configures the maximum number of class instances. Unless you plan

having multiple configuration or interfaces using different class

instances, this can be set to 1.

USBD_PHDC_CFG_MAX_NBR_CFG Configures the maximum number of configuration in which PHDC is

used. Keep in mind that if you use a high-speed device, two

configurations will be built, one for full-speed and another for

high-speed.

USBD_PHDC_CFG_DATA_OPAQUE_MAX_LEN Maximum length in octets that opaque data can be. Must always be

equal or less to MaxPacketSize - 21.

188

Chapter 11

11

Table 11-4 Configuration Constants Summary

If you set USBD_PHDC_OS_CFG_SCHED_EN to DEF_ENABLED and you use a μC/OS-II or

μC/OS-III RTOS port, PHDC will need an internal task for the scheduling operations. There

are two application specific configurations that must be set in this case. They should be

defined in the app_cfg.h file. Table 11-5 describes these configurations.

Table 11-5 Application-Specific Configuration Constants

USBD_PHDC_OS_CFG_SCHED_EN If using μC/OS-II or μC/OS-III RTOS port, enable or disable the

scheduler feature. You should set it to DEF_DISABLED if device only use

one QoS level to send data, for instance. (See section 11-4 “RTOS

QoS-based scheduler” on page 196)

WARNING: If you set this constant to DEF_ENABLED, you MUST ensure

that the scheduler’s task has a lower priority (i.e. higher priority value)

than any task that can write PHDC data.

Constant Description

USBD_PHDC_OS_CFG_SCHED_TASK_PRIO QoS based scheduler’s task priority.

WARNING: You must ensure that the scheduler’s task has a lower

priority (i.e. higher priority value) than any task writing PHDC data.

USBD_PHDC_OS_CFG_SCHED_TASK_STK_SIZE QoS based scheduler’s task stack size. Default value is 512.

Constant Description

189

Configuration

11

11-2-2 CLASS INSTANCE CONFIGURATION

Before starting the communication phase, your application needs to initialize and configure

the class to suit its needs. Table 11-6 summarizes the initialization functions provided by the

PHDC implementation. For a complete API reference, see section F-1 “PHDC Functions” on

page 442.

Table 11-6 PHDC Initialization API Summary

You need to follow these steps to successfully initialize PHDC:

1 Call USBD_PHDC_Init()

This is the first function you should call, and you should do it only once, even if you

use multiple class instances. This function will initialize all internal structures and

variables that the class will need. It will also initialize the real-time operating system

(RTOS) layer.

2 Call USBD_PHDC_Add()

This function will allocate a PHDC instance. This call will also let you determine if the

PHDC instance is capable of sending / receiving metadata message preamble and if it

uses vendor defined or ISO/IEEE 11073 based data and messaging protocol.

Another parameter of this function lets you specify a callback function that the class will

call when host enables / disables metadata message preambles. This is useful for the

application as the behavior in communication will differ depending on the metadata

message preamble state.

Function name Operation

USBD_PHDC_Init() Initializes PHDC internal structures and variables.

USBD_PHDC_Add() Adds a new instance of PHDC.

USBD_PHDC_RdCfg() Configures read communication pipe parameters.

USBD_PHDC_WrCfg() Configures write communication pipe parameters.

USBD_PHDC_11073_ExtCfg() Configures 11073 function extension(s).

USBD_PHDC_CfgAdd() Adds PHDC instance into USB device configuration.

190

Chapter 11

11

If your application needs to send low latency / good reliability data, the class will need

to allocate an interrupt endpoint. The interval of the endpoint will be specified in this

call as well.

3 Call USBD_PHDC_RdCfg() and USBD_PHDC_WrCfg()

The next step is to call USBD_PHDC_RdCfg() and USBD_PHDC_WrCfg(). These functions

will let you set the latency / reliability bins that the communication pipe will carry. Bins

are listed in Table 11-7. It will also be used to specify opaque data to send within extra

endpoint metadata descriptor (see “USB Device Class Definition for Personal Healthcare

Devices”, Release 1.0, Section 5 for more details on PHDC extra descriptors)..

Table 11-7 Listing of QoS Bins

4 Call USBD_PHDC_11073_ExtCfg() (optional)

If PHDC instance uses ISO/IEEE 11073 based data and messaging protocol, a call to this

function will let you configure the device specialization code(s).

5 Call USBD_PHDC_CfgAdd()

Finally, once the class instance is correctly configured and initialized, you will need to

add it to a USB configuration. This is done by calling USBD_PHDC_CfgAdd().

Name Description

USBD_PHDC_LATENCY_VERYHIGH_RELY_BEST Very-high latency, best reliability.

USBD_PHDC_LATENCY_HIGH_RELY_BEST High latency, best reliability.

USBD_PHDC_LATENCY_MEDIUM_RELY_BEST Medium latency, best reliability.

USBD_PHDC_LATENCY_MEDIUM_RELY_BETTER Medium latency, better reliability.

USBD_PHDC_LATENCY_MEDIUM_RELY_GOOD Medium latency, good reliability.

USBD_PHDC_LATENCY_LOW_RELY_GOOD Low latency, good reliability.

191

Configuration

11

Listing 11-1 shows an example of initialization and configuration of a PHDC instance. If you

need more than one class instance of PHDC for your application, refer to section 7-1 “Class

Instance Concept” on page 99 for generic examples of how to build your device.

Listing 11-1 PHDC Instance Initialization and Configuration Example

L11-1(1) Initialize PHDC internal members and variables.

L11-1(2) Create a PHDC instance, this instance support preambles and ISO/IEEE 11073

based data and messaging protocol.

CPU_BOOLEAN App_USBD_PHDC_Init(CPU_INT08U dev_nbr,

 CPU_INT08U cfg_hs,

 CPU_INT08U cfg_fs)

{

 USBD_ERR err;

 CPU_INT08U class_nbr;

 USBD_PHDC_Init(&err); (1)

 class_nbr = USBD_PHDC_Add(DEF_YES, (2)

 DEF_YES,

 App_USBD_PHDC_SetPreambleEn,

 10,

 &err);

 latency_rely_flags = USBD_PHDC_LATENCY_VERYHIGH_RELY_BEST |

 USBD_PHDC_LATENCY_HIGH_RELY_BEST |

 USBD_PHDC_LATENCY_MEDIUM_RELY_BEST;

 USBD_PHDC_RdCfg(class_nbr, (3)

 latency_rely_flags,

 opaque_data_rx,

 sizeof(opaque_data_rx),

 &err);

 USBD_PHDC_WrCfg(class_nbr, (3)

 USBD_PHDC_LATENCY_VERYHIGH_RELY_BEST,

 opaque_data_tx,

 sizeof(opaque_data_tx),

 &err);

 USBD_PHDC_11073_ExtCfg(class_nbr, dev_specialization, 1, &err); (4)

 valid_cfg_hs = USBD_PHDC_CfgAdd(class_nbr, dev_nbr, cfg_hs, &err); (5)

 valid_cfg_fs = USBD_PHDC_CfgAdd(class_nbr, dev_nbr, cfg_fs, &err); (6)

}

192

Chapter 11

11

L11-1(3) Configure read and write pipes with correct QoS and opaque data.

L11-1(4) Add ISO/IEEE 11073 device specialization to PHDC instance.

L11-1(5) Add class instance to high-speed configuration.

L11-1(6) Add class instance to full-speed configuration.

11-3 CLASS INSTANCE COMMUNICATION

Now that the class instance has been correctly initialized, it’s time to exchange data. PHDC

offers 4 functions for that. Table 11-8 summarizes the communication functions provided by

the PHDC implementation. See Appendix F, “PHDC API Reference” on page 441 for a

complete API reference.

Table 11-8 PHDC Communication API Summary

11-3-1 COMMUNICATION WITH METADATA PREAMBLE

Via the preamble enabled callback, the application will be notified once host enables

metadata preamble. If metadata preambles are enabled, you should use the following

procedure to perform a read:

■ Call USBD_PHDC_RdPreamble(). Device expects metadata preamble from the host. This

function will return opaque data and the number of incoming transfers that the host

specified. Note that if the host disables preamble while the application is pending on

that function, it will immediately return with error “USBD_ERR_OS_ABORT”.

Function name Operation

USBD_PHDC_RdPreamble() Reads metadata preamble.

USBD_PHDC_Rd() Reads PHDC data.

USBD_PHDC_WrPreamble() Writes metadata preamble.

USBD_PHDC_Wr() Writes PHDC data.

193

Class Instance Communication

11

■ Call USBD_PHDC_Rd() a number of times corresponding to the number of incoming

transfers returned by USBD_PHDC_RdPreamble(). Application must ensure that the

buffer provided to the function is large enough to accommodate all the data. Otherwise,

synchronization issues might happen. Note that if the host enables preamble while the

application is pending on that function, it will immediately return with error

“USBD_ERR_OS_ABORT”.

Listing 11-2 PHDC Read Procedure

L11-2(1) The class instance number obtained with USBD_PHDC_Add() will serve

internally to the PHDC class to route the data to the proper endpoints.

CPU_INT16U App_USBD_PHDC_Rd(CPU_INT08U class_nbr,

 CPU_INT08U *p_data_opaque_buf

 CPU_INT08U *p_data_opaque_len,

 CPU_INT08U *p_buf,

 USBD_ERR *p_err)

{

 CPU_INT08U nbr_xfer;

 CPU_INT16U xfer_len;

 *p_data_opaque_len = USBD_PHDC_RdPreamble(class_nbr, (1)

 (void *)p_data_opaque_buf, (2)

 USBD_PHDC_CFG_DATA_OPAQUE_MAX_LEN,

 &nbr_xfer, (3)

 0, (4)

 p_err);

 for (i = 0; i < nbr_xfers; i++) { (5)

 xfer_len = USBD_PHDC_Rd(class_nbr,

 (void *)p_buf, (6)

 APP_USBD_PHDC_ITEM_DATA_LEN_MAX,

 0, (4)

 p_err);

 /* Handle received data. */

 }

 return (xfer_len);

}

194

Chapter 11

11

L11-2(2) Buffer that will contain opaque data. Application must ensure that the buffer

provided is large enough to accommodate all the data. Otherwise,

synchronization issues might happen.

L11-2(3) Variable that will contain the number of following transfers to which this

preamble applies.

L11-2(4) In order to avoid infinite blocking situation, a timeout expressed in

milliseconds can be specified. A value of ‘0’ makes the application task wait

forever.

L11-2(5) Read all the USB transfers to which the preamble applies.

L11-2(6) Buffer that will contain the data. Application must ensure that the buffer

provided is large enough to accommodate all the data. Otherwise,

synchronization issues might happen.

You should use the following procedure to perform a write:

■ Call USBD_PHDC_WrPreamble(). Host expects metadata preamble from the device.

Application will have to specify opaque data, transfer’s QoS (see Table 11-7), and a

number of following transfers to which the selected QoS applies.

■ Call USBD_PHDC_Wr() a number of times corresponding to the number of transfers

following the preamble.

CPU_INT16U App_USBD_PHDC_Wr(CPU_INT08U class_nbr,

 LATENCY_RELY_FLAGS latency_rely,

 CPU_INT08U nbr_xfer,

 CPU_INT08U *p_data_opaque_buf

 CPU_INT08U data_opaque_buf_len,

 CPU_INT08U *p_buf,

 CPU_INT08U buf_len,

 USBD_ERR *p_err)

195

Class Instance Communication

11

Listing 11-3 PHDC Write Procedure

L11-3(1) The class instance number obtained with USBD_PHDC_Add() will serve

internally to the PHDC class to route the data to the proper endpoints.

L11-3(2) Buffer that contains opaque data.

L11-3(3) Latency / reliability (QoS) of the following transfer(s).

L11-3(4) Variable that contains the number of following transfers to which this preamble

will apply.

L11-3(5) In order to avoid infinite blocking situation, a timeout expressed in

milliseconds can be specified. A value of ‘0’ makes the application task wait

forever.

L11-3(6) Write all the USB transfers to which the preamble will apply.

L11-3(7) Buffer that contains the data.

{

 (void)USBD_PHDC_WrPreamble(class_nbr, (1)

 (void *)p_data_opaque_buf, (2)

 data_opaque_buf_len,

 latency_rely, (3)

 nbr_xfer, (4)

 0, (5)

 p_err);

 for (i = 0; i < nbr_xfer; i++) { (6)

 /* Prepare data to send. */

 xfer_len = USBD_PHDC_Wr(class_nbr, (1)

 (void *)p_buf, (7)

 buf_len,

 latency_rely, (3)

 0,

 p_err);

 }

}

196

Chapter 11

11

11-3-2 COMMUNICATION WITHOUT METADATA PREAMBLE

If device does not support metadata preamble or if it supports them but it has not been

enabled by the host, you should not call USBD_PHDC_RdPreamble() and

USBD_PHDC_WrPreamble().

11-4 RTOS QOS-BASED SCHEDULER

Since it is possible to send data with different QoS using a single bulk endpoint, you might

want to prioritize the transfers by their QoS latency (medium latency transfers processed

before high latency transfers, for instance). This kind of prioritization is implemented inside

PHDC μC/OS-II and μC/OS-III RTOS layer. Table 11-9 shows the priority value associated

with each QoS latency (the lowest priority value will be treated first).

Table 11-9 QoS Based Scheduler Priority Values

For instance, let’s say that your application has 3 tasks. Task A has an OS priority of 1, task

B has an OS priority of 2 and task C has an OS priority of 3. Note that a low priority number

indicates a high priority task. Now say that all 3 tasks want to write PHDC data of different

QoS latency. Task A wants to write data that can have very high latency, task B wants to

write data that can have medium latency, and finally, task C wants to write data that can

have high latency. Table 11-10 shows a summary of the tasks involved in this example.

Table 11-10 QoS-Based Scheduling Example

QoS latency QoS based scheduler associated priority

Very high latency 3

High latency 2

Medium latency 1

Task
QoS latency of data to

write
OS priority

QoS priority of data to

write

A Very high 1 3

B Medium 2 1

C High 3 2

197

RTOS QoS-based scheduler

11

If no QoS based priority management is implemented, the OS will then resume the tasks in

the order of their OS priority. In this example, the task that has the higher OS priority, A,

will be resumed first. However, that task wants to write data that can have very high latency

(QoS priority of 3). A better choice would be to resume task B first, which wants to send

data that can have medium latency (QoS priority of 1). Figure 11-3 and Figure 11-4

represent this example without and with a QoS-based scheduler, respectively.

Figure 11-3 Task Execution Order, Without QoS Based Scheduling

Figure 11-4 Task Execution Order, with QoS Based Scheduling

F11-4(1)

F11-4(2)

F11-4(3) A task currently holds the lock on the write bulk endpoint, task A, B and C are

added to the wait list until the lock is released.

��'1#�
��#�������5#�

3
�5,0�&0#���
 �5#%���

��'1#!
��#�������5#/

	
%�
�#���
 �5#%���

��'1#+
��#�������5#:

)�&0#���
 �5#%���

��'1

��'1

��'1

��'1#�
��#�������5#�

3
�5,0�&0#���
 �5#%���

��'1#!
��#�������5#/

	
%�
�#���
 �5#%���

��'1#+
��#�������5#:

)�&0#���
 �5#%���

��'1

��'1

��'1

�)�+#'�0
%
�
�

��'1

���

�;�

��'1

�9�

��'1

���

�/�

�:�

198

Chapter 11

11

F11-4(4) The lock has been released. The QoS based scheduler’s task is resumed, and

finds the task that should be resumed first (according to the QoS of the data it

wants to send). Task B is resumed.

F11-4(5) Task B completes its execution and releases the lock on the pipe. This resumes

the scheduler’s task.

F11-4(6) Again, the QoS based scheduler finds the next task that should be resumed.

Task C is resumed.

F11-4(7) Task C has completed its execution and releases the lock. Scheduler task is

resumed and determines that task A is the next one to be resumed.

The QoS-based scheduler is implemented in the RTOS layer. Three functions are involved in

the execution of the scheduler.

Table 11-11 QoS-Based Scheduler API Summary

Pseudocode for these three functions are shown in Listing 11-4, Listing 11-5 and

Listing 11-6.

Function name Called by Operation

USBD_PHDC_OS_WrBulkLock() USBD_PHDC_Wr() or

USBD_PHDC_WrPreamble(), depending if

preambles are enabled or not.

Locks write bulk pipe.

USBD_PHDC_OS_WrBulkUnlock() USBD_PHDC_Wr() . Unlocks write bulk pipe.

USBD_PHDC_OS_WrBulkSchedTask() N/A. Determines next task to

resume.

199

RTOS QoS-based scheduler

11

Listing 11-4 Pseudocode of USBD_PHDC_OS_WrBulkLock()

Listing 11-5 Pseudocode of USBD_PHDC_OS_WrBulkUnlock()

Listing 11-6 Pseudocode of QoS-Based Scheduler’s Task

void USBD_PHDC_OS_WrBulkLock (CPU_INT08U class_nbr,

 CPU_INT08U prio,

 CPU_INT16U timeout_ms,

 USBD_ERR *p_err)

{

 Increment transfer count of given priority (QoS);

 Post scheduler lock semaphore;

 Pend on priority specific semaphore;

 Decrement transfer count of given priority (QoS);

}

void USBD_PHDC_OS_WrBulkUnlock (CPU_INT08U class_nbr)

{

 Post scheduler release semaphore;

}

static void USBD_PHDC_OS_WrBulkSchedTask (void *p_arg)

{

 Pend on scheduler lock semaphore;

 Get next highest QoS ready;

 PostSem(SemList[QoS]);

 Pend on scheduler release semaphore;

}

200

Chapter 11

11

11-5 USING THE DEMO APPLICATION

Micriμm provides a demo application that lets you test and evaluate the class

implementation. Source files are provided for the device (for μC/OS-II and μC/OS-III only).

Executable and source files are provided for the host (Windows only).

11-5-1 SETUP THE APPLICATION

On the target side, two applications are available: app_usbd_phdc_single.c and

app_usbd_phdc_multiple.c. You should compile only one of these files with your project.

Table 11-12 provide a description of each one. Both files are located in the following folders:

\Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-II

\Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-III

Table 11-12 Device Demo Application Files

Several constants are available to customize the demo application on both device and host

(Windows) side. Table 11-13 describe device side constants that are located in the app_cfg.h

file. Table 11-14 describe host side constants that are located in the app_phdc.c file.

Table 11-13 Device Side Demo Application’s Configuration Constants

File Description

app_usbd_phdc_single.c Only one task is used to send all data of different QoS. Usually used with

USBD_PHDC_OS_CFG_SCHED_EN set to DEF_DISABLED.

app_usbd_phdc_multiple.c One task per QoS level is used to send data. Usually used with

USBD_PHDC_OS_CFG_SCHED_EN set to DEF_ENABLED.

Constant Description

APP_CFG_USBD_PHDC_EN Set to DEF_ENABLED to enable the demo application.

APP_CFG_USBD_PHDC_TX_COMM_TASK_PRIO Priority of the write task.

APP_CFG_USBD_PHDC_RX_COMM_TASK_PRIO Priority of the read task.

APP_CFG_USBD_PHDC_TASK_STK_SIZE Stack size of both read and write tasks. Default value is 512.

APP_CFG_USBD_PHDC_ITEM_DATA_LEN_MAX Set this constant to the maximum number of bytes that can be

transferred as data. Must be >= 5.

APP_CFG_USBD_PHDC_ITEM_NBR_MAX Set this constant to the maximum number of items that the

application should support. Must be >= 1.

201

Using the Demo Application

11

Table 11-14 Host Side (Windows) Demo Application’s Configuration Constants

Since Microsoft does not provide any specific driver for PHDC, you will have to indicate to

windows which driver to load using an “inf” file. The “inf” file will ask Windows to load the

WinUSB generic driver (provided by Microsoft). The application uses the USBDev_API,

which is a wrapper of the WinUSB driver (refer to section 12-3 “USBDev_API” on page 214).

Windows will ask for the INF file (refer to section 3-1-1 “About INF Files” on page 46) the

first time the device will be plugged-in. It is located in the following folder:

\Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\PHDC\INF

Once the driver is successfully loaded, the Windows host application is ready to be

launched. The executable is located in the following folder:

\Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\PHDC\Visual Studio 2010\exe

Constant Description

APP_ITEM_DATA_LEN_MAX Set this constant to the maximum number of bytes that can be

transferred as data. Must be >= 5.

APP_ITEM_DATA_OPAQUE_LEN_MAX Set this constant to the maximum number of bytes that can be

transferred as opaque data. Must be <= (MaxPacketSize - 21).

APP_ITEM_NBR_MAX Set this constant to the maximum number of items that the application

should support. Must be >= 1.

APP_STAT_COMP_PERIOD Set this constant to the period (in ms) on which the statistic of each

transfer (mean and standard deviation) should be computed.

APP_ITEM_PERIOD_MIN Set this constant to the minimum period (in ms) that a user can specify for

an item.

APP_ITEM_PERIOD_MAX Set this constant to the maximum period (in ms) that a user can specify

for an item.

APP_ITEM_PERIOD_MULTIPLE Set this constant to a multiple (in ms) that periodicity of items specified by

the user must comply.

202

Chapter 11

11

11-5-2 RUNNING THE DEMO APPLICATION

In this demo application, you can ask the device to continuously send data of different QoS

level and using a given periodicity. Each requested transfer is called an “item”. Using the

monitor, you can see each transfer’s average periodicity and standard deviation. The

monitor will also show the data and opaque data that you specified. At startup, the

application will always send a default item with a periodicity of 100 ms. This item will send

the device CPU usage and the value of a counter that is incremented each time the item is

sent. The default item uses low latency / good reliability as QoS. Figure 11-5 shows the

demo application at startup.

Figure 11-5 Demo Application at Startup

At this point, you have the possibility to add a new item by pressing 1. You will be

prompted to specify the following values:

■ Periodicity of the transfer

■ QoS (Latency / reliability) of the transfer

■ Opaque data (if QoS is not low latency / good reliability)

■ Data

203

Porting PHDC to a RTOS

11

Figure 11-6 shows the demo application with a few items added.

Figure 11-6 Demo Application with five Items Added

11-6 PORTING PHDC TO A RTOS

Since PHDC communication functions can be called from different tasks at application level,

there is a need to protect the resources they use (in this case, the endpoint). Furthermore,

since it is possible to send data with different QoS using a single bulk endpoint, an

application might want to prioritize the transfers by their QoS (i.e. medium latency transfers

processed before high latency transfers). This kind of prioritization can be

implemented/customized inside the RTOS layer (see Section 11-4, “RTOS QoS-based

scheduler” on page 196, for more information). By default, Micriμm will provide an RTOS

layer for both μC/OS-II and μC/OS-III. However, it is possible to create your own RTOS

layer. Your layer will need to implement the functions listed in Table 11-15. For a complete

API description, see Appendix F, “PHDC API Reference” on page 441.

204

Chapter 11

11

Table 11-15 OS Layer API Summary

Function name Operation

USBD_PHDC_OS_Init() Initializes all internal members / tasks.

USBD_PHDC_OS_RdLock() Locks read pipe.

USBD_PHDC_OS_RdUnlock() Unlocks read pipe.

USBD_PHDC_OS_WrBulkLock() Locks write bulk pipe.

USBD_PHDC_OS_WrBulkUnlock() Unlocks write bulk pipe.

USBD_PHDC_OS_WrIntrLock() Locks write interrupt pipe.

USBD_PHDC_OS_WrIntrUnlock() Unlocks write interrupt pipe.

USBD_PHDC_OS_Reset() Resets OS layer members.

205

Chapter

12
Vendor Class

The Vendor class allows you to build vendor-specific devices implementing for instance a

proprietary protocol. It relies on a pair of bulk endpoints to transfer data between the host

and the device. Bulk transfers are typically convenient for transferring large amounts of

unstructured data and provides reliable exchange of data by using an error detection and

retry mechanism. Besides bulk endpoints, an optional pair of interrupt endpoints can also

be used. Any operating system (OS) can work with the Vendor class provided that the OS

has a driver to handle the Vendor class. Depending on the OS, the driver can be native or

vendor-specific. For instance, under Microsoft Windows®, your application interacts with

the WinUSB driver provided by Microsoft to communicate with the vendor device.

206

Chapter 12

12

12-1 OVERVIEW

Figure 12-1 shows the general architecture between the host and the device using the

Vendor class. In this example, the host operating system is Windows.

Figure 12-1 General Architecture Between Windows Host and Vendor Class

On the Windows side, the application communicates with the vendor device by interacting

with the USBDev_API library. This library provided by Micriμm offers an API to manage a

device and its associated pipes, and to communicate with the device through control, bulk

and interrupt endpoints. USBDev_API is a wrapper that allows the use of the WinUSB

functions exposed by Winusb.dll.

On the device side, the Vendor class is composed of the following endpoints:

■ A pair of control IN and OUT endpoints called the default endpoint.

■ A pair of bulk IN and OUT endpoints.

■ A pair of interrupt IN and OUT endpoints. This pair is optional.

+��, -��.��� ��

'����������

�������'��

E���!#8!<!

E����C!�.�!��!���"

&'(�������

'����������

3��, "���
��

���"
�*

���"�
+�

����

�����
�*

����

�����
+�

����
���)
�*�3�+�

207

Configuration

12

Table 12-1 indicates the usage of the different endpoints:

Table 12-1 Vendor Class Endpoints Usage

The device application can use bulk and interrupt endpoints to send or receive data to or

from the host. It can only use the default endpoint to decode vendor-specific requests sent

by the host. The standard requests are managed internally by the Core layer of

μC/USB-Device.

12-2 CONFIGURATION

12-2-1 GENERAL CONFIGURATION

Some constants are available to customize the class. These constants are located in the USB

device configuration file, usbd_cfg.h. Table 12-2 shows their description.

Table 12-2 General Configuration Constants Summary

Endpoint Direction Usage

Control IN

Control OUT

Device-to-host

Host-to-device

Standard requests for enumeration and vendor-specific requests.

Bulk IN

Bulk OUT

Device-to-host

Host-to-device

Raw data communication. Data can be structured according to a

proprietary protocol.

Interrupt IN

Interrupt OUT

Device-to-host

Host-to-device

Raw data communication or notification. Data can be structured

according to a proprietary protocol.

Constant Description

USBD_VENDOR_CFG_MAX_NBR_DEV Configures the maximum number of class instances. Unless you plan

on having multiple configurations or interfaces using different class

instances, this can be set to 1.

USBD_VENDOR_CFG_MAX_NBR_CFG Configures the maximum number of configuration in which Vendor

class is used. Keep in mind that if you use a high-speed device, two

configurations will be built, one for full-speed and another for

high-speed.

208

Chapter 12

12

12-2-2 CLASS INSTANCE CONFIGURATION

Before starting the communication phase, your application needs to initialize and configure

the class to suit its needs. Table 12-3 summarizes the initialization functions provided by the

Vendor class. For more details about the functions parameters, refer to section G-1 “Vendor

Class Functions” on page 474.

Table 12-3 Vendor Class Initialization API Summary

You need to call these functions in the order shown below to successfully initialize the

Vendor class:

1 Call USBD_Vendor_Init()

This is the first function you should call and you should do it only once even if you use

multiple class instances. This function initializes all internal structures and variables that

the class needs.

2 Call USBD_Vendor_Add()

This function allocates a Vendor class instance. This function allows you to include a

pair of interrupt endpoints for the considered class instance. If the interrupt endpoints

are included, the polling interval can also be indicated. The polling interval will be the

same for interrupt IN and OUT endpoints. Moreover, another parameter lets you specify

a callback function used when receiving vendor requests. This callback allows the

decoding of vendor-specific requests utilized by a proprietary protocol.

3 Call USBD_Vendor_CfgAdd()

Finally, once the Vendor class instance has been created, you must add it to a specific

configuration.

Function name Operation

USBD_Vendor_Init() Initializes Vendor class internal structures and variables.

USBD_Vendor_Add() Creates a new instance of Vendor class.

USBD_Vendor_CfgAdd() Adds Vendor instance to the specified device configuration.

209

Configuration

12

Listing 12-1 illustrates the use of the previous functions for initializing the Vendor class.

Listing 12-1 Vendor Class Initialization Example

L12-1(1) Provide an application callback for vendor requests decoding.

L12-1(2) Initialize Vendor internal structures, variables.

 (1)

static CPU_BOOLEAN App_USBD_Vendor_VendorReq (CPU_INT08U class_nbr,

 const USBD_SETUP_REQ *p_setup_req);

CPU_BOOLEAN App_USBD_Vendor_Init (CPU_INT08U dev_nbr,

 CPU_INT08U cfg_hs,

 CPU_INT08U cfg_fs)

{

 USBD_ERR err;

 CPU_INT08U class_nbr;

 USBD_Vemdor_Init(&err); (2)

 if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

 }

 (3)

 class_nbr = USBD_Vendor_Add(DEF_FALSE,

 0u,

 App_USBD_Vendor_VendorReq, (1)

 &err);

 if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

 }

 if (cfg_hs != USBD_CFG_NBR_NONE) {

 USBD_Vendor_CfgAdd(class_nbr, dev_nbr, cfg_hs, &err); (4)

 if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

 }

 }

 if (cfg_fs != USBD_CFG_NBR_NONE) {

 USBD_Vendor_CfgAdd(class_nbr, dev_nbr, cfg_fs, &err); (5)

 if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

 }

 }

}

210

Chapter 12

12

L12-1(3) Create a new Vendor class instance. In this example, DEF_FALSE indicates that

no interrupt endpoints are used. Hence, the polling interval is set to 0. The

callback App_USBD_Vendor_VendorReq() is passed to the function.

L12-1(4) Check if the high-speed configuration is active and proceed to add the Vendor

instance previously created to this configuration.

L12-1(5) Check if the full-speed configuration is active and proceed to add the Vendor

instance to this configuration.

Code Listing 12-1 also illustrates an example of multiple configurations. The functions

USBD_Vendor_Add() and USBD_Vendor_CfgAdd() allow you to create multiple

configurations and multiples instances architecture. Refer to section 7-1 “Class Instance

Concept” on page 99 for more details about multiple class instances.

12-2-3 CLASS INSTANCE COMMUNICATION

The Vendor class offers the following functions to communicate with the host. For more

details about the functions parameters, refer to section G-1 “Vendor Class Functions” on

page 474.

Table 12-4 Vendor Communication API Summary

Function name Operation

USBD_Vendor_Rd() Receive data from host through bulk OUT endpoint. This function is blocking.

USBD_Vendor_Wr() Send data to host through bulk IN endpoint. This function is blocking.

USBD_Vendor_RdAsync() Receive data from host through bulk OUT endpoint. This function is

non-blocking.

USBD_Vendor_WrAsync() Send data to host through bulk IN endpoint. This function is non-blocking.

USBD_Vendor_IntrRd() Receive data from host through interrupt OUT endpoint. This function is

blocking.

USBD_Vendor_IntrWr() Sends data to host through interrupt IN endpoint. This function is blocking.

USBD_Vendor_IntrRdAsync() Receives data from host through interrupt OUT endpoint. This function is

non-blocking.

USBD_Vendor_IntrWrAsync() Sends data to host through interrupt IN endpoint. This function is non-blocking.

211

Configuration

12

12-2-4 SYNCHRONOUS COMMUNICATION

Synchronous communication means that the transfer is blocking. Upon function call, the

applications blocks until the transfer completion with or without an error. A timeout can be

specified to avoid waiting forever.

Listing 12-2 presents a read and write example to receive data from the host using the bulk

OUT endpoint and to send data to the host using the bulk IN endpoint.

Listing 12-2 Synchronous Bulk Read and Write Example

L12-2(1) The class instance number created with USBD_Vendor_Add() will serve internally

to the Vendor class to route the transfer to the proper bulk OUT or IN endpoint.

L12-2(2) Application must ensure that the buffer provided to the function is large enough

to accommodate all the data. Otherwise, synchronization issues might happen.

L12-2(3) In order to avoid an infinite blocking situation, a timeout expressed in milliseconds

can be specified. A value of ‘0’ makes the application task wait forever.

