

Netz-Thyristor Phase Control Thyristor T 2706 N 16...22

Eiektrische Eigenschften / Eiectrical properties Höchstzulässige Werte / Maximum rated values					Vorläufige Daten Preilminary Data			
Periodische Vorwärts- und Rückwärts-Spitzensperrspannung repetitive peak forward off-state and reverse voltages	T _{vi} = -40 °CT _{vi repo}	V _{DRM} , V _{RRM}	1600, 1800 2000, 2200		ν			
Vorwärts-Stoßspitzensperrspannung non-repetitive peak foward off-state voltage	T _{rid} = - 40 °CT _{rid maps}	V _{DSM}	1600, 2000,		v			
Rückwärts-Stoßspitzensperrspannung non-repetitive peak reverse voltage	T _{vj} = + 25°CT _{vj.max}	Vesw	1700. 2100,		v			
Durchiaßstrom-Grenzeffektivwert RMSM on-state current		TROMON		5800	Α			
Dauergrenzstrom average on-state current	T _Q = 85°C T _Q = 61°C	TAVM		2710 3700	A A			
Stoßstrom-Grenzwert surge current	T _{vj} = 25°C, t _p = 10 ms T _{vj} = T _{vj reps.} t _p = 10 ms	ITSM		54000 50000	A A			
Grenziastintegral Pt-value	T _{vj} = 25°C, t _p = 10ms T _{vj} = T _{vj reps.} t _p = 10ms	i≅t		14580 12500	A26*10 A26*10			
Kritische Stromstellheit critical rate of rise of on-state current	DIN IEC 747-6 f=50 Hz, v _t = 10V, t _{gas} = 1 A dt _g /dt = 1 A/µs	(di _T /dt) _{tr}		200	А/µs			
Kritische Spannungsstellheit ortical rate of rise of off-state voltage	$T_{ej} = T_{ej,mage}$, $v_0 = 0.67 \text{ V}_{DRM}$ S.Kennbuchstabe / 5th letter F	(dv _D /dt) _{ar}		1000	V/µ6			
Charakteristische Werte / Characteristic values								
Durchiaßspannung on-state voltage	T _{vj} = T _{vj regs.} I _T = 11000 A T _{vj} = T _{vj regs.} I _T = 3000 A	v _T	max. max.	2,35 1,30	V V			
Schleusenspannung threshold voltage	T _{ref} = T _{ref respec}	V _{f(TO)}		0,9	V			
Ersatzwiderstand slope resistance	$T_{v_0^i} = T_{v_0^i \text{ respec}}$	Γ _T		0,125	mΩ			
Durchiaßkennlinie on-state voitage $v_T = A + B \times I_T + C \times in (I_T + 1) + D \times \sqrt{I_T}$	$T_{v_0} = T_{v_0^1 c m_0 c}$	A=1,09532 B=8,255E-05 C=-7,06279E-02 D=9,53181E-03						
Zündstrom gate trigger current	T ₄ = 25°C, v ₀ = 6 V	İçt	max.	300	mA			
Zündspannung gate trigger voltage	T ₄ = 25°C, v ₀ = 6V	V _{GT}	max.	2,5	v			
Nicht zündener Steuerstrom gate non-trigger current	T _{vj} = T _{vjreger} v ₀ = 6 V T _{vj} = T _{vjreger} v ₀ = 0,5 V _{DRM}	lgo	max. max.	10 5	mA mA			
Nicht zündene Steuerspannung gate non-trigger vottage	T _{ej} = T _{ejenser} V _D = 0,5 V _{DRM}	V _{GD}	max.	0,25	mV			
Haltestrom holding current	T ₄ = 25°C, V ₀ = 6 V, R _A = 5 Ω	I _M	max.	300	mA			
Einraststrom latching current	$T_{ej} = 25^{\circ}C$, $v_D = 6$ V, $R_{ejc} = 10\Omega$ $t_{eje} = 1$ A, $dt_{eje} = 1$ A/ μ s $t_{ej} = 20 \mu s$	le,	max. 1500		mA			
Vorwärts- und Rückwärts-Sperrstrom forward off-state and reverse currents	T _{vi} = T _{viyees} Vo = V _{DRM} , V _R = V _{RRM}	l _D , l _R	max.	250	mA			
Zündverzug gafe controlled delay time	DIN IEC 747-6 T _M = 25°C	t _{ora}	max.	4	μs			

