
Adafruit 2.8" TFT Touch Shield v2 - Capacitive or Resistive
Created by lady ada

Last updated on 2020-06-11 03:25:37 PM EDT

Overview

Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection.
This TFT display is big (2.8" diagonal) bright (4 white-LED backlight) and colorful (18-bit 262,000 different shades)!
240x320 pixels with individual pixel control. It has way more resolution than a black and white 128x64 display. As a
bonus, this display comes with a resistive or capacitive touchscreen attached to it already, so you can detect finger
presses anywhere on the screen.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 3 of 36

https://www.adafruit.com/product/3382
https://www.adafruit.com/product/4064
https://www.adafruit.com/product/4000

This shield uses a SPI display - its much easier to use with Mega & Leonardo than our v1 shield. We also include an SPI
resistive touchscreen controller or a I2C capacitive touch screen controller so you only need one or two additional
pins to add a high quality touchscreen controller. Even with all the extras, the price is lower thanks to our parts
sourcing & engineering skillz!

The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our
library - you'll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Duemilanove/Diecimila).
Solder three jumpers and you can use it at full speed on a Leonardo or Mega as well.

This display shield has a controller built into it with RAM buffering, so that almost no work is done by the
microcontroller. This shield needs fewer pins than our v1 shield, so you can connect more sensors, buttons and LEDs: 5
SPI pins for the display, another pin or two for the touchscreen controller and another pin for uSD card if you want to
read images off of it.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 4 of 36

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 5 of 36

Connecting

Pinouts

There's two versions of the shield. One has a resistive touch screen, one has a capacitive one. The TFT display and
pinouts is the same for both. The microSD card is the same too. The differences come in on the touch screen
controller and whether the SPI pins are connected to pins 11-13 or the ICSP header by default.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 6 of 36

TFT Screen Pins

Digital #13 or ICSP SCLK - This is the hardware SPI clock pin. By default its on the 2x3 header. By cutting a
jumper and soldering another on the back, you can move this line from ICSP to digital #13. This pin is used for the
TFT, microSD and resistive touch screen data clock
Digital #12 or ICSP MISO - This is the hardware SPI Microcontroller In Serial Out pin. By default its on the 2x3
header. By cutting a jumper and soldering another on the back, you can move this line from ICSP to digital #12.
This pin is used for the TFT, microSD and resistive touch screen data
Digital #11 or ICSP MOSI - This is the hardware SPI Microcontroller Out Serial In pin. By default its on the 2x3
header. By cutting a jumper and soldering another on the back, you can move this line from ICSP to digital #11.
This pin is used for the TFT, microSD and resistive touch screen data
Digital #10 - This is the TFT CS (chip select pin). It's used by the Arduino to tell the TFT that it wants to
send/receive data from the TFT only
Digital #9 - This is the TFT DC (data/command select) pin. It's used by the Arduino to tell the TFT whether it wants
to send data or commands

Resistive Touch Controller Pins

Digital #13 or ICSP SCLK - This is the hardware SPI clock pin. By default its on digital #13. By cutting a jumper and
soldering another on the back, you can move this line from digital to the ICSP 2x3 header. This pin is used for the
TFT, microSD and resistive touch screen data clock
Digital #12 or ICSP MISO - This is the hardware SPI Microcontroller In Serial Out pin. By default its on digital #12.
By cutting a jumper and soldering another on the back, you can move this line from digital to the ICSP 2x3
header. This pin is used for the TFT, microSD and resistive touch screen data
Digital #11 or ICSP MOSI - This is the hardware SPI Microcontroller Out Serial In pin. By default its on digital #11.By
cutting a jumper and soldering another on the back, you can move this line from digital to the ICSP 2x3 header.
This pin is used for the TFT, microSD and resistive touch screen data
Digital #8 - This is the STMPE610 Resistive Touch CS (chip select pin). It's used by the Arduino to tell the
Resistive controller that it wants to send/receive data from the STMPE610 only

Capacitive Touch Pins

SDA - This is the I2C data pin used by the FT6206 capacitive touch controller chip. It can be shared with other
I2C devices. On UNO's this pin is also known as Analog 4.
SCL - This is the I2C clock pin used by the FT6206 capacitive touch controller chip. It can be shared with other
I2C devices. On UNO's this pin is also known as Analog 5.