CPU_INT08U rx_buf[2];

CPU_INT08U tx_buf[2];

USBD_ERR err;

(void)USBD_Vendor_Rd(class_nbr, (1)

 (void *)&rx_buf[0], (2)

 2u,

 0u, (3)

 &err);

if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

}

(void)USBD_Vendor_Wr(class_nbr, (1)

 (void *)&tx_buf[0], (4)

 2u,

 0u, (3)

 DEF_FALSE, (5)

 &err);

if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

}

212

Chapter 12

12

L12-2(4) Application provides the initialized transmit buffer.

L12-2(5) If this flag is set to DEF_TRUE and the transfer length is multiple of the endpoint

maximum packet size, the device stack will send a zero-length packet to the

host to signal the end of transfer.

The use of interrupt endpoint communication functions, USBD_Vendor_IntrRd() and

USBD_Vendor_IntrWr(), is similar to bulk endpoint communication functions presented in

Listing 12-2.

12-2-5 ASYNCHRONOUS COMMUNICATION

Asynchronous communication means that the transfer is non-blocking. Upon function call,

the application passes the transfer information to the device stack and does not block.

Other application processing can be done while the transfer is in progress over the USB

bus. Once the transfer has completed, a callback is called by the device stack to inform the

application about the transfer completion. Listing 12-3 shows an example of asynchronous

read and write.

void App_USBD_Vendor_Comm (CPU_INT08U class_nbr)

{

 CPU_INT08U rx_buf[2];

 CPU_INT08U tx_buf[2];

 USBD_ERR err;

 USBD_Vendor_RdAsync(class_nbr, (1)

 (void *)&rx_buf[0], (2)

 2u,

 App_USBD_Vendor_RxCmpl, (3)

 (void *) 0u, (4)

 &err);

 if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

 }

 USBD_Vendor_WrAsync(class_nbr, (1)

 (void *)&tx_buf[0], (5)

 2u,

 App_USBD_Vendor_TxCmpl, (3)

 (void *) 0u, (4)

 DEF_FALSE, (6)

 &err);

213

Configuration

12

Listing 12-3 Asynchronous Bulk Read and Write Example

 if (err != USBD_ERR_NONE) {

 /* $$$$ Handle the error. */

 }

}

 (3)

static void App_USBD_Vendor_RxCmpl (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT32U xfer_len,

 void *p_callback_arg,

 USBD_ERR err)

{

 (void)class_nbr;

 (void)p_buf;

 (void)buf_len;

 (void)xfer_len;

 (void)p_callback_arg; (4)

 if (err == USBD_ERR_NONE) {

 /* $$$$ Do some processing. */

 } else {

 /* $$$$ Handle the error. */

 }

}

 (3)

static void App_USBD_Vendor_TxCmpl (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT32U xfer_len,

 void *p_callback_arg,

 USBD_ERR err)

{

 (void)class_nbr;

 (void)p_buf;

 (void)buf_len;

 (void)xfer_len;

 (void)p_callback_arg; (4)

 if (err == USBD_ERR_NONE) {

 /* $$$$ Do some processing. */

 } else {

 /* $$$$ Handle the error. */

 }

}

214

Chapter 12

12

L12-3(1) The class instance number serves internally to the Vendor class to route the

transfer to the proper bulk OUT or IN endpoint.

L12-3(2) Application must ensure that the buffer provided to the function is large

enough to accommodate all the data. Otherwise, synchronization issues might

happen.

L12-3(3) The application provides a callback passed as a parameter. Upon completion of

the transfer, the device stack calls this callback so that the application can

finalize the transfer by analyzing the transfer result. For instance, upon read

operation completion, the application may do a certain processing with the

received data. Upon write completion, the application may indicate if the write

was successful and how many bytes were sent.

L12-3(4) An argument associated to the callback can be also passed. Then in the

callback context, some private information can be retrieved.

L12-3(5) Application provides the initialized transmit buffer.

L12-3(6) If this flag is set to DEF_TRUE and the transfer length is a multiple of the

endpoint maximum packet size, the device stack will send a zero-length packet

to the host to signal the end of transfer.

The use of interrupt endpoint communication functions, USBD_Vendor_IntrRdAsync() and

USBD_Vendor_IntrWrAsync(), is similar to bulk endpoint communication functions

presented in Listing 12-3.

12-3 USBDev_API

Windows application communicates with a vendor device through USBDev_API. The latter

is a wrapper developed by Micriμm allowing the application to access the WinUSB

functionalities to manage a USB device. Windows USB (WinUSB) is a generic driver for USB

devices. The WinUSB architecture consists of a kernel-mode driver (Winusb.sys) and a

user-mode dynamic link library (Winusb.dll) that exposes WinUSB functions. USBDev_API

eases the use of WinUSB by providing a comprehensive API (refer to section G-2

“USBDev_API Functions” on page 497 for the complete list). Figure 12-2 shows the

USBDev_API library and WinUSB.

215

USBDev_API

12

Figure 12-2 USBDev_API and WinUSB

For more about WinUSB architecture, refer to Microsoft’s MSDN online documentation at:

http://msdn.microsoft.com/en-us/library/ff540207(v=VS.85).aspx

12-3-1 DEVICE AND PIPE MANAGEMENT

USBDev_API offers the following functions to manage a device and its function’s pipes.

Table 12-5 USBDev_API Device and Pipe Management API

Function name Operation

USBDev_GetNbrDev() Gets number of devices belonging to a specified Globally Unique

IDentifier (GUID) and connected to the host. Refer to section 12-4-4

“GUID” on page 228 for more details about the GUID.

USBDev_Open() Opens a device.

USBDev_Close() Closes a device.

USBDev_BulkIn_Open() Opens a bulk IN pipe.

USBDev_BulkOut_Open() Opens a bulk OUT pipe.

USBDev_IntIn_Open() Opens an interrupt IN pipe.

USBDev_IntOut_Open() Opens an interrupt OUT pipe.

USBDev_PipeClose() Closes a pipe.

+��, -��.��� ��

'����������

�������'��

E���!#8!<!

E����C!�.�!��!���"

E���!#8���
�!�
�!����

F�
����!����

&'(�3��, "�,�����

216

Chapter 12

12

Listing 12-4 shows an example of device and pipe management. The steps to manage a

device typically consist in:

■ Opening the vendor device connected to the host.

■ Opening required pipes for this device.

■ Communicating with the device via the open pipes.

■ Closing pipes.

■ Closing the device.

HANDLE dev_handle;

HANDLE bulk_in_handle;

HANDLE bulk_out_handle;

DWORD err;

DWORD nbr_dev;

nbr_dev = USBDev_GetNbrDev(USBDev_GUID, &err); (1)

if (err != ERROR_SUCCESS) {

 /* $$$$ Handle the error. */

}

dev_handle = USBDev_Open(USBDev_GUID, 1, &err); (2)

if (dev_handle == INVALID_HANDLE_VALUE) {

 /* $$$$ Handle the error. */

}

bulk_in_handle = USBDev_BulkIn_Open(dev_handle, 0, 0, &err); (3)

if (bulk_in_handle == INVALID_HANDLE_VALUE) {

 /* $$$$ Handle the error. */

}

bulk_out_handle = USBDev_BulkOut_Open(dev_handle, 0, 0, &err); (3)

if (bulk_out_handle == INVALID_HANDLE_VALUE) {

 /* $$$$ Handle the error. */

}

/* Communicate with the device. */ (4)

 (5)

USBDev_PipeClose(bulk_in_handle, &err);

if (err != ERROR_SUCCESS) {

 /* $$$$ Handle the error. */

}

217

USBDev_API

12

Listing 12-4 USBDev_API Device and Pipe Management Example

L12-4(1) Get the number of devices connected to the host under the specified GUID. A

GUID provides a mechanism for applications to communicate with a driver

assigned to devices in a class. The number of devices could be used in a loop

to open at once all the devices. In this example, one device is assumed.

L12-4(2) Open the device by retrieving a general device handle. This handle will be

used for pipe management and communication.

L12-4(3) Open a bulk pipe by retrieving a pipe handle. In the example, a bulk IN and a

OUT pipe are open. If the pipe does not exist for this device, an error is

returned. When opening a pipe, the interface number and alternate setting

number are specified. In the example, bulk IN and OUT pipes are part of the

default interface. Opening an interrupt IN and OUT pipes with

USBDev_IntIn_Open() or USBDev_IntOut_Open() is similar to bulk IN and

OUT pipes.

L12-4(4) Transferring data on the open pipes can take place now. The pipe

communication is describes in section 12-3-2 “Device Communication” on

page 218.

L12-4(5) Close a pipe by passing the associated handle. The closing operation aborts

any transfer in progress for the pipe and frees any allocated resources.

L12-4(6) Close the device by passing the associated handle. The operation frees any

allocated resources for this device. If a pipe has not been closed by the

application, this function will close any forgotten open pipes.

USBDev_PipeClose(bulk_out_handle, &err);

if (err != ERROR_SUCCESS) {

 /* $$$$ Handle the error. */

}

USBDev_Close(dev_handle, &err); (6)

if (err != ERROR_SUCCESS) {

 /* $$$$ Handle the error. */

}

218

Chapter 12

12

12-3-2 DEVICE COMMUNICATION

SYNCHRONOUS COMMUNICATION

Synchronous communication means that the transfer is blocking. Upon function call, the

applications blocks until the end of transfer completed with or without an error. A timeout

can be specified to avoid waiting forever. Listing 12-5 presents a read and write example

using a bulk IN pipe and a bulk OUT pipe.

Listing 12-5 USBDev_API Synchronous Read and Write Example

L12-5(1) The pipe handle gotten with USBDev_BulkIn_Open() or USBDev_BulkOut_Open()

is passed to the function to schedule the transfer for the desired pipe.

L12-5(2) The application provides a receive buffer to store the data sent by the device.

L12-5(3) In order to avoid an infinite blocking situation, a timeout expressed in

milliseconds can be specified. A value of ‘0’ makes the application thread wait

forever. In the example, a timeout of 5 seconds is set.

L12-5(4) Application provides the transmit buffer that contains the data for the device.

UCHAR rx_buf[2];

UCHAR tx_buf[2];

DWORD err;

(void)USBDev_PipeRd(bulk_in_handle, (1)

 &rx_buf[0], (2)

 2u,

 5000u, (3)

 &err);

if (err != ERROR_SUCCESS) {

 /* $$$$ Handle the error. */

}

(void)USBDev_PipeWr(bulk_out_handle, (1)

 &tx_buf[0], (4)

 2u,

 5000u, (3)

 &err);

if (err != ERROR_SUCCESS) {

 /* $$$$ Handle the error. */

}

219

USBDev_API

12

ASYNCHRONOUS COMMUNICATION

Asynchronous communication means that the transfer is non-blocking. Upon function call,

the application passes the transfer information to the device stack and does not block.

Other application processing can be done while the transfer is in progress over the USB

bus. Once the transfer has completed, a callback is called by USBDev_API to inform the

application about the transfer completion.

Code Listing 12-6 presents a read example. The asynchronous write is not offered by

USBDev_API.

Listing 12-6 USBDev_API Asynchronous Read Example

UCHAR rx_buf[2];

DWORD err;

USBDev_PipeRdAsync(bulk_in_handle, (1)

 &rx_buf[0], (2)

 2u,

 App_PipeRdAsyncComplete, (3)

 (void *)0u, (4)

 &err);

if (err != ERROR_SUCCESS) {

 /* $$$$ Handle the error. */

}

 (3)

static void App_PipeRdAsyncComplete(void *p_buf,

 DWORD buf_len,

 DWORD xfer_len,

 void *p_callback_arg,

 DWORD err)

{

 (void)p_buf;

 (void)buf_len;

 (void)xfer_len;

 (void)p_callback_arg; (4)

 if (err == ERROR_SUCCESS) {

 /* $$$$ Process the received data. */

 } else {

 /* $$$$ Handle the error. */

 }

}

220

Chapter 12

12

L12-6(1) The pipe handle gotten with USBDev_BulkIn_Open() is passed to the function

to schedule the transfer for the desired pipe.

L12-6(2) The application provides a receive buffer to store the data sent by the device.

L12-6(3) The application provides a callback passed as a parameter. Upon completion of

the transfer, USBDev_API calls this callback so that the application can finalize

the transfer by analyzing the transfer result. For instance, upon read operation

completion, the application may do a certain processing with the received data.

L12-6(4) An argument associated to the callback can be also passed. Then in the

callback context, some private information can be retrieved.

12-4 USING THE DEMO APPLICATION

Micriμm provides a demo application that lets you test and evaluate the class

implementation. Source template files are provided for the device. Executable and source

files are provided for Windows host PC.

12-4-1 CONFIGURING PC AND DEVICE APPLICATIONS

The demo used between the host and the device is the Echo demo. This demo implements

a simple protocol allowing the device to echo the data sent by the host.

On the device side, the demo application file, app_usbd_vendor.c, provided for μC/OS-II

and μC/OS-III is located in these two folders:

■ \Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-II

■ \Micrium\Software\uC-USB-Device-V4\App\Device\OS\uCOS-III

app_usbd_vendor.c contains the Echo demo available in two versions:

■ The Echo Sync demo exercises the synchronous communication API described in

section 12-2-4 “Synchronous Communication” on page 211.

■ The Echo Async demo exercises the asynchronous communication API described in

section 12-2-5 “Asynchronous Communication” on page 212.

221

Using the Demo Application

12

The use of these constants defined usually in app_cfg.h allows you to use the vendor

demo application.

Table 12-6 Device Application Constants Configuration

APP_CFG_USBD_VENDOR_ECHO_SYNC_EN and APP_CFG_USBD_VENDOR_ECHO_ASYNC_EN can

be set to DEF_ENABLED at the same time. The vendor device created will be a composite

device formed with two vendor interfaces. One will represent the Echo Sync demo and the

other the Echo Async demo.

On the Windows side, the demo application file, app_vendor_echo.c, is part of a Visual

Studio solution located in this folder:

\Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\Vendor\Visual Studio 2010

app_vendor_echo.c allows you to test:

■ One single device. That is Echo Sync or Async demo is enabled on the device side.

■ One composite device. That is Echo Sync and Async demos are both enabled on the

device side.

■ Multiple devices (single or composite devices).

Constant Description

APP_CFG_USBD_VENDOR_EN General constant to enable the Vendor class demo

application. Must be set to DEF_ENABLED.

APP_CFG_USBD_VENDOR_ECHO_SYNC_EN Enables or disables the Echo Sync demo. The possible

values are DEF_ENABLED or DEF_DISABLED.

APP_CFG_USBD_VENDOR_ECHO_ASYNC_EN Enables or disables the Echo Async demo. The possible

values are DEF_ENABLED or DEF_DISABLED.

APP_CFG_USBD_VENDOR_ECHO_SYNC_TASK_PRIO Priority of the task used by the Echo Sync demo.

APP_CFG_USBD_VENDOR_ECHO_ASYNC_TASK_PRIO Priority of the task used by the Echo Async demo.

APP_CFG_USBD_VENDOR_TASK_STK_SIZE Stack size of the tasks used by Echo Sync and Async

demos. A default value can be 256.

222

Chapter 12

12

app_vendor_echo.c contains some constants to customize the demo.

Table 12-7 Windows Application Constants Configuration

The constants configuration for the Windows application are independent from the device

application constants configuration presented in Table 12-6.

12-4-2 EDITING AN INF FILE

An INF file contains directives telling to Windows how to install one or several drivers for

one or more devices. Refer to section 3-1-1 “About INF Files” on page 46 for more details

about INF file use and format. The Vendor class includes two INF files located in

\Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\Vendor\INF:

■ WinUSB_single.inf, used if the device presents only one Vendor class interface.

■ WinUSB_composite.inf, used if the device presents at least one Vendor class interface

along with another interface.

The two INF files allows you to load the WinUSB.sys driver provided by Windows.

WinUSB_single.inf defines this default hardware ID string:

USB\VID_FFFE&PID_1003

While WinUSB_composite.inf defines this one:

USB\VID_FFFE&PID_1001&MI_00

The hardware ID string contains the Vendor ID (VID) and Product ID (PID). In the default

strings, the VID is FFFE and the PID is either 1003 or 1001. The VID/PID values should

match the ones from the USB device configuration structure defined in usb_dev_cfg.c.

Refer to section “Modify Device Configuration” on page 34 for more details about the USB

Constant Description

APP_CFG_RX_ASYNC_EN Enables or disables the use of the asynchronous API for IN pipe. The possible

values are TRUE or FALSE.

APP_MAX_NBR_VENDOR_DEV Defines the maximum number of connected vendor devices supported by the

demo.

223

Using the Demo Application

12

device configuration structure.

If you want to define your own VID/PID, you must modify the previous default hardware

ID strings with your VID/PID.

In the case of a composite device formed of several vendor interfaces, in order to load

WinUSB.sys for each vendor interface, the manufacturer section in WinUSB_composite.inf

can be modified as shown in Listing 12-7. Let’s assume a device with two vendor interfaces.

Listing 12-7 INF File Example for Composite Device Formed of Several Vendor Interfaces.

You can also modify the [Strings] section of the INF file in order to add the strings that best

describe your device. Listing 12-8 shows the editable [Strings] section common to

WinUSB_single.inf and WinUSB_composite.inf.

Listing 12-8 Editable Strings in the INF File to Describe the Vendor Device.

L12-8(1) Specify the name of your company as the driver provider.

L12-8(2) Write the name of your device.

[MyDevice_WinUSB.NTx86]

%USB\MyDevice.DeviceDesc% =USB_Install, USB\VID_FFFE&PID_1001&MI_00

%USB\MyDevice.DeviceDesc% =USB_Install, USB\VID_FFFE&PID_1001&MI_01

[MyDevice_WinUSB.NTamd64]

%USB\MyDevice.DeviceDesc% =USB_Install, USB\VID_FFFE&PID_1001&MI_00

%USB\MyDevice.DeviceDesc% =USB_Install, USB\VID_FFFE&PID_1001&MI_01

[MyDevice_WinUSB.NTia64]

%USB\MyDevice.DeviceDesc% =USB_Install, USB\VID_FFFE&PID_1001&MI_00

%USB\MyDevice.DeviceDesc% =USB_Install, USB\VID_FFFE&PID_1001&MI_01

[Strings]

ProviderName ="Micrium" (1)

USB\MyDevice.DeviceDesc ="Micrium Vendor Specific Device" (2)

ClassName ="USB Sample Class" (3)

224

Chapter 12

12

L12-8(3) You can modify this string to give a new name to the device group in which

your device will appear under Device Manager. In this example, “Micrium

Vendor Specific Device” will appear under the “USB Sample Class” group. Refer

to Figure 3-1 “Windows Device Manager Example for a CDC Device” on

page 50 for an illustration of the strings use by Windows.

12-4-3 RUNNING THE DEMO APPLICATION

Figure 12-3 presents the Echo demo with host and device interactions:

Figure 12-3 Echo Demo

F12-3(1) The Windows application executes a simple protocol consisting of sending a

header indicating the total payload size, sending the data payload to the device

and receiving the same data payload from the device. The entire transfer for

data payload is split into small chunks of write and read operations of 512

bytes. The write operation is done using a bulk OUT endpoint and the read

uses a bulk IN endpoint.

&'(�������+��, -��.��
� ��

	
�.����
�����#��"�-G�
/8�	
���<������
���
�����08�
�.����

/8�
���<����
18�	
���<����

08�	
�.����

/8�	
���<����
18�
���<����

08�	
�.����
�
�����
���
�����

�����

��<����

��<����

	
���<���������#��"�-G�
18�
���<������
���
�����

���<���������#��"�-G�
08�	
�.����
��
���
�����

+	�
/8�	
���<������
���
�����

'$����
�/

2�$����
�/

1
����4"�
,���

���

���

225

Using the Demo Application

12

F12-3(2) On the device side, the Echo Sync uses a task that complements the Windows

application execution. Each step is done synchronously. The read and write

operation is the opposite of the host side in terms of USB transfer direction.

Read operation implies a bulk OUT endpoint while a write implies a bulk IN

endpoint.

F12-3(3) If the Echo Async is enabled, the same steps done by the Sync task is replicated

but using the asynchronous API. A task is responsible to start the first

asynchronous OUT transfer to receive the header. The task is also used in case

of error during the protocol communication. The callback associated to the

header reception is called by the device stack. It prepares the next

asynchronous OUT transfer to receive the payload. The read payload callback

sends back the payload to the host via an asynchronous IN transfer. The write

payload callback is called and either prepares the next header reception if the

entire payload has been sent to the host or prepares a next OUT transfer to

receive a new chunk of data payload.

Upon the first connection of the vendor device, Windows enumerates the device by

retrieving the standard descriptors. Since Microsoft does not provide any specific driver for

the Vendor class, you have to indicate to Windows which driver to load using an INF file

(refer to section 3-1-1 “About INF Files” on page 46 to for more details about INF). The INF

file tells Windows to load the WinUSB generic driver (provided by Microsoft). Indicating the

INF file to Windows has to be done only once. Windows will then automatically recognize

the vendor device and load the proper driver for any new connection. The process of

indicating the INF file may vary according to the Windows operating system version:

■ Windows XP directly opens the “Found New Hardware Wizard”. Follow the different

steps of the wizard until the page where you can indicate the path of the INF file.

■ Windows Vista and later won’t open a “Found New Hardware Wizard”. It will just

indicate that no driver was found for the vendor device. You have to manually open the

wizard. Open the Device Manager, the vendor device connected appears under the

category ‘Other Devices’ with a yellow icon. Right-click on your device and choose

‘Update Driver Software...’ to open the wizard. Follow the different steps of the wizard

until the page where you can indicate the path of the INF file.

226

Chapter 12

12

The INF file is located in:

\Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\Vendor\INF

Refer to section 3-1-1 “About INF Files” on page 46 for more details about how to edit the

INF file to match your Vendor and Product IDs.

Once the driver is successfully loaded, the Windows host application is ready to be

launched. The executable is located in the following folder:

\Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\Vendor\Visual Studio 2010\exe\

There are two executables:

■ EchoSync.exe for the Windows application with the synchronous communication API of

USBDev_API.

■ EchoAsync.exe for the Windows application with the asynchronous IN API of

USBDev_API.

The Windows application interacts with WinUSB driver via USBDev_API which is a wrapper

of WinUSB driver. USBDev_API is provided by Micriμm. Refer to section 12-3

“USBDev_API” on page 214 for more details about USBDev_API and WinUSB driver.

The Echo Sync or Async demo will first determine the number of vendor devices connected

to the PC. For each detected device, the demo will open a bulk IN and a bulk OUT pipe.

Then the demo is ready to send/receive data to/from the device. You will have to enter the

maximum number of transfers you want as shown by Figure 12-4.

Figure 12-4 Demo Application at Startup

227

Using the Demo Application

12

In the example of Figure 12-4, the demo will handle 10 transfers. Each transfer is sent after

the header following the simple protocol described in Figure 12-3. The first transfer will

have a data payload of 1 byte. Then subsequent transfers will have their size incremented of

1 byte until the last transfer. In our example, the last transfer will have 10 bytes. Figure 12-5

presents the execution.

Figure 12-5 Demo Application Execution (Single Device)

The demo will propose to do a new execution. Figure 12-5 shows the example of a single

device with 1 vendor interface. The demo is able to communicate with each vendor

interface in the case of a composite device. In that case, the demo will open bulk IN and

OUT pipes for each interface. You will be asked the maximum number of transfers for each

interface composing the device. Figure 12-6 shows an example of composite device.

228

Chapter 12

12

Figure 12-6 Demo Application Execution (Composite Device)

12-4-4 GUID

A Globally Unique IDentifier (GUID) is a 128-bit value that uniquely identifies a class or

other entity. Windows uses GUIDs for identifying two types of devices classes:

■ Device setup class

■ Device interface class

A device setup GUID encompasses devices that Windows installs in the same way and using

the same class installer and co-installers. Class installers and co-installers are DLLs that

provide functions related to the device installation. A device interface class GUID provides a

mechanism for applications to communicate with a driver assigned to devices in a class.

Refer to section 3-1-2 “Using GUIDs” on page 51 for more details about the GUID.

229

Using the Demo Application

12

Device setup class GUID is used in WinUSB_single.inf and WinUSB_composite.inf located

in \Micrium\Software\uC-USB-Device-V4\App\Host\OS\Windows\Vendor\INF. These INF

files define a new device setup class that will be added in the Windows registry under

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Class upon first connection of a

vendor device. The following entries in the INF file define the new device setup class.

The INF files allows Windows to register in the registry base all the information necessary to

associate the driver Winusb.sys with the connected vendor device.

The Windows Echo application is able to retrieve the attached vendor device thanks to the

device interface class GUID. WinUSB_single.inf and WinUSB_composite.inf define the

following device interface class GUID: {143f20bd-7bd2-4ca6-9465-8882f2156bd6}. The

Echo application includes a header file called usbdev_guid.h. This header file defines the

following variable:

USBDev_GUID is a structure whose fields represent the device interface class GUID defined

in WinUSB_single.inf and WinUSB_composite.inf. The USBDev_GUID variable will be

passed as a parameter to the function USBDev_Open(). An handle will be returned by

USBDev_Open(). The application uses this handle to access the device.

Class = MyDeviceClass ; Name of the device setup class.

ClassGuid = {11111111-2222-3333-4444-555555555555} ; Device setup class GUID

GUID USBDev_GUID = {0x143f20bd,0x7bd2,0x4ca6,{0x94,0x65,0x88,0x82,0xf2,0x15,0x6b,0xd6}};

230

Chapter 12

12

231

Chapter

13
Debug and Trace

μC/USB-Device provides an option to enable debug traces to output transactional activity

via an output port of your choice such as the console or serial port. Debugging traces

allows you to see how the USB device stack behaves and is a useful troubleshooting tool

when trying to debug a problem. This chapter will show you the debug and trace tools

available in the USB device core as well as how to go about using them.

232

Chapter 13

13

13-1 USING DEBUG TRACES

13-1-1 DEBUG CONFIGURATION

There are several configuration constants necessary to customize the core level debugging

traces. These constants are found in usbd_cfg.h and are summarized in Table 13-1.

Table 13-1 General Configuration Constants

13-1-2 DEBUG TRACE OUTPUT

Core level debug traces are outputted from the debug task handler via an application

defined trace function USBD_Trace(). This function is located in app_usbd.c and it is up to

you to define how messages are outputted whether through console terminal printf()

statements or serial printf() statements for example. Listing 13-1 shows an example of an

implementation for USBD_Trace() with a serial printf() function.

Listing 13-1 USBD_Trace() Example

Constant Description

USBD_CFG_DBG_TRACE_EN This constant enables core level debugging traces in the

program so that transactional activity can be outputted.

USBD_CFG_DBG_TRACE_NBR_EVENTS This constant configures the size of the debug event pool to

store debug events.

void USBD_Trace (const CPU_CHAR *p_str)

{

 App_SerPrintf(“%s”, (CPU_CHAR *)p_str);

}

233

Using Debug Traces

13

13-1-3 DEBUG FORMAT

The debug task handler follows a simple format when outputting debug events. The format

is as follows:

USB <timestamp> <endpoint address> <interface number> <error/info message>

In the event that timestamp, endpoint address, interface number or error messages are not

provided, they are left void in the output. An example output is shown in Listing 13-2. This

example corresponds to traces placed in the USB device core and device driver functions.

This trace shows the enumeration process where bus events are received and related

endpoints are opened in the device driver. Next, a setup event is sent to the core task

followed by receiving the first Get Device Descriptor standard request.

Listing 13-2 Sample Debug Output

USB 0 Bus Reset

USB 0 80 Drv EP DMA Open

USB 0 0 Drv EP DMA Open

USB 0 Bus Suspend

USB 0 Bus Reset

USB 0 80 Drv EP DMA Close

USB 0 0 Drv EP DMA Close

USB 0 80 Drv EP DMA Open

USB 0 0 Drv EP DMA Open

USB 0 Drv ISR Rx (Fast)

USB 0 0 Setup pkt

USB 0 0 Drv ISR Rx Cmpl (Fast)

USB 0 Drv ISR Rx (Fast)

USB 0 0 Get descriptor(Device)

USB 0 80 Drv EP FIFO Tx Len: 18

USB 0 80 Drv EP FIFO Tx Start Len: 18

USB 0 Drv ISR Rx (Fast)

USB 0 80 Drv ISR Tx Cmpl (Fast)

USB 0 0 Drv ISR Rx Cmpl (Fast)

USB 0 Drv ISR Rx (Fast)

USB 0 0 Drv EP FIFO RxZLP

USB 0 Drv ISR Rx (Fast)

...

234

Chapter 13

13

13-2 HANDLING DEBUG EVENTS

13-2-1 DEBUG EVENT POOL

A pool is used to keep track of debugging events. This pool is made up of debug event

structures where the size of the pool is specified by USBD_CFG_DBG_TRACE_NBR_EVENTS in

the application configuration. Within the core, each time a new debug standard request is

received, the message’s details will be set into a debug event structure and queued into the

pool. Once the debug event is properly queued, a ready signal is invoked to notify the

debug task handler that an event is ready to be processed.

13-2-2 DEBUG TASK

An OS-dependent task is used to process debug events. The debug task handler simply

pends until an event ready signal is received and obtains a pointer to the first debug event

structure from the pool. The details of the debug event structure is then formatted and

outputted via the application trace function. At the end of the output, the debug event

structure is then subsequently freed and the debug task will pend and process the next

debug event structure ready. Refer to section 4-2-3 “Processing Debug Events” on page 63

for details on processing debug events.

13-2-3 DEBUG MACROS

Within the core, several macros are created to set debug messages. These macros are

defined in usbd_core.h and make use of the core functions USBD_Dbg() and

USBD_DbgArg() that will set up a debug event structure and put the event into the debug

event pool. These macros are defined in Listing 13-3.

235

Handling Debug Events

13

Listing 13-3 Core Level Debug Macros

There are subtle yet important differences between each debug macro. The first debug

macro is the most simple, specifying just the debug message, endpoint address and

interface number as parameters. The second and third macros differ in the last parameter

where one specifies the error and the other specifies an argument of choice. The last macro

lets the caller specify all details including both error and argument.

Furthermore, core level debug macros can be further mapped to other macros to simplify

the repetition of endpoint address and interface number parameters. Listing 13-4 shows an

example of a bus specific debug macro and a standard debug macro found in

usbd_core.c.

#define USBD_DBG_GENERIC(msg, ep_addr, if_nbr) USBD_Dbg((msg), \

 (ep_addr), \

 (if_nbr), \

 USBD_ERR_NONE)

#define USBD_DBG_GENERIC_ERR(msg, ep_addr, if_nbr, err) USBD_Dbg((msg), \

 (ep_addr), \

 (if_nbr), \

 (err))

#define USBD_DBG_GENERIC_ARG(msg, ep_addr, if_nbr, arg) USBD_DbgArg((msg), \

 (ep_addr), \

 (if_nbr), \

 (CPU_INT32U)(arg),\

 (USBD_ERR_NONE))

#define USBD_DBG_GENERIC_ARG_ERR(msg, ep_addr, if_nbr, arg, err) USBD_DbgArg((msg), \

 (ep_addr), \

 (if_nbr), \

 (CPU_INT32U)(arg),\

 (err))

236

Chapter 13

13

Listing 13-4 Mapped Core Tracing Macros

define USBD_DBG_CORE_BUS(msg) USBD_DBG_GENERIC((msg), \

 USBD_EP_ADDR_NONE, \

 USBD_IF_NBR_NONE)

define USBD_DBG_CORE_STD(msg) USBD_DBG_GENERIC((msg), \

 0u,

 USBD_IF_NBR_NONE)

237

Chapter

14
Porting μC/USB-Device to your RTOS

μC/USB-Device requires a Real-Time Operating System (RTOS). In order to make it usable

with nearly any RTOS available on the market, it has been designed to be easily portable.

Micriμm provides ports for both μC/OS-II and μC/OS-III and recommends using one of

these RTOS. In case you need to use another RTOS, this chapter will explain you how to

port μC/USB-Device to your RTOS.

238

Chapter 14

14

14-1 OVERVIEW

μC/USB-Device uses some RTOS abstraction ports to interact with the RTOS. Instead of

being a simple wrapper for common RTOS service functions (TaskCreate(),

SemaphorePost(), etc...), those ports are in charge of allocating and managing all the OS

resources needed. All the APIs are related to the μC/USB-Device module feature that uses it.