Netz-Thyristor Phase Control Thyristor T 2706N 16 ... 22

Elektrische Eigenschften /	/ Electrical properties
----------------------------	-------------------------

Charakteristische Werte / Characteristic values

Vorläufige Daten Preliminary Data

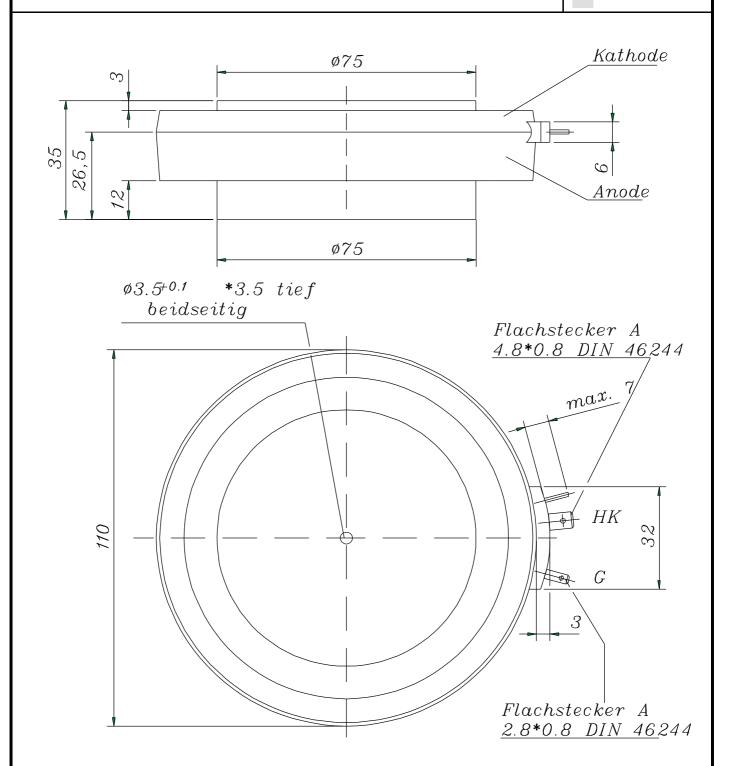
				-	
Frelwerdezeit	T _{vj} = T _{vj reso} , i _{Tel} =i _{Teles}	t _q			
circuit commutatet turn-off time	v _{RM} =100V, v _{DM} = 0,67 V _{DRM}				1
	dv ₀ /dt = 20 V/μs, -dl ₂ /dt = 10 Aμs				
	4. Kennbuchstabe / 4th letter O		tvo.	300	us.

Thermische Eigenschaften / Thermal properties

Innerer Wärmewiderstand	Kühffäche / cooling surface	R _{sub}			1
thermal resitance, junction to case	beidseitig / two-sided, © =180°sin		max.	0,0085	.CW
	beldseltig / two-sided, DC		max.	0,0078	.C\M
	Anode / anode, 8 =180*sin		max.	0,0152	.CW
	Anode / anode, DC		max.	0,0146	.C\M
	Kathode / cathode, @ = 180*sin		max.	0,0183	.CW
	Kathode / cathode, DC		max.	0,0169	.C\M
Obergangs- Wärmewiderstand	Kühffäche / cooling surface	Rack			
thermal resitance, case to heatsink	beldseltig / two-sided		max.	0,0025	.C\M
	einseitig / single-sided		max.	0,0050	.CW
Höchstzulässige Sperrschichttemperatur		T _{romax}		125	·c
max. Junction temperature					
Betriebstemperatur		Tcop		-40125	·c
operating temperature					
Lagertemperatur		T ₆₀₀		-40150	·c
storage temperature		"			