MicroSD card Pins

Digital #13 or ICSP SCLK - This is the hardware SPI clock pin. By default its on the 2x3 header. By cutting a
jumper and soldering another on the back, you can move this line from ICSP to digital #13. This pin is used for the
TFT, microSD and resistive touch screen data clock
Digital #12 or ICSP MISO - This is the hardware SPI Microcontroller In Serial Out pin. By default its on the 2x3
header. By cutting a jumper and soldering another on the back, you can move this line from ICSP to digital #12.
This pin is used for the TFT, microSD and resistive touch screen data
Digital #11 or ICSP MOSI - This is the hardware SPI Microcontroller Out Serial In pin. By default its on the 2x3
header. By cutting a jumper and soldering another on the back, you can move this line from ICSP to digital #11.
This pin is used for the TFT, microSD and resistive touch screen data

Digital #4 - This is the uSD CS (chip select pin). It's used by the Arduino to tell the uSD that it wants to
send/receive data from the uSD only

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 7 of 36

Using with an Uno R3, Leonardo, Mega, etc

Because the TFT is about the same size as an Arduino, we pre-assemble the shield in the factory. For the Capacitive
Touch, to use, simply place it onto your Arduino Uno/Duemilanove/compatible. No wiring, no soldering! Bam! For the
Resistive touch, you will need to cut the traces between 11-13 and solder bridge the ICSP pins.

Using Capacitive Touch Version w/Older Arduino

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 8 of 36

If you have an old Arduino without the SCL/SDA pins brought out (pre UNO R3) use a soldering iron to short these two
jumpers:

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 9 of 36

Arduino Graphics
Test

We have a library with example code ready to go for use with these TFTs. The library is not incredibly fast and
optimized but its a good start and can easily be ported to other micrcontrollers. However, we'll assume you're using an
Arduino.

Our github repository (https://adafru.it/d4d) contains all the code and examples you'll need for driving the TFT.

Install Libraries

You'll need a few libraries to use this display

From within the Arduino IDE, open up the Library Manager...

Install Adafruit ILI9341 TFT Library

We have example code ready to go for use with these TFTs.

Two libraries need to be downloaded and installed: first is the Adafruit ILI9341 library (https://adafru.it/d4d) (this
contains the low-level code specific to this device), and second is the Adafruit GFX Library (https://adafru.it/aJa) (which
handles graphics operations common to many displays we carry). If you have Adafruit_GFX already, make sure its the
most recent version since we've made updates for better performance

Search for ILI9341 and install the Adafruit ILI9341 library that pops up!

For more details, especially for first-time library installers, check out our great tutorial at
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://adafru.it/aYM)

Next up, search for Adafruit GFX and locate the core library. A lot of libraries may pop up because we reference it in
the description so just make sure you see Adafruit GFX Library in bold at the top.

Install it!

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 10 of 36

https://github.com/adafruit/Adafruit_ILI9341
https://github.com/adafruit/Adafruit_ILI9341
https://github.com/adafruit/Adafruit-GFX-Library
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

If using an older version of the Arduino IDE (pre-1.8.10), repeat this process one more time, looking for the
Adafruit_BusIO library. Install that one too.

Restart the Arduino software. You should see a new example folder called Adafruit_ILI9341 and inside, an example
called graphicstest. Upload that sketch to your Arduino! You should see a collection of graphical tests draw out on the
TFT.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 11 of 36

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 12 of 36

Adafruit GFX library

The TFT LCD library is based off of the Adafruit GFX graphics core library. GFX has many ready to go functions that
should help you start out with your project. Its not exhaustive and we'll try to update it if we find a really useful function.
Right now it supports pixels, lines, rectangles, circles, round-rects, triangles and printing text as well as rotation.

Check out the GFX tutorial for detailed information about what is supported and how to use it (https://adafru.it/aPx)!

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 13 of 36

http://learn.adafruit.com/adafruit-gfx-graphics-library

Resistive Touchscreen Paint
Demo

The LCD has a 2.8" 4-wire resistive touch screen glued onto it. You can use this for detecting finger-presses, stylus',
etc. Normally, you'll need 4 pins to talk to the touch panel but we decided to go all snazzy and put a dedicated touch
screen driver onto the shield. The driver shares the SPI pins with the TFT and SD card, so only one extra pin is needed
(digital #8) This allows you to query the controller when you're ready to read touchscreen data, and saves 3 pins.

To control the touchscreen you'll need one more library (https://adafru.it/d4f) - the STMPE610 controller library which
does all the low level chatting with the STMPE610 driver chip.

Once you have the library installed, restart the IDE. Now from the examples->Adafruit_ILI9341 menu select touchpaint
and upload it to your Arduino.

This page is for the Resistive Touch Screen version of the Shield!�

The touch screen is made of a thin glass sheet, and its very fragile - a small crack or break will make the
entire touch screen unusable. Don't drop or roughly handle the TFT and be especially careful of the corners
and edges. When pressing on the touchscreen, sometimes people can use the tip of their fingers, or a
fingernail. If you don't find the touchscreen responds well to your fingers, you can use a rounded stylus which

�
© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 14 of 36

https://github.com/adafruit/Adafruit_STMPE610

Getting data from the touchscreen is fairly straight forward. Start by creating the touchscreen object with

Adafruit_STMPE610 ts = Adafruit_STMPE610(STMPE_CS);

We're using hardware SPI so the clock, mosi and miso pins are not defined here. For the shield, CS is #8 always.
Then you can start the touchscreen with

ts.begin()

Check to make sure this returns a True value, which means the driver was found. If it wasn't, make sure you have the
hardware SPI jumpers set up right: for Leonardo/Mega the ICSP jumpers get closed.

Now you can call

if (! ts.bufferEmpty())

to check if there's any data in the buffer. The touchscreen driver will store touchpoints at all times. When you're ready
to get the data, just check if there's any data in the buffer. If there is, you can call

TS_Point p = ts.getPoint();

To get the oldest point from the buffer. TS_Point has .x .y and .z data points. The x and y points range from 0 to 4095.
The STMPE610 does not store any calibration data in it and it doesn't know about rotation. So if you want to rotate the
screen you'll need to manually rotate the x/y points! The z point is 'pressure' and ranges from 0 to 255, we don't use it
here but you can experiment with it on your own, the harder you press, the lower the number.

Since data from the STMPE610 comes in 0-4095 but our screen is 320 pixels by 240 pixels, we can use map to
convert 0-4095 to 0-320 or 0-240. Something like

p.x = map(p.x, 0, 4095, 0, tft.width());
p.y = map(p.y, 0, 4095, 0, tft.height());

However, the touchscreen is a bit bigger than the screen, so we actually need to ignore presses beyond the
touchscreen itself. We found that these numbers reflected the true range that overlaps the screen

#define TS_MINX 150
#define TS_MINY 130
#define TS_MAXX 3800
#define TS_MAXY 4000

So we use

p.x = map(p.x, TS_MINX, TS_MAXX, 0, tft.width());
p.y = map(p.y, TS_MINY, TS_MAXY, 0, tft.height());

instead.

One last point (pun intended!) since the touchscreen driver stores points in a buffer, you may want to ask the driver "is
the touchscreen being pressed RIGHT NOW?" You can do that with

will certainly work. Do not press harder and harder until the screen cracks!

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 15 of 36

if (ts.touched())

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 16 of 36

Capacitive Touchscreen Paint
Demo

We now have a super-fancy capacitive touch screen version of this shield. Instead of a resistive controller that needs
calibration and pressing down, the capacitive has a hard glass cover and can be used with a gentle fingertip. It is a
single-touch capacitive screen only!

The capacitive touch screen controller communicates over I2C, which uses two hardwire pins. However, you can share
these pins with other sensors and displays as long as they don't conflict with I2C address 0x38.

Download the FT6206 Library

To control the touchscreen you'll need one more library (https://adafru.it/dGG) - the FT6206 controller library which
does all the low level chatting with the FT6206 driver chip. Use the library manager and search for FT6206 and select
the Adafruit FT6206 library:

Once you have the library installed, restart the IDE. Now from the examples->Adafruit_FT6206 menu select
CapTouchPaint and upload it to your Arduino.

This page is for the Capacitive Touch Screen version of the Shield!�

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 17 of 36

https://github.com/adafruit/Adafruit_FT6206_Library

FT6206 Library Reference

Getting data from the touchscreen is fairly straight forward. Start by creating the touchscreen object with

Adafruit_FT6206 ts = Adafruit_FT6206();

We're using hardware I2C which is fixed in hardware so no pins are defined.
Then you can start the touchscreen with

ts.begin()

Check to make sure this returns a True value, which means the driver was found. You can also call begin(threshvalue)
wish a number from 0-255 to set the touch threshhold. The default works pretty well but if you're having too much
sensitivity (or not enought) you can try tweaking it

Now you can call

if (ts.touched())

to check if the display is being touched, if so call:

TS_Point p = ts.getPoint();

To get the touch point from the controller. TS_Point has .x and .y data points. The x and y points range from 0 to 240
and 0 to 320 respectively. This corresponds to each pixel on the display. The FT6206 does not need to be 'calibrated'
but it also doesn't know about rotation. So if you want to rotate the screen you'll need to manually rotate the x/y
points!

The touch screen is made of a thin glass sheet, and its very fragile - a small crack or break will make the
entire touch screen unusable. Don't drop or roughly handle the TFT and be especially careful of the corners
and edges. When pressing on the touchscreen, remember you cannot use a fingernail, it must be a
fingerpad. Do not press harder and harder until the screen cracks!

�

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 18 of 36

FT6206 Library
Reference

FT6206 Library Reference (https://adafru.it/FoG)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 19 of 36

https://adafruit.github.io/Adafruit_FT6206_Library/html/class_adafruit___f_t6206.html

Drawing
Bitmaps

There is a built in microSD card slot into the shield, and we can use that to load bitmap images! You will need a
microSD card formatted FAT16 or FAT32 (they almost always are by default).

Its really easy to draw bitmaps. We have a library for it, Adafruit_ImageReader, which can be installed through the
Arduino Library Manager (Sketch→Include Library→Manage Libraries…). Enter “imageread” in the search field and the
library is easy to spot:

With the library installed, let’s proceed by downloading this image of pretty flowers (pix by johngineer):

Copy purple.bmp into the base directory of a microSD card and insert it into the microSD socket in the shield. Now
upload the File→Examples→Adafruit_ImageReader→ShieldILI9341 example sketch to your Arduino + shield. You will
see the flowers appear!

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 20 of 36

To make new bitmaps, make sure they are less than 240 by 320 pixels and save them in 24-bit BMP format! They
must be in 24-bit format, even if they are not 24-bit color as that is the easiest format for the Arduino to decode. You
can rotate images using the setRotation() procedure.

The ShieldILI9341 example sketch shows everything you need to work with BMP images. Here’s just the vital bits
broken out…

Several header files are included at the top of the sketch. All of these are required…they let us access the SD card and
the display, and provide the image-reading functions:

#include <SPI.h>
#include <SD.h>
#include <Adafruit_GFX.h> // Core graphics library
#include <Adafruit_ILI9341.h> // Hardware-specific library
#include <Adafruit_ImageReader.h> // Image-reading functions

Several #defines relate to hardware pin numbers, all fixed values when using the shield.

Then we declare the tft screen object, and the image-reader object like so:

#define SD_CS 4 // SD card select pin
#define TFT_CS 10 // TFT select pin
#define TFT_DC 9 // TFT display/command pin

Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC);
Adafruit_ImageReader reader; // Class w/image-reading functions

After the SD and TFT’s begin() functions have been called (see the example sketch again, in the setup() function),

you can then call reader.drawBMP() to load an image from the card to the screen:

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 21 of 36

ImageReturnCode stat;
stat = reader.drawBMP("/purple.bmp", tft, 0, 0);

You can draw as many images as you want — though remember the names must be less than 8 characters long. Call
like so:

reader.drawBMP(filename, tft, x, y);

'x' and 'y' are pixel coordinates where top-left corner of the image will be placed. Images can be placed anywhere on
screen…even partially off screen, the library will clip the section to load.

Image loading is explained in greater depth in the Adafruit_GFX library guide. (https://adafru.it/DpM)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 22 of 36

https://learn.adafruit.com/adafruit-gfx-graphics-library/loading-images

Backlight & Touch
IRQ

Both the resistive and capacitive versions of this shield have the ability to dim the backlight and get an interrupt from
the resistive or capacitive touch controller chip on-board.

Controlling the Backlight
By default, we assume you'll want the backlight on all the time. However, you may want to PWM control or otherwise
turn off the LED backlight to save power. You can do this with a simple hack. On the back, look for the backlight
jumper.

On the resistive TFT touch shield
Solder the jumper labeled Pin 3. Then you can use Digital 3 to control the backlight.

On the capacitive TFT touch shield
Solder the jumper labeled Pin 5. Then you can use Digital 5 to control the backlight.

Touchscreen Interrupt pin

Advanced users may want to get an interrupt on a pin (or even, just test a pin rather than do a full SPI query) when the
touchscreen is pressed. You can do that by jumpering the #7 solder jumper labeled TS int. We didn't want it to connect
to #2 or #3 since those are the Leonardo I2C pins. You can use pin change interrupts to get an interrupt callback on
#7. (https://adafru.it/d4h)Or, with a little blue wire, advanced users can connect a wire from the TS interrupt pad to any
pin they choose. We find that querying/polling the chip is fast enough for most beginner Arduino projects!

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 23 of 36

http://playground.arduino.cc//Main/PinChangeIntExample

CircuitPython Displayio Quickstart

You will need a Metro capable of running CircuitPython such as the Metro M0 Express or the Metro M4 Express. We
recommend the Metro M4 Express because it's much faster and works better for driving a display. The steps should be
about the same for the Metro M0 Express. If you haven't already, be sure to check out our Adafruit Metro M4 Express
featuring ATSAMD51 (https://adafru.it/Fkt) guide.

You could use a Grand Central which also has an M4 Processor. For this board, be sure to check out our Introducing
the Adafruit Grand Central M4 Express (https://adafru.it/DK7) guide.

If you need WiFi capabilities for your project, you could also use the Metro M4 Airlift Lite. For this board, be sure to
check out our Adafruit Metro M4 Express AirLift (https://adafru.it/EZh) guide.

Adafruit Metro M4 feat. Microchip ATSAMD51

$27.50
IN STOCK

Add To Cart

Adafruit Grand Central M4 Express featuring the SAMD51

$37.50
IN STOCK

Add To Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 24 of 36

https://learn.adafruit.com/adafruit-metro-m4-express-featuring-atsamd51
https://www.adafruit.com/product/3382
https://www.adafruit.com/product/3382
https://learn.adafruit.com/adafruit-grand-central
https://www.adafruit.com/product/4064
https://www.adafruit.com/product/4064
https://learn.adafruit.com/adafruit-metro-m4-express-airlift-wifi

Preparing the Shield

2.8" Capacitive TFT Touch Shield

This shield should be ready to go. By default, the SPI connections should be using the ICSP header. If you have
modified it on the underside to use Pins 11-13, this will need to be changed back in order to work with displayio. After
that the shield should be ready to go.

2.8" Resistive TFT Touch Shield

This shield will need a slight modification to use with our boards capable of running CircuitPython. This is because the
SPI interface is only available through the ICSP header.

First start by taking a sharp knife and cutting the traces

that connect to pins 11-13.

Adafruit Metro M4 Express AirLift (WiFi) - Lite

$34.95
IN STOCK

Add To Cart

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 25 of 36

https://www.adafruit.com/product/4000
https://www.adafruit.com/product/4000
https://learn.adafruit.com/assets/78677

Next, take a multimeter set to the continuity setting and

test that the traces were successfully separated.

Next, apply a little solder to create a solder bridge on all

three of the ICSP pads.

Once all three are solder bridged, then the shield should

be all ready to go.

Required CircuitPython Libraries

To use this display with displayio , there is only one required library.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 26 of 36

https://learn.adafruit.com/assets/78678
https://learn.adafruit.com/assets/78680
https://learn.adafruit.com/assets/78681

https://adafru.it/EGe

https://adafru.it/EGe

First, make sure you are running the latest version of Adafruit CircuitPython (https://adafru.it/Amd) for your board.

Next, you'll need to install the necessary libraries to use the hardware--carefully follow the steps to find and install
these libraries from Adafruit's CircuitPython library bundle (https://adafru.it/zdx). Our introduction guide has a great
page on how to install the library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards, you'll need to manually install the necessary libraries from the bundle:

adafruit_ili9341

Before continuing make sure your board's lib folder or root filesystem has the adafruit_ili9341 file copied over.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of a library so the code didn't get
overly complicated.

https://adafru.it/FiA

https://adafru.it/FiA

Go ahead and install this in the same manner as the driver library by copying the adafruit_display_text folder over to
the lib folder on your CircuitPython device.

CircuitPython Code Example

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 27 of 36

https://github.com/adafruit/Adafruit_CircuitPython_ILI9341/releases
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text

"""
This test will initialize the display using displayio and draw a solid green
background, a smaller purple rectangle, and some yellow text.

Pinouts are for the 2.8" TFT Shield
"""
import board
import terminalio
import displayio
from adafruit_display_text import label
import adafruit_ili9341

Release any resources currently in use for the displays
displayio.release_displays()

Use Hardware SPI
spi = board.SPI()

Use Software SPI if you have a shield with pins 11-13 jumpered
import busio
spi = busio.SPI(board.D11, board.D13)

tft_cs = board.D10
tft_dc = board.D9

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs)
display = adafruit_ili9341.ILI9341(display_bus, width=320, height=240)

Make the display context
splash = displayio.Group(max_size=10)
display.show(splash)

Draw a green background
color_bitmap = displayio.Bitmap(320, 240, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0x00FF00 # Bright Green

bg_sprite = displayio.TileGrid(color_bitmap, pixel_shader=color_palette, x=0, y=0)

splash.append(bg_sprite)

Draw a smaller inner rectangle
inner_bitmap = displayio.Bitmap(280, 200, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0xAA0088 # Purple
inner_sprite = displayio.TileGrid(inner_bitmap, pixel_shader=inner_palette, x=20, y=20)
splash.append(inner_sprite)

Draw a label
text_group = displayio.Group(max_size=10, scale=3, x=57, y=120)
text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00)
text_group.append(text_area) # Subgroup for text scaling
splash.append(text_group)

while True:
 pass

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 28 of 36

Let's take a look at the sections of code one by one. We start by importing the board so that we can
initialize SPI , displayio , terminalio for the font, a label , and the adafruit_ili9341 driver.

import board
import displayio
import terminalio
from adafruit_display_text import label
import adafruit_ili9341

Next we release any previously used displays. This is important because if the Metro is reset, the display pins are not
automatically released and this makes them available for use again.

displayio.release_displays()

Next, we set the SPI object to the board's SPI with the easy shortcut function board.SPI() . By using this function, it

finds the SPI module and initializes using the default SPI parameters. Next we set the Chip Select and Data/Command
pins that will be used.

spi = board.SPI()
tft_cs = board.D10
tft_dc = board.D9

In the next line, we set the display bus to FourWire which makes use of the SPI bus.

display_bus = displayio.FourWire(spi, command=tft_dc, chip_select=tft_cs)

Finally, we initialize the driver with a width of 320 and a height of 240. If we stopped at this point and ran the code, we
would have a terminal that we could type at and have the screen update.

display = adafruit_ili9341.ILI9341(display_bus, width=320, height=240)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 29 of 36

Next we create a background splash image. We do this by creating a group that we can add elements to and adding
that group to the display. In this example, we are limiting the maximum number of elements to 10, but this can be
increased if you would like. The display will automatically handle updating the group.

splash = displayio.Group(max_size=10)
display.show(splash)

Next we create a Bitmap which is like a canvas that we can draw on. In this case we are creating the Bitmap to be the
same size as the screen, but only have one color. The Bitmaps can currently handle up to 256 different colors. We
create a Palette with one color and set that color to 0x00FF00 which happens to be green. Colors are Hexadecimal
values in the format of RRGGBB. Even though the Bitmaps can only handle 256 colors at a time, you get to define what
those 256 different colors are.

color_bitmap = displayio.Bitmap(320, 240, 1)
color_palette = displayio.Palette(1)
color_palette[0] = 0x00FF00 # Bright Green

With all those pieces in place, we create a TileGrid by passing the bitmap and palette and draw it at (0, 0) which

represents the display's upper left.

bg_sprite = displayio.TileGrid(color_bitmap,
 pixel_shader=color_palette,
 x=0, y=0)
splash.append(bg_sprite)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 30 of 36

Next we will create a smaller purple rectangle. The easiest way to do this is the create a new bitmap that is a little
smaller than the full screen with a single color and place it in a specific location. In this case we will create a bitmap
that is 20 pixels smaller on each side. The screen is 320x240, so we'll want to subtract 40 from each of those numbers.

We'll also want to place it at the position (20, 20) so that it ends up centered.

Draw a smaller inner rectangle
inner_bitmap = displayio.Bitmap(280, 200, 1)
inner_palette = displayio.Palette(1)
inner_palette[0] = 0xAA0088 # Purple
inner_sprite = displayio.TileGrid(inner_bitmap,
 pixel_shader=inner_palette,
 x=20, y=20)
splash.append(inner_sprite)

Since we are adding this after the first rectangle, it's automatically drawn on top. Here's what it looks like now.

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 31 of 36

Next let's add a label that says "Hello World!" on top of that. We're going to use the built-in Terminal Font and scale it
up by a factor of three. To scale the label only, we will make use of a subgroup, which we will then add to the main
group.

Labels are centered vertically, so we'll place it at 120 for the Y coordinate, and around 57 pixels make it appear to be
centered horizontally, but if you want to change the text, change this to whatever looks good to you. Let's go with
some yellow text, so we'll pass it a value of 0xFFFF00 .

Draw a label
text_group = displayio.Group(max_size=10, scale=3, x=57, y=120)
text = "Hello World!"
text_area = label.Label(terminalio.FONT, text=text, color=0xFFFF00)
text_group.append(text_area) # Subgroup for text scaling
splash.append(text_group)

Finally, we place an infinite loop at the end so that the graphics screen remains in place and isn't replaced by a
terminal.

while True:
 pass

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 32 of 36

Using Touch

We won't be covering how to use the touchscreen on the shield with CircuitPython in this guide, but the libraries
required to use it are:

For enabling capacitive touch use the Adafruit_CircuitPython_FocalTouch (https://adafru.it/Fsy) library.
For enabling resistive touch use the Adafruit_CircuitPython_STMPE610 (https://adafru.it/Fsz) library.

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using displayio (https://adafru.it/EGh)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 33 of 36

https://github.com/adafruit/Adafruit_CircuitPython_FocalTouch
https://github.com/adafruit/Adafruit_CircuitPython_STMPE610
https://learn.adafruit.com/circuitpython-display-support-using-displayio

Downloads

Datasheets & Files

STMPE610 (https://adafru.it/d4k)
ILI9341 (TFT controller) (https://adafru.it/d4l)
Raw 2.8" Resistive TFT datasheet (https://adafru.it/sEt)
Raw 2.8" Capacitive TFT datasheet (https://adafru.it/rwA)
FT6206 Datasheet (https://adafru.it/sEu) & App note (https://adafru.it/dRn) (capacitive chip)
PCB CAD files for both resistive and capacitive versions on GitHub (https://adafru.it/pQb)

Schematic

Schematic of the v2 Resistive touchshield

Diagram showing the TFT (yellow outline) underlying Arduino mounting holes (thin white line), PCP outline (rectangular
thin white line) and 'visible portion' of the TFT (dashed inner line)

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 34 of 36

http://www.adafruit.com/datasheets/STMPE610.pdf
http://www.adafruit.com/datasheets/ILI9341.pdf
http://www.adafruit.com/datasheets/MI0283QT-11%20V1.1.PDF
https://cdn-learn.adafruit.com/assets/assets/000/035/819/original/SPEC-DT280QV10-CT_Rev.B.pdf
http://www.adafruit.com/datasheets/FT6x06%20Datasheet_V0.1_Preliminary_20120723.pdf
http://www.adafruit.com/datasheets/FT6x06_AN_public_ver0.1.3.pdf
https://github.com/adafruit/Adafruit-2.8-TFT-Shield-v2-PCB

Schematic of the v2 Capacitive touchscreen

© Adafruit Industries https://learn.adafruit.com/adafruit-2-8-tft-touch-shield-v2 Page 35 of 36

© Adafruit Industries Last Updated: 2020-06-11 03:25:37 PM EDT Page 36 of 36

 Tел: +7 (812) 336 43 04 (многоканальный)
 Email: org@lifeelectronics.ru

 www.lifeelectronics.ru

ООО “ЛайфЭлектроникс” “LifeElectronics” LLC
ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и
отечественного производства от производителей и со складов крупных дистрибьюторов Европы,
Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению
коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные,
электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

 Конкурентоспособные цены и скидки постоянным клиентам.

 Специальные условия для постоянных клиентов.

 Подбор аналогов.

 Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.

 Приемлемые сроки поставки, возможна ускоренная поставка.

 Доставку товара в любую точку России и стран СНГ.

 Комплексную поставку.

 Работу по проектам и поставку образцов.

 Формирование склада под заказчика.

 Сертификаты соответствия на поставляемую продукцию (по желанию клиента).

 Тестирование поставляемой продукции.

 Поставку компонентов, требующих военную и космическую приемку.

 Входной контроль качества.

 Наличие сертификата ISO.

 В составе нашей компании организован Конструкторский отдел, призванный помогать
разработчикам, и инженерам.

 Конструкторский отдел помогает осуществить:

 Регистрацию проекта у производителя компонентов.

 Техническую поддержку проекта.

 Защиту от снятия компонента с производства.

 Оценку стоимости проекта по компонентам.

 Изготовление тестовой платы монтаж и пусконаладочные работы.

mailto:org@lifeelectronics.ru
http://lifeelectronics.ru/