This offers you a better flexibility of implementation as you can decide which OS services

can be used for each specific action. Table 14-1 gives an example of comparison between a

simple RTOS functions wrapper port and a features-oriented RTOS port.

Table 14-1 Comparison between a wrapper and a features-oriented RTOS port

Because of the features oriented RTOS port design, some μC/USB-Device modules will

need their own OS port. These modules are listed here:

■ μC/USB-Device core layer

■ Personal Healthcare Device Class (PHDC)

■ Human Interface Device Class (HID)

■ Mass Storage Class (MSC)

Operation
Example of feature-oriented function

(current implementation)

Equivalent function in a simple wrapper

(not used)

Create a task The stack is not in charge of creating tasks.

This should be done in the RTOS

abstraction layer within a USBD_OS_Init()

function, for example.

USBD_OS_TaskCreate(). The stack would need

to explicitly create the needed tasks and to

manage them.

Create a signal

for an endpoint

USBD_OS_EP_SignalCreate(). You are free

to use another OS service than a typical

Semaphore.

USBD_OS_SemCreate(). The stack would need

to explicitly choose the OS service to use.

Put a core event

in a queue

USBD_OS_CoreEventPut(). If you prefer not

using typical OS queues, you could still

implement it using a chained list and a

semaphore, for instance.

USBD_OS_Q_Post(). Again, the stack would

need to explicitly choose the OS service to use.

239

Porting Modules to a RTOS

14

Moreover, all the demo applications for each USB class that Micriμm provides interact with

the RTOS. The demo applications do not benefit from a RTOS port. Hence, if you plan to

use them with another RTOS than μC/OS-II or μC/OS-III, you will have to modify them.

Figure 14-1 summarizes the interactions between the different μC/USB-Device modules and

the RTOS.

Figure 14-1 μC/USB-Device architecture with RTOS interactions

14-2 PORTING MODULES TO A RTOS

Table 14-2 lists the section of this manual to which you should refer to for an explanation

on how to port μC/USB-Device modules to a RTOS.

Table 14-2 List of sections to refer to port a module to a RTOS

Module Refer to...

Core layer Section 14-4 “Porting The Core Layer to a RTOS” on page 242

PHDC Section 11-6 “Porting PHDC to a RTOS” on page 203

HID Section 9-5 “Porting the HID Class to a RTOS” on page 160

MSC Section 10-6 “Porting MSC to a Storage Layer” on page 180

�
$��
#+� �����
�

�
$��
#+� �����
�#���$
�

�������

)��%���

�
$��
#+��
#-�5
�

+�+,
�+	3
 %��	�+)���)�+

4���

=�
�#����������

4���
�7'�������

-�5
�

+��
#����

�)�+#����

)��#����

	�+#����

+��''#��5
�

240

Chapter 14

14

14-3 CORE LAYER RTOS MODEL

The core layer of μC/USB-Device needs an RTOS for three purposes:

■ Signal the completion of synchronous transfers.

■ Manage core events.

■ Manage debug events (optional).

14-3-1 SYNCHRONOUS TRANSFER COMPLETION SIGNALS

The core layer needs a way to signal the application about the synchronous transfer

completion. The core will need one signal per endpoint. The RTOS resources usually used

for this signal is a semaphore. Figure 14-2 describes a synchronous transfer completion

notification.

Figure 14-2 Synchronous transfer completion notification

F14-2(1) Application task calls a synchronous transfer function.

F14-2(2) While the transfer is in progress, the application task pends on the transfer

completion signal.

F14-2(3) Once the transfer is completed, the core will post the transfer completion signal

which will resume the application task.

/�0

/�0

�
$��
#�� �����
�#
'�& ��#��� '�
�#
�����
���

/ 0

���������� #��'1 ��'1 ��'1

�5 �0�� �
'#
��� '�
�

241

Core Layer RTOS Model

14

14-3-2 CORE EVENTS MANAGEMENT

For proper operation, the core layer needs an OS task that will manage the core events. For

more information on the purpose of this task or on what a core event is, refer to section 4-2

“Task Model” on page 58. The core events must be queued in a data structure and be

processed by the core. This allows the core to process the events in a task context instead

of in an ISR context, as most of the events will be raised by the device driver’s ISR. The core

task also needs to be informed when a new event is queued. Figure 14-3 describes the core

events management within the RTOS port.

Figure 14-3 Core events management within RTOS port

F14-3(1) A core event is added to the queue.

F14-3(2) The core task of the core layer pends on the queue. Whenever an event is

added, the core task is resumed to process it.

14-3-3 DEBUG EVENTS MANAGEMENT

The core layer of μC/USB-Device offers an optional feature to do tracing and debugging.

For more information on this feature, see Chapter 13, “Debug and Trace” on page 231. This

feature requires an OS task. For more information on the purpose of this task or on debug

events, refer to section 4-2 “Task Model” on page 58. The behavior of this task is similar to

/�0

/�0

+��
#
�$
 �'
>

�
�#���
#
$
 �

+��
 ��'1 ?
�#���
#
$
 �

4���#����+��
#��5
�
+��
#
$
 �

242

Chapter 14

14

the core task described in Section 14-3-2. The difference is that the RTOS port does not

need to manage the queue, as it is handled within the core layer. The RTOS port only needs

to provide a signal that will inform of a debug event insertion.

14-4 PORTING THE CORE LAYER TO A RTOS

The core RTOS port is located in a separate file named usbd_os.c. A template file can be

found in the following folder:

\Micrium\Software\uC-USB-Device-V4\OS\Template

Table 14-3 summarizes all the functions that need to be implemented in the RTOS port file.

For more information on how these functions should be implemented, refer to section 14-3

on page 240 and to section A-5 “Core OS Functions” on page 298.

Table 14-3 Core OS port API summary

Note that you must declare at least one task for the core events management within your

RTOS port. This task should simply call the core function USBD_CoreTaskHandler() in an

infinite loop. Furthermore, if you plan using the debugging feature, you must also create a

Function name Operation

USBD_OS_Init() Initializes all internal members / tasks.

USBD_OS_EP_SignalCreate() Creates OS signal used to synchronize synchronous transfers.

USBD_OS_EP_SignalDel() Deletes OS signal used to synchronize synchronous transfers.

USBD_OS_EP_SignalPend() Pends on OS signal used to synchronize synchronous transfers.

USBD_OS_EP_SignalAbort() Aborts OS signal used to synchronize synchronous transfers.

USBD_OS_EP_SignalPost() Posts OS signal used to synchronize synchronous transfers.

USBD_OS_DbgEventRdy() Posts signal used to resume debug task.

USBD_OS_DbgEventWait() Pends on signal used to resume debug task.

USBD_OS_CoreEventGet() Retrieves the next core event to process.

USBD_OS_CoreEventPut() Adds a core event to be processed by the core.

243

Porting The Core Layer to a RTOS

14

task for this purpose. This task should simply call the core function

USBD_DbgTaskHandler() in an infinite loop. Listing 14-1 shows how these two task

functions body should be implemented.

Listing 14-1 Core task and debug task typical implementation

static void USBD_OS_CoreTask (void *p_arg)

{

 p_arg = p_arg;

 while (DEF_ON) {

 USBD_CoreTaskHandler();

 }

}

static void USBD_OS_TraceTask (void *p_arg)

{

 p_arg = p_arg;

 while (DEF_ON) {

 USBD_DbgTaskHandler();

 }

}

244

Chapter 14

14

245

Appendix

A
Core API Reference

This appendix provides a reference to the μC/USB-Device core layer API. The following

information is provided for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service

246

Appendix A

A

A-1 DEVICE FUNCTIONS

A-1-1 USBD_Init()

Initialize USB device stack. This function is called by the application exactly once. This

function initializes all the internal variables and modules used by the USB device stack.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_OS_INIT_FAIL

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

USBD_Init() must be called:

■ Only once from a product’s application.

■ After product’s OS has been initialized

■ Before product’s application calls any USB device stack function(s).

static void USBD_Init (USBD_ERR *p_err);

247

A

A-1-2 USBD_DevStart()

Starts device stack. This function connects the device to the USB host.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

Device stack can be only started if the device is in either the USBD_DEV_STATE_NONE or

USB_DEV_STATE_INIT states.

void USBD_DevStart (CPU_INT08U dev_nbr,

 USBD_ERR *p_err);

248

Appendix A

A

A-1-3 USBD_DevStop()

Stops device stack. This function disconnects the device from the USB host.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

None.

void USBD_DevStop (CPU_INT08U dev_nbr,

 USBD_ERR *p_err);

249

A

A-1-4 USBD_DevGetState()

Gets current device state.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

RETURNED VALUE

Current device state, If no error(s).

USBD_DEV_STATE_NONE, otherwise.

CALLERS

USBD_EP_BulkRx()

USBD_EP_BulkRxAsync()

USBD_EP_BulkTx()

USBD_EP_BulkTxAsync()

USBD_EP_CtrlRx()

USBD_EP_CtrlRxStatus()

USBD_EP_CtrlTx()

USBD_EP_IntrRx()

USBD_DEV_STATE USBD_DevGetState (CPU_INT08U dev_nbr,

 USBD_ERR *p_err);

250

Appendix A

A

USBD_EP_IntrRxAsync()

USBD_EP_IntrTx()

USBD_EP_IntrTxAsync()

NOTES / WARNINGS

None.

251

A

A-1-5 USBD_DevAdd()

Adds device to the stack.

FILES

usbd_cdc.h/usbd_cdc.c

PROTOTYPE

ARGUMENTS

p_dev_cfg Pointer to specific USB device configuration

p_bus_fnct Pointer to specific USB device configuration

p_drv_api Pointer to specific USB device driver API.

p_drv_cfg Pointer to specific USB device driver configuration.

p_bsp_api Pointer to specific USB device board-specific API.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_NULL_PTR

USBD_ERR_DEV_ALLOC

USBD_ERR_EP_NONE_AVAIL

CPU_INT08U USBD_DevAdd (USBD_DEV_CFG *p_dev_cfg,

 USBD_BUS_FNCTS *p_bus_fnct,

 USBD_DRV_API *p_drv_api,

 USBD_DRV_CFG *p_drv_cfg,

 USBD_DRV_BSP_API *p_bsp_api,

 USBD_ERR *p_err);

252

Appendix A

A

RETURNED VALUE

Device number, If no error(s).

USBD_DEV_NBR_NONE, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

253

A

A-2 CONFIGURATION FUNCTIONS

A-2-1 USBD_CfgAdd()

Adds a configuration to the device.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

attrib Configuration attributes.

USBD_DEV_ATTRIB_SELF_POWERED

USBD_DEV_ATTRIB_REMOTE_WAKEUP

max_pwr Bus power required for this device (see Note #1).

spd Configuration speed.

USBD_DEV_SPD_FULL

USBD_DEV_SPD_HIGH

p_name Pointer to string describing the configuration (See Note #2).

CPU_INT08U USBD_CfgAdd (CPU_INT08U dev_nbr,

 CPU_INT08U attrib,

 CPU_INT16U max_pwr,

 USBD_DEV_SPD spd,

 const CPU_CHAR *p_name,

 USBD_ERR *p_err);

254

Appendix A

A

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_CFG_ALLOC

USBD_ERR_CFG_INVALID_MAX_PWR

RETURNED VALUE

Configuration number, If no error(s).

USBD_CFG_NBR_NONE, otherwise.

CALLERS

Application.

NOTES / WARNINGS

■ USB spec 2.0, section 7.2.1.3/4 defines power constrains for bus-powered devices:

■ “A low-power function is one that draws up to one unit load from the USB cable

when operational”

■ “A function is defined as being high-power if, when fully powered, it draws over

one but no more than five unit loads from the USB cable.”

■ A unit load is defined as 100mA, thus max_pwr argument should be between 0 mA

and 500mA.

■ String support is optional, in this case 'p_name' can be a NULL string pointer.

■ Configuration can only be added when the device is in either the

USBD_DEV_STATE_NONE or USB_DEV_STATE_INIT states.

255

A

A-3 INTERFACE FUNCTIONS

A-3-1 USBD_IF_Add()

Send data on CDC data class interface.

FILES

usbd_cdc.h/usbd_cdc.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

cfg_nbr Configuration index to add the interface.

p_class_drv Pointer to interface driver.

p_class_arg Pointer to interface driver argument.

class_code Class code assigned by the USB-IF.

class_sub_code Subclass code assigned by the USB-IF.

class_protocol_code Protocol code assigned by the USB-IF.

p_name Pointer to string describing the Interface.

CPU_INT08U USBD_IF_Add (CPU_INT08U dev_nbr,

 CPU_INT08U cfg_nbr,

 USBD_CLASS_DRV *p_class_drv,

 void *p_class_arg,

 CPU_INT08U class_code,

 CPU_INT08U class_sub_code,

 CPU_INT08U class_protocol_code,

 const CPU_CHAR *p_name,

 USBD_ERR *p_err);

256

Appendix A

A

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_NULL_PTR

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_CFG_INVALID_NBR

USBD_ERR_IF_ALLOC

USBD_ERR_IF_ALT_ALLOC

RETURNED VALUE

None.

CALLERS

USB Class drivers.

NOTES / WARNINGS

Interface number, If no error(s).

USBD_IF_NBR_NONE, otherwise.

257

A

A-3-2 USBD_IF_AltAdd()

Adds an alternate setting to a specific interface.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

cfg_nbr Configuration number.

if_nbr Interface number.

p_name Pointer to alternate setting name.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_CFG_INVALID_NBR

USBD_ERR_IF_INVALID_NBR

USBD_ERR_IF_ALT_ALLOC

CPU_INT08U USBD_IF_AltAdd (CPU_INT08U dev_nbr,

 CPU_INT08U cfg_nbr,

 CPU_INT08U if_nbr,

 const CPU_CHAR *p_name,

 USBD_ERR *p_err);

258

Appendix A

A

RETURNED VALUE

Interface alternate setting number, if no errors.

USBD_IF_ALT_NBR_NONE, otherwise.

CALLERS

USB class drivers.

NOTES / WARNINGS

None.

259

A

A-3-3 USBD_IF_Grp()

Creates an interface group.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

cfg_nbr Configuration index to add the interface.

p_class_drv Pointer to interface driver.

p_class_arg Pointer to interface driver argument.

class_code Class code assigned by the USB-IF.

class_sub_code Subclass code assigned by the USB-IF.

class_protocol_code Protocol code assigned by the USB-IF.

if_start Interface number of the first interface that is associated with this group

if_cnt Number of consecutive interfaces that are associated with this group.

CPU_INT08U USBD_IF_Grp (CPU_INT08U dev_nbr,

 CPU_INT08U cfg_nbr,

 CPU_INT08U class_code,

 CPU_INT08U class_sub_code,

 CPU_INT08U class_protocol_code,

 CPU_INT08U if_start,

 CPU_INT08U if_cnt,

 const CPU_CHAR *p_name,

 USBD_ERR *p_err);

260

Appendix A

A

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_CFG_INVALID_NBR

USBD_ERR_IF_INVALID_NBR

USBD_ERR_IF_GRP_NBR_IN_USE

USBD_ERR_IF_GRP_ALLOC

RETURNED VALUE

Interface group number, if no errors.

USBD_IF_GRP_NBR_NONE, otherwise.

CALLERS

USB class drivers.

NOTES / WARNINGS

None.

261

A

A-4 ENDPOINTS FUNCTIONS

A-4-1 USBD_CtrlTx()

Sends data on control IN endpoint.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

p_buf Pointer to buffer of data that will be sent

buf_len Number of octets to transmit.

timeout_ms Timeout in milliseconds.

end End-of-transfer flag (see Note #1).

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

CPU_INT32U USBD_CtrlTx (CPU_INT08U dev_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout_ms,

 CPU_BOOLEAN end,

 USBD_ERR *p_err);

262

Appendix A

A

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

RETURNED VALUE

Number of octets transmitted, if no errors.

0, otherwise.

CALLERS

USBD_DescWrReq()

USBD_DescWrStop()

USBD_StdReqDev()

USBD_StdReqEP()

USBD_StdReqIF()

USB device class drivers

NOTES / WARNINGS

■ If end-of-transfer is set and transfer length is multiple of maximum packet size, a zero-

length packet is transferred to indicate a short transfer to the host.

■ This function can be only called from USB device class drivers during class specific

setup request callbacks.

263

A

A-4-2 USBD_CtrlRx()

Receive data on control OUT endpoint.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

p_buf Pointer to buffer of data that will be sent

buf_len Number of octets to transmit.

timeout_ms Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

CPU_INT32U USBD_CtrlRx (CPU_INT08U dev_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout_ms,

 USBD_ERR *p_err);

264

Appendix A

A

RETURNED VALUE

Number of octets received If no error(s).

0, otherwise.

CALLERS

USB device class drivers.

NOTES / WARNINGS

This function can be only called from USB device class drivers during class specific setup

request callbacks.

265

A

A-4-3 USBD_BulkAdd()

Adds a bulk endpoint to alternate setting interface.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

cfg_nbr Configuration number.

if_nbr Interface number.

if_alt_nbr Interface alternate setting number.

dir_in Endpoint direction.

DEF_YES IN direction.

DEF_NO OUT direction.

max_pkt_len Endpoint maximum packet length (see Note #1).

CPU_INT08U USBD_BulkAdd (CPU_INT08U dev_nbr,

 CPU_INT08U cfg_nbr,

 CPU_INT08U if_nbr,

 CPU_INT08U if_alt_nbr,

 CPU_BOOLEAN dir_in,

 CPU_INT16U max_pkt_len,

 USBD_ERR *p_err);

266

Appendix A

A

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_CFG_INVALID_NBR

USBD_ERR_IF_INVALID_NBR

USBD_ERR_EP_NONE_AVAIL

USBD_ERR_EP_ALLOC

RETURNED VALUE

Endpoint address, if no error(s).

USBD_EP_ADDR_NONE, otherwise.

CALLERS

USB device class drivers.

NOTES / WARNINGS

If the max_pkt_len argument is '0', the stack will allocate the first available bulk endpoint

regardless its maximum packet size.

267

A

A-4-4 USBD_BulkRx()

Receives data on bulk OUT endpoint.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_addr Endpoint address.

p_buf Pointer to destination buffer to receive data

buf_len Number of octets to receive.

timeout_ms Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEVINVALID_STATE

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

CPU_INT32U USBD_BulkRx (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout_ms,

 USBD_ERR *p_err);

268

Appendix A

A

RETURNED VALUE

Number of octets received, If no error(s).

0, otherwise.

CALLERS

USB device class drivers.

NOTES / WARNINGS

This function blocks until:

■ All data is received, or

■ An error occurred.

■ Transfer does not complete in the period specified by timeout_ms.

269

A

A-4-5 USBD_BulkRxAsync()

Receives data on bulk OUT endpoint asynchronously.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_addr Endpoint address.

p_buf Pointer to destination buffer to receive data

buf_len Number of octets to receive.

async_fnct Function that will be invoked upon completion of receive operation

p_async_arg Pointer to argument that will be passed as parameter of async_fnct.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE
USBD_ERR_DEV_INVALID_NBR
USBD_ERR_DEV_INVALID_STATE
USBD_ERR_EP_INVALID_ADDR
USBD_ERR_EP_INVALID_STATE
USBD_ERR_EP_INVALID_TYPE
USBD_ERR_OS_TIMEOUT
USBD_ERR_OS_ABORT
USBD_ERR_OS_FAIL

void USBD_BulkRxAsync (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 void *p_buf,

 CPU_INT32U buf_len,

 USBD_ASYNC_FNCT async_fnct,

 void *p_async_arg,

 USBD_ERR *p_err);

270

Appendix A

A

RETURNED VALUE

None.

CALLERS

USB device class drivers.

NOTES / WARNINGS

The callback specified by async_fnct has the following prototype.

Argument(s):

dev_nbr Device number.

ep_addr Endpoint address.

p_buf Pointer to destination buffer to receive data.

buf_len Buffer length.

xfer_len Number of byte received.

p_arg Pointer to function argument.

err Error status.

USBD_ERR_NONE

USBD_ERR_EP_ABORT

void USB_AsyncFnct (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT32U xfer_len,

 void *p_arg,

 USBD_ERR err);

271

A

A-4-6 USBD_BulkTx()

Sends data on bulk IN endpoint.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_addr Endpoint address.

p_buf Pointer to buffer of data that will be transmitted.

buf_len Number of octets to transmit.

timeout_ms Timeout in milliseconds.

end End-of-transfer flag (see Note #2).

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

CPU_INT32U USBD_BulkTx (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout_ms,

 CPU_BOOLEAN end,

 USBD_ERR *p_err);

272

Appendix A

A

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

RETURNED VALUE

Number of octets transmitted, If no error(s).

0, otherwise.

CALLERS

USB device class drivers.

NOTES / WARNINGS

■ This function blocks until:

■ All data is transmitted, or

■ An error occurred.

■ Transfer does not complete in the period specified by timeout_ms.

■ If end-of-transfer is set and transfer length is multiple of maximum packet size,

a zero-length packet is transferred to indicate a short transfer to the host.

273

A

A-4-7 USBD_BulkTxAsync()

Receives data on bulk OUT endpoint asynchronously.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_addr Endpoint address.

p_buf Pointer to buffer of data that will be transmitted

buf_len Number of octets to transmit.

async_fnct Function that will be invoked upon completion of transmit operation.

p_async_arg Pointer to argument that will be passed as parameter of async_fnct.

end End-of-transfer flag (see Note #2).

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

void USBD_BulkTxAsync (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 void *p_buf,

 CPU_INT32U buf_len,

 USBD_ASYNC_FNCT async_fnct,

 void *p_async_arg,

 CPU_BOOLEAN end,

 USBD_ERR *p_err);

274

Appendix A

A

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

RETURNED VALUE

None.

CALLERS

USB device class drivers.

NOTES / WARNINGS

■ The callback specified by async_fnct has the following prototype.

Argument(s):

dev_nbr Device number.

ep_addr Endpoint address.

p_buf Pointer to buffer of data that will be transmitted.

buf_len Buffer length.

xfer_len Number of byte transmitted.

p_arg Pointer to function argument.

void USB_AsyncFnct (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT32U xfer_len,

 void *p_arg,

 USBD_ERR err);

275

A

err Error status.

USBD_ERR_NONE

USBD_ERR_EP_ABORT

■ If end-of-transfer is set and transfer length is multiple of maximum packet size, a zero-

length packet is transferred to indicate a short transfer to the host.

276

Appendix A

A

A-4-8 USBD_IntrAdd()

Adds an interrupt endpoint to alternate setting interface.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

cfg_nbr Configuration number.

if_nbr Interface number.

if_alt_nbr Interface alternate setting number.

dir_in Endpoint direction.

DEF_YES IN direction.

DEF_NO OUT direction.

max_pkt_len Endpoint maximum packet length (see Note #1).

interval Endpoint interval in frames/microframes.

CPU_INT08U USBD_IntrAdd (CPU_INT08U dev_nbr,

 CPU_INT08U cfg_nbr,

 CPU_INT08U if_nbr,

 CPU_INT08U if_alt_nbr,

 CPU_BOOLEAN dir_in,

 CPU_INT16U max_pkt_len,

 CPU_INT16U interval,

 USBD_ERR *p_err);

277

A

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_CFG_INVALID_NBR

USBD_ERR_IF_INVALID_NBR

USBD_ERR_EP_NONE_AVAIL

USBD_ERR_EP_ALLOC

RETURNED VALUE

Endpoint address, If no error(s).

USBD_EP_ADDR_NONE, otherwise.

CALLERS

USB device class drivers.

NOTES / WARNINGS

If the max_pkt_len argument is '0', the stack will allocate the first available interrupt

endpoint regardless its maximum packet size.

278

Appendix A

A

A-4-9 USBD_IntrRx()

Receives data on interrupt OUT endpoint.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_addr Endpoint address.

p_buf Pointer to destination buffer to receive data

buf_len Number of octets to receive.

timeout_ms Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEVINVALID_STATE

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

CPU_INT32U USBD_IntrRx (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout_ms,

 USBD_ERR *p_err);

279

A

RETURNED VALUE

Number of octets received, If no error(s).

0, otherwise.

CALLERS

USB device class drivers.

NOTES / WARNINGS

This function blocks until:

■ All data is received, or

■ An error occurred.

■ Transfer does not complete in the period specified by timeout_ms.

280

Appendix A

A

A-4-10 USBD_IntrRxAsync()

Receives data on interrupt OUT endpoint asynchronously.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_addr Endpoint address.

p_buf Pointer to destination buffer to receive data

buf_len Number of octets to receive.

async_fnct Function that will be invoked upon completion of receive operation

p_async_arg Pointer to argument that will be passed as parameter of async_fnct.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE
USBD_ERR_DEV_INVALID_NBR
USBD_ERR_DEV_INVALID_STATE
USBD_ERR_EP_INVALID_ADDR
USBD_ERR_EP_INVALID_STATE
USBD_ERR_EP_INVALID_TYPE
USBD_ERR_OS_TIMEOUT
USBD_ERR_OS_ABORT
USBD_ERR_OS_FAIL

void USBD_IntrRxAsync (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 void *p_buf,

 CPU_INT32U buf_len,

 USBD_ASYNC_FNCT async_fnct,

 void *p_async_arg,

 USBD_ERR *p_err);

281

A

RETURNED VALUE

None.

CALLERS

USB device class drivers.

NOTES / WARNINGS

The callback specified by async_fnct has the following prototype.

Argument(s):

dev_nbr Device number.

ep_addr Endpoint address.

p_buf Pointer to destination buffer to receive data.

buf_len Buffer length.

xfer_len Number of byte received.

p_arg Pointer to function argument.

err Error status.

USBD_ERR_NONE

USBD_ERR_EP_ABORT

void USB_AsyncFnct (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT32U xfer_len,

 void *p_arg,

 USBD_ERR err);

282

Appendix A

A

A-4-11 USBD_IntrTx()

Sends data on interrupt IN endpoint.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_addr Endpoint address.

p_buf Pointer to buffer of data that will be transmitted.

buf_len Number of octets to transmit.

timeout_ms Timeout in milliseconds.

end End-of-transfer flag (see Note #2).

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

CPU_INT32U USBD_IntrTx (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout_ms,

 CPU_BOOLEAN end,

 USBD_ERR *p_err);

283

A

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

RETURNED VALUE

Number of octets transmitted, If no error(s).

0, otherwise.

CALLERS

USB device class drivers.

NOTES / WARNINGS

■ This function blocks until:

■ All data is transmitted, or

■ An error occurred.

■ Transfer does not complete in the period specified by timeout_ms.

■ If end-of-transfer is set and transfer length is multiple of maximum packet size,

a zero-length packet is transferred to indicate a short transfer to the host.

284

Appendix A

A

A-4-12 USBD_IntrTxAsync()

Receives data on interrupt OUT endpoint asynchronously.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_addr Endpoint address.

p_buf Pointer to buffer of data that will be transmitted

buf_len Number of octets to transmit.

async_fnct Function that will be invoked upon completion of transmit operation.

p_async_arg Pointer to argument that will be passed as parameter of async_fnct.

end End-of-transfer flag (see Note #2).

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

void USBD_IntrTxAsync (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 void *p_buf,

 CPU_INT32U buf_len,

 USBD_ASYNC_FNCT async_fnct,

 void *p_async_arg,

 CPU_BOOLEAN end,

 USBD_ERR *p_err);

285

A

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

RETURNED VALUE

None.

CALLERS

USB device class drivers.

NOTES / WARNINGS

■ The callback specified by async_fnct has the following prototype.

Argument(s):

dev_nbr Device number.

ep_addr Endpoint address.

p_buf Pointer to buffer of data that will be transmitted.

buf_len Buffer length.

xfer_lenNumber of byte transmitted.

p_arg Pointer to function argument.

void USB_AsyncFnct (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT32U xfer_len,

 void *p_arg,

 USBD_ERR err);

286

Appendix A

A

err Error status.

USBD_ERR_NONE

USBD_ERR_EP_ABORT

■ If end-of-transfer is set and transfer length is multiple of maximum packet size, a zero-

length packet is transferred to indicate a short transfer to the host.

287

A

A-4-13 USBD_EP_RxZLP()

Receives zero-length packet from the host.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Pointer to USB device driver structure.

ep_addr Pointer to buffer of data that will be transmitted.

timeout_ms Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_OS_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

RETURNED VALUE

None.

void USBD_EP_RxZLP (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 CPU_INT16U timeout_ms,

 USBD_ERR *p_err);

288

Appendix A

A

CALLERS

USBD_CtrlRx()

USBD_CtrlRxStatus()

USB device class drivers.

NOTES / WARNINGS

None.

289

A

A-4-14 USBD_EP_TxZLP()

Sends zero-length packet from the host.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Pointer to USB device driver structure.

ep_addr Pointer to buffer of data that will be transmitted.

timeout_ms Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_OS_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

RETURNED VALUE

None.

void USBD_EP_RxZLP (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 CPU_INT16U timeout_ms,

 USBD_ERR *p_err);

290

Appendix A

A

CALLERS

USBD_CtrlTxStatus()

USB device class drivers.

NOTES / WARNINGS

None.

291

A

A-4-15 USBD_EP_Abort()

Abort I/O transfer on endpoint.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_addr Endpoint address.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_ABORT

USBD_ERR_EP_OS_FAIL

RETURNED VALUE

None.

CALLERS

USBD_EP_Stall()

USB device class drivers.

NOTES / WARNINGS

None.

void USBD_EP_Abort (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 USBD_ERR *p_err);

292

Appendix A

A

A-4-16 USBD_EP_Stall()

Modify stall state condition on non-control endpoints.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_addr Line control change notification callback (see note #1).

state Endpoint stall state.

DEF_SET Set stall condition.

DEF_NO Clear stall condition.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_ARG

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_STALL

USBD_ERR_EP_ABORT

USBD_ERR_OS_FAIL

RETURNED VALUE

None.

void USBD_EP_Stall (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 CPU_BOOLEAN state,

 USBD_ERR *p_err)

293

A

CALLERS

USBD_EP_Close()

USBD_StdReqEP()

USB device class drivers.

NOTES / WARNINGS

None.

294

Appendix A

A

A-4-17 USBD_EP_IsStalled()

Gets stall status of non-control endpoint

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_addr Pointer to the structure where the current line coding will be stored.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_ARG

USBD_ERR_EP_INVALID_ADDR

RETURNED VALUE

DEF_TRUE, if endpoint is stalled.

DEF_FALSE, otherwise.

CALLERS

USBD_StdReqEP()

USB device class drivers.

Application.

NOTES / WARNINGS

None.

CPU_BOOLEAN USBD_EP_IsStalled (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 USBD_ERR *p_err);

295

A

A-4-18 USBD_EP_GetMaxPktSize()

Retrieves endpoint’s maximum packet size

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_addr Endpoint address.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

RETURNED VALUE

Maximum packet size, If no error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

CPU_INT16U USBD_EP_GetMaxPktSize (CPU_INT08U dev_nbr,

 CPU_INT08U ep_addr,

 USBD_ERR *p_err);

296

Appendix A

A

A-4-19 USBD_EP_GetMaxPhyNbr()

Get the maximum physical endpoint number.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

RETURNED VALUE

Maximum physical endpoint number, If no error(s).

USBD_EP_PHY_NONE, otherwise.

CALLERS

USB device controllers drivers.

Application.

NOTES / WARNINGS

None.

CPU_INT08U USBD_EP_GetMaxPhyNbr (CPU_INT08U dev_nbr)

297

A

A-4-20 USBD_EP_GetMaxNbrOpen()

Retrieve maximum number of opened endpoints

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

RETURNED VALUE

Maximum number of opened endpoints, If no errors.

0, otherwise.

CALLERS

USB device controllers drivers.

Application.

NOTES / WARNINGS

None.

CPU_INT08U USBD_EP_GetMaxNbrOpen (CPU_INT08U dev_nbr);

298

Appendix A

A

A-5 CORE OS FUNCTIONS

A-5-1 USBD_OS_Init()

Initialize USB RTOS layer internal objects.

FILES

usbd_internal.h/usbd_os.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBD_Init()

IMPLEMENTATION GUIDELINES

■ The followings RTOS resources are required by the stack and should be allocated in

when this function is called.

■ One task for core and asynchronous events.

■ One queue that can hold up to USBD_CORE_EVENT_NBR_TOTAL events.

■ USBD_CFG_MAX_NBR_DEV x USBD_CFG_MAX_NBR_EP_OPEN semaphores for endpoints

operations.

void USBD_OS_Init (USBD_ERR *p_err);

299

A

■ If tracing is enabled, a semaphore and a task to manage debug events allocation

and debug events processing respectively.

If any error happen, USBD_ERR_OS_INIT_FAIL should be assigned to p_err and the

function should return immediately. Otherwise, USBD_ERR_NONE should be assigned to

p_err.

300

Appendix A

A

A-5-2 USBD_CoreTaskHandler()

Process all core events and operations.

FILES

usbd_internal.h/usbd_core.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

CALLERS

USB RTOS layer.

IMPLEMENTATION GUIDELINES

Typically, the RTOS layer should create a shell task for core events. The primary purpose of

the shell task is to run USBD_CoreTaskHandler().

void USBD_CoreTaskHandler (void);

301

A

A-5-3 USBD_DbgTaskHandler()

Process all pending debug events generated by the core.

FILES

usbd_internal.h/usbd_core.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

CALLERS

USB RTOS layer.

IMPLEMENTATION GUIDELINES

■ Typically, the RTOS layer code should create a shell task to process debug events

generated by the core. The primary purpose of the shell task is to run

USBD_DbgTaskHandler().

■ This function is only present in the code if trace option is enabled in the stack.

void USBD_DbgTaskHandler (void);

302

Appendix A

A

A-5-4 USBD_OS_EP_SignalCreate()

Creates a signal/semaphore for endpoints operations.

FILES

usbd_internal.h/usbd_os.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_ix Endpoint index.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

Endpoints open functions.

IMPLEMENTATION GUIDELINES

■ The purpose of this function is to allocate a signal or a semaphore for the specified

endpoint.

void USBD_OS_EP_SignalCreate (CPU_INT08U dev_nbr,

 CPU_INT08U ep_ix,

 USBD_ERR *p_err);

303

A

■ Typically, the RTOS layer code should create a two-dimensional array to store the

signals/semaphores handlers. The dev_nbr and ep_ix are used to index this array.

■ dev_nbr ranges between 0 and USBD_CFG_MAX_NBR_DEV.

■ ep_ix ranges between 0 and USBD_CFG_MAX_NBR_EP_OPEN.

■ In case the creation fails, USBD_ERR_OS_SIGNAL_CREATE should be assigned to p_err.

Otherwise, USBD_ERR_NONE should be assigned to p_err.

304

Appendix A

A

A-5-5 USBD_OS_EP_SignalDel()

Deletes a signal/semaphore.

FILES

usbd_internal.h/usbd_os.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_ix Endpoint index.

RETURNED VALUE

None.

CALLERS

Endpoints close functions.

IMPLEMENTATION GUIDELINES

A call to this function should delete the signal / semaphore associated to the specified

endpoint.

void USBD_OS_EP_SignalDel (CPU_INT08U dev_nbr,

 CPU_INT08U ep_ix);

305

A

A-5-6 USBD_OS_EP_SignalPend()

Waits for a signal/semaphore to become available.

FILES

usbd_internal.h/usbd_os.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_ix Endpoint index.

timeout_ms Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

Endpoints Rx/Tx functions.

IMPLEMENTATION GUIDELINES

A call to this function should pend on the signal / semaphore associated to the specified

endpoint.

Table A-1 describes the error codes that should be assigned to p_err depending on the

operation result.

void USBD_OS_EP_SignalPend (CPU_INT08U dev_nbr,

 CPU_INT08U ep_ix,

 CPU_INT16U timeout_ms,

 USBD_ERR *p_err);

306

Appendix A

A

Table A-1 p_err assignment in function of operation result.

Operation result Error code

No error. USBD_ERR_NONE

Pend timeout USBD_ERR_OS_TIMEOUT

Pend aborted USBD_ERR_OS_ABORT

Pend failed for any other reason USBD_ERR_OS_FAIL

307

A

A-5-7 USBD_OS_EP_SignalAbort()

Aborts any wait operation on signal/semaphore.

FILES

usbd_internal.h/usbd_os.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_ix Endpoint index.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

Endpoints abort functions.

IMPLEMENTATION GUIDELINES

This function should abort all pend operations performed on the signal / semaphore

associated to the specified endpoint.

If any error happen, USBD_ERR_OS_FAIL should be assigned to p_err. Otherwise,

USBD_ERR_NONE should be assigned to p_err.

void USBD_OS_EP_SignalAbort (CPU_INT08U dev_nbr,

 CPU_INT08U ep_ix,

 USBD_ERR *p_err);

308

Appendix A

A

A-5-8 USBD_OS_EP_SignalPost()

Makes a signal/semaphore available.

FILES

usbd_internal.h/usbd_os.c

PROTOTYPE

ARGUMENTS

dev_nbr Device number.

ep_ix Endpoint index.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

Endpoints transfer complete functions.

IMPLEMENTATION GUIDELINES

A call to this function should post the signal / semaphore associated to the specified

endpoint.

In case the post fail, USBD_ERR_OS_FAIL should be assigned to p_err. Otherwise,

USBD_ERR_NONE should be assigned to p_err.

void USBD_OS_EP_SignalPost (CPU_INT08U dev_nbr,

 CPU_INT08U ep_ix,

 USBD_ERR *p_err);

309

A

A-5-9 USBD_OS_CoreEventPut()

Queues a core event.

FILES

usbd_internal.h/usbd_os.c

PROTOTYPE

ARGUMENTS

p_event Pointer to core event.

RETURNED VALUE

None.

CALLERS

Endpoints and bus event handlers.

IMPLEMENTATION GUIDELINES

A call to this function should add the passed event to the core events queue.

void USBD_OS_CoreEventPut (void *p_event);

310

Appendix A

A

A-5-10 USBD_OS_CoreEventGet()

Wait until a core event is ready.

FILES

usbd_internal.h/usbd_os.c

PROTOTYPE

ARGUMENTS

timeout_ms Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

Pointer to core event, if no errors.

Null pointer, otherwise.

CALLERS

USBD_CoreTaskHandler()

IMPLEMENTATION GUIDELINES

A call to this function should block until an event is added to queue and return it.

Table A-1 describes the error codes that should be assigned to p_err depending on the

operation result.

void *USBD_OS_CoreEventGet (CPU_INT32U timeout_ms,

 USBD_ERR *p_err);

311

A

A-5-11 USBD_OS_DbgEventRdy()

Signals debug event handler task.

FILES

usbd_internal.h/usbd_os.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

CALLERS

Debug functions.

IMPLEMENTATION GUIDELINES

A call to this function should post the signal / semaphore that resume the debug task.

void USBD_OS_DbgEventRdy (void);

312

Appendix A

A

A-5-12 USBD_OS_DbgEventWait ()

Waits until a trace event is available.

FILES

usbd_internal.h/usbd_os.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

CALLERS

USBD_DbgTaskHandler()

IMPLEMENTATION GUIDELINES

A call to this function should pend on the signal / semaphore that resume the debug task.

void USBD_OS_DbgEventWait (void);

313

A

A-6 DEVICE DRIVERS CALLBACKS FUNCTIONS

A-6-1 USBD_EP_RxCmpl()

Notifies the stack that an OUT transfer is completed.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to device driver structure.

ep_log_nbr Endpoint logical number.

RETURNED VALUE

None.

CALLERS

USB device controller drivers ISR

NOTES / WARNINGS

None.

void USBD_EP_RxCmpl (USBD_DRV *p_drv,

 CPU_INT08U ep_log_nbr);

314

Appendix A

A

A-6-2 USBD_EP_TxCmpl()

Notifies the stack that an IN transfer is completed.

FILES

usbd_core.h/usbd_ep.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to device driver structure.

ep_log_nbr Endpoint logical number.

RETURNED VALUE

None.

CALLERS

USB device controller drivers ISR

NOTES / WARNINGS

None.

void USBD_EP_RxCmpl (USBD_DRV *p_drv,

 CPU_INT08U ep_log_nbr);

315

A

A-6-3 USBD_EventConn()

Notifies the stack the device is connected to the host.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to device driver structure.

RETURNED VALUE

None.

CALLERS

USB device controller drivers ISR

NOTES / WARNINGS

None.

void USBD_EventConn (USBD_DRV *p_drv);

316

Appendix A

A

A-6-4 USBD_EventDisconn()

Notifies the stack the device is disconnect from the host..

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to device driver structure.

RETURNED VALUE

None.

CALLERS

USB device controller drivers ISR

NOTES / WARNINGS

None.

void USBD_EventDisconn (USBD_DRV *p_drv);

317

A

A-6-5 USBD_EventReset()

Notifies the stack a reset event in the bus.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to device driver structure.

RETURNED VALUE

None.

CALLERS

USB device controller drivers ISR

NOTES / WARNINGS

None.

void USBD_EventReset(USBD_DRV *p_drv);

318

Appendix A

A

A-6-6 USBD_EventHS()

This function notifies the stack that a host is high speed capable.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to device driver structure.

RETURNED VALUE

None.

CALLERS

USB device controller drivers ISR

NOTES / WARNINGS

None.

void USBD_EventHS(USBD_DRV *p_drv);

319

A

A-6-7 USBD_EventSuspend()

Notifies the stack a suspend event in the bus.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to device driver structure.

RETURNED VALUE

None.

CALLERS

USB device controller drivers ISR

NOTES / WARNINGS

None.

void USBD_EventSuspend (USBD_DRV *p_drv);

320

Appendix A

A

A-6-8 USBD_EventResume()

Notifies the stack a resume event in the bus.

FILES

usbd_core.h/usbd_core.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to device driver structure.

RETURNED VALUE

None.

CALLERS

USB device controller drivers ISR

NOTES / WARNINGS

None.

void USBD_EventResume (USBD_DRV *p_drv);

321

A

A-7 TRACE FUNCTIONS

A-7-1 USBD_Trace()

Outputs debug information from the core. Users must implement this function if trace

functionality is enabled (USBD_CFG_DBG_TRACE is defined to DEF_ENABLED).

FILES

usbd_core.h

PROTOTYPE

ARGUMENTS

p_drv Pointer to the string containing debug information.

RETURNED VALUE

None.

CALLERS

USB core debug task handler.

NOTES / WARNINGS

None.

void USBD_Trace (const CPU_CHAR *p_str);

322

Appendix A

A

323

Appendix

B
Device Controller Driver API Reference

This appendix provides a reference to the Device Controller Driver API. Each user-

accessible service is presented in alphabetical order. The following information is provided

for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service

324

Appendix BB

B-1 DEVICE DRIVER FUNCTIONS

B-1-1 USBD_DrvInit()

The first function within the Device Driver API is the device driver initialization/Init()

function. This function is called by USBD_DevStart() exactly once for each specific device

added by the application. If multiple instances of the same device are present on the

development board, then this function is called for each instance of the device. However,

applications should not try to add the same specific device more than once. If a device fails

to initialize, it is recommend debugging to find and correct the cause of failure.

Note: This function relies heavily on the implementation of several device board support

package (BSP) functions. See section B-2 “Device Driver BSP Functions” on page 350 for

more information on device BSP functions.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

Note that since every device driver function is accessed only by function pointer via the

device driver’s API structure, they do not need to be globally available and should therefore

be declared as ‘static’.

ARGUMENTS

p_drv Pointer to USB device driver structure.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

static void USBD_DrvInit (USBD_DRV *p_drv

 USBD_ERR *p_err);

325

B

CALLERS

USBD_DevInit() via 'p_drv_api->Init()'.

NOTES / WARNINGS

The Init() function generally performs the following operations, however, depending on

the device being initialized, functionality may need to be added or removed:

■ Configure clock gating to the USB device, configure all necessary I/O pins, and

configure the host interrupt controller. This is generally performed via the device’s BSP

function pointer, Init(), implemented in usbd_bsp.c (see section B-2-1

“USBD_BSP_Init()” on page 350).

■ Reset USB controller or USB controller registers.

■ Disable and clear pending interrupts (should already be cleared).

■ Set the device address to zero.

■ For DMA devices: Allocate memory for all necessary descriptors. This is performed via

calls to μC/LIB’s memory module. If memory allocation fails, set p_err to

USBD_ERR_ALLOC and return.

■ Set p_err to USBD_ERR_NONE if initialization proceeded as expected. Otherwise, set

p_err to an appropriate device error code.

326

Appendix BB

B-1-2 USBD_DrvStart()

The second function is the device driver Start() function. This function is called once

each time a device is started.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBD_DevStart() via 'p_drv_api->Start()'.

NOTES / WARNINGS

The Start() function performs the following items:

■ Typically, activates the pull-up on the D+ pin to simulate attachment to host. Some

MCUs/MPUs have an internal pull-up that is activated by a device controller register; for

others, this may be a general purpose I/O pin. This is generally performed via the

device’s BSP function pointer, Conn(), implemented in usbd_bsp.c (see section B-2-2

on page 351). The device’s BSP Conn() is also responsible for enabling the host

interrupt controller.

■ Clear all interrupt flags.

static void USBD_DrvStart (USBD_DRV *p_drv

 USBD_ERR *p_err);

327

B

■ Locally enable interrupts on the hardware device. The host interrupt controller should

have already been configured within the device driver Init() function.

■ Enable the controller.

■ Set p_err equal to USBD_ERR_NONE if no errors have occurred. Otherwise, set p_err to

an appropriate device error code.

328

Appendix BB

B-1-3 USBD_DrvStop()

The next function within the device API structure is the device Stop() function. This

function is called once each time a device is stopped.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

RETURNED VALUE

None.

CALLERS

USBD_DevStop() via 'p_drv_api->Stop()'.

NOTES / WARNINGS

Typically, the Stop() function performs the following operations:

■ Disable the controller.

■ Clear and locally disable interrupts on the hardware device.

■ Disconnect from the USB host (e.g, reset the pull-up on the D+ pin). This is generally

performed via the device’s BSP function pointer, Disconn(), implemented in

usbd_bsp.c (see section B-2-3 on page 352).

static void USBD_DrvStop (USBD_DRV *p_drv);

329

B

B-1-4 USBD_DrvAddrSet()

The next API function to implement is the device address set/AddrSet() function. The

device address set function is called while processing a SET_ADDRESS setup request.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

dev_addr Device address assigned by the host.

RETURNED VALUE

DEF_OK, if NO error(s).

DEF_FAIL, otherwise.

CALLERS

USBD_StdReqDev() via 'p_drv_api->AddrSet()'.

NOTES / WARNINGS

■ For device controllers that have hardware assistance to enable the device address after

the status stage has completed, the assignment of the device address can also be

combined with enabling the device address mode.

■ For device controllers that change the device address immediately, without waiting the

status phase to complete, see USBD_DrvAddrEn().

static CPU_BOOLEAN USBD_DrvAddrSet (USBD_DRV *p_drv,

 CPU_INT08U dev_addr);

330

Appendix BB

B-1-5 USBD_DrvAddrEn()

The next function in the device API structure is the device address enable/AddrEn()

function.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

dev_addr Device address assigned by the host.

RETURNED VALUE

None.

CALLERS

USBD_StdReqHandler() via 'p_drv_api->AddrEn()'.

NOTES / WARNINGS

■ For device controllers that have hardware assistance to enable the device address after

the status stage has completed, no operation needs to be performed.

■ For device controllers that change the device address immediately, without waiting the

status phase to complete, the device address must be set and enabled.

static CPU_BOOLEAN USBD_DrvAddrEn (USBD_DRV *p_drv

 CPU_INT08U dev_addr);

331

B

B-1-6 USBD_DrvCfgSet()

Bring device into configured state.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

cfg_val Configuration value.

RETURNED VALUE

DEF_OK, if NO error(s).

DEF_FAIL, otherwise.

CALLERS

USBD_CfgOpen() via 'p_drv_api->CfgSet()'.

NOTES / WARNINGS

Typically, the set configuration function sets the device as configured. For some controllers,

this may not be necessary.

static CPU_BOOLEAN USBD_DrvCfgSet (USBD_DRV *p_drv,

 CPU_INT08U cfg_val);

332

Appendix BB

B-1-7 USBD_DrvCfgClr()

Bring device into de-configured state.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

cfg_val Configuration value.

RETURNED VALUE

None.

CALLERS

USBD_CfgClose() via 'p_drv_api->CfgClr()'.

NOTES / WARNINGS

■ Typically, the clear configuration function sets the device as not being configured. For

some controllers, this may not be necessary.

■ This functions in invoked after a bus reset or before the status stage of some

SET_CONFIGURATION requests.

static void USBD_DrvCfgClr (USBD_DRV *p_drv,

 CPU_INT08U cfg_val);

333

B

B-1-8 USBD_DrvGetFrameNbr()

Retrieve current frame number.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

RETURNED VALUE

Frame number.

CALLERS

None.

NOTES / WARNINGS

None.

static CPU_INT16U USBD_DrvGetFrameNbr (USBD_DRV *p_drv);

334

Appendix BB

B-1-9 USBD_DrvEP_Open()

Open and configure a device endpoint, given its characteristics (e.g., endpoint type,

endpoint address, maximum packet size, etc).

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

ep_addr Endpoint address.

ep_type Endpoint type:

USB_EP_TYPE_CTRL,

USB_EP_TYPE_ISOC,

USB_EP_TYPE_BULK,

USB_EP_TYPE_INTR.

max_pkt_size Maximum packet size.

transaction_frame Endpoint transactions per frame.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

static void USBD_DrvEP_Open (USBD_DEV *p_drv,

 CPU_INT08U ep_addr,

 CPU_INT08U ep_type,

 CPU_INT16U max_pkt_size,

 CPU_INT08U transaction_frame,

 USBD_ERR *p_err);

335

B

CALLERS

■ USBD_EP_Open() via 'p_drv_api->EP_Open()'

■ USBD_CtrlOpen()

NOTES / WARNINGS

■ Typically, the endpoint open function performs the following operations:

■ Validate endpoint address, type and maximum packet size.

■ Configure endpoint information in the device controller. This may include not only

assigning the type and maximum packet size, but also making certain that the

endpoint is successfully configured (or realized or mapped). For some device

controllers, this may not be necessary.

■ If the endpoint address is valid, then the endpoint open function should validate the

attributes allowed by the hardware endpoint.

■ max_pkt_size is the maximum packet size the endpoint can send or receive. The

endpoint open function should validate the maximum packet size to match

hardware capabilities.

336

Appendix BB

B-1-10 USBD_DrvEP_Close()

Close a device endpoint, and un-initialize/clear endpoint configuration in hardware.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

ep_addr Endpoint address.

RETURNED VALUE

None.

CALLERS

■ USBD_EP_Close() via 'p_drv_api->EP_Close()'

■ USBD_CtrlOpen()

NOTES / WARNINGS

Typically, the endpoint close function clears the endpoint information in the device

controller. For some controllers, this may not be necessary.

static void USBD_DrvEP_Close (USBD_DRV *p_drv,

 CPU_INT08U ep_addr);

337

B

B-1-11 USBD_DrvEP_RxStart()

Configure endpoint with buffer to receive data.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

ep_addr Endpoint address.

p_buf Pointer to data buffer.

buf_len Length of the buffer.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

■ USBD_EP_Rx() via 'p_drv_api->EP_Rx()'

■ USBD_EP_Process()

static void USBD_DrvEP_RxStart (USBD_DRV *p_drv,

 CPU_INT08U ep_addr,

 CPU_INT08U *p_buf,

 CPU_INT32U buf_len,

 USBD_ERR *p_err);

338

Appendix BB

NOTES / WARNINGS

Typically, the function to configure the endpoint receive transaction performs the following

operations:

■ Determine maximum transaction length, given the specified length of the buffer

(buf_len).

■ Setup receive transaction.

339

B

B-1-12 USBD_DrvEP_Rx()

Receive the specified amount of data from device endpoint.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

ep_addr Endpoint address.

p_buf Pointer to data buffer.

buf_len Length of the buffer.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

Number of octets received, if NO error(s)

0, otherwise

CALLERS

■ USBD_EP_Rx() via 'p_drv_api->EP_Rx()'

■ USBD_EP_Process()

static CPU_INT32U USBD_DrvEP_Rx (USBD_DRV *p_drv,

 CPU_INT08U ep_addr,

 CPU_INT08U *p_buf,

 CPU_INT32U buf_len,

 USBD_ERR *p_err);

340

Appendix BB

NOTES / WARNINGS

Typically, the receive from endpoint function performs the following operations:

■ Check if packet has been received and is ready to be read.

■ Determine packet length.

■ If packet length is greater than buf_len, then copy the first buf_len octets into

p_buf. Otherwise, copy the entire packet into p_buf.

■ Clear endpoint buffer to allow next packet to be received. For some controllers, this

may not be necessary.

341

B

B-1-13 USBD_DrvEP_RxZLP()

Receive zero-length packet from endpoint.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

ep_addr Endpoint address.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

USBD_EP_RxZLP() via 'p_drv_api->EP_RxZLP()'

NOTES / WARNINGS

None.

static void USBD_DrvEP_RxZLP (USBD_DRV *p_drv,

 CPU_INT08U ep_addr,

 USBD_ERR *p_err);

342

Appendix BB

B-1-14 USBD_DrvEP_Tx()

Configure endpoint with buffer to transmit data.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

ep_addr Endpoint address.

p_buf Pointer to data buffer.

buf_len Length of the buffer.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

Number of octets transmitted, if NO error(s).

0, otherwise.

CALLERS

■ USBD_EP_Tx() via 'p_drv_api->EP_Tx()'

■ USBD_EP_Process()

static CPU_INT32U USBD_DrvEP_Tx (USBD_DRV *p_drv,

 CPU_INT08U ep_addr,

 CPU_INT08U *p_buf,

 CPU_INT32U buf_len,

 USBD_ERR *p_err);

343

B

NOTES / WARNINGS

Typically, the function to configure the endpoint receive transaction performs the following

operations:

■ Check if data can be transmitted.

■ Write data to device endpoint.

■ Configure the packet length in USB device controller. This is often necessary when the

packet is shorter than the maximum packet size. Depending on the USB controller, this

operation may need to be performed prior to writing the data to the device endpoint.

344

Appendix BB

B-1-15 USBD_DrvEP_TxStart()

Transmit the specified amount of data to device endpoint.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

ep_addr Endpoint address.

p_buf Pointer to data buffer.

buf_len Length of the buffer.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

Number of octets transmitted, if NO error(s).

0, otherwise.

static void USBD_DrvEP_TxStart (USBD_DRV *p_drv,

 CPU_INT08U ep_addr,

 CPU_INT08U *p_buf,

 CPU_INT32U buf_len,

 USBD_ERR *p_err);

345

B

CALLERS

■ USBD_EP_Tx() via 'p_drv_api->EP_TxStart()'

■ USBD_EP_Process()

NOTES / WARNINGS

Typically, the function to configure the endpoint receive transaction performs the following

operations:

■ Trigger packet transmission.

346

Appendix BB

B-1-16 USBD_DrvEP_TxZLP()

Transmit zero-length packet to endpoint.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

ep_addr Endpoint address.

p_err Pointer to variable that will receive the return error code from this function.

RETURNED VALUE

None.

CALLERS

■ USBD_EP_Tx() via 'p_drv_api->EP_TxZLP()'

■ USBD_EP_TxZLP()

■ USBD_EP_Process()

NOTES / WARNINGS

None.

static void USBD_DrvEP_TxZLP (USBD_DRV *p_drv,

 CPU_INT08U ep_addr,

 USBD_ERR *p_err);

347

B

B-1-17 USBD_DrvEP_Abort()

Abort any pending transfer on endpoint.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

ep_addr Endpoint Address.

RETURNED VALUE

DEF_OK, if NO error(s).

DEF_FAIL, otherwise.

CALLERS

USBD_URB_Abort() via 'p_drv_api->EP_Abort()'

NOTES / WARNINGS

None.

static CPU_BOOLEAN USBD_DrvEP_Abort (USBD_DRV *p_drv,

 CPU_INT08U ep_addr);

348

Appendix BB

B-1-18 USBD_DrvEP_Stall()

Set or clear stall condition on endpoint.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

ep_addr Endpoint address.

state Endpoint stall state.

RETURNED VALUE

DEF_OK, if NO error(s).

DEF_FAIL, otherwise.

CALLERS

■ USBD_EP_Stall() via 'p_drv_api->EP_Stall()'

■ USBD_CtrlStall()

NOTES / WARNINGS

None.

static CPU_BOOLEAN USBD_DrvEP_Stall (USBD_DRV *p_drv,

 CPU_INT08U ep_addr,

 CPU_BOOLEAN state);

349

B

B-1-19 USBD_DrvISR_Handler()

USB device Interrupt Service Routine (ISR) handler.

FILES

Every device driver’s usbd_drv.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

RETURNED VALUE

None.

CALLERS

Processor level kernel-aware interrupt handler.

NOTES / WARNINGS

None.

static void USBD_DrvISR_Handler (USBD_DRV *p_drv);

350

Appendix BB

B-2 DEVICE DRIVER BSP FUNCTIONS

B-2-1 USBD_BSP_Init()

Initialize board-specific USB controller dependencies.

FILES

Every device driver’s usbd_bsp.c

PROTOTYPE

ARGUMENTS

p_drv Pointer to USB device driver structure.

RETURNED VALUE

None.

CALLERS

USBD_DrvInit()

NOTES / WARNINGS

None.

static void USBD_BSP_Init (USBD_DRV *p_drv);

351

B

B-2-2 USBD_BSP_Conn()

Enable USB controller connection dependencies.

FILES

Every device driver’s usbd_bsp.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

CALLERS

USBD_DrvStart()

NOTES / WARNINGS

None.

static void USBD_BSP_Conn (void);

352

Appendix BB

B-2-3 USBD_BSP_Disconn()

Disable USB controller connection dependencies.

FILES

Every device driver’s usbd_bsp.c

PROTOTYPE

ARGUMENTS

None.

RETURNED VALUE

None.

CALLERS

USBD_DrvStop()

NOTES / WARNINGS

None.

static void USBD_BSP_Disconn (void);

353

Appendix

C
CDC API Reference

This appendix provides a reference to the μC/USB-Device Communications Device Class

(CDC) API and Abstract Control Model (ACM) subclass API. The following information is

provided for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service

354

Appendix C

C

C-1 CDC FUNCTIONS

C-1-1 USBD_CDC_Init()

This function initializes all the internal variables and modules used by the CDC. The

initialization function is called by the application exactly once.

FILES

usbd_cdc.h/usbd_cdc.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this function:

USBD_ERR_NONE

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

None.

static void USBD_CDC_Init (USBD_ERR *p_err);

355

C

C-1-2 USBD_CDC_Add()

This function creates a CDC instance.

FILES

usbd_cdc.h/usbd_cdc.c

PROTOTYPE

ARGUMENTS

subclass CDC subclass code.

USBD_CDC_SUBCLASS_RSVD Reserved value

USBD_CDC_SUBCLASS_DLCM Direct Line Control Model

USBD_CDC_SUBCLASS_ACM Abstract Control Model

USBD_CDC_SUBCLASS_TCM Telephone Control Model

USBD_CDC_SUBCLASS_MCC Multi-Channel Control Model

USBD_CDC_SUBCLASS_CAPICM CAPI Control Model

USBD_CDC_SUBCLASS_WHCM Wireless Handset Control Model

USBD_CDC_SUBCLASS_DEV_MGMT Device Management

USBD_CDC_SUBCLASS_MDLM Device Management

USBD_CDC_SUBCLASS_OBEX Obex

USBD_CDC_SUBCLASS_EEM Ethernet Emulation Model

USBD_CDC_SUBCLASS_NCM Network Control Model

USBD_CDC_SUBCLASS_VENDOR Vendor specific

CDC subclass codes are defined in the Universal Serial Bus Class Definitions

for Communication Devices Revision 2.1 Table 4.

CPU_INT08U USBD_CDC_Add(CPU_INT08U subclass,

 USBD_CDC_SUBCLASS_DRV *p_subclass_drv,

 void *p_subclass_arg,

 CPU_INT08U protocol,

 CPU_BOOLEAN notify_en,

 CPU_INT16U notify_interval,

 USBD_ERR *p_err);

356

Appendix C

C

p_subclass_drv Pointer to CDC subclass driver.

p_subclass_arg Pointer to CDC subclass driver argument.

protocol CDC protocol code.

USBD_CDC_COMM_PROTOCOL_NONE

USBD_CDC_COMM_PROTOCOL_AT_V250

USBD_CDC_COMM_PROTOCOL_AT_PCCA_101

USBD_CDC_COMM_PROTOCOL_AT_PCCA_101_ANNEX

USBD_CDC_COMM_PROTOCOL_AT_GSM_7_07

USBD_CDC_COMM_PROTOCOL_AT_3GPP_27_07

USBD_CDC_COMM_PROTOCOL_AT_TIA_CDMA

USBD_CDC_COMM_PROTOCOL_EEM

USBD_CDC_COMM_PROTOCOL_EXT

USBD_CDC_COMM_PROTOCOL_VENDOR

CDC protocol codes are defined in the Universal Serial Bus Class Definitions

for Communication Devices Revision 2.1 Table 5.

notify_en Notification enabled.

DEF_ENABLED CDC notifications are enabled.

DEF_DISABLED CDC notifications are disabled.

notify_interval Notification interval in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_ALLOC

RETURNED VALUE

CDC class interface number, if CDC class successfully created.

USBD_CDC_NBR_NONE, otherwise.

357

C

CALLERS

CDC Subclass drivers.

NOTES / WARNINGS

The CDC defines a communication class interface consisting of a management element and

optionally a notification element. The notification element transports event to the host. The

enable_en enable notifications in the CDC. The notification are sent to the host using an

interrupt endpoint, the interval of the interrupt endpoint is specified by the

notify_interval parameter.

358

Appendix C

C

C-1-3 USBD_CDC_CfgAdd()

Add a CDC instance to specific USB configuration.

FILES

usbd_cdc.h/usbd_cdc.c

PROTOTYPE

ARGUMENTS

class_nbr CDC instance number.

dev_nbr Device number.

cfg_nbr Configuration number.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_ALLOC

USBD_ERR_INVALID_ARG

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_CFG_INVALID_NBR

USBD_ERR_IF_ALLOC

USBD_ERR_IF_ALT_ALLOC

USBD_ERR_IF_INVALID_NBR

USBD_ERR_IF_GRP_NBR_IN_USE

USBD_ERR_IF_GRP_ALLOC

USBD_ERR_EP_NONE_AVAIL

USBD_ERR_EP_ALLOC

CPU_BOOLEAN USBD_CDC_CfgAdd (CPU_INT08U class_nbr,

 CPU_INT08U dev_nbr,

 CPU_INT08U cfg_nbr,

 USBD_ERR *p_err);

359

C

RETURNED VALUE

DEF_OK, if CDC class instance was added to device configuration successfully.

DEF_FAIL, otherwise.

CALLERS

CDC Subclass drivers.

NOTES / WARNINGS

None.

360

Appendix C

C

C-1-4 USBD_CDC_IsConn()

Determine if CDC instance is connected.

FILES

usbd_cdc.h/usbd_cdc.c

PROTOTYPE

ARGUMENTS

class_nbr CDC instance number.

RETURNED VALUE

DEF_OK, if CDC instance is connected and device is not in suspended state.

DEF_FAIL, otherwise.

CALLERS

■ CDC Subclass drivers

■ Application

NOTES / WARNINGS

If the USBD_CDC_IsConn() returns DEF_OK, than the CDC instance is ready for management,

notification, read and write operations.

CPU_BOOLEAN USBD_CDC_IsConn (CPU_INT08U class_nbr)

361

C

C-1-5 USBD_CDC_DataIF_Add()

Add a data interface class to CDC.

FILES

usbd_cdc.h/usbd_cdc.c

PROTOTYPE

ARGUMENTS

class_nbr CDC instance number.

isoc_en Data interface isochronous enable.

DEF_ENABLED Data interface uses isochronous

endpoints.

DEF_DISABLED Data interface uses bulk endpoints.

protocol Data interface protocol code:

USBD_CDC_DATA_PROTOCOL_NONE No class specific protocol required.

USBD_CDC_DATA_PROTOCOL_NTB Network Transfer Block.

USBD_CDC_DATA_PROTOCOL_PHY Physical interface protocol for ISDN BRI.

USBD_CDC_DATA_PROTOCOL_HDLC HDLC.

USBD_CDC_DATA_PROTOCOL_TRANS Transparent.

USBD_CDC_DATA_PROTOCOL_Q921M Management protocol for Q.921 data link

protocol.

USBD_CDC_DATA_PROTOCOL_Q921 Data link protocol for Q.921.

USBD_CDC_DATA_PROTOCOL_Q921TM TEI-multiplexor for Q.921 data link

protocol

USBD_CDC_DATA_PROTOCOL_COMPRESS Data compression procedures.

USBD_CDC_DATA_PROTOCOL_Q9131 Euro-ISDN protocol control.

CPU_INT08U USBD_CDC_DataIF_Add (CPU_INT08U class_nbr,

 CPU_BOOLEAN isoc_en,

 CPU_INT08U protocol,

 USBD_ERR *p_err);

362

Appendix C

C

USBD_CDC_DATA_PROTOCOL_V24 V.24 rate adaptation to ISDN.

USBD_CDC_DATA_PROTOCOL_CAPI CAPI Commands.

USBD_CDC_DATA_PROTOCOL_HOST Host based driver.

USBD_CDC_DATA_PROTOCOL_CDC The protocol(s) are described using a

Protocol Unit Function Communication

Class Interface.

USBD_CDC_DATA_PROTOCOL_VENDOR Vendor-specific.

CDC data interface class protocol codes are defined in the Universal Serial

Bus Class Definitions for Communication Devices Revision 2.1 Table 7.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_ALLOC

USBD_ERR_INVALID_ARG

RETURNED VALUE

Data interface number, if no errors.

USBD_CDC_DATA_IF_NBR_NONE, otherwise.

CALLERS

CDC Subclass drivers.

NOTES / WARNINGS

None.

363

C

C-1-6 USBD_CDC_DataRx()

Receive data on CDC data interface.

FILES

usbd_cdc.h/usbd_cdc.c

PROTOTYPE

ARGUMENTS

class_nbr CDC instance number.

data_if_nbr CDC data interface number.

p_buf Pointer to destination buffer to receive data.

buf_len Number of octets to receive.

timeout_ms Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

CPU_INT32U USBD_CDC_DataRx (CPU_INT08U class_nbr,

 CPU_INT08U data_if_nbr,

 CPU_INT08U *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

364

Appendix C

C

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

RETURNED VALUE

Numbers of octets received, if no errors.

0, otherwise.

CALLERS

CDC Subclass drivers.

NOTES / WARNINGS

None.

365

C

C-1-7 USBD_CDC_DataTx()

Send data on CDC data class interface.

FILES

usbd_cdc.h/usbd_cdc.c

PROTOTYPE

ARGUMENTS

class_nbr CDC instance number.

data_if_nbr CDC data interface number.

p_buf Pointer to buffer of data that will be transmitted.

buf_len Number of octets to transmit.

timeout_ms Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

CPU_INT32U USBD_CDC_DataTx (CPU_INT08U class_nbr,

 CPU_INT08U data_if_nbr,

 CPU_INT08U *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

366

Appendix C

C

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

RETURNED VALUE

Numbers of octets transmitted, if no errors.

0, otherwise.

CALLERS

CDC Subclass drivers.

NOTES / WARNINGS

None.

367

C

C-1-8 USBD_CDC_Notify()

Send communication interface class notification to the host.

FILES

usbd_cdc.h/usbd_cdc.c

PROTOTYPE

ARGUMENTS

class_nbr CDC instance number.

notificationNotification code (see Note #1).

value Notification value (see Note #1).

p_buf Pointer to notification buffer (see Note #2).

data_len Notification’s data section length.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

CPU_BOOLEAN USBD_CDC_Notify (CPU_INT08U class_nbr,

 CPU_INT08U notification,

 CPU_INT16U value,

 CPU_INT08U *p_buf,

 CPU_INT16U data_len,

 USBD_ERR *p_err);

368

Appendix C

C

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

RETURNED VALUE

None.

CALLERS

CDC Subclass drivers.

NOTES / WARNINGS

1 The following table show the relationship between CDC request and the parameters

passed in the USBD_CDC_Notify() function. The bmRequestType and wIndex fields are

calculated internally in the CDC module.

2 The notification buffer size must contain space for the notification header (8 bytes and

the variable-length data portion.

bmRequestType bNotificationCode wValue wIndex wLength Data

1010001b notification value Interface data_len p_buf[7] to

p_buf[data_len -1]

369

C

C-2 CDC ACM SUBCLASS FUNCTIONS

C-2-1 USBD_ACM_SerialInit()

Initialize CDC ACM serial emulation subclass.

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this function:

USBD_ERR_NONE.

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

None.

void USBD_ACM_SerialInit (USBD_ERR *p_err);

370

Appendix C

C

C-2-2 USBD_ACM_SerialAdd()

Add a new CDC ACM serial emulation instance.

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

line_state_interval Polling interval in frames or microframes for line state

notification.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_ALLOC

USBD_ERR_INVALID_ARG

RETURNED VALUE

CDC ACM serial emulation subclass instance number,if no errors.

USBD_ACM_SERIAL_NBR_NONE, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

CPU_INT08U USBD_ACM_SerialAdd (CPU_INT16U line_state_interval,

 USBD_ERR *p_err);

371

C

C-2-3 USBD_ACM_SerialCfgAdd()

Add CDC ACM subclass instance to USB device configuration.

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

subclass_nbr CDC ACM serial emulation subclass instance number.

dev_nbr Device number.

cfg_nbr Configuration number.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_ALLOC

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_CFG_INVALID_NBR

USBD_ERR_IF_ALLOC

USBD_ERR_IF_ALT_ALLOC

USBD_ERR_EP_NONE_AVAIL

USBD_ERR_EP_ALLOC

CPU_BOOLEAN USBD_ACM_SerialCfgAdd (CPU_INT08U subclass_nbr,

 CPU_INT08U dev_nbr,

 CPU_INT08U cfg_nbr,

 USBD_ERR *p_err);

372

Appendix C

C

RETURNED VALUE

DEF_OK, If CDC ACM serial emulation subclass instance was added to device

configuration successfully.

DEF_FAIL, Otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

373

C

C-2-4 USBD_ACM_SerialIsConn()

Determine if CDC ACM serial emulation class instance is connected.

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

subclass_nbr CDC ACM serial emulation subclass instance number.

RETURNED VALUE

DEF_OK, If CDC ACM serial emulation subclass instance is connected and device is not

in suspended state.

DEF_FAIL, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

CPU_BOOLEAN USBD_ACM_SerialIsConn (CPU_INT08U subclass_nbr);

374

Appendix C

C

C-2-5 USBD_ACM_SerialRx()

Receive data on CDC ACM serial emulation subclass.

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

subclass_nbr Pointer to USB device driver structure.

p_buf Pointer to destination buffer to receive data.

buf_len Number of octets to receive.

timeout_ms Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

CPU_INT32U USBD_ACM_SerialRx (CPU_INT08U subclass_nbr,

 CPU_INT08U *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

375

C

RETURNED VALUE

None.

CALLERS

Numbers of octets received, if NO error(s).

0, otherwise.

NOTES / WARNINGS

None.

376

Appendix C

C

C-2-6 USBD_ACM_SerialTx()

Send data on CDC ACM serial emulation subclass.

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

subclass_nbr Pointer to USB device driver structure.

p_buf Pointer to buffer of data that will be transmitted.

buf_len Number of octets to receive.

timeout_ms Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_ABORT

USBD_ERR_OS_FAIL

CPU_INT32U USBD_ACM_SerialTx (CPU_INT08U subclass_nbr,

 CPU_INT08U *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

377

C

RETURNED VALUE

Number of octets transmitted, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

378

Appendix C

C

C-2-7 USBD_ACM_SerialLineCtrlGet()

Return current control line state.

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

subclass_nbr CDC ACM serial emulation subclass instance number.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

RETURNED VALUE

Bit-field with the state of the control line.

USBD_ACM_SERIAL_CTRL_BREAK Break signal is set.

USBD_ACM_SERIAL_CTRL_RTS RTS signal is set.

USBD_ACM_SERIAL_CTRL_DTR DTR signal is set.

CALLERS

Application.

NOTES / WARNINGS

None.

CPU_INT08U USBD_ACM_SerialLineCtrlGet (CPU_INT08U subclass_nbr,

 USBD_ERR *p_err);

379

C

C-2-8 USBD_ACM_SerialLineCtrlReg()

Register line control change notification callback.

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

subclass_nbr CDC ACM serial emulation subclass instance number.

line_ctrl_chngd Line control change notification callback (see note #1).

p_arg Pointer to callback argument.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

RETURNED VALUE

None.

CALLERS

Application.

void USBD_ACM_SerialLineCtrlReg (CPU_INT08U subclass_nbr,

 USBD_ACM_SERIAL_LINE_CTRL_CHNGD line_ctrl_chngd,

 void *p_arg,

 USBD_ERR *p_err);

380

Appendix C

C

NOTES / WARNINGS

The callback specified by line_ctrl_chngd argument is used to notify changes in the

control signals to the application.

The line control notification function has the following prototype:

Argument(s):

subclass_nbr CDC ACM serial emulation subclass instance number.

events Current line state.

events_chngd Line state flags that have changed.

events_chngd Pointer to callback argument.

void AppLineCtrlChngd (CPU_INT08U subclass_nbr,

 CPU_INT08U events,

 CPU_INT08U events_chngd,

 void *p_arg);

381

C

C-2-9 USBD_ACM_SerialLineCodingGet()

Get the current state of the line coding.

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

subclass_nbr CDC ACM serial emulation subclass instance number.

p_line_coding Pointer to the structure where the current line coding will be

stored.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_NULL_PTR

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

None.

void USBD_ACM_SerialLineCodingGet (CPU_INT08U subclass_nbr,

 USBD_ACM_SERIAL_LINE_CODING *p_line_coding,

 USBD_ERR *p_err);

382

Appendix C

C

C-2-10 USBD_ACM_SerialLineCodingSet()

Set a new line coding.

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

subclass_nbr CDC ACM serial emulation subclass instance number.

p_line_coding Pointer to the structure where that contains the new line coding.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_NULL_PTR

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

None.

void USBD_ACM_SerialLineCodingSet (CPU_INT08U subclass_nbr,

 USBD_ACM_SERIAL_LINE_CODING *p_line_coding,

 USBD_ERR *p_err);

383

C

C-2-11 USBD_ACM_SerialLineCodingReg()

Register line coding change notification callback.

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

subclass_nbr CDC ACM serial emulation subclass instance number.

line_coding_chngd Line coding change notification callback (see Note #1).

p_arg Pointer to callback argument.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

RETURNED VALUE

None.

CALLERS

Application.

void USBD_ACM_SerialLineCodingReg(CPU_INT08U subclass_nbr,

 USBD_ACM_SERIAL_LINE_CODING_CHNGD line_coding_chngd,

 void *p_arg,

 USBD_ERR *p_err);

384

Appendix C

C

NOTES / WARNINGS

■ The callback specified by line_coding_chngd argument is used to notify changes in

the control signals to the application.

The line control notification function has the following prototype:

Arguments:

subclass_nbr CDC ACM serial emulation subclass instance number.

p_line_coding Pointer to line coding structure.

p_arg Pointer to callback argument.

Returned value:

DEF_OK, If line coding is supported by the application.

DEF_FAIL, Otherwise.

CPU_BOOLEAN AppLineCodingChngd (CPU_INT08U subclass_nbr,

 ... *p_line_coding,

 void *p_arg);

385

C

C-2-12 USBD_ACM_SerialLineStateSet()

Set one or several line state events.

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

subclass_nbr CDC ACM serial emulation subclass instance number.

events Line state event(s) to set.

USBD_ACM_SERIAL_STATE_DCD DCD (Rx carrier)

USBD_ACM_SERIAL_STATE_DSR DSR (Tx carrier)

USBD_ACM_SERIAL_STATE_BREAK Break

USBD_ACM_SERIAL_STATE_RING Ring

USBD_ACM_SERIAL_STATE_FRAMINGFraming error

USBD_ACM_SERIAL_STATE_PARITY Parity error

USBD_ACM_SERIAL_STATE_OVERUN Overrun

RETURNED VALUE

DEF_OK, if new line state event set successfully.

DEF_FAIL, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

CPU_BOOLEAN USBD_ACM_SerialLineStateSet (CPU_INT08U subclass_nbr,

 CPU_INT08U events);

386

Appendix C

C

C-2-13 USBD_ACM_SerialLineStateClr()

Clear one or several line state event(s).

FILES

usbd_acm_serial.h/usbd_acm_serial.c

PROTOTYPE

ARGUMENTS

subclass_nbr CDC ACM serial emulation subclass instance number.

events Line state event(s) to clear (see Note #1).

USBD_ACM_SERIAL_STATE_DCD DCD (Rx carrier)

USBD_ACM_SERIAL_STATE_DSR DSR (Tx carrier)

RETURNED VALUE

DEF_OK, if new line state event clear successfully.

DEF_FAIL, otherwise.

CALLERS

Application.

NOTES / WARNINGS

■ Universal Serial Bus Communications Class Subclass Specification for PSTN Devices

version 1.2 states: “For the irregular signals like break, the incoming ring signal, or the

overrun error state, this will reset their values to zero and again will not send another

notification until their state changes”. The irregular events are self-clear and cannot be

clear using this function.

CPU_BOOLEAN USBD_ACM_SerialLineStateSet (CPU_INT08U subclass_nbr,

 CPU_INT08U events);

387

Appendix

D
HID API Reference

This appendix provides a reference to the Human Interface Device (HID) class API. The

following information is provided for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service

388

Appendix D

D

D-1 HID CLASS FUNCTIONS

D-1-1 USBD_HID_Init()

This function initializes all the internal variables and modules used by the HID class.

FILES

usbd_hid.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

The initialization function must be called only once by the application, and before calling

any other HID API.

void USBD_HID_Init (USBD_ERR *p_err);

389

D

D-1-2 USBD_HID_Add()

This function adds a new instance of the HID class.

FILES

usbd_hid.c

PROTOTYPE

ARGUMENTS

subclass Subclass code.

protocol Protocol code.

country_code Country code ID.

p_report_desc Pointer to report descriptor structure.

report_desc_len Report descriptor length.

p_phy_desc Pointer to physical descriptor structure.

phy_desc_len Physical descriptor length.

interval_in Polling interval for input transfers, in milliseconds.

void USBD_HID_Add (CPU_INT08U subclass,

 CPU_INT08U protocol,

 USBD_HID_COUNTRY_CODE country_code,

 CPU_INT08U *p_report_desc,

 CPU_INT16U report_desc_len,

 CPU_INT08U *p_phy_desc,

 CPU_INT16U phy_desc_len,

 CPU_INT16U interval_in,

 CPU_INT16U interval_out,

 CPU_BOOLEAN ctrl_rd_en,

 USBD_HID_CALLBACK *p_hid_callback,

 USBD_ERR *p_err);

390

Appendix D

D

interval_out Polling interval for output transfers, in milliseconds. Used only

when read operations are not through control transfers.

ctrl_rd_en Enable read operations through control transfers.

p_hid_callback Pointer to HID descriptor and request callback structure.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_ALLOC

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_FAIL

RETURNED VALUE

Class interface number, if NO error(s).

USBD_CLASS_NBR_NONE, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

391

D

D-1-3 USBD_HID_CfgAdd()

This function adds HID class instance into USB device configuration.

FILES

usbd_hid.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

dev_nbr Device number.

cfg_nbr Configuration index to add class instance to.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_ALLOC

USBD_ERR_INVALID_ARG

USBD_ERR_NULL_PTR

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_CFG_INVALID_NBR

USBD_ERR_IF_ALLOC

USBD_ERR_IF_ALT_ALLOC

USBD_ERR_EP_NONE_AVAIL

USBD_ERR_IF_INVALID_NBR

USBD_ERR_EP_ALLOC

CPU_BOOLEAN USBD_HID_CfgAdd (CPU_INT08U class_nbr,

 CPU_INT08U dev_nbr,

 CPU_INT08U cfg_nbr,

 USBD_ERR *p_err);

392

Appendix D

D

RETURNED VALUE

DEF_YES, if NO error(s).

DEF_NO, otherwise.

CALLERS

Application.

NOTES / WARNINGS

This API may be called several times. This allows to create multiple instances of the HID

class into different USB device configurations.

393

D

D-1-4 USBD_HID_IsConn()

This function returns the HID class connection state.

FILES

usbd_hid.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

RETURNED VALUE

DEF_YES, if class is connected.

DEF_NO, otherwise.

CALLERS

Application.

NOTES / WARNINGS

The class connected state also implies the USB device is in configured state.

CPU_BOOLEAN USBD_HID_IsConn (CPU_INT08U class_nbr);

394

Appendix D

D

D-1-5 USBD_HID_Rd()

This function receives data from the host through an interrupt OUT endpoint.

FILES

usbd_hid.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_buf Pointer to receive buffer.

buf_len Receive buffer length, in octets.

timeout Timeout, in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

CPU_INT32U USBD_HID_Rd (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

395

D

RETURNED VALUE

Number of octets received, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

396

Appendix D

D

D-1-6 USBD_HID_RdAsync()

This function receives data from the host asynchronously through an interrupt OUT

endpoint.

FILES

usbd_hid.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_buf Pointer to receive buffer.

buf_len Receive buffer length, in octets.

async_fnct Receive callback.

p_async_arg Additional argument provided by application for receive callback.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_FAIL

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

void USBD_HID_RdAsync (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 USBD_HID_ASYNC_FNCT async_fnct,

 void *p_async_arg,

 USBD_ERR *p_err);

397

D

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_EP_INVALID_STATE

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

This function is non-blocking and returns immediately after transfer preparation. Upon

transfer completion, the callback provided is called to notify the application.

398

Appendix D

D

D-1-7 USBD_HID_Wr()

This function transmits data to the host through an interrupt IN endpoint.

FILES

usbd_hid.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_buf Pointer to transmit buffer.

buf_len Transmit buffer length, in octets.

timeout Timeout, in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

CPU_INT32U USBD_HID_Wr (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

399

D

RETURNED VALUE

Number of octets transmitted, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

400

Appendix D

D

D-1-8 USBD_HID_WrAsync()

This function transmits data to the host asynchronously through an interrupt IN endpoint.

FILES

usbd_hid.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_buf Pointer to transmit buffer.

buf_len Transmit buffer length, in octets.

async_fnct Transmit callback.

p_async_arg Additional argument provided by application for transmit callback.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_FAIL

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_EP_INVALID_STATE

void USBD_HID_WrAsync (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 USBD_HID_ASYNC_FNCT async_fnct,

 void *p_async_arg,

 USBD_ERR *p_err);

401

D

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

This function is non-blocking and returns immediately after transfer preparation. Upon

transfer completion, the callback provided is called to notify the application.

402

Appendix D

D

D-2 HID OS FUNCTIONS

D-2-1 USBD_HID_OS_Init()

Initialize HID OS interface.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

OS error code(s) relevant to failure(s).

CALLERS

USBD_HID_Init()

IMPLEMENTATION GUIDELINES

The USBD_HID_Init() function is called only once by the HID class. It usually performs the

following operations:

■ For each class instance up to the maximum number of HID class instances defined by

the constant USBD_HID_CFG_MAX_NBR_DEV, create all the required semaphores. If the

any semaphore creation fails, set p_err to USBD_ERR_OS_SIGNAL_CREATE and return.

■ Create a task used to manage periodic Input reports. If the task creation fails, set p_err

to USBD_ERR_OS_INIT_FAIL and return.

■ Set p_err to USBD_ERR_NONE if the initialization proceeded as expected.

void USBD_HID_OS_Init (USBD_ERR *p_err);

403

D

D-2-2 USBD_HID_OS_InputLock()

Lock class input report.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE: OS error code(s) relevant to failure(s).

CALLERS

USBD_HID_Wr()

USBD_HID_WrAsync()

USBD_HID_ClassReq()

IMPLEMENTATION GUIDELINES

The lock operation typically consists in pending on a semaphore. If the semaphore is free,

the task continues normally its execution, otherwise it waits until another task releases the

semaphore. p_err argument should be assigned as described in Table D-1.

Table D-1 p_err assignment according to the pend operation result

void USBD_HID_OS_InputLock (CPU_INT08U class_nbr,

 USBD_ERR *p_err);

Operation result Error code to assign

No error USBD_ERR_NONE

Pend aborted USBD_ERR_OS_ABORT

Pend failed for any other reason USBD_ERR_OS_FAIL

404

Appendix D

D

D-2-3 USBD_HID_OS_InputUnlock()

Unlock class input report.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

CALLERS

USBD_HID_Wr()

USBD_HID_WrAsync()

USBD_HID_ClassReq()

IMPLEMENTATION GUIDELINES

The unlock operation simply consists in posting a semaphore.

void USBD_HID_OS_InputUnlock (CPU_INT08U class_nbr);

405

D

D-2-4 USBD_HID_OS_InputDataPend()

Wait for input report data to complete.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

timeout_ms Signal wait timeout in milliseconds

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

OS error code(s) relevant to failure(s)

CALLERS

USBD_HID_Wr()

IMPLEMENTATION GUIDELINES

The wait operation typically consists in pending on a semaphore. When the input report

transfer has completed, the task is waken up by the Core layer internal task responsible for

asynchronous communication. p_err argument should be assigned as described in

Table D-2.

void USBD_HID_OS_InputDataPend (CPU_INT08U class_nbr

 CPU_INT16U timeout_ms,

 USBD_ERR *p_err);

406

Appendix D

D

Table D-2 p_err assignment according to the pend operation result

Operation result Error code to assign

No error USBD_ERR_NONE

Pend timeout USBD_ERR_OS_TIMEOUT

Pend aborted USBD_ERR_OS_ABORT

Pend failed for any other reason USBD_ERR_OS_FAIL

407

D

D-2-5 USBD_HID_OS_InputDataPendAbort()

Abort any operation on input report.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

CALLERS

USBD_HID_WrSyncCmpl()

IMPLEMENTATION GUIDELINES

If the input report transfer completes with an error, the task waiting is waken up by

aborting the active wait done with USBD_HID_OS_InputDataPend(). The active wait

abortion is executed by the Core layer internal task responsible for asynchronous

communication.

void USBD_HID_OS_InputDataPendAbort (CPU_INT08U class_nbr);

408

Appendix D

D

D-2-6 USBD_HID_OS_InputDataPost()

Signal that Input report data has been sent to the host.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

CALLERS

USBD_HID_WrSyncCmpl()

IMPLEMENTATION GUIDELINES

If the input report transfer completes without an error, the task waiting is waken up by

posting a semaphore. The semaphore post is executed by the Core layer internal task

responsible for asynchronous communication.

void USBD_HID_OS_InputDataPost (CPU_INT08U class_nbr);

409

D

D-2-7 USBD_HID_OS_OutputLock()

Lock class output report.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE: OS error code(s) relevant to failure(s)

CALLERS

USBD_HID_Rd()

USBD_HID_RdAsync()

USBD_HID_ClassReq()

IMPLEMENTATION GUIDELINES

The lock operation typically consists in pending on a semaphore. If the semaphore is free,

the task continues normally its execution, otherwise it waits until another task releases the

semaphore. p_err argument should be assigned as described in Table D-3.

Table D-3 p_err assignment according to the pend operation result

void USBD_HID_OS_OutputLock (CPU_INT08U class_nbr,

 USBD_ERR *p_err);

Operation result Error code to assign

No error USBD_ERR_NONE

Pend aborted USBD_ERR_OS_ABORT

Pend failed for any other reason USBD_ERR_OS_FAIL

410

Appendix D

D

D-2-8 USBD_HID_OS_OutputUnlock()

Unlock class output report.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

CALLERS

USBD_HID_Rd()

USBD_HID_RdAsync()

USBD_HID_ClassReq()

IMPLEMENTATION GUIDELINES

The unlock operation simply consists in posting a semaphore.

void USBD_HID_OS_OutputUnlock (CPU_INT08U class_nbr);

411

D

D-2-9 USBD_HID_OS_OutputDataPend()

Wait for Output report data read completion.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

timeout_ms Signal wait timeout in milliseconds

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

OS error code(s) relevant to failure(s)

CALLERS

USBD_HID_Rd()

IMPLEMENTATION GUIDELINES

The wait operation typically consists of pending on a semaphore. When the output report

transfer is complete, the task is woken up by the Core layer internal task responsible for

asynchronous communication. The p_err argument should be assigned as described in

Table D-2.

void USBD_HID_OS_OutputDataPend (CPU_INT08U class_nbr

 CPU_INT16U timeout_ms,

 USBD_ERR *p_err);

412

Appendix D

D

Table D-4 p_err assignment according to the pend operation result

Operation result Error code to assign

No error USBD_ERR_NONE

Pend aborted USBD_ERR_OS_ABORT

Pend failed for any other reason USBD_ERR_OS_FAIL

413

D

D-2-10 USBD_HID_OS_OutputDataPendAbort()

Abort the wait for Output report data read completion.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

CALLERS

USBD_HID_OutputDataCmpl()

IMPLEMENTATION GUIDELINES

If the output report transfer completes with an error, the task waiting is waken up by

aborting the active wait done with USBD_HID_OS_OutputDataPend(). The active wait

abortion is executed by the Core layer internal task responsible for asynchronous

communication.

void USBD_HID_OS_OutputDataPendAbort (CPU_INT08U class_nbr);

414

Appendix D

D

D-2-11 USBD_HID_OS_OutputDataPost()

Signal that Output report data has been received from the host

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

CALLERS

USBD_HID_OutputDataCmpl()

IMPLEMENTATION GUIDELINES

If the output report transfer completes without an error, the task waiting is waken up by

posting a semaphore. The semaphore post is executed by the Core layer internal task

responsible for asynchronous communication.

void USBD_HID_OS_OutputDataPost (CPU_INT08U class_nbr);

415

D

D-2-12 USBD_HID_OS_TxLock()

Lock class transmit.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE: OS error code(s) relevant to failure(s).

CALLERS

USBD_HID_Wr()

USBD_HID_WrAsync()

IMPLEMENTATION GUIDELINES

The lock operation typically consists in pending on a semaphore. If the semaphore is free,

the task continues normally its execution, otherwise it waits until another task releases the

semaphore. p_err argument should be assigned as described in Table D-5.

Table D-5 p_err assignment according to the pend operation result

void USBD_HID_OS_TxLock (CPU_INT08U class_nbr,

 USBD_ERR *p_err);

Operation result Error code to assign

No error USBD_ERR_NONE

Pend aborted USBD_ERR_OS_ABORT

Pend failed for any other reason USBD_ERR_OS_FAIL

416

Appendix D

D

D-2-13 USBD_HID_OS_TxUnlock()

Unlock class transmit.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

CALLERS

USBD_HID_Wr()

USBD_HID_WrAsync()

IMPLEMENTATION GUIDELINES

The unlock operation simply consists in posting a semaphore.

void USBD_HID_OS_TxUnlock (CPU_INT08U class_nbr);

417

D

D-2-14 USBD_HID_OS_TmrTask()

Process periodic input reports according to idle duration set by the host with the SET_IDLE

request.

FILES

usbd_hid_os.c

PROTOTYPE

ARGUMENTS

p_arg Pointer to task initialization argument.

CALLERS

This is a task.

IMPLEMENTATION GUIDELINES

The task body is usually implemented as an infinite loop. The task should perform the

following steps:

■ Delay for 4 ms. This delay corresponds to the 4 ms unit used to express the idle

duration transported by the SET_IDLE request.

■ Call USBD_HID_Report_TmrTaskHandler() function defined in the HID parser module.

This function implements the periodic input reports processing.

static void USBD_HID_OS_TmrTask (void *p_arg);

418

Appendix D

D

419

Appendix

E
MSC API Reference

This appendix provides a reference to the mass storage class API. Each user-accessible

service is presented following a category order (i.e. initialization and communication

categories). The following information is provided for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service.

420

Appendix E

E

E-1 MASS STORAGE CLASS FUNCTIONS

E-1-1 USBD_MSC_Init()

Initialize internal structures and local global variables used by the MSC bulk only transport.

FILES

usbd_msc.h / usbd_msc.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this

function: USBD_ERR_NONE

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

None.

void USBD_MSC_Init (USBD_ERR *p_err);

421

E

E-1-2 USBD_MSC_Add()

Create a new instance of the MSC.

FILES

usbd_msc.h / usbd_msc.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_ALLOC

RETURNED VALUE

Class instance number, if NO error(s).

USBD_CLASS_NBR_NONE, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

CPU_INT08U USBD_MSC_Add (USBD_ERR *p_err)

422

Appendix E

E

E-1-3 USBD_MSC_CfgAdd()

Add an existing MSC instance to the specified configuration and device. The MSC instance

was previously created by the function USBD_MSC_Add().

FILES

usbd_msc.h / usbd_msc.c

PROTOTYPE

ARGUMENTS

class_nbr MSC instance number.

dev_nbr Device number.

cfg_nbr Configuration index to add MSC instance to.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_ALLOC

USBD_ERR_NULL_PTR

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_CFG_INVALID_NBR

USBD_ERR_IF_ALLOC

USBD_ERR_IF_ALT_ALLOC

USBD_ERR_IF_INVALID_NBR

USBD_ERR_EP_NONE_AVAIL

USBD_ERR_EP_ALLOC

CPU_BOOLEAN USBD_MSC_CfgAdd (CPU_INT08U class_nbr,

 CPU_INT08U dev_nbr,

 CPU_INT08U cfg_nbr,

 USBD_ERR *p_err);

423

E
RETURNED VALUE

DEF_YES, if MSC instance is added to USB device configuration successfully.

DEF_NO, otherwise.

CALLERS

Application.

NOTES / WARNINGS

USBD_MSC_CfgAdd() basically adds an Interface descriptor and its associated Endpoint

descriptor(s) to the Configuration descriptor. One call to USBD_MSC_CfgAdd() builds the

Configuration descriptor corresponding to a MSC device with the following format:

Configuration Descriptor

|-- Interface Descriptor (MSC)

 |-- Endpoint Descriptor (Bulk OUT)

 |-- Endpoint Descriptor (Bulk IN)

If USBD_MSC_CfgAdd() is called several times from the application, it allows to create

multiple instances and multiple configurations. For instance, the following architecture

could be created for an high-speed device:

High-speed

|-- Configuration 0

 |-- Interface 0 (MSC 0)

|-- Configuration 1

 |-- Interface 0 (MSC 0)

 |-- Interface 1 (MSC 1)

In that example, there are two instances of MSC: 'MSC 0' and 'MSC 1', and two possible

configurations for the device: 'Configuration 0' and 'Configuration 1'. 'Configuration 1' is

composed of two interfaces. Each class instance has an association with one of the

interfaces. If 'Configuration 1' is activated by the host, it allows the host to access two

different functionalities offered by the device.

424

Appendix E

E

E-1-4 USBD_MSC_LunAdd()

Add a logical unit number to the MSC interface.

FILES

usbd_msc.h / usbd_msc.c

PROTOTYPE

ARGUMENTS

p_store_name Pointer to logical unit driver.

class_nbr MSC instance number.

p_vend_id Pointer to string containing vendor id.

p_prod_id Pointer to string containing product id.

prod_rev_level Product revision level.

rd_only Boolean specifying if logical unit is read only or not.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_MSC_MAX_LUN_EXCEED

USBD_ERR_SCSI_LOG_UNIT_NOTRDY

void USBD_MSC_LunAdd (CPU_CHAR *p_store_name,

 CPU_INT08U class_nbr,

 CPU_CHAR *p_vend_id,

 CPU_CHAR *p_prod_id,

 CPU_INT32U prod_rev_level,

 CPU_BOOLEAN rd_only,

 USBD_ERR *p_err);

425

E
RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

The pointer to logical unit driver specifies the type and volume of the logical unit to add.

Valid logical unit driver names follow the pattern:

<device_driver_name>:<logical_unit_number>:

where <device_driver_name> is the name of the device driver and

<logical_unit_number> is the device’s logical unit number. Take special note that the

logical unit number starts counting from number 0.

426

Appendix E

E

E-1-5 USBD_MSC_IsConn()

Get MSC connection state of the device.

FILES

usbd_msc.h / usbd_msc.c

PROTOTYPE

ARGUMENTS

class_nbr MSC instance number.

RETURNED VALUE

DEF_YES, if MSC is connected.

DEF_NO, otherwise.

CALLERS

Application.

NOTES / WARNINGS

USBD_MSC_IsConn() is typically used to verify that the device is in ‘configured’ state and that

the MSC instance is ready for communication. The following code illustrates a typical example:

Once the connected status is DEF_YES, the communication can start.

CPU_BOOLEAN USBD_MSC_IsConn (CPU_INT08U class_nbr);

CPU_BOOLEAN conn;

conn = USBD_MSC_IsConn(class_nbr);

if (conn != DEF_YES) {

 USBD_MSC_OS_EnumSignalPend((CPU_INT16U)0,

 &os_err);

}

427

E

E-1-6 USBD_MSC_TaskHandler()

Task to handle transfers for the MSC bulk-only transport protocol.

FILES

usbd_msc.h / usbd_msc.c

PROTOTYPE

ARGUMENTS

class_nbr MSC instance number.

RETURNED VALUE

None.

CALLERS

OS layer.

NOTES / WARNINGS

None.

void USBD_MSC_TaskHandler (CPU_INT08U class_nbr);

428

Appendix E

E

E-2 MSC OS FUNCTIONS

E-2-1 USBD_MSC_OS_Init()

Initialize MSC OS interface.

FILES

usbd_msc_os.h / usbd_msc_os.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_OS_FAIL

RETURNED VALUE

None.

CALLERS

USBD_OS_Init()

IMPLEMENTATION GUIDELINES

Initialization of the MSC OS interface must include creating:

1. Two semaphores, one for MSC communication and one for enumeration.

2. A MSC task to handle the MSC protocol.

void USBD_MSC_OS_Init (USBD_ERR *p_err)

429

E

E-2-2 USBD_MSC_OS_CommSignalPost()

Post a semaphore used for MSC communication.

FILES

usbd_msc_os.h / usbd_msc_os.c

PROTOTYPE

ARGUMENTS

class_nbr MSC instance class number.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_OS_FAIL

RETURNED VALUE

None.

CALLERS

Various.

NOTES / WARNINGS

None.

void USBD_MSC_OS_CommSignalPost (CPU_INT08U class_nbr,

 USBD_ERR *p_err)

430

Appendix E

E

E-2-3 USBD_MSC_OS_CommSignalPend()

Wait on a semaphore to become available for MSC communication.

FILES

usbd_msc_os.h / usbd_msc_os.c

PROTOTYPE

ARGUMENTS

class_nbr MSC instance class number.

timeout Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_FAIL

RETURNED VALUE

None.

CALLERS

Various.

NOTES / WARNINGS

None.

void USBD_MSC_OS_CommSignalPend (CPU_INT08U class_nbr,

 CPU_INT32U timeout,

 USBD_ERR *p_err);

431

E

E-2-4 USBD_MSC_OS_CommSignalDel()

Delete a semaphore if no tasks are waiting on it for MSC communication.

FILES

usbd_msc_os.h / usbd_msc_os.c

PROTOTYPE

ARGUMENTS

class_nbr MSC instance class number.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_OS_FAIL

RETURNED VALUE

None.

CALLERS

Various.

NOTES / WARNINGS

None.

void USBD_MSC_OS_CommSignalDel (CPU_INT08U class_nbr,

 USBD_ERR *p_err);

432

Appendix E

E

E-2-5 USBD_MSC_OS_EnumSignalPost()

Post a semaphore for MSC enumeration process.

FILES

usbd_msc_os.h / usbd_msc_os.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_OS_FAIL

RETURNED VALUE

None.

CALLERS

Various.

NOTES / WARNINGS

None.

void USBD_MSC_OS_EnumSignalPost (USBD_ERR *p_err);

433

E

E-2-6 USBD_MSC_OS_EnumSignalPend()

Wait on a semaphore to become available for MSC enumeration process.

FILES

usbd_msc_os.h / usbd_msc_os.c

PROTOTYPE

ARGUMENTS

timeout Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_OS_TIMEOUT

USBD_ERR_OS_FAIL

RETURNED VALUE

None.

CALLERS

Various.

NOTES / WARNINGS

None.

void USBD_MSC_OS_EnumSignalPend (CPU_INT32U timeout,

 USBD_ERR *p_err);

434

Appendix E

E

E-3 MSC STORAGE LAYER FUNCTIONS

E-3-1 USBD_StorageInit()

Initialize internal structures and local global variables used by the storage medium.

FILES

usbd_storage.h / usbd_storage.c

PROTOTYPE

ARGUMENTS

p_storage_lun Pointer to logical unit storage structure.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_MEDIUM_NOT_PRESENT

USBD_ERR_SCSI_LOG_UNIT_NOTRDY

USBD_ERR_SCSI_LOG_UNIT_NOTSUPPORTED

USBD_ERR_SCSI_LOG_UNIT_BUSY

RETURNED VALUE

None.

CALLERS

USBD_SCSI_Init()

NOTES / WARNINGS

None.

void USBD_StorageInit (USBD_STORAGE_LUN *p_storage_lun);

 USBD_ERR *p_err)

435

E

E-3-2 USBD_StorageCapacityGet()

Get the capacity of the storage medium.

FILES

usbd_storage.h / usbd_storage.c

PROTOTYPE

ARGUMENTS

p_storage_lun Pointer to logical unit storage structure.

p_nbr_blks Pointer to variable that will receive the number of logical blocks.

p_blk_size Pointer to variable that will receive the size of each block, in bytes.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_SCSI_MEDIUM_NOTPRESENT

USBD_ERR_NONE

RETURNED VALUE

None.

CALLERS

USBD_SCSI_IssueCmd()

NOTES / WARNINGS

None.

void USBD_StorageCapacityGet (USBD_STORAGE_LUN *p_storage_lun),

 CPU_INT64U *p_nbr_blks,

 CPU_INT32U *p_blk_size,

 USBD_ERR *p_err)

436

Appendix E

E

E-3-3 USBD_StorageRd()

Read data from the storage medium.

FILES

usbd_storage.h / usbd_storage.c

PROTOTYPE

ARGUMENTS

p_storage_lun Pointer to the logical unit storage structure.

blk_addr Logical Block Address (LBA) of read block start.

nbr_blks Number of logical blocks to read.

p_data_buf Pointer to buffer in which data will be stored.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_SCSI_MEDIUM_NOT_PRESENT

RETURNED VALUE

None.

CALLERS

USBD_SCSI_RdData()

NOTES / WARNINGS

None.

void USBD_StorageRd (USBD_STORAGE_LUN *p_storage_lun,

 CPU_INT32U blk_addr,

 CPU_INT32U nbr_blks,

 CPU_INT08U *p_data_buf,

 USBD_ERR *p_err);

437

E

E-3-4 USBD_StorageWr()

Write data to the storage medium.

FILES

usbd_storage.h / usbd_storage.c

PROTOTYPE

ARGUMENTS

p_storage_lun Pointer to logical unit storage structure

blk_addr Logical Block Address (LBA) of write block start.

nbr_blks Number of logical blocks to write.

p_data_buf Pointer to buffer in which data is stored.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_SCSI_MEDIUM_NOTPRESENT

RETURNED VALUE

None.

CALLERS

USBD_SCSI_WrData()

void USBD_StorageWr (USBD_STORAGE_LUN *p_storage_lun,

 CPU_INT32U blk_addr,

 CPU_INT32U nbr_blks,

 CPU_INT08U *p_data_buf,

 USBD_ERR *p_err);

438

Appendix E

E
NOTES / WARNINGS

None.

439

E

E-3-5 USBD_StorageStatusGet()

Get the presence of the storage medium.

FILES

usbd_storage.h / usbd_storage.c

PROTOTYPE

ARGUMENTS

p_storage_lun Pointer to logical unit storage structure

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_SCSI_MEDIUM_NOTPRESENT

USBD_ERR_SCSI_MEDIUM_NOT_RDY_TO_RDY

USBD_ERR_SCSI_MEDIUM_RDY_TO_NOT_RDY

RETURNED VALUE

None.

CALLERS

USBD_SCSI_IssueCmd()

NOTES / WARNINGS

None.

void USBD_StorageStatusGet (USBD_STORAGE_LUN *p_storage_lun,

 USBD_ERR *p_err);

440

Appendix E

E

441

Appendix

F
PHDC API Reference

This appendix provides a reference to the Personal Healthcare Device Class (PHDC) API.

Each user-accessible service is presented following a category order (i.e. initialization,

communication and RTOS layer categories). The following information is provided for each

of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of returned value(s)

Specific notes and warnings regarding use of the service.

442

Appendix F

F F-1 PHDC FUNCTIONS

F-1-1 USBD_PHDC_Init()

Initialize internal structures and local global variables used by the PHDC.

FILES

usbd_phdc.h / usbd_phdc.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

None.

void USBD_PHDC_Init (USBD_ERR *p_err);

443

FF-1-2 USBD_PHDC_Add()

Create a new instance of the PHDC.

FILES

usbd_phdc.h / usbd_phdc.c

PROTOTYPE

ARGUMENTS

data_fmt_11073 Variable that indicates whether the class instance uses IEEE

11073 or a vendor-defined data format.

DEF_YES Class instance uses IEEE 11073 data format.

DEF_NO Class instance uses vendor-defined data format.

preamble_capable Variable that indicates whether the class instance support

metadata message preamble or not.

DEF_YES Class instance support metadata message preamble.

DEF_NO Class instance doesn’t support metadata message

preamble.

preamble_en_notify Pointer to a callback function that will notify the application if

the host enable / disable metadata message preamble.

low_latency_interval Interrupt endpoint interval in frames or microframes. Can be 0 if

PHDC device will not send low latency data.

CPU_INT08U USBD_PHDC_Add (CPU_BOOLEAN data_fmt_11073,

 CPU_BOOLEAN preamble_capable,

 USBD_PHDC_PREAMBLE_EN_NOTIFY preamble_en_notify,

 CPU_INT16U low_latency_interval,

 USBD_ERR *p_err)

444

Appendix F

F p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_ALLOC

RETURNED VALUE

Class instance number, if NO error(s).

USBD_CLASS_NBR_NONE, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

445

FF-1-3 USBD_PHDC_CfgAdd()

Add a PHDC instance into the specified configuration. The PHDC instance was previously

created by the function USBD_PHDC_Add().

FILES

usbd_phdc.h / usbd_phdc.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

dev_nbr Device number.

cfg_nbr Configuration index to add PHDC instance to.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_ALLOC

USBD_ERR_NULL_PTR

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_CFG_INVALID_NBR

USBD_ERR_IF_ALLOC

USBD_ERR_IF_ALT_ALLOC

USBD_ERR_IF_INVALID_NBR

USBD_ERR_EP_NONE_AVAIL

USBD_ERR_EP_ALLOC

void USBD_PHDC_CfgAdd (CPU_INT08U class_nbr,

 CPU_INT08U dev_nbr,

 CPU_INT08U cfg_nbr,

 USBD_ERR *p_err);

446

Appendix F

F RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

USBD_PHDC_CfgAdd() basically adds an Interface descriptor and its associated Endpoint

descriptor(s) to the Configuration descriptor. One call to USBD_PHDC_CfgAdd() builds the

Configuration descriptor corresponding to a PHDC device with the following format:

Configuration Descriptor

|-- Interface Descriptor (PHDC)

 |-- Endpoint Descriptor (Bulk OUT)

 |-- Endpoint Descriptor (Bulk IN)

 |-- Endpoint Descriptor (Interrupt IN) - optional

The Interrupt IN endpoint is optional. It will be added to the Interface descriptor if

application specified that it will send low latency data when calling USBD_PHDC_WrCfg().

If USBD_PHDC_CfgAdd() is called several times from the application, it allows to create

multiple instances and multiple configurations. For instance, the following architecture

could be created for an high-speed device:

High-speed

|-- Configuration 0

 |-- Interface 0 (PHDC 0)

|-- Configuration 1

 |-- Interface 0 (PHDC 0)

 |-- Interface 1 (PHDC 1)

In that example, there are two instances of PHDC: 'PHDC 0' and 'PHDC 1', and two possible

configurations for the device: 'Configuration 0' and 'Configuration 1'. 'Configuration 1' is

composed of two interfaces. Each class instance has an association with one of the

interfaces. If 'Configuration 1' is activated by the host, it allows the host to access two

different functionalities offered by the device.

447

FF-1-4 USBD_PHDC_IsConn()

Get PHDC connection state.

FILES

usbd_phdc.h / usbd_phdc.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

RETURNED VALUE

DEF_YES, if PHDC is connected.

DEF_NO, otherwise.

CALLERS

Application.

NOTES / WARNINGS

USBD_PHDC_IsConn() is typically used to verify that the device is in ‘configured’ state and that

the PHDC instance is ready for communication. The following code illustrates a typical example:

Once the connected status is DEF_YES, the communication can start.

CPU_BOOLEAN USBD_PHDC_IsConn (CPU_INT08U class_nbr);

CPU_BOOLEAN conn;

conn = USBD_PHDC_IsConn(class_nbr);

while (conn != DEF_YES) {

 OSTimeDlyHMSM(0, 0, 0, 250);

 conn = USBD_PHDC_IsConn(class_nbr);

}

448

Appendix F

F F-1-5 USBD_PHDC_RdCfg()

Initialize read communication pipe parameters.

FILES

usbd_phdc.h / usbd_phdc.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

latency_rely Bitmap of transfer latency / reliability that this communication pipe will

carry. Can be one or more of these values:

USBD_PHDC_LATENCY_VERYHIGH_RELY_BEST

USBD_PHDC_LATENCY_HIGH_RELY_BEST

USBD_PHDC_LATENCY_MEDIUM_RELY_BEST

p_data_opaque Pointer to a buffer that contains opaque data related to this

communication pipe.

data_opaque_len Length of opaque data (in octets). If 0, no metadata descriptor will be

written for the endpoint.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

void USBD_PHDC_RdCfg (CPU_INT08U class_nbr,

 LATENCY_RELY_FLAGS latency_rely,

 CPU_INT08U *p_data_opaque,

 CPU_INT08U data_opaque_len,

 USBD_ERR *p_err);

449

FRETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

USBD_PHDC_RdCfg() should be called after USBD_PHDC_Init() and USBD_PHDC_Add() but

before USBD_PHDC_CfgAdd().

450

Appendix F

F F-1-6 USBD_PHDC_WrCfg()

Initialize write communication pipe parameters.

FILES

usbd_phdc.h / usbd_phdc.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

latency_rely Bitmap of transfer Latency / reliability that this communication pipe will

carry. Can be one or more of these values:

USBD_PHDC_LATENCY_VERYHIGH_RELY_BEST

USBD_PHDC_LATENCY_HIGH_RELY_BEST

USBD_PHDC_LATENCY_MEDIUM_RELY_BEST

USBD_PHDC_LATENCY_MEDIUM_RELY_BETTER

USBD_PHDC_LATENCY_MEDIUM_RELY_GOOD

USBD_PHDC_LATENCY_LOW_RELY_GOOD

p_data_opaque Pointer to a buffer that contains opaque data related to this

communication pipe.

data_opaque_len Length of opaque data (in octets). If 0, no metadata descriptor will be

written for the endpoint.

void USBD_PHDC_WrCfg (CPU_INT08U class_nbr,

 LATENCY_RELY_FLAGS latency_rely,

 CPU_INT08U *p_data_opaque,

 CPU_INT08U data_opaque_len,

 USBD_ERR *p_err);

451

Fp_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

USBD_PHDC_WrCfg() should be called after USBD_PHDC_Init() and USBD_PHDC_Add() but

before USBD_PHDC_CfgAdd().

Since low latency transfers will use a different endpoint, it is possible to set different opaque

data for that endpoint. In case the application need different opaque data for low latency

pipe, USBD_PHDC_WrCfg() should be called twice. Once with all the desired latency/

reliability flags set except for low latency, opaque data passed at this call will be used for

the Bulk endpoint metadata descriptor. USBD_PHDC_WrCfg() should then be called once

again with only the low latency flag set, opaque data passed at this call will be used for

interrupt endpoint metadata descriptor.

452

Appendix F

F F-1-7 USBD_PHDC_11073_ExtCfg()

Configure function extension for given class instance.

FILES

usbd_phdc.h / usbd_phdc.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

p_dev_specialization Pointer to an array that contains a list of device

specializations.

nbr_dev_specialization Number of device specializations specified in

p_dev_specialization.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

RETURNED VALUE

None.

CALLERS

Application.

void USBD_PHDC_11073_ExtCfg (CPU_INT08U class_nbr,

 CPU_INT16U *p_dev_specialization,

 CPU_INT08U nbr_dev_specialization,

 USBD_ERR *p_err);

453

FNOTES / WARNINGS

USBD_PHDC_11073_ExtCfg() should be called only if PHDC instance uses 11073 data

format.

USBD_PHDC_11073_ExtCfg() should be called after USBD_PHDC_Init() and

USBD_PHDC_Add() but before USBD_PHDC_CfgAdd().

For more information on 11073 device specialization, See 'Personal Healthcare Device Class

specifications Revision 1.0', Appendix A. For a list of known device specialization, see

'Nomenclature code annex of ISO/IEEE 11073-20601'. Specific code are listed in the 'From

Communication infrastructure (MDC_PART_INFRA)' section.

454

Appendix F

F F-1-8 USBD_PHDC_RdPreamble()

Read metadata preamble. This function is blocking.

FILES

usbd_phdc.h / usbd_phdc.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

p_buf Pointer to buffer that will contain data from metadata message preamble.

buf_len Opaque data buffer length in octets.

p_nbr_xfer Pointer to a variable that will contain the number of transfer the

preamble will apply to. After this call, USBD_PHDC_Rd shall be called

nbr_xfer times by the application.

timeout Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_INVALID_ARG

USBD_ERR_NULL_PTR

USBD_ERR_ALLOC

USBD_ERR_RX

CPU_INT08U USBD_PHDC_RdPreamble (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT08U buf_len,

 CPU_INT08U *p_nbr_xfer,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

455

FUSBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_OS_ERR_TIMEOUT

USBD_OS_ERR_ABORT

USBD_OS_ERR_FAIL

RETURNED VALUE

Length of opaque data read from metadata preamble, if no error.

0, otherwise

CALLERS

Application.

NOTES / WARNINGS

USBD_PHDC_RdPreamble() should always be called before USBD_PHDC_Rd() if metadata

message preambles are enabled by the host. Application should then call USBD_PHDC_Rd()

p_nbr_xfer times.

If host disable preamble while application is pending on this function, the call will

immediately return with error ‘USBD_OS_ERR_ABORT’.

456

Appendix F

F F-1-9 USBD_PHDC_Rd()

Read PHDC data. This function is blocking.

FILES

usbd_phdc.h / usbd_phdc.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

p_buf Pointer to buffer that will contain opaque data from metadata message

preamble.

buf_len Opaque data buffer length in octets.

timeout Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE
USBD_ERR_INVALID_CLASS_STATE
USBD_ERR_INVALID_ARG
USBD_ERR_NULL_PTR
USBD_ERR_RX
USBD_ERR_DEV_INVALID_NBR
USBD_ERR_EP_INVALID_NBR
USBD_ERR_DEV_INVALID_STATE
USBD_ERR_EP_INVALID_TYPE
USBD_OS_ERR_TIMEOUT
USBD_OS_ERR_ABORT
USBD_OS_ERR_FAIL

CPU_INT08U USBD_PHDC_Rd (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT16U buf_len,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

457

FRETURNED VALUE

Number of octets received, if no error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

USBD_PHDC_Rd() should always be called after USBD_PHDC_RdPreamble() if metadata

message preambles are enabled by the host.

Application should ensure that the length of the buffer provided is large enough to

accommodate the incoming transfer. Otherwise, synchronization with metadata preambles

might be lost.

If host enable preamble while application is pending on this function, the call will

immediately return with error ‘USBD_OS_ERR_ABORT’.

458

Appendix F

F F-1-10 USBD_PHDC_Wrpreamble()

Write metadata preamble. This function is blocking.

FILES

usbd_phdc.h / usbd_phdc.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

p_data_opaque Pointer to buffer that will supply opaque data.

data_opaque_len Length of opaque data buffer in octets.

latency_rely Latency reliability of related transfers.

nbr_xfers Number of transfers this preamble will apply to.

timeout Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_NULL_PTR

USBD_ERR_TX

USBD_ERR_DEV_INVALID_NBR

void USBD_PHDC_WrPreamble (CPU_INT08U class_nbr,

 void *p_data_opaque,

 CPU_INT16U data_opaque_len,

 LATENCY_RELY_FLAGS latency_rely

 CPU_INT08U nbr_xfers,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

459

FUSBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_ADDR

USBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_OS_ERR_TIMEOUT

USBD_OS_ERR_ABORT

USBD_OS_ERR_FAIL

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

USBD_PHDC_WrPreamble() should always be called before USBD_PHDC_Wr() if metadata

message preambles are enabled by the host and if the latency of the transfer is not ‘low’.

Application will have to call USBD_PHDC_Wr() ‘nbr_xfers’ of times with the same latency

/ reliability parameter after a call to USBD_PHDC_WrPreamble().

460

Appendix F

F F-1-11 USBD_PHDC_Wr()

Write PHDC data. This function is blocking.

FILES

usbd_phdc.h / usbd_phdc.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

p_buf Pointer to buffer that will supply data.

buf_len Buffer length in octets.

latency_rely Latency / reliability of this transfer.

timeout Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this

function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_NULL_PTR

USBD_ERR_TX

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_ADDR

void USBD_PHDC_Wr (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT16U buf_len,

 LATENCY_RELY_FLAGS latency_rely

 CPU_INT16U timeout,

 USBD_ERR *p_err);

461

FUSBD_ERR_EP_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_OS_ERR_TIMEOUT

USBD_OS_ERR_ABORT

USBD_OS_ERR_FAIL

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

USBD_PHDC_Wr() should always be called after USBD_PHDC_WrPreamble() if metadata

message preambles are enabled by the host and if the latency of the transfer is not ‘low’.

Application will have to call USBD_PHDC_Wr() ‘nbr_xfers’ of times with the same latency /

reliability parameter after a call to USBD_PHDC_WrPreamble().

462

Appendix F

F F-1-12 USBD_PHDC_Reset()

Reset PHDC instance.

FILES

usbd_phdc.h / usbd_phdc.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

RETURNED VALUE

None.

CALLERS

USBD_PHDC_Disconn() and Application.

NOTES / WARNINGS

USBD_PHDC_Reset() should be used to reset internal variables like the transmit priority

queue of the PHDC instance.

This function should be called when the data layer above PHDC request to terminate

communication. For instance, USBD_PHDC_Reset() should be called when the host send an

‘11073 Association abort’ request.

void USBD_PHDC_Reset (CPU_INT08U class_nbr);

463

FF-2 PHDC OS LAYER FUNCTIONS

F-2-1 USBD_PHDC_OS_Init()

Initialize PHDC OS layer.

FILES

usbd_phdc_os.h / usbd_phdc_os.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this

function.

RETURNED VALUE

None.

CALLERS

USBD_PHDC_Init()

IMPLEMENTATION GUIDELINES

This function should be used to initialize all RTOS layer’s internal variables / tasks of every

class instances. It will be called only once.

In case creation of semaphore, mutex, or other signal fails, the function should assign

USBD_ERR_OS_SIGNAL_CREATE to p_err and return immediately. If any other error occurs,

USBD_ERR_OS_INIT_FAIL should be assigned to p_err. Otherwise, USBD_ERR_NONE should

be used.

void USBD_PHDC_OS_Init (USBD_ERR *p_err);

464

Appendix F

F F-2-2 USBD_PHDC_OS_RdLock()

Lock the read pipe.

FILES

usbd_phdc_os.h / usbd_phdc_os.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

timeout Timeout.

p_err Pointer to variable that will receive the return error code from this

function.

RETURNED VALUE

None.

CALLERS

USBD_PHDC_Rd(), USBD_PHDC_RdPreamble()

IMPLEMENTATION GUIDELINES

Typical implementation will consist in pending on a semaphore that locks the read pipe.

p_err argument should be assigned as described in Table F-1.

void USBD_PHDC_OS_RdLock (CPU_INT08U class_nbr,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

465

F

Table F-1 p_err assignment in function of operation result

Operation result Error code to assign

No error USBD_ERR_NONE

Pend timeout USBD_ERR_OS_TIMEOUT

Pend aborted USBD_ERR_OS_ABORT

Pend failed for any other reason USBD_ERR_OS_FAIL

466

Appendix F

F F-2-3 USBD_PHDC_OS_RdUnLock()

Unlock the read pipe.

FILES

usbd_phdc_os.h / usbd_phdc_os.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

RETURNED VALUE

None.

CALLERS

USBD_PHDC_Rd(), USBD_PHDC_RdPreamble()

IMPLEMENTATION GUIDELINES

Typical implementation will consist in posting a semaphore that locks the read pipe.

void USBD_PHDC_OS_RdUnlock (CPU_INT08U class_nbr);

467

FF-2-4 USBD_PHDC_OS_WrIntrLock()

Lock the write interrupt pipe.

FILES

usbd_phdc_os.h / usbd_phdc_os.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

timeout Timeout.

p_err Pointer to variable that will receive the return error code from this

function.

RETURNED VALUE

None.

CALLERS

USBD_PHDC_Wr()

IMPLEMENTATION GUIDELINES

Typical implementation will consist in pending on a semaphore that locks the write

interrupt pipe.

p_err argument should be assigned as described in Table F-1.

void USBD_PHDC_OS_WrIntrLock (CPU_INT08U class_nbr,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

468

Appendix F

F F-2-5 USBD_PHDC_OS_WrIntrUnLock()

Unlock the write interrupt pipe.

FILES

usbd_phdc_os.h / usbd_phdc_os.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

RETURNED VALUE

None.

CALLERS

USBD_PHDC_Wr()

IMPLEMENTATION GUIDELINES

Typical implementation will consist in posting a semaphore that locks the write interrupt

pipe.

void USBD_PHDC_OS_WrIntrUnlock (CPU_INT08U class_nbr);

469

FF-2-6 USBD_PHDC_OS_WrBulkLock()

Lock the write bulk pipe.

FILES

usbd_phdc_os.h / usbd_phdc_os.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

prio Priority of the transfer. This value is between 0 and 4 and is computed in

function of the transfer’s QoS by the caller.

timeout Timeout.

p_err Pointer to variable that will receive the return error code from this

function.

RETURNED VALUE

None.

CALLERS

USBD_PHDC_Wr(), USBD_PHDC_WrPreamble().

void USBD_PHDC_OS_WrBulkLock (CPU_INT08U class_nbr,

 CPU_INT08U prio,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

470

Appendix F

F IMPLEMENTATION GUIDELINES

Two typical implementations will be possible here. The first one consists in pending on a

semaphore that locks the write bulk pipe, just as we saw previously.

But since different QoS data can travel using a single bulk IN endpoint, you might want to

prioritize them in function of the QoS. See section 11-4 “RTOS QoS-based scheduler” on

page 196 for more details on how a priority manager can be implemented.

p_err argument should be assigned as described in Table F-1.

471

FF-2-7 USBD_PHDC_OS_WrBulkUnLock()

Unlock the write bulk pipe.

FILES

usbd_phdc_os.h / usbd_phdc_os.c

PROTOTYPE

ARGUMENTS

class_nbr PHDC instance number.

RETURNED VALUE

None.

CALLERS

USBD_PHDC_Wr()

IMPLEMENTATION GUIDELINES

Two typical implementations will be possible here. The first one consists in posting the

semaphore that locks the write bulk pipe, if no priority management is implemented.

However, if priority management has been integrated, this call should release the scheduler

(See Section 11-4, “RTOS QoS-based scheduler” on page 196).

void USBD_PHDC_OS_WrBulkUnlock (CPU_INT08U class_nbr);

472

Appendix F

F

473

Appendix

G
Vendor Class API Reference

This appendix provides a reference to the Vendor class API. Each user-accessible service is

presented following a category order (i.e., initialization and communication categories). The

following information is provided for each of the services:

■ A brief description

■ The function prototype

■ The filename of the source code

■ A description of the arguments passed to the function

■ A description of returned value(s)

■ Specific notes and warnings regarding use of the service.

474

Appendix G

G

G-1 VENDOR CLASS FUNCTIONS

G-1-1 USBD_Vendor_Init()

Initialize internal structures and local global variables used by the Vendor class.

FILES

usbd_vendor.c

PROTOTYPE

ARGUMENTS

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

The initialization function must be called only once by the application, and before calling

any other Vendor API.

void USBD_Vendor_Init (USBD_ERR *p_err);

475

G

G-1-2 USBD_Vendor_Add()

Create a new instance of the Vendor class.

FILES

usbd_vendor.c

PROTOTYPE

ARGUMENTS

intr_en Interrupt endpoints IN and OUT flag:

DEF_TRUE Pair of interrupt endpoints added to interface.

DEF_FALSE Pair of interrupt endpoints not added to interface.

interval Endpoint interval in frames or microframes.

req_callback Vendor-specific request callback.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_ALLOC

RETURNED VALUE

Class instance number, if NO error(s).

USBD_CLASS_NBR_NONE, otherwise.

CPU_INT08U USBD_Vendor_Add (CPU_BOOLEAN intr_en,

 CPU_INT16U interval,

 USBD_VENDOR_REQ_FNCT req_callback,

 USBD_ERR *p_err);

476

Appendix G

G

CALLERS

Application.

NOTES / WARNINGS

None.

477

G

G-1-3 USBD_Vendor_CfgAdd()

Add a Vendor class instance into the specified configuration. The Vendor class instance was

previously created by the function USBD_Vendor_Add().

FILES

usbd_vendor.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

dev_nbr Device number.

cfg_nbr Configuration index to add Vendor class instance to.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_INVALID_ARG

USBD_ERR_ALLOC

USBD_ERR_NULL_PTR

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_CFG_INVALID_NBR

USBD_ERR_IF_ALLOC

USBD_ERR_IF_ALT_ALLOC

USBD_ERR_IF_INVALID_NBR

USBD_ERR_EP_NONE_AVAIL

USBD_ERR_EP_ALLOC

void USBD_Vendor_CfgAdd (CPU_INT08U class_nbr,

 CPU_INT08U dev_nbr,

 CPU_INT08U cfg_nbr,

 USBD_ERR *p_err);

478

Appendix G

G

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

USBD_Vendor_CfgAdd() basically adds an Interface descriptor and its associated Endpoint

descriptor(s) to the Configuration descriptor. One call to USBD_Vendor_CfgAdd() builds the

Configuration descriptor corresponding to a Vendor-specific device with the following format:

Configuration Descriptor

|-- Interface Descriptor (Vendor class)

 |-- Endpoint Descriptor (Bulk OUT)

 |-- Endpoint Descriptor (Bulk IN)

 |-- Endpoint Descriptor (Interrupt OUT) - optional

 |-- Endpoint Descriptor (Interrupt IN) - optional

The pair of Interrupt endpoints are optional. They can be added to the Interface descriptor

by setting the parameter intr_en to DEF_TRUE.

If USBD_Vendor_CfgAdd() is called several times from the application, it allows to create

multiple instances and multiple configurations. For instance, the following architecture

could be created for an high-speed device:

High-speed

|-- Configuration 0

 |-- Interface 0 (Vendor 0)

|-- Configuration 1

 |-- Interface 0 (Vendor 0)

 |-- Interface 1 (Vendor 1)

In that example, there are two instances of Vendor class: 'Vendor 0' and 'Vendor 1', and two

possible configurations for the device: 'Configuration 0' and 'Configuration 1'. 'Configuration

1' is composed of two interfaces. Each class instance has an association with one of the

interfaces. If 'Configuration 1' is activated by the host, it allows the host to access two

different functionalities offered by the device.

479

G

G-1-4 USBD_Vendor_IsConn()

Get the vendor class connection state.

FILES

usbd_vendor.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

RETURNED VALUE

DEF_YES, if Vendor class is connected.

DEF_NO, otherwise.

CALLERS

Application.

CPU_BOOLEAN USBD_Vendor_IsConn (CPU_INT08U class_nbr);

480

Appendix G

G

NOTES / WARNINGS

USBD_Vendor_IsConn() is typically used to verify that the device is in ‘configured’ state and

that the vendor class instance is ready for communication. The following code illustrates a

typical example:

Once the connected status is DEF_YES, the communication using the Bulk endpoints can

start.

CPU_BOOLEAN conn;

conn = USBD_Vendor_IsConn(class_nbr);

while (conn != DEF_YES) {

 OSTimeDlyHMSM(0, 0, 0, 250);

 conn = USBD_Vendor_IsConn(class_nbr);

}

481

G

G-1-5 USBD_Vendor_Rd()

Receive data from host through Bulk OUT endpoint. This function is blocking.

FILES

usbd_vendor.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_buf Pointer to receive buffer.

buf_len Receive buffer length in octets.

timeout Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

CPU_INT32U USBD_Vendor_Rd (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

482

Appendix G

G

RETURNED VALUE

Number of octets received, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

483

G

G-1-6 USBD_Vendor_Wr()

Send data to host through Bulk IN endpoint. This function is blocking.

FILES

usbd_vendor.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_buf Pointer to transmit buffer.

buf_len Transmit buffer length in octets.

timeout Timeout in milliseconds.

end End-of-transfer flag.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

CPU_INT32U USBD_Vendor_Wr (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout,

 CPU_BOOLEAN end,

 USBD_ERR *p_err);

484

Appendix G

G

RETURNED VALUE

Number of octets sent, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

If end-of-transfer flag is set and transfer length is multiple of maximum packet size, a zero-

length packet is transferred to indicate the end of transfer to the host.

485

G

G-1-7 USBD_Vendor_RdAsync()

Receive data from host through Bulk OUT endpoint. This function is non-blocking. It

returns immediately after transfer preparation. Upon transfer completion, a callback

provided by the application will be called to finalize the transfer.

FILES

usbd_vendor.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_buf Pointer to receive buffer.

buf_len Receive buffer length in octets.

async_fnct Receive callback.

p_async_arg Additional argument provided by application for receive callback.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

void USBD_Vendor_RdAsync (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 USBD_VENDOR_ASYNC_FNCT async_fnct,

 void *p_async_arg,

 USBD_ERR *p_err);

486

Appendix G

G

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_EP_INVALID_STATE

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

None.

487

G

G-1-8 USBD_Vendor_WrAsync()

Send data to host through Bulk IN endpoint. This function is non-blocking. It returns

immediately after transfer preparation. Upon transfer completion, a callback provided by

the application will be called to finalize the transfer.

FILES

usbd_vendor.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_buf Pointer to transmit buffer.

buf_len Transmit buffer length in octets.

async_fnct Transmit callback.

p_async_arg Additional argument provided by application for transmit callback.

end End-of-transfer flag.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

void USBD_Vendor_WrAsync (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 USBD_VENDOR_ASYNC_FNCT async_fnct,

 void *p_async_arg,

 CPU_BOOLEAN end,

 USBD_ERR *p_err);

488

Appendix G

G

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_EP_INVALID_STATE

RETURNED VALUE

Number of octets sent, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

If end-of-transfer flag is set and transfer length is multiple of maximum packet size, a zero-

length packet is transferred to indicate the end of transfer to the host.

489

G

G-1-9 USBD_Vendor_IntrRd()

Receive data from host through Interrupt OUT endpoint. This function is blocking.

FILES

usbd_vendor.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_buf Pointer to receive buffer.

buf_len Receive buffer length in octets.

timeout Timeout in milliseconds.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

CPU_INT32U USBD_Vendor_IntrRd (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout,

 USBD_ERR *p_err);

490

Appendix G

G

RETURNED VALUE

Number of octets received, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

491

G

G-1-10 USBD_Vendor_IntrWr()

Send data to host through Interrupt IN endpoint. This function is blocking.

FILES

usbd_vendor.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_buf Pointer to transmit buffer.

buf_len Transmit buffer length in octets.

timeout Timeout in milliseconds.

end End-of-transfer flag.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

CPU_INT32U USBD_Vendor_IntrWr (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 CPU_INT16U timeout,

 CPU_BOOLEAN end,

 USBD_ERR *p_err);

492

Appendix G

G

RETURNED VALUE

Number of octets sent, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

If end-of-transfer flag is set and transfer length is multiple of maximum packet size, a zero-

length packet is transferred to indicate the end of transfer to the host.

493

G

G-1-11 USBD_Vendor_IntrRdAsync()

Receive data from host through Interrupt OUT endpoint. This function is non-blocking. It

returns immediately after transfer preparation. Upon transfer completion, a callback

provided by the application will be called to finalize the transfer.

FILES

usbd_vendor.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_buf Pointer to receive buffer.

buf_len Receive buffer length in octets.

async_fnct Receive callback.

p_async_arg Additional argument provided by application for receive callback.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

void USBD_Vendor_IntrRdAsync (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 USBD_VENDOR_ASYNC_FNCT async_fnct,

 void *p_async_arg,

 USBD_ERR *p_err);

494

Appendix G

G

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_EP_INVALID_STATE

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

None.

495

G

G-1-12 USBD_Vendor_IntrWrAsync()

Send data to host through Interrupt IN endpoint. This function is non-blocking. It returns

immediately after transfer preparation. Upon transfer completion, a callback provided by

the application will be called to finalize the transfer.

FILES

usbd_vendor.c

PROTOTYPE

ARGUMENTS

class_nbr Class instance number.

p_buf Pointer to transmit buffer.

buf_len Transmit buffer length in octets.

async_fnct Transmit callback.

p_async_arg Additional argument provided by application for transmit callback.

end End-of-transfer flag.

p_err Pointer to variable that will receive the return error code from this function.

USBD_ERR_NONE

USBD_ERR_NULL_PTR

USBD_ERR_INVALID_ARG

USBD_ERR_INVALID_CLASS_STATE

void USBD_Vendor_IntrWrAsync (CPU_INT08U class_nbr,

 void *p_buf,

 CPU_INT32U buf_len,

 USBD_VENDOR_ASYNC_FNCT async_fnct,

 void *p_async_arg,

 CPU_BOOLEAN end,

 USBD_ERR *p_err);

496

Appendix G

G

USBD_ERR_DEV_INVALID_NBR

USBD_ERR_EP_INVALID_NBR

USBD_ERR_DEV_INVALID_STATE

USBD_ERR_EP_INVALID_TYPE

USBD_ERR_EP_INVALID_STATE

RETURNED VALUE

Number of octets sent, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

If end-of-transfer flag is set and transfer length is multiple of maximum packet size, a zero-

length packet is transferred to indicate the end of transfer to the host.

497

G

G-2 USBDEV_API FUNCTIONS

USBDev_API is a library implemented under Windows operating system. Functions return

values and parameters use Windows data types such as DWORD, HANDLE, ULONG. Refer to

MSDN online documentation for more details about Windows data types (http://

msdn.microsoft.com/en-us/library/aa383751(v=VS.85).aspx).

G-2-1 USBDev_GetNbrDev()

Get number of devices belonging to the specified GUID.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

guid_dev_if Device interface class GUID.

p_err Pointer to variable that will receive the return error code from this function.

ERROR_SUCCESS

RETURNED VALUE

Number of devices for the provided GUID, if NO error(s).

0, otherwise.

DWORD USBDev_GetNbrDev (const GUID guid_dev_if,

 DWORD *p_err);

498

Appendix G

G

CALLERS

Application.

NOTES / WARNINGS

The function USBDev_GetNbrDev() uses the concept of device information set. A device

information set consists of device information elements for all the devices that belong to

some device setup class or device interface class. The GUID passed to

USBDev_GetNbrDev() function is a device interface class. Internally by using some control

options the function retrieves the device information set which represents a list of all

devices present in the system and registered under the specified GUID. More details about

the device information set can be found at http://msdn.microsoft.com/en-us/

library/ff541247(VS.85).aspx.

499

G

G-2-2 USBDev_Open()

Open a device by retrieving a general device handle.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

guid_dev_if Device interface class GUID.

dev_nbr Device number.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

ERROR_BAD_DEVICE

RETURNED VALUE

Handle to device, if NO error(s).

INVALID_HANDLE_VALUE, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

HANDLE USBDev_Open (const GUID guid_dev_if,

 DWORD dev_nbr,

 DWORD *p_err);

500

Appendix G

G

G-2-3 USBDev_Close()

Close a device by freeing any allocated resources and by releasing any created handles.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

dev General handle to device.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

USBDev_Close() closes any remaining open pipes. The open pipes are usually closed from

the application by calling the function USBDev_PipeClose().

void USBDev_Close (HANDLE dev,

 DWORD *p_err);

501

G

G-2-4 USBDev_GetNbrAltSetting()

Get number of alternate settings for the specified interface.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

dev General handle to device.

if_nbr Interface number.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_INVALID_PARAMETER

RETURNED VALUE

Number of alternate setting, if NO error(s).

0, otherwise.

CALLERS

Application.

UCHAR USBDev_GetNbrAltSetting (HANDLE dev,

 UCHAR if_nbr,

 DWORD *p_err);

502

Appendix G

G

NOTES / WARNINGS

An interface may include alternate settings that allow the endpoints and/or their

characteristics to be varied after the device has been configured. The default setting for an

interface is always alternate setting zero. Alternate settings allow a portion of the device

configuration to be varied while other interfaces remain in operation.

The number of alternate settings gotten can be used to open a pipe associated with a

certain alternate interface.

503

G

G-2-5 USBDev_GetNbrAssociatedIF()

Get number of associated interfaces with the default interface. That is all the interfaces

besides the default interface managed by WinUSB.sys and registered under the same GUID.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

dev General handle to device.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

RETURNED VALUE

Number of associated interfaces, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

Let’s assume that a device has three interfaces managed by WinUSB.sys driver and

belonging to the same GUID: Interface #0, #1 and #2. Interface #0 is the default interface.

Interfaces #1 and #2 are the associated interfaces. In that example calling

USBDev_GetNbrAssociatedIF() will return 2 associated interfaces.

UCHAR USBDev_GetNbrAssociatedIF (HANDLE dev,

 DWORD *p_err);

504

Appendix G

G

G-2-6 USBDev_SetAltSetting()

Set the alternate setting of an interface.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

dev General handle to device.

if_nbr Interface number.

alt_set Alternate setting number.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_INVALID_PARAMETER

RETURNED VALUE

None.

CALLERS

Application.

void USBDev_SetAltSetting (HANDLE dev,

 UCHAR if_nbr,

 UCHAR alt_set,

 DWORD *p_err);

505

G

NOTES / WARNINGS

This function sets alternate setting number for WinUSB internal use. It does not send a

SET_INTERFACE request to the device. To send SET_INTERFACE request to the device, the

function USBDev_CtrlReq() must be used.

506

Appendix G

G

G-2-7 USBDev_GetCurAltSetting()

Get the current alternate setting for the specified interface.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

dev General handle to device.

if_nbr Interface number.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_INVALID_PARAMETER

RETURNED VALUE

Current alternate setting number, if NO error(s).

0, otherwise.

CALLERS

Application.

UCHAR USBDev_GetCurAltSetting (HANDLE dev,

 UCHAR if_nbr,

 DWORD *p_err);

507

G

NOTES / WARNINGS

This function gets the current alternate setting number used internally by WinUSB and set

by the function USBDev_SetAltSetting(). It does NOT send a GET_INTERFACE request to

the device. To send GET_INTERFACE request to the device, the function USBDev_CtrlReq()

must be used.

508

Appendix G

G

G-2-8 USBDev_IsHighSpeed()

Specify if the device attached to PC is high speed or not.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

dev General handle to device.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_INVALID_PARAMETER

RETURNED VALUE

TRUE, if device is high-speed.

FALSE, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

BOOL USBDev_IsHighSpeed (HANDLE dev,

 DWORD *p_err);

509

G

G-2-9 USBDev_BulkIn_Open()

Open a Bulk IN pipe.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

dev General handle to device.

if_nbr Interface number.

alt_set Alternate setting number for specified interface.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_NO_MORE_ITEMS

RETURNED VALUE

Handle to Bulk IN pipe, if NO error(s).

INVALID_HANDLE_VALUE, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

HANDLE USBDev_BulkIn_Open (HANDLE dev,

 UCHAR if_nbr,

 UCHAR alt_set,

 DWORD *p_err);

510

Appendix G

G

G-2-10 USBDev_BulkOut_Open()

Open a Bulk OUT pipe.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

dev General handle to device.

if_nbr Interface number.

alt_set Alternate setting number for specified interface.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_NO_MORE_ITEMS

RETURNED VALUE

Handle to Bulk OUT pipe, if NO error(s).

INVALID_HANDLE_VALUE, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

HANDLE USBDev_BulkOut_Open (HANDLE dev,

 UCHAR if_nbr,

 UCHAR alt_set,

 DWORD *p_err);

511

G

G-2-11 USBDev_IntrIn_Open()

Open a Interrupt IN pipe.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

dev General handle to device.

if_nbr Interface number.

alt_set Alternate setting number for specified interface.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_NO_MORE_ITEMS

RETURNED VALUE

Handle to Interrupt IN pipe, if NO error(s).

INVALID_HANDLE_VALUE, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

HANDLE USBDev_IntrIn_Open (HANDLE dev,

 UCHAR if_nbr,

 UCHAR alt_set,

 DWORD *p_err);

512

Appendix G

G

G-2-12 USBDev_IntrOut_Open()

Open a Interrupt OUT pipe.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

dev General handle to device.

if_nbr Interface number.

alt_set Alternate setting number for specified interface.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_NO_MORE_ITEMS

RETURNED VALUE

Handle to Interrupt OUT pipe, if NO error(s).

INVALID_HANDLE_VALUE, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

HANDLE USBDev_IntrOut_Open (HANDLE dev,

 UCHAR if_nbr,

 UCHAR alt_set,

 DWORD *p_err);

513

G

G-2-13 USBDev_PipeGetAddr()

Get pipe address.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

pipe Pipe handle.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

RETURNED VALUE

Pipe address, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

UCHAR USBDev_PipeGetAddr (HANDLE pipe,

 DWORD *p_err);

514

Appendix G

G

G-2-14 USBDev_PipeClose()

Close a pipe.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

pipe Pipe handle.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

RETURNED VALUE

None

CALLERS

Application.

NOTES / WARNINGS

None.

void USBDev_PipeClose (HANDLE pipe,

 DWORD *p_err);

515

G

G-2-15 USBDev_PipeStall()

Stall a pipe or clear the stall condition of a pipe.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

pipe Pipe handle.

stall Indicate which action to do:

TRUE Stall pipe.

FALSE Clear stall condition of the pipe.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_NOT_ENOUGH_MEMORY

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

The SET_FEATURE standard request is sent to the device to stall the pipe. The CLEAR_FEATURE

standard request is sent to the device to clear the stall condition of the pipe.

void USBDev_PipeStall (HANDLE pipe,

 BOOL stall,

 DWORD *p_err);

516

Appendix G

G

G-2-16 USBDev_PipeAbort()

Aborts all of the pending transfers for a pipe.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

pipe Pipe handle.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

None.

void USBDev_PipeAbort (HANDLE pipe,

 DWORD *p_err);

517

G

G-2-17 USBDev_CtrlReq()

Send control data over the default control endpoint.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

dev General handle to device

bm_req_type Variable representing bmRequestType of setup packet. bmRequestType is a

bitmap with the following characteristics:

D7 Data transfer direction:

‘0’: USB_DIR_HOST_TO_DEVICE

‘1’: USB_DIR_DEVICE_TO_HOST

D6...5 Request type:

‘00’: USB_REQUEST_TYPE_STD (standard)

‘01’: USB_REQUEST_TYPE_CLASS

‘10’: USB_REQUEST_TYPE_VENDOR

ULONG USBDev_CtrlReq (HANDLE dev,

 UCHAR bm_req_type,

 UCHAR b_request,

 USHORT w_value,

 USHORT w_index,

 UCHAR *p_buf,

 USHORT buf_len,

 DWORD *p_err);

518

Appendix G

G

D4...0 Recipient:

‘0000’: USB_RECIPIENT_DEV (device)

‘0001’: USB_RECIPIENT_IF (interface)

‘0010’: USB_RECIPIENT_ENDPOINT

bm_req_type Argument is a OR'ed of D7, D6...5 and

D4...0 values.

b_request Variable representing bRequest of setup packet. Possible values are:

GET_STATUS Returns status for the specified recipient.

CLEAR_FEATURE Clear or disable a specific feature.

SET_FEATURE Set or enable a specific feature.

SET_ADDRESS Set the device address for all future

device accesses.

GET_DESCRIPTOR Return the specified descriptor if the

descriptor exists.

SET_DESCRIPTOR Update existing descriptors or new

descriptors may be added.

GET_CONFIGURATION Return the current device configuration

value.

SET_CONFIGURATION Set the device configuration.

GET_INTERFACE Return the selected alternate setting for

the specified interface.

SET_INTERFACE Select an alternate setting for the

specified interface.

SYNCH_FRAME Set and then report an endpoint’s

synchronization frame.

w_value Variable representing wValue of setup packet.

w_index Variable representing wIndex of setup packet.

p_buf Pointer to transmit or receive buffer for data phase of control transfer.

buf_len Length of transmit or receive buffer.

519

G

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_NOT_ENOUGH_MEMORY

ERROR_GEN_FAILURE

RETURNED VALUE

None

CALLERS

Application.

NOTES / WARNINGS

The value of w_value and w_index arguments vary according to the specific request

defined by b_request argument.

The following code shows an example using USBDev_CtrlReq() to send the

SET_INTERFACE request:

More details about USB device requests can be found in “Universal Serial Bus Specification,

Revision 2.0, April 27, 2000”, section 9.3.

DWORD err;

 /* Select alternate setting #1 for default interface. */

USBDev_CtrlReq (dev_handle,

 (USB_DIR_HOST_TO_DEVICE | USB_REQUEST_TYPE_STD | USB_RECIPIENT_IF),

 SET_INTERFACE,

 1, /* Alternate setting #1. */

 0, /* Interface #0 inside active configuration. */

 0, /* No data phase. */

 0,

 &err);

if (err != ERROR_SUCCESS) {

 printf("[ERROR #%d] SET_INTERFACE(1) request failed.\n", err);

}

520

Appendix G

G

G-2-18 USBDev_PipeWr()

Write data to device over the specified pipe.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

pipe Pipe handle.

p_buf Pointer to transmit buffer.

buf_len Transmit buffer length.

timeout Timeout in milliseconds. A value of 0 indicates a wait forever.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_INVALID_USER_BUFFER

ERROR_BAD_PIPE

ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEM_TIMEOUT

DWORD USBDev_PipeWr (HANDLE pipe,

 UCHAR *p_buf,

 DWORD buf_len,

 DWORD timeout,

 DWORD *p_err);

521

G

RETURNED VALUE

Number of bytes written, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

522

Appendix G

G

G-2-19 USBDev_PipeRd()

Read data from device over the specified pipe.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

pipe Pipe handle.

p_buf Pointer to receive buffer.

buf_len Receive buffer length.

timeout Timeout in milliseconds. A value of 0 indicates a wait forever.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_INVALID_USER_BUFFER

ERROR_BAD_PIPE

ERROR_INVALID_PARAMETER

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEM_TIMEOUT7

DWORD USBDev_PipeRd (HANDLE pipe,

 UCHAR *p_buf,

 DWORD buf_len,

 DWORD timeout,

 DWORD *p_err);

523

G

RETURNED VALUE

Number of bytes received, if NO error(s).

0, otherwise.

CALLERS

Application.

NOTES / WARNINGS

None.

524

Appendix G

G

G-2-20 USBDev_PipeRdAsync()

Read data from device over the specified pipe. This function returns immediately if data is

not present. The data will be retrieved later.

FILES

usbdev_api.c

PROTOTYPE

ARGUMENTS

pipe Pipe handle.

p_buf Pointer to receive buffer.

buf_len Receive buffer length.

callback Pointer to application callback called by Asynchronous thread upon

completion.

p_callback_arg Pointer to argument which can carry private information passed

by application. This argument is used when the callback is called.

p_err Pointer to variable that will receive the return error code from this function:

ERROR_SUCCESS

ERROR_INVALID_HANDLE

ERROR_INVALID_USER_BUFFER

ERROR_BAD_PIPE

ERROR_NOT_ENOUGH_MEMORY

ERROR_SEM_TIMEOUT

void USBDev_PipeRdAsync (HANDLE pipe,

 UCHAR *p_buf,

 DWORD buf_len,

 USBDEV_PIPE_RD_CALLBACK callback,

 void *p_callback_arg,

 DWORD *p_err);

525

G

RETURNED VALUE

None.

CALLERS

Application.

NOTES / WARNINGS

When a IN pipe is open with one of the open functions USBDev_xxxxIn_Open(), a thread

is automatically created. This thread is in charge of informing the application about a

completed asynchronous IN transfer. Upon completion of an asynchronous transfer, the

thread is waken up and calls the application callback provided to USBDev_API library using

the callback argument.

USBDev_API library allows to queue several asynchronous IN transfers for the same pipe.

526

Appendix G

G

527

Appendix

H
Error Codes

This appendix provides a brief explanation of μC/USB-Device error codes defined in

usbd_core.h. Any error codes not listed here may be searched in usbd_core.h for both

their numerical value and usage.

Each error has a numerical value. The error codes are grouped. The definition of the

groups are:

Error code group Numbering series

GENERIC 0

DEVICE 100

CONFIGURATION 200

INTERFACE 300

ENDPOINT 400

OS LAYER 500

528

Appendix H

H

H-1 GENERIC ERROR CODES

H-2 DEVICE ERROR CODES

H-3 CONFIGURATION ERROR CODES

0 USBD_ERR_NONE No error.

1 USBD_ERR_SHORT_XFER Short transfer detected.

2 USBD_ERR_FAIL Hardware error occurred.

3 USBD_ERR_RX Generic receive error. A problem has occurred during

read transfer preparation or after data has been

received.

4 USBD_ERR_TX Generic transmit error. A problem has occurred during

write transfer preparation. No data transmitted or data

transmitted with a certain problem.

5 USBD_ERR_ALLOC Object/memory allocation failed.

6 USBD_ERR_NULL_PTR Pointer argument(s) passed NULL pointer(s).

7 USBD_ERR_INVALID_ARG Invalid argument(s).

8 USBD_ERR_INVALID_CLASS_STATE Invalid class state.

100 USBD_ERR_DEV_ALLOC Device allocation failed.

101 USBD_ERR_DEV_INVALID_NBR Invalid device number.

102 USBD_ERR_DEV_INVALID_STATE Invalid device state.

103 USBD_ERR_DEV_INVALID_SPD Invalid device speed.

200 USBD_ERR_CFG_ALLOC Configuration allocation failed.

201 USBD_ERR_CFG_INVALID_NBR Invalid configuration number.

202 USBD_ERR_CFG_INVALID_MAX_PWR Invalid maximum power.

203 USBD_ERR_CFG_SET_FAIL Device driver set configuration failed.

529

H

H-4 INTERFACE ERROR CODES

H-5 ENDPOINT ERROR CODES

H-6 OS LAYER ERROR CODES

300 USBD_ERR_IF_ALLOC Interface allocation failed.

301 USBD_ERR_IF_INVALID_NBR Invalid interface number.

302 USBD_ERR_IF_ALT_ALLOC Alternate interface setting allocation failed.

303 USBD_ERR_IF_ALT_INVALID_NBR Invalid interface alternate setting number.

304 USBD_ERR_IF_GRP_ALLOC Interface group allocation failed.

305 USBD_ERR_IF_GRP_NBR_IN_USE Interface group number already in use.

400 USBD_ERR_EP_ALLOC Endpoint allocation failed.

401 USBD_ERR_EP_INVALID_ADDR Invalid endpoint address.

402 USBD_ERR_EP_INVALID_STATE Invalid endpoint state.

403 USBD_ERR_EP_INVALID_TYPE Invalid endpoint type.

404 USBD_ERR_EP_NONE_AVAIL Physical endpoint NOT available.

405 USBD_ERR_EP_ABORT Device driver abort transfer for an endpoint failed.

406 USBD_ERR_EP_STALL Device driver stall endpoint failed.

407 USBD_ERR_EP_IO_PENDING I/O operation pending on endpoint.

500 USBD_ERR_OS_INIT_FAIL OS layer initialization failed.

501 USBD_ERR_OS_SIGNAL_CREATE OS signal NOT successfully created.

502 USBD_ERR_OS_FAIL OS object Pend/Post failed.

503 USBD_ERR_OS_TIMEOUT OS object timeout.

504 USBD_ERR_OS_ABORT OS object abort.

505 USBD_ERR_OS_DEL OS object delete.

530

Appendix H

H

531

Appendix

I
Memory Footprint

μC/USB-Device’s memory footprint can be scaled to contain only the features required for

your specific application. Refer to Chapter 5, “Configuration” on page 65 to better

understand how to configure the stack and your application. This appendix will provide a

reference to μC/USB-Device’s memory footprint for each associated device class offered by

Micriμm. Each class presents a table of device configuration values that represents the

configuration used for the footprint calculation. All footprint values calculated in this

appendix has been obtained with the environment configuration shown in Table I-1 and

μC/USB-Device general configuration shown in Table I-2.

Note that any Device Controller Driver offered by the μC/USB-Device stack can allocate

internal data structures from the heap. You can use memory functions from μC/LIB,

common standard library functions, macros and constants developed by Micriμm, to

determine the amount of heap that has been allocated for the Device Controller Driver.

Refer to μC/LIB documentation for more information.

Table I-1 Memory Footprint Environment Configuration

Specification Configuration

Architecture ARM

Microcontroller NXP LPC2468-EA

Compiler IAR EWARM V6.21

Compiler Optimization High for Size and Speed

OS μC/OS-III

532

Appendix I

I

Table I-2 Memory Footprint μC/USB Device Configuration

I-0-1 COMMUNICATIONS DEVICE CLASS

The Communication Device Class (CDC) configuration is presented in Table I-3 and its

associated memory footprint table is shown in Table I-4.

Table I-3 CDC Configuration for Memory Footprint

Device Configuration Value

USBD_CFG_OPTIMIZE_SPD DEF_DISABLED

USBD_CFG_MAX_NBR_DEV 1

USBD_CFG_MAX_NBR_CFG 1

Configuration Value

USBD_CFG_MAX_NBR_IF 2

USBD_CFG_MAX_NBR_IF_ALT 2

USBD_CFG_MAX_NBR_IF_GRP 1

USBD_CFG_MAX_NBR_EP_DESC 3

USBD_CFG_MAX_NBR_EP_OPEN 5

USBD_CDC_CFG_MAX_NBR_DEV 1

USBD_CDC_CFG_MAX_NBR_CFG 2

USBD_CDC_CFG_MAX_NBR_DATA_IF 1

USBD_ACM_SERIAL_CFG_MAX_NBR_DEV 1

533

I

Table I-4 CDC Memory Footprint

I-0-2 HUMAN INTERFACE DEVICE CLASS

The Human Interface Device (HID) Class configuration is presented in Table I-5 and its

associated memory footprint table is shown in Table I-6. Note that there is an optional

Interrupt OUT endpoint that you may add during HID initialization that has been omitted in

the configuration below. Also note that the Data size shown for HID class does not take into

account memory allocated for input report buffer(s), output report and feature report

buffers from the heap. You can use memory functions from μC/LIB to determine the

amount of heap that has been allocated for these HID reports. Refer to μC/LIB

documentation for more information.

Table I-5 HID Configuration for Memory Footprint

Module Code (kB) Constant (kB) Data (kB)

Device Core 20.62 - 0.47

Device RTOS Port 0.76 - 1.39

Device Controller Driver 6.74 0.21 Data allocated from heap.

CDC 2.55 - 0.07

ACM Subclass 2.20 - 0.04

Total: 32.87 0.21 1.97

Configuration Value

USBD_CFG_MAX_NBR_IF 1

USBD_CFG_MAX_NBR_IF_ALT 1

USBD_CFG_MAX_NBR_IF_GRP 0

USBD_CFG_MAX_NBR_EP_DESC 1

USBD_CFG_MAX_NBR_EP_OPEN 3

USBD_HID_CFG_MAX_NBR_DEV 1

USBD_HID_CFG_MAX_NBR_CFG 2

USBD_HID_CFG_MAX_NBR_REPORT_ID 16

USBD_HID_CFG_MAX_NBR_REPORT_PUSHPOP 0

534

Appendix I

I

Table I-6 HID Memory Footprint

I-0-3 MASS STORAGE CLASS

The Mass Storage Class (MSC) configuration is presented in Table I-7 and its associated

memory footprint table is shown in Table I-8.

Table I-7 MSC Configuration for Memory Footprint

Module Code (kB) Constant (kB) Data (kB)

Device Core 19.17 - 0.78

Device RTOS Port 0.76 - 1.31

Device Controller

Driver

6.74 0.21 *Data allocated from heap.

HID 6.29 - 0.52

*Input, Output and/or Feature Report buffers allocated

from heap. Refer to section I-0-2 “Human Interface

Device Class” on page 533 for details.

HID RTOS Port 1.05 - 1.39

Total: 34.01 0.21 4.00

Configuration Value

USBD_CFG_MAX_NBR_IF 1

USBD_CFG_MAX_NBR_IF_ALT 1

USBD_CFG_MAX_NBR_IF_GRP 0

USBD_CFG_MAX_NBR_EP_DESC 2

USBD_CFG_MAX_NBR_EP_OPEN 4

USBD_MSC_CFG_MAX_NBR_DEV 1

USBD_MSC_CFG_MAX_NBR_CFG 2

USBD_MSC_CFG_MAX_LUN 1

USBD_MSC_CFG_DATA_LEN 2048

535

I

Table I-8 MSC Memory Footprint

I-0-4 PERSONAL HEALTHCARE DEVICE CLASS

The Personal Healthcare Device Class (PHDC) configuration is presented in Table I-9 and its

associated memory footprint table is shown in Table I-10. Note that there is an optional

Interrupt IN endpoint that you may add during PHDC initialization that has been omitted in

the configuration below. Also note that the memory footprint is taken for both QOS Based

Scheduler enabled and disabled configurations. The memory footprint for the PHDC RTOS

layer therefore reflects the differences when it is one configuration or the other.

Module Code (kB) Constant (kB) Data (kB)

Device Core 19.13 - 0.85

Device RTOS Port 0.76 - 1.35

Device Controller

Driver

6.74 0.21 *Data allocated from heap.

MSC 7.57 0.03 2.55

MSC RTOS Port 0.68 - 1.27

RAMDisk Storage 0.36 - *RAMDisk Storage layer allocates data sections to

simulate a memory area from a media storage. This

memory area size is configured in app_cfg.h.

Total: 35.24 0.24 6.02

536

Appendix I

I

Table I-9 PHDC Configuration for Memory Footprint

Table I-10 PHDC Memory Footprint

Configuration Value

USBD_CFG_OPTIMIZE_SPD DEF_DISABLED

USBD_CFG_MAX_NBR_DEV 1

USBD_CFG_MAX_NBR_CFG 1

USBD_CFG_MAX_NBR_IF 1

USBD_CFG_MAX_NBR_IF_ALT 1

USBD_CFG_MAX_NBR_IF_GRP 0

USBD_CFG_MAX_NBR_EP_DESC 2

USBD_CFG_MAX_NBR_EP_OPEN 4

USBD_PHDC_CFG_MAX_NBR_DEV 1

USBD_PHDC_CFG_MAX_NBR_CFG 2

USBD_PHDC_CFG_DATA_OPAQUE_MAX_LEN 43

USBD_PHDC_OS_CFG_SCHED_EN DEF_ENABLED/DEF_DISABLED

Module Code (kB) Constant (kB) Data (kB)

Device Core 19.82 - 0.85

Device RTOS Port 0.76 - 1.35

Device Controller Driver 6.74 0.21 Data allocated from heap.

PHDC 4.70 - 0.21

PHDC RTOS Port (QOS

Based Scheduler Enabled)

1.56 - 1.62

PHDC RTOS Port (QOS

Based Scheduler Disabled)

0.66 - 0.11

Total (QOS Based

Scheduler Enabled/

Disabled):

33.58 / 32.68 0.21 4.03 / 2.52

537

I

I-0-5 VENDOR CLASS

The Vendor Class configuration is presented in Table I-11 and its associated memory

footprint table is shown in Table I-12. Note that there is a pair of Interrupt IN/OUT

endpoints that you may add during Vendor Class initialization that has been omitted in the

configuration below.

Table I-11 Vendor Class Configuration for Memory Footprint

Table I-12 Vendor Class Memory Footprint

Configuration Value

USBD_CFG_MAX_NBR_IF 1

USBD_CFG_MAX_NBR_IF_ALT 1

USBD_CFG_MAX_NBR_IF_GRP 0

USBD_CFG_MAX_NBR_EP_DESC 2

USBD_CFG_MAX_NBR_EP_OPEN 4

USBD_VENDOR_CFG_MAX_NBR_DEV 1

USBD_VENDOR_CFG_MAX_NBR_CFG 2

Module Code (kB) Constant (kB) Data (kB)

Device Core 18.18 - 0.85

Device RTOS Port 0.76 - 1.35

Device Controller

Driver

6.74 0.21 Data allocated from heap.

Vendor 1.05 - 0.09

Total: 26.73 0.21 2.29

538

Appendix I

I

539

Index

A
abstraction layer ..57
ACM requests ..122
ACM subclass ..121

initialization API ...123
requests and notifications ..127
serial emulation ...123

app.c ..32
app_<module>.c ..33
app_<module>.h ..33
app_cfg.h ...33, 38, 55, 130, 221
APP_CFG_FS_BUF_CNT ...178
APP_CFG_FS_DEV_CNT ...178
APP_CFG_FS_DEV_DRV_CNT ..178
APP_CFG_FS_DIR_CNT ..178
APP_CFG_FS_EN ..178
APP_CFG_FS_FILE_CNT ...178
APP_CFG_FS_IDE_EN ...178
APP_CFG_FS_MAX_SEC_SIZE178
APP_CFG_FS_MSC_EN ..178
APP_CFG_FS_NBR_TEST ...178
APP_CFG_FS_NOR_EN ...178
APP_CFG_FS_RAM_EN ..178
APP_CFG_FS_RAM_NBR_SEC178
APP_CFG_FS_RAM_SEC_SIZE178
APP_CFG_FS_SD_CARD_EN ..178
APP_CFG_FS_SD_EN ..178
APP_CFG_FS_VOL_CNT ...178
APP_CFG_FS_WORKING_DIR_CNT178
APP_CFG_RX_ASYNC_EN ..222
APP_CFG_USBD_CDC_EN ...130
APP_CFG_USBD_CDC_SERIAL_TASK_PRIO130
APP_CFG_USBD_CDC_SERIAL_TASK_STK_SIZE130
APP_CFG_USBD_CDC_SERIAL_TEST_EN130
APP_CFG_USBD_EN ...39, 177
APP_CFG_USBD_HID_EN ...155
APP_CFG_USBD_HID_MOUSE_TASK_PRIO155
APP_CFG_USBD_HID_READ_TASK_PRIO155
APP_CFG_USBD_HID_TASK_STK_SIZE155
APP_CFG_USBD_HID_TEST_MOUSE_EN155
APP_CFG_USBD_HID_WRITE_TASK_PRIO155
APP_CFG_USBD_MSC_EN ...177

APP_CFG_USBD_VENDOR_ECHO_ASYNC_EN 221
APP_CFG_USBD_VENDOR_ECHO_ASYNC_TASK_PRIO .. 221
APP_CFG_USBD_VENDOR_ECHO_SYNC_EN 221
APP_CFG_USBD_VENDOR_ECHO_SYNC_TASK_PRIO 221
APP_CFG_USBD_VENDOR_EN 221
APP_CFG_USBD_VENDOR_TASK_STK_SIZE 221
APP_CFG_USBD_XXXX_EN ... 39
App_DevPathStr .. 156
app_hid_common.c .. 156
application

configuration ... 38, 69
configuration constants ... 188
configuration file ... 38
modules relationship .. 55
preprocessor constants ... 177

APP_MAX_NBR_VENDOR_DEV 222
app_usbd.* .. 33
app_usbd.c .. 36
app_usbd_<class>.c ... 33
app_usbd_cdc.c .. 120, 129
App_USBD_CDC_Init() .. 43, 120
App_USBD_CDC_SerialLineCoding() 126
App_USBD_CDC_SerialLineCtrl() 126
App_USBD_HID_Callback .. 147
App_USBD_HID_Init() .. 43
App_USBD_HID_MouseTask() .. 157
App_USBD_HID_ReadTask() .. 158
App_USBD_HID_WriteTask() .. 158
App_USBD_Init() .. 36, 40–41
App_USBD_MSC_Init() .. 43
App_USBD_PHDC_Init() .. 43
app_usbd_vendor.c .. 220
App_USBD_Vendor_Init() .. 43
App_USBD_XXXX_Init() .. 42
app_vendor_echo.c .. 221–222
architecture

block diagram ... 54
CDC ... 119
device driver ... 77
HID class ... 142
host and CDC ... 119
host and HID class ... 142
host and Vendor class .. 206
MS class ... 169
RTOS interactions .. 239

540

Index

aSignature ..187
asynchronous communication152, 212
asynchronous read and write153, 213
asynchronous receive ...91
asynchronous transmit ..95

B
bmLatencyReliability ...187
bNumTransfers ..187
board support ..88
bOpaqueData ...187
bOpaqueDataSize ..187
bQoSEncodingVersion ..187
BSP interface API ..88
bus topology ..15–16

C
callback

interactions ..111
requests mapping ...113
structure ..111–112

CDC ..532
architecture ...119
configuration ...68, 120, 123
configuration constants ..120
demo ..132, 134
device ..50, 117
endpoints ..117
functions ..354
initialization ...120
memory footprint ..532–533
serial demo ..133
subclasses ..118

CDC-ACM
API ...128
configuration ...68
functions ..369
initialization ...125

class instance ..99
API functions ...174
communication ...109
communication, HID class ..150
communication, PHDC ...192
communication, Vendor class210
configuration, HID class ...144
configuration, MS class ..174
configuration, PHDC ...189
configuration, Vendor class ..208
control structure ...108
multiple ..99
structures ..108

class state machine ...110
ClassReq() ..113
ClearCommFeature ...122
CLEAR_FEATURE ..113
complex composite high-speed USB device74

configuration ...76
structure ..75

composite high-speed USB device 73
configuration ... 74
structure .. 73

configuration ... 66
CDC ... 120, 123
complex composite high-speed USB device 76
composite high-speed USB device 74
constants .. 232
constants, CDC .. 120
constants, HID class .. 143
constants, MS class ... 173
constants, PHDC .. 188
constants, Vendor class ... 207
device .. 34, 85
device application 130, 155, 221
device controller driver .. 71
driver ... 35
error codes ... 528
examples ... 71
functions ... 253
HID class ... 68, 143
interface .. 66
MS class ... 69, 173
PC and device applications 154, 220
PHDC .. 69, 187, 191
simple full-speed USB device 72
static stack ... 65
string ... 67
USB device ... 66, 86
USB device controller driver .. 85
Vendor class ... 69, 207

Conn() .. 113
constants ... 232

CDC ... 120
HID class ... 143
MS class ... 173
PHDC .. 188
Vendor class ... 207

control transfer stages .. 19
control.exe ... 159
core events management ... 241
core layer, porting ... 242
core OS functions ... 298
core OS port API ... 242
core task .. 243
CPU layer ... 58
CPU support .. 88

D
data characteristics .. 184
data flow model ... 17
debug

configuration ... 68, 232
event pool ... 234
events .. 234
events management ... 241
format .. 233
processing events .. 63
sample output ... 233
task .. 234, 243
trace output .. 232
traces .. 232

541

tracing macros ..236
debug macros ..234–235
demo application154, 200, 203, 220

CDC ...129
composite device ..228
configuration constants ..200
files ..200
HID class ...156, 158
MS class ..176
PHDC ...201–202
single device ...227
Vendor class ..224, 226

detect a specific HID device ...156
device

application configuration130, 155, 221
communication ...218
configuration ...34, 85
controller driver configuration71
driver configuration ...35
error codes ..528
functions ..246
set address ..97
states ...24
structure and enumeration ...22
synchronous receive ...89
synchronous transmit ...93

device driver
API ...78
architecture ...77
BSP functions ...350
callbacks functions ...313
functions ..324
interface API ..78
model ...78

Disconn() ..113

E
echo ..224
endpoint ...17

CDC ...117
error codes ..529
functions ..261
HID class ...136
information table ...86–87
information table configuration87
management layer ..56
MS class ..167
PHDC ...185
QoS mapping ..185
Vendor class ..207

enumeration ...25
EPDesc() ...113
EPDescGetSize() ..113
error codes ...528

configuration ...528
device ..528

F
full speed ..21

G
GetCommFeature .. 122
GET_DESCRIPTOR ... 113
GET_LINE_CODING .. 132
GetLineCoding .. 122, 127
GET_PROTOCOL .. 147
GET_REPORT 136, 141, 147, 158, 160
GUID .. 51, 228

device interface class .. 52
Micriμm class .. 52

H
hardware abstraction layer ... 57
HID class ... 135

architecture ... 142
communication ... 150
communication API .. 150
configuration ... 68, 143
configuration constants ... 143
demo application .. 156, 158
endpoint .. 136
functions ... 388
initialization ... 146
initialization API .. 144
memory footprint .. 533
OS functions ... 402
OS layer API .. 161
porting ... 160

high speed ... 21
host .. 16
host application ... 179

I
IFDesc() .. 113
IFDescGetSize() ... 113
IFReq() ... 113
INF file .. 46, 222–223

example .. 223
structure .. 48

installation ... 30
interface

configuration ... 66
error codes ... 529
functions ... 255

interrupt handling .. 81
interrupt.exe .. 159
ISR handler .. 81
ISR vector .. 81–83

L
low speed .. 21

542

Index

M
memory allocation ...88
memory footprint ...531

CDC ...532–533
HID class ...533
MS class ..534
PHDC ...535–536
Vendor class ..537

metadata preamble ...187, 192, 196
module

dependency ..29
libraries ..55
relationship ..55

mouse demo ..156
Mouse Report Descriptor Example148
MS class ...534

architecture ...169
configuration ...69, 173
configuration constants ..173
demo application ..176
endpoint ..167
endpoint usage ...167
functions ..420
initialization ...176
memory footprint ..534
OS functions ..428
porting ...180–181
protocol ...166
requests ...167
state machine ..172
storage layer functions ...434
task handler ...171

multiple class instances 99–103, 106–107

N
notification API ..84

O
OS layer API ...204
OS layer error codes ..529

P
periodic input reports task161–162
PHDC ..184, 535

communication ...192
communication API ...192
configuration ...69, 187, 191
configuration constants ..188
data characteristics ..184
demo application ..201–202
endpoint ..185
functions ..442
initialization API ...189
instance initialization ..191
memory footprint ..535–536
operational model ...185
OS layer functions ...463
porting ...203
read ..193
software layers ..186

write .. 195
physical interface .. 21
pipe management ... 215
pipes .. 18
porting

core layer .. 242
HID class ... 160
modules .. 239
MS class ... 180–181
PHDC .. 203

power distribution ... 22
power management .. 21
preprocessor constants .. 178
processing USB requests ... 61–62

Q
QoS

bins .. 190
endpoint mapping .. 186
levels description ... 185

QoS-based schedule .. 196, 199
QoS-based scheduler API .. 198

R
RAM disk ... 177
receive ... 59–60

asynchronous ... 91
synchronous ... 89

report ... 136
descriptor content .. 139
items ... 138
mouse state .. 141

RTOS
API functions .. 181
layer ... 171
model .. 240
port .. 238
QoS-based scheduler .. 196

S
sample application .. 40

building ... 31
SCSI ... 168
SCSI commands ... 170
SemaphorePost() .. 238
serial demo .. 132–134

state machine ... 133
serial read and write ... 128
serial terminal .. 134
SetBreak .. 122
SetCommFeature .. 122
SET_CONFIGURATION ... 110, 113
SET_CONTROL_LINE_STATE .. 132
SetControlLineState .. 122, 127
SET_FEATURE .. 113
SET_IDLE ... 161–162

543

SET_INTERFACE ...113
SET_LINE_CODING ...132
SetLineCoding ...122, 127
SET_PROTOCOL ...147
SET_REPORT ...136, 147, 158
simple full-speed USB device ...72

configuration ...72
source code ...37

downloading ..28
including ..37

speed ...21
state machine ..172
static stack configuration ..65
status notification API ...84
storage API ..181
storage layer ..171

functions ..434
storage medium ...171
string configuration ...67
subclass

management ...127
notification ...127

subclass instance
communication ...128
configuration ...123

synchronous bulk read and write151, 211
synchronous communication150, 211
synchronous transfer completion240

T
task

execution order ...197
model ...58–59
priorities ...69

task stack sizes ...70
TaskCreate() ...238
template files ...33
trace functions ...321
transfer types ...18
transmit ..59–60

asynchronous ..95
synchronous ..93

U
uC/FS preprocessor constants178
UpdateAltSetting() ...113
UpdateEPState() ..113
USB

class layer ...56
core layer ...56
data flow ..20
device ..16
device application ...177
device configuration ...66
device configuration structure86
device controller driver configuration85
device driver data type ...80

device driver functional model 89
device states .. 25
device structure .. 22, 24
host ... 16
host application .. 179

USBD_ACM_SerialAdd() 123–124, 126, 129, 370
USBD_ACM_SerialCfgAdd() 123–124, 126, 371
USBD_ACM_SERIAL_CFG_MAX_NBR_DEV 76, 123
USBD_ACM_SerialInit() 123–124, 369
USBD_ACM_SerialIsConn() .. 373
USBD_ACM_SerialLineCodingGet() 127, 381
USBD_ACM_SerialLineCodingReg() 123–124, 127, 383
USBD_ACM_SerialLineCodingSet() 127, 382
USBD_ACM_SerialLineCtrlGet() 127, 378
USBD_ACM_SerialLineCtrlReg() 123–124, 127, 379
USBD_ACM_SerialLineStateClr() 127, 386
USBD_ACM_SerialLineStateSet() 127, 385
USBD_ACM_SerialRx() .. 128, 374
USBD_ACM_SerialTx() .. 128, 376
usbd_bsp_<controller>.c .. 58
USBD_BSP_Conn() ... 351
USBD_BSP_Disconn() ... 352
USBD_BSP_Init() ... 350
USBD_BulkAdd() ... 265
USBD_BulkRx() ... 89–90, 267
USBD_BulkRxAsync() ... 91, 269
USBD_BulkTx() .. 93, 271
USBD_BulkTxAsync() .. 95, 273
USBD_CDC_Add() ... 355
USBD_CDC_CfgAdd() ... 358
USBD_CDC_CFG_MAX_NBR_CFG 76, 120
USBD_CDC_CFG_MAX_NBR_DATA_IF 120
USBD_CDC_CFG_MAX_NBR_DEV 76, 120, 123
USBD_CDC_DataIF_Add() .. 361
USBD_CDC_DataRx() ... 363
USBD_CDC_DataTx() .. 365
USBD_CDC_Init() ... 354
USBD_CDC_IsConn() .. 360
USBD_CDC_Notify() .. 367
usbd_cfg.c ... 34
usbd_cfg.h 34, 55, 120, 123, 143, 187, 207, 232
USBD_CfgAdd() ... 253
USBD_CFG_DBG_TRACE_EN 68, 232
USBD_CFG_DBG_TRACE_NBR_EVENTS 68, 232, 234
USBD_CFG_MAX_NBR_CFG 66, 72, 74, 76
USBD_CFG_MAX_NBR_DEV .. 66
USBD_CFG_MAX_NBR_EP_DESC 67, 72, 74, 76
USBD_CFG_MAX_NBR_EP_OPEN 67, 72, 74, 76
USBD_CFG_MAX_NBR_IF 66, 72, 74, 76
USBD_CFG_MAX_NBR_IF_ALT 67, 72, 74, 76
USBD_CFG_MAX_NBR_IF_GRP 67, 72, 74, 76
USBD_CFG_MAX_NBR_STR .. 67
USBD_CFG_OPTIMIZE_SPD .. 66
USBD_CfgOtherSpeed() ... 104
USBD_CLASS_DRV .. 111

544

Index

usbd_core.c ...235
usbd_core.h ...234
USBD_CoreTaskHandler()242, 300
USBD_CtrlRx() ...89–90, 263
USBD_CtrlTx() ..93, 261
USBD_Dbg() ...234
USBD_DbgArg() ...234
USBD_DbgTaskHandler() ..243, 301
USBD_DevAdd() ...42, 251
USBD_DEV_CFG ..85, 156
usbd_dev_cfg.c34–35, 55, 85, 156
usbd_dev_cfg.h ...34, 55, 85
USBD_DevGetState() ...249
USBD_DEV_SPD_FULL ...85
USBD_DEV_SPD_HIGH ...85
USBD_DEV_SPD_LOW ..85
USBD_DevStart() ...247
USBD_DevStop() ..248
USBD_DrvAddrEn() ..97, 330
USBD_DrvAddrSet() ...97, 329
USBD_DRV_CFG ...85
USBD_DrvCfgClr() ..332
USBD_DrvCfgSet() ...331
USBD_DrvEP_Abort() ..347
USBD_DrvEP_Close() ..336
USBD_DrvEP_Open() ...334
USBD_DrvEP_Rx() ...90, 92, 339
USBD_DrvEP_RxStart()90–92, 337
USBD_DrvEP_RxZLP() ..341
USBD_DrvEP_Stall() ..348
USBD_DrvEP_Tx() ..93, 95–96, 342
USBD_DrvEP_TxStart() ..94, 96, 344
USBD_DrvEP_TxZLP() ...346
USBD_DrvGetFrameNbr() ..333
USBD_DrvInit() ...324
USBD_DrvISR_Handler()81, 83, 349
USBD_DrvStart() ..326
USBD_DrvStop() ..328
USBD_EP_Abort() ..291
USBD_EP_GetMaxNbrOpen() ...297
USBD_EP_GetMaxPhyNbr() ..296
USBD_EP_GetMaxPktSize() ..295
USBD_EP_INFO_DIR ...87
USBD_EP_INFO_DIR_IN ..87
USBD_EP_INFO_DIR_OUT ..87
USBD_EP_INFO_TYPE ..87
USBD_EP_INFO_TYPE_BULK ...87
USBD_EP_INFO_TYPE_CTRL ...87
USBD_EP_INFO_TYPE_INTR ..87
USBD_EP_INFO_TYPE_ISOC ..87
USBD_EP_IsStalled() ...294
USBD_EP_Process() ..92
USBD_EP_Rx() ...90–91
USBD_EP_RxCmpl()84, 90, 92, 313

USBD_EP_RxZLP() .. 287
USBD_EP_Stall() .. 292
USBD_EP_Tx() ... 93, 95–96
USBD_EP_TxCmpl() 84, 94, 96, 314
USBD_EP_TxZLP() .. 289
USBDev_API .. 214
USBDev_API and WinUSB .. 215
USBDev_API Asynchronous Read Example 219
USBDev_API Device and Pipe Management API 215
USBDev_API Device and Pipe Management Example . 217
USBDev_API Functions .. 497
USBDev_API Synchronous Read and Write Example ... 218
USBDev_BulkIn_Open() 215, 218, 220, 509
USBDev_BulkOut_Open() 215, 218, 510
USBDev_Close() .. 215, 500
USBDev_CtrlReq() ... 517
USBD_EventConn() ... 83, 315
USBD_EventDisconn() .. 83, 316
USBD_EventHS() ... 83, 318
USBD_EventReset() .. 83, 317
USBD_EventResume() .. 83, 320
USBD_EventSetup() .. 84
USBD_EventSuspend() ... 83, 319
USBDev_GetCurAltSetting() ... 506
USBDev_GetNbrAltSetting() ... 501
USBDev_GetNbrAssociatedIF() 503
USBDev_GetNbrDev() ... 215, 497
USBDev_IntIn_Open() ... 215, 217
USBDev_IntOut_Open() .. 215, 217
USBDev_IntrIn_Open() .. 511
USBDev_IntrOut_Open() ... 512
USBDev_IsHighSpeed() .. 508
USBDev_Open() .. 215, 499
USBDev_PipeAbort() ... 516
USBDev_PipeClose() ... 215, 514
USBDev_PipeGetAddr() .. 513
USBDev_PipeRd() ... 522
USBDev_PipeRdAsync() ... 524
USBDev_PipeStall() ... 515
USBDev_PipeWr() ... 520
USBDev_SetAltSetting() .. 504
USBD_HID_Add() 144, 147, 151, 389
USBD_HID_CfgAdd() 144–145, 147, 391
USBD_HID_CFG_MAX_NBR_CFG 76, 143
USBD_HID_CFG_MAX_NBR_DEV 76, 143
USBD_HID_CFG_MAX_NBR_REPORT_ID 143
USBD_HID_CFG_MAX_NBR_REPORT_PUSHPOP 143
USBD_HID_Init() .. 144, 388
USBD_HID_IsConn() .. 393
USBD_HID_OS_CFG_TMR_TASK_PRIO 143
USBD_HID_OS_CFG_TMR_TASK_STK_SIZE 143
USBD_HID_OS_Init() ... 161, 402
USBD_HID_OS_InputDataPend() 161, 405
USBD_HID_OS_InputDataPendAbort() 161, 407

545

USBD_HID_OS_InputDataPost()161, 408
USBD_HID_OS_InputLock()161, 403
USBD_HID_OS_InputUnlock()161, 404
USBD_HID_OS_OutputDataPend()161, 411
USBD_HID_OS_OutputDataPendAbort()161, 413
USBD_HID_OS_OutputDataPost()161, 414
USBD_HID_OS_OutputLock()161, 409
USBD_HID_OS_OutputUnlock()161, 410
USBD_HID_OS_TmrTask ...161
USBD_HID_OS_TmrTask() ...417
USBD_HID_OS_TxLock() ...161, 415
USBD_HID_OS_TxUnlock()161, 416
USBD_HID_Rd()150, 158, 160, 394
USBD_HID_RdAsync() ...150, 396
USBD_HID_Wr()150, 157–158, 160, 163, 398
USBD_HID_WrAsync() ...150, 400
USBD_IF_Add() ..255
USBD_IF_AltAdd() ..257
USBD_IF_Grp() ...259
USBD_Init() ...42, 246
USBD_IntrAdd() ..276
USBD_IntrRx() ..89–90, 278
USBD_IntrRxAsync() ..91, 280
USBD_IntrTx() ..93, 282
USBD_IntrTxAsync() ..95, 284
USBD_MSC_Add() ...174, 421
USBD_MSC_CfgAdd() ...174, 422
USBD_MSC_CFG_DATA_LEN ..173
USBD_MSC_CFG_MAX_LUN ..173
USBD_MSC_CFG_MAX_NBR_CFG74, 173
USBD_MSC_CFG_MAX_NBR_DEV74, 173
USBD_MSC_Init() ...174, 420
USBD_MSC_IsConn() ..426
USBD_MSC_LunAdd()174–175, 424
USBD_MSC_OS_CFG_TASK_PRIO173
USBD_MSC_OS_CFG_TASK_STK_SIZE173
USBD_MSC_OS_CommSignalDel()181, 431
USBD_MSC_OS_CommSignalPend()181, 430
USBD_MSC_OS_CommSignalPost()181, 429
USBD_MSC_OS_EnumSignalPend()181, 433
USBD_MSC_OS_EnumSignalPost()181, 432
USBD_MSC_OS_Init() ..181, 428
USBD_MSC_TaskHandler() ...427
usbd_os.c ...242
USBD_OS_CFG_CORE_TASK_PRIO70
USBD_OS_CFG_CORE_TASK_STK_SIZE70
USBD_OS_CFG_TRACE_TASK_PRIO70
USBD_OS_CFG_TRACE_TASK_STK_SIZE70
USBD_OS_CoreEventGet()242, 310
USBD_OS_CoreEventPut()238, 242, 309
USBD_OS_DbgEventRdy()242, 311
USBD_OS_DbgEventWait () ..312
USBD_OS_DbgEventWait() ...242
USBD_OS_EP_SignalAbort()242, 307

USBD_OS_EP_SignalCreate() 238, 242, 302
USBD_OS_EP_SignalDel() 242, 304
USBD_OS_EP_SignalPend() 242, 305
USBD_OS_EP_SignalPost() 242, 308
USBD_OS_Init() ... 242, 298
USBD_OS_Q_Post() .. 238
USBD_OS_SemCreate() .. 238
USBD_OS_TaskCreate() ... 238
USBD_PHDC_11073_ExtCfg() 189–190, 452
USBD_PHDC_Add() 189, 193, 195, 443
USBD_PHDC_CfgAdd() 189–190, 445
USBD_PHDC_CFG_DATA_OPAQUE_MAX_LEN 187
USBD_PHDC_CFG_MAX_NBR_CFG 74, 187
USBD_PHDC_CFG_MAX_NBR_DEV 74, 187
USBD_PHDC_Init() .. 189, 442
USBD_PHDC_IsConn() .. 447
USBD_PHDC_LATENCY_HIGH_RELY_BEST 190
USBD_PHDC_LATENCY_LOW_RELY_GOOD 190
USBD_PHDC_LATENCY_MEDIUM_RELY_BEST 190
USBD_PHDC_LATENCY_MEDIUM_RELY_BETTER 190
USBD_PHDC_LATENCY_MEDIUM_RELY_GOOD 190
USBD_PHDC_LATENCY_VERYHIGH_RELY_BEST 190
USBD_PHDC_OS_CFG_SCHED_EN 188
USBD_PHDC_OS_CFG_SCHED_TASK_PRIO 188
USBD_PHDC_OS_CFG_SCHED_TASK_STK_SIZE 188
USBD_PHDC_OS_Init() ... 463
USBD_PHDC_OS_RdLock() .. 464
USBD_PHDC_OS_RdUnLock() 466
USBD_PHDC_OS_WrBulkLock() 198–199, 469
USBD_PHDC_OS_WrBulkSchedTask() 198
USBD_PHDC_OS_WrBulkUnLock() 471
USBD_PHDC_OS_WrBulkUnlock() 198–199
USBD_PHDC_OS_WrIntrLock() 467
USBD_PHDC_OS_WrIntrUnLock() 468
USBD_PHDC_Rd() ... 192–193, 456
USBD_PHDC_RdCfg() 189–190, 448
USBD_PHDC_RdPreamble() 192–193, 196, 454
USBD_PHDC_Reset() .. 462
USBD_PHDC_Wr() ... 192, 194, 460
USBD_PHDC_WrCfg() 189–190, 450
USBD_PHDC_WrPreamble() 192, 194, 196
USBD_PHDC_Wrpreamble() ... 458
USBD_RAMDISK_CFG_BASE_ADDR 177
USBD_RAMDISK_CFG_BLK_SIZE 177
USBD_RAMDISK_CFG_NBR_BLKS 177
USBD_RAMDISK_CFG_NBR_UNITS 177
USBD_StorageCapacityGet() 181, 435
USBD_StorageInit() ... 181, 434
USBD_StorageRd() .. 181, 436
USBD_StorageStatusGet() 181, 439
USBD_StorageWr() .. 181, 437
USBD_Trace() .. 63, 321
USBD_Trace() Example ... 232
USBD_Vendor_Add() 208, 210–211, 475

546

Index

USBD_Vendor_CfgAdd()208, 210, 477
USBD_VENDOR_CFG_MAX_NBR_CFG72, 76, 207
USBD_VENDOR_CFG_MAX_NBR_DEV72, 76, 207
USBD_Vendor_Init() ...208, 474
USBD_Vendor_IntrRd()210, 212, 489
USBD_Vendor_IntrRdAsync()210, 214, 493
USBD_Vendor_IntrWr()210, 212, 491
USBD_Vendor_IntrWrAsync()210, 214, 495
USBD_Vendor_IsConn() ..479
USBD_Vendor_Rd() ...210, 481
USBD_Vendor_RdAsync()210, 485
USBD_Vendor_Wr() ..210, 483
USBD_Vendor_WrAsync()210, 487
USBD_XXXX_Add()99, 101, 103, 107
USBD_XXXX_CfgAdd()99, 101, 103
USBD_XXXX_CFG_MAX_NBR_CFG99
USBD_XXXX_CFG_MAX_NBR_DEV99
usbser.sys ..130

V
Vendor class ..537

architecture ...206
communication ...210
communication API ...210
configuration ...69, 207
configuration constants ..207
demo application ..224, 226
endpoints ..207
functions ..474
initialization ...209
initialization API ...208
memory footprint ..537

VendorReq() ...113
virtual COM port ..131

W
Windows application constants222
Windows drivers ..47
Winusb.dll ..214
Winusb.sys ...214
WinUSB_composite.inf ..223, 229
WinUSB_single.inf ...229
wrapper ..238

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Analog Devices Inc.:

 AD-UCUSB-DCCDC-SPL AD-UCUSBD-MPHD-SPL AD-UCUSB-DCPHD-SPL AD-UCUSBD-SPRD AD-UCUSB-

DCMSC-SPL AD-UCUSBD-MMSC-SPL AD-UCUSB-DCVNDRSPL AD-UCUSBD-MCDC-SPL AD-UCUSBD-MAUD-

SPL AD-UCUSBD-MVNDRSPL AD-UCUSBD-MNT-SP AD-UCUSB-DCHID-SPL AD-UCUSBD-MHID-SPL

http://www.mouser.com/Analog-Devices
http://www.mouser.com/access/?pn=AD-UCUSB-DCCDC-SPL
http://www.mouser.com/access/?pn=AD-UCUSBD-MPHD-SPL
http://www.mouser.com/access/?pn=AD-UCUSB-DCPHD-SPL
http://www.mouser.com/access/?pn=AD-UCUSBD-SPRD
http://www.mouser.com/access/?pn=AD-UCUSB-DCMSC-SPL
http://www.mouser.com/access/?pn=AD-UCUSB-DCMSC-SPL
http://www.mouser.com/access/?pn=AD-UCUSBD-MMSC-SPL
http://www.mouser.com/access/?pn=AD-UCUSB-DCVNDRSPL
http://www.mouser.com/access/?pn=AD-UCUSBD-MCDC-SPL
http://www.mouser.com/access/?pn=AD-UCUSBD-MAUD-SPL
http://www.mouser.com/access/?pn=AD-UCUSBD-MAUD-SPL
http://www.mouser.com/access/?pn=AD-UCUSBD-MVNDRSPL
http://www.mouser.com/access/?pn=AD-UCUSBD-MNT-SP
http://www.mouser.com/access/?pn=AD-UCUSB-DCHID-SPL
http://www.mouser.com/access/?pn=AD-UCUSBD-MHID-SPL

 Tел: +7 (812) 336 43 04 (многоканальный)
 Email: org@lifeelectronics.ru

 www.lifeelectronics.ru

ООО “ЛайфЭлектроникс” “LifeElectronics” LLC
ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и
отечественного производства от производителей и со складов крупных дистрибьюторов Европы,
Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению
коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные,
электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

 Конкурентоспособные цены и скидки постоянным клиентам.

 Специальные условия для постоянных клиентов.

 Подбор аналогов.

 Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.

 Приемлемые сроки поставки, возможна ускоренная поставка.

 Доставку товара в любую точку России и стран СНГ.

 Комплексную поставку.

 Работу по проектам и поставку образцов.

 Формирование склада под заказчика.

 Сертификаты соответствия на поставляемую продукцию (по желанию клиента).

 Тестирование поставляемой продукции.

 Поставку компонентов, требующих военную и космическую приемку.

 Входной контроль качества.

 Наличие сертификата ISO.

 В составе нашей компании организован Конструкторский отдел, призванный помогать
разработчикам, и инженерам.

 Конструкторский отдел помогает осуществить:

 Регистрацию проекта у производителя компонентов.

 Техническую поддержку проекта.

 Защиту от снятия компонента с производства.

 Оценку стоимости проекта по компонентам.

 Изготовление тестовой платы монтаж и пусконаладочные работы.

mailto:org@lifeelectronics.ru
http://lifeelectronics.ru/