Mechanische Eigenschaften / Mechanical properties

Gehäuse, siehe Anlage case, see appendix				Selte 3 page 3	
SI-Element mit Druckkontakt, Amplifying-Gate SI-peliet with pressure contact, amplifying gate					
Anpre&kraft clamping force		F		4295	kN
Gewicht weight		G	typ.	1200	g
Kriechstrecke creepage distance				33	mm
Feuchteklasse humidity classification	DIN 40040			С	
Schwingfestigkeit vibration resistance	f = 50Hz			50	m/s²

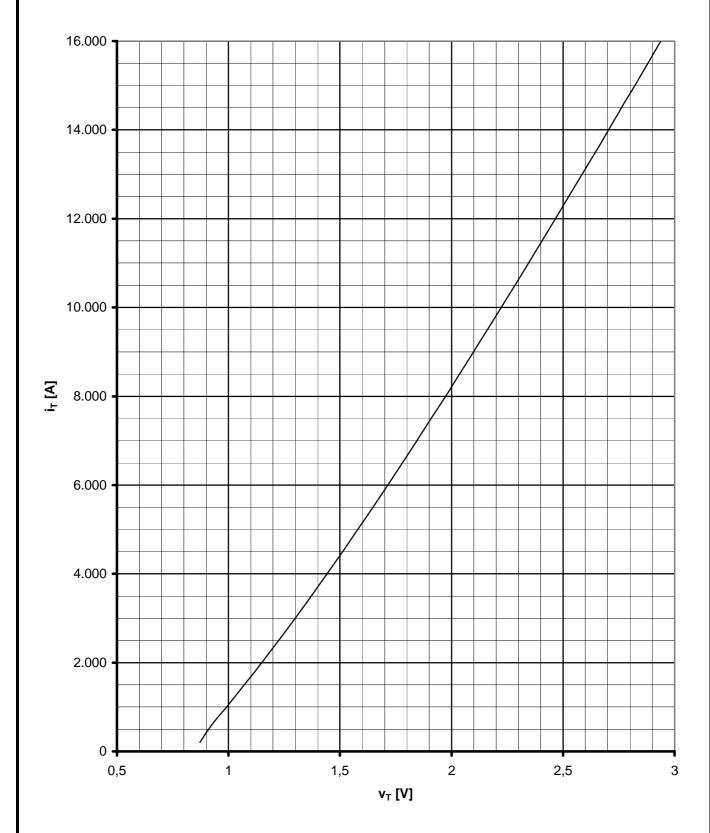

Mit dieser technischen information werden Halbielterbauelemente spezifiziert, jedoch keine Eigenschaften zugesichert. Sie glit in Verbindung mit den zugehörigen Technischen Erläuterungen./ This technical information specifies semiconductor devices but promises no characteristics. It is valid in combination with the belonging technical notes.

eupec

Netz-Thyristor Phase Control Thyristor

T 2706 N 16 ... 22

 $N \rightarrow$



eupec

Netz-Thyristor Phase Control Thyristor T 2706 N 16...22

Ν

Grenzdurchlaßkennlinie / Limiting On-state characteristic i_T = $f(v_T)$ T_{v_j} = T_{v_j} max

Netz-Thyristor Phase Control Thyristor

T 2706 N 18 ... 22

Kühlung	ihlung Analytische Elemente des transienten Wärmewiderstandes Z _{thJC} für DC							
cooling	Analytical en	nentes of tr	ansient the	ermal imp	edance Z	thJC for DO		
	Pos.n	1	2	3	4	5	6	7
beidseitig	R _{thn} [°C/W]	0,000030	0,00039	0,00123	0,0028	0,00338		
two-sided	τ_n [s]	0,000055	0,00392	0,0152	0,2068	1,0914		
anodenseitig	R _{thn} [°C/W]	0,000009	0,000371	0,0019	0,0013	0,00434	0,00668	
anode-sided	τ_n [s]	0,000010	0,001820	0,00951	0,135	0,347	1,54	
kathodenseitig	R _{thn} [°C/W]	0,000032	0,000728	0,00302	0,00802	0,0051		
cathode-sided	τ_{n} [s]	0,000035	0,00341	0,0215	0,135	1,11		

n max

Analytische Funktion / analytical function : $Z_{thJC} = \sum R_{thn} (1 - EXP (-t / \tau_n))$

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru