

Vishay Siliconix

Low-Voltage Dual SPST Analog Switch

DESCRIPTION

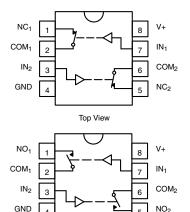
The DG9232, 9233 is a single-pole/single-throw monolithic CMOS analog device designed for high performance switching of analog signals. Combining low power, high speed (t_{ON}: 35 ns, t_{OFF}: 20 ns), low on-resistance (R_{DS(on}): 20 Ω) and small physical size, the DG9232, 9233 is ideal for portable and battery powered applications requiring high performance and efficient use of board space.

The DG9232, 9233 is built on Vishay Siliconix's low voltage BCD-15 process. Minimum ESD protection, per method 3015.7 is 2000 V. An epitaxial layer prevents latchup. Break-before -make is guaranteed for DG9232. 9233.

Each switch conducts equally well in both directions when on, and blocks up to the power supply level when off.

BENEFITS

- Reduced power consumption
- Simple logic interface
- High accuracy
- Reduce board space


FEATURES

- Low voltage operation (+2.7 V to + 5 V)
- Low on-resistance $R_{DS}(on)$: 20 Ω
- Fast switching t_{ON}: 35 ns, t_{OFF}: 20 ns
- Low leakage I_{COM(on)}: 200 pA max.
- Low charge injection QINJ: 1 pC
- Low power consumption
- TTL/CMOS compatible
- ESD protection > 2000 V (method 3015.7)
- Available in MSOP-8 and SOIC-8
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Battery operated systems
- Portable test equipment
- Sample and hold circuits
- Cellular phones
- Communication systems
- Military radio
- PBX, PABX guidance and control systems

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Top View

TRUTH TABLE - DG9232				
Logic	Switch			
0	On			
1	Off			
Logic "0" ≤ 0.8 V	•			

Logic "1" ≥ 2.4 V

TRUTH TABLE - DG9233				
Logic	Switch			
0	Off			
1	On			
Logic "0" ≤ 0.8 V	·			

Logic "1" ≥ 2.4 V

ORDERING INFORMATION Temp Range Part Number Package DG9232DY DG9232DY-E3 DG9232DY-T1 DG9232DY-T1-E3 SOIC-8 DG9233DY - 40 °C to 85 °C DG9233DY-E3 DG9233DY-T1 DG9233DY-T1-E3 DG9232DQ-T1-E3 MSOP-8 DG9233DQ-T1-E3

* Pb containing terminations are not RoHS compliant, exemptions may apply

Document Number: 70837

S11-0984-Rev. F, 23-May-11

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

COMPLIANT

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

ADJULUI LIMAAIMUMI NATIN			
Parameter		Limit	Unit
Reference V+ to GND		- 0.3 to + 13	- V
IN, COM, NC, NO ^a		- 0.3 to (V+ + 0.3)	v
Continuous Current (Any terminal)		± 20	mA
Peak Current (Pulsed at 1 ms, 10 % duty cyc	le)	± 40	
ESD (Method 3015.7)		> 2000	V
Storage Temperature	D suffix	- 65 to 125	°C
Power Dissipation (Packages) ^b	8-pin narrow body SOIC ^c	400	mW

Notes:

a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings. b. All leads welded or soldered to PC board.

c. Derate 6.5 mW/°C above 70 °C.

		Test Conditions Otherwise Unless Specified			D Suffix °C to 85		
Parameter	Symbol	V+ = 3 V, \pm 10 %, V $_{IN}$ = 0.8 V or 2.4 V e	Temp. ^a	Min. ^c	Typ. ^b	Max. ^c	Uni
Analog Switch	••					•	
Analog Signal Range ^d	V _{ANALOG}		Full	0		3	V
Drain-Source On-Resistance	R _{DS(on)}	V_{NO} or V_{NC} = 1.5 V, V+ = 2.7 V I_{COM} = 5 mA	Room Full		30	50 80	
R _{DS(on)} Match ^d	$\Delta R_{DS(on)}$	V_{NO} or V_{NC} = 1.5 V	Room		0.4	2	Ω
R _{DS(on)} Flatness ^d	R _{DS(on)} Flatness	V_{NO} or V_{NC} = 1 and 2 V	Room		4	8	
NO or NC Off Leakage Current ^g	I _{NO/NC(off)}	$V_{\rm NO}~{\rm or}~V_{\rm NC}$ = 1 V/2 V, $V_{\rm COM}$ = 2 V/1 V	Room Full	- 100 - 5000	5	100 5000	
COM Off Leakage Current ^g	I _{COM(off)}	V_{COM} = 1 V/2 V, V_{NO} or V_{NC} = 2 V/1 V	Room Full	- 100 - 5000	5	100 5000	рA
Channel-On Leakage Current ^g	I _{COM(on)}	$V_{COM} = V_{NO} \text{ or } V_{NC} = 1 \text{ V/2 V}$	Room Full	- 200 - 10000	10	200 10000	
Digital Control							
Input Current	I _{INL} or I _{INH}		Full		1		μA
Dynamic Characteristics							_
Turn-On Time	t _{ON}	V_{NO} or $V_{NC} = 1.5 V$	Room Full		50	120 200	ns
Turn-Off Time	t _{OFF}		Room Full		20	50 120	
Charge Injection ^d	Q _{INJ}	C_{L} = 1 nF, V_{GEN} = 0 V, R_{GEN} = 0 Ω	Room		1	5	pC
Off-Isolation	OIRR	$R_1 = 50 \Omega, C_1 = 5 pF, f = 1 MHz$	Room		- 74		dE
Crosstalk	X _{TALK}		Room		- 90		
NC and NO Capacitance	C _{S(off)}		Room		7		
Channel-On Capacitance	C _{COM(on)}	f = 1 MHz	Room		20		pl
COM-Off Capacitance	C _{COM(off)}		Room		13		
Power Supply							
Positive Supply Range	V+			2.7		12	V
Power Supply Current	l+	V+ = 3.3 V, V _{IN} = 0 or 3.3 V				1	μA

Notes:

a. Room = 25 $^{\circ}$ C, Full = as determined by the operating suffix.

b. Typical values are for design aid only, not guaranteed nor subject to production testing.

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.

d. Guarantee by design, nor subjected to production test.

e. V_{IN} = input voltage to perform proper function.

f. Difference of min and max values.

g. Guaranteed by 5 V leakage tests, not production tested.

www.vishay.com 2

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

SPECIFICATIONS (V+ =	5 V)						
		Test Conditions		D Suffix			
		Otherwise Unless Specified		- 40	0 °C to 85	5°C	
Parameter	Symbol	V+ = 5 V, ± 10 %, V _{IN} = 0.8 V or 2.4 V ^e	Temp. ^a	Min. ^c	Тур. ^ь	Max. ^c	Unit
Analog Switch							
Analog Signal Range ^d	V _{ANALOG}		Full	0		5	V
Drain-Source On-Resistance	R _{DS(on)}	V_{NO} or $V_{NC} = 3.5$ V, V+ = 4.5 V I _{COM} = 5 mA	Room Full		20	30 50	
R _{DS(on)} Match ^d	$\Delta R_{DS(on)}$	V_{NO} or V_{NC} = 3.5 V	Room		0.4	2	Ω
R _{DS(on)} Flatness ^d	R _{DS(on)} Flatness	V_{NO} or V_{NC} = 1, 2 and 3 V	Room		2	6	
NO or NC Off Leakage Current ^g	I _{NO/NC(off)}	V_{NO} or V_{NC} = 1 V/4 V, V_{COM} = 4 V/1 V	Room Full	- 100 - 5000	10	100 5000	
COM Off Leakage Current	I _{COM(off)}	V_{COM} = 1 V/4 V, V_{NO} or V_{NC} = 4 V/1 V	Room Full	- 100 - 5000	10	100 5000	pА
Channel-On Leakage Current	I _{COM(on)}	$V_{COM} = V_{NO} \text{ or } V_{NC} = 1 \text{ V/4 V}$	Room Full	- 200 - 10000		200 10000	
Digital Control							
Input Current	I_{INL} or I_{INH}		Full		1		μA
Dynamic Characteristics							
Turn-On Time	t _{ON}	V_{NO} or $V_{NC} = 3.0$ V	Room Full		35	75 150	ns
Turn-Off Time	t _{OFF}		Room Full		20	50 100	115
Charge Injection ^d	Q _{INJ}	C_{L} = 1 nF, V_{GEN} = 0 V, R_{GEN} = 0 Ω	Room		2	5	рС
Off-Isolation	OIRR	R ₁ = 50 Ω, C ₁ = 5 pF, f = 1 MHz	Room		- 74		dB
Crosstalk	X _{TALK}	112 - 30 22, 02 - 3 p1, 1 - 1 m12	Room		- 90		uБ
NC and NO Capacitance	C _(off)		Room		7		
Channel-On Capacitance	C _{D(on)}	f = 1 MHz	Room		20		pF
COM-Off Capacitance	C _{D(off)}		Room		13		
Power Supply							
Positive Supply Range	V+			2.7		12	V
Power Supply Current	l+	V + = 5.5 V, V_{IN} = 0 or 5.5 V				1	μA

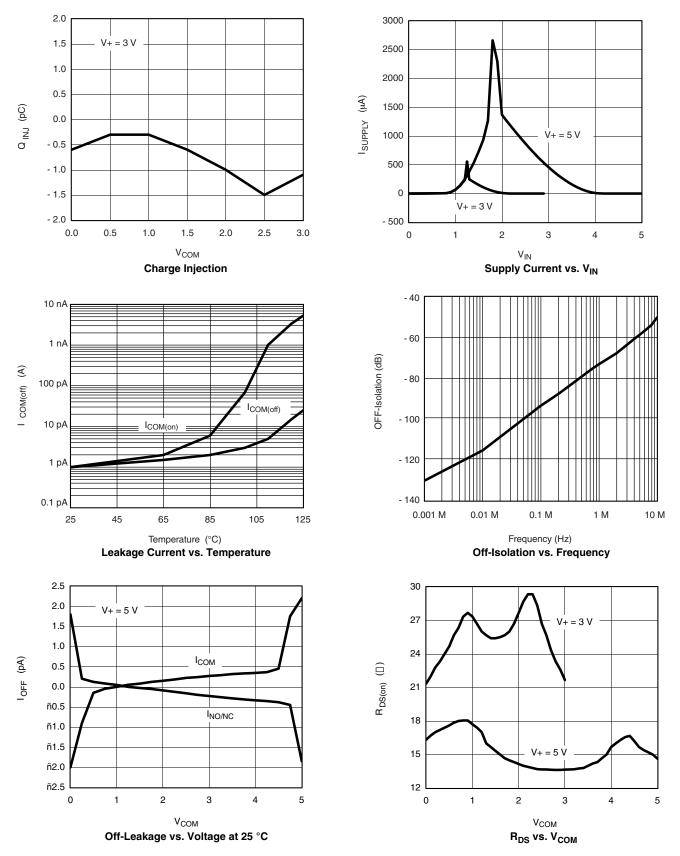
Notes:

a. Room = 25 °C, Full = as determined by the operating suffix.

b. Typical values are for design aid only, not guaranteed nor subject to production testing.

c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.

d. Guarantee by design, nor subjected to production test.

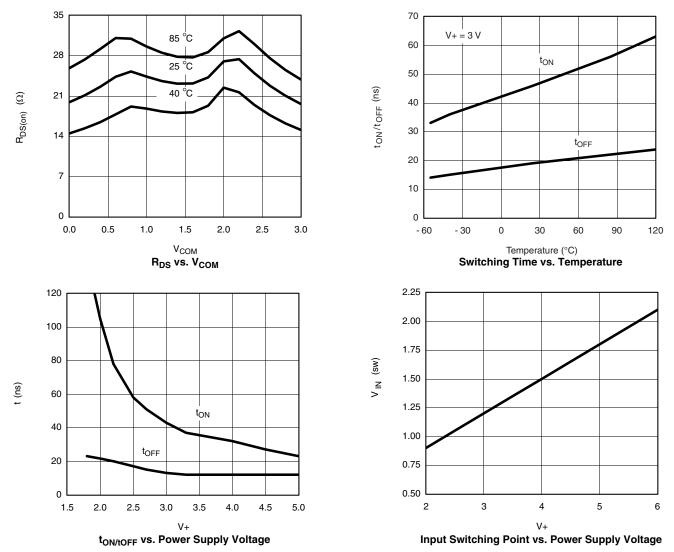

e. V_{IN} = input voltage to perform proper function.

f. Difference of min and max values.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted


Document Number: 70837 S11-0984–Rev. F, 23-May-11

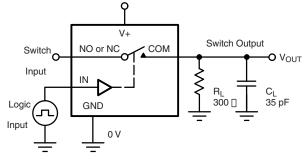
This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

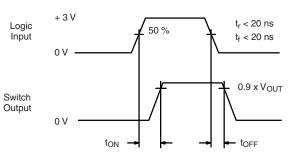
5

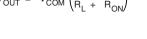
Vishay Siliconix

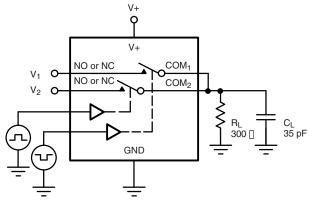

TEST CIRCUITS

 $t_r < 5 \text{ ns}$

t_f < 5 ns


t_D


V+



$$V_{\text{OUT}} = V_{\text{COM}} \left(\frac{R_{\text{L}}}{R_{\text{L}} + R_{\text{ON}}} \right)$$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

CL (includes fixture and stray capacitance)

Figure 2. Break-Before-Make Interval

Figure 1. Switching Time

Logic

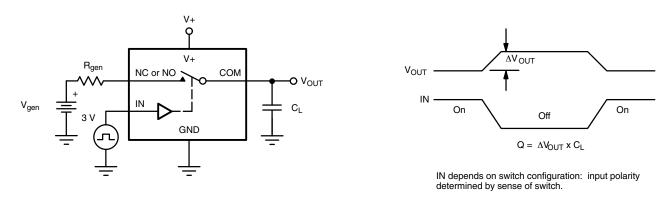
Input

 $V_{NC} = V_{NO}$

Switch

Output

3 V


0 V

Vo

0 V

90 %

 t_{D}

www.vishay.com 6

Document Number: 70837 S11-0984-Rev. F, 23-May-11

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

DG9232, DG9233 Vishay Siliconix

TEST CIRCUITS

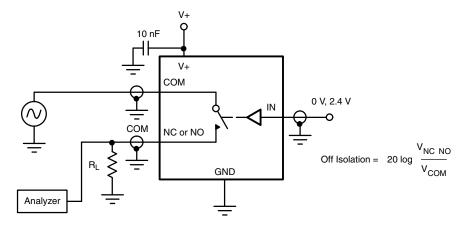


Figure 4. Off-Isolation

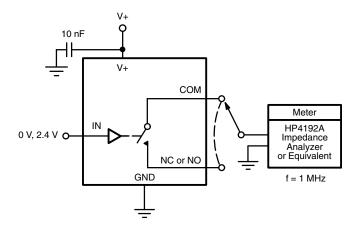
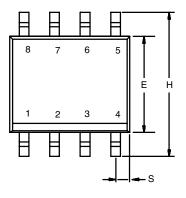
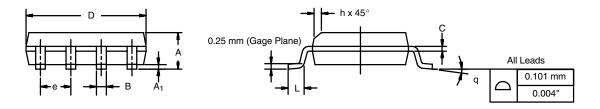


Figure 5. Channel Off/On Capacitance

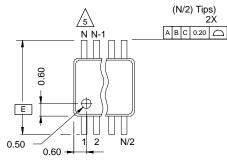

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70837.

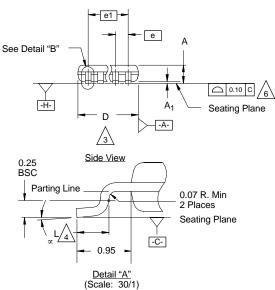


Package Information

Vishay Siliconix

SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012


	MILLIM	IETERS	INCHES		
DIM	Min	Мах	Min	Max	
A	1.35	1.75	0.053	0.069	
A ₁	0.10	0.20	0.004	0.008	
В	0.35	0.51	0.014	0.020	
С	0.19	0.25	0.0075	0.010	
D	4.80	5.00	0.189	0.196	
E	3.80	4.00	0.150	0.157	
е	1.27	BSC	0.050	BSC	
н	5.80	5.80 6.20 0.228		0.244	
h	0.25	0.50	0.010	0.020	
L	0.50	0.93	0.020	0.037	
q	0°	8°	0°	8°	
S	0.44	0.64	0.018	0.026	
ECN: C-0652 DWG: 5498	ECN: C-06527-Rev. I, 11-Sep-06 DWG: 5498				


Package Information Vishay Siliconix

MSOP: 8-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)

NOTES:

/4.\ /5.\

1. Die thickness allowable is 0.203 ± 0.0127 .

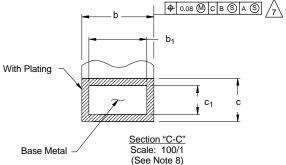
2 Dimensioning and tolerances per ANSI.Y14.5M-1994.

- /3.\ Dimensions "D" and "E1" do not include mold flash or protrusions, and are measured at Datum plane -H- , mold flash or protrusions shall not exceed 0.15 mm per side.
 - Dimension is the length of terminal for soldering to a substrate.

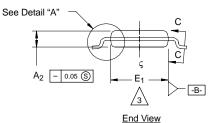
Terminal positions are shown for reference only.

- <u>/6</u>. Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.
- /7.\ The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm. See detail "B" and Section "C-C".

/8.\ Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.


Controlling dimension: millimeters. 9.

10. This part is compliant with JEDEC registration MO-187, variation AA and BA.


/11. Datums -A- and -B- to be determined Datum plane -H-.

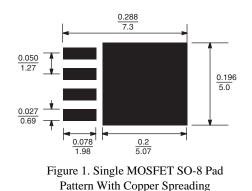
/12 Exposed pad area in bottom side is the same as teh leadframe pad size.

N = 8L

	MILLIMETERS			
Dim	Min	Nom	Max	Note
Α	-	-	1.10	
A ₁	0.05	0.10	0.15	
A ₂	0.75	0.85	0.95	
b	0.25	-	0.38	8
b ₁	0.25	0.30	0.33	8
С	0.13	-	0.23	
c ₁	0.13	0.15	0.18	
D	3.00 BSC		3	
Е		4.90 BSC		
E ₁	2.90	3.00	3.10	3
е		0.65 BSC		
e ₁	1.95 BSC			
L	0.40	0.55	0.70	4
Ν	8		5	
α	0°	4°	6°	
ECN: T-02 DWG: 58	2080—Rev. C 67	, 15-Jul-02		

TrenchFET[®] Power MOSFETs

Application Note 808


Mounting LITTLE FOOT[®], SO-8 Power MOSFETs

Wharton McDaniel

Surface-mounted LITTLE FOOT power MOSFETs use integrated circuit and small-signal packages which have been been modified to provide the heat transfer capabilities required by power devices. Leadframe materials and design, molding compounds, and die attach materials have been changed, while the footprint of the packages remains the same.

See Application Note 826, *Recommended Minimum Pad Patterns With Outline Drawing Access for Vishay Siliconix MOSFETs*, (http://www.vishay.com/ppg?72286), for the basis of the pad design for a LITTLE FOOT SO-8 power MOSFET. In converting this recommended minimum pad to the pad set for a power MOSFET, designers must make two connections: an electrical connection and a thermal connection, to draw heat away from the package.

In the case of the SO-8 package, the thermal connections are very simple. Pins 5, 6, 7, and 8 are the drain of the MOSFET for a single MOSFET package and are connected together. In a dual package, pins 5 and 6 are one drain, and pins 7 and 8 are the other drain. For a small-signal device or integrated circuit, typical connections would be made with traces that are 0.020 inches wide. Since the drain pins serve the additional function of providing the thermal connection to the package, this level of connection is inadequate. The total cross section of the copper may be adequate to carry the current required for the application, but it presents a large thermal impedance. Also, heat spreads in a circular fashion from the heat source. In this case the drain pins are the heat sources when looking at heat spread on the PC board.

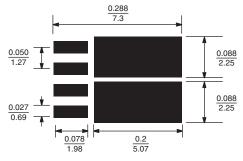
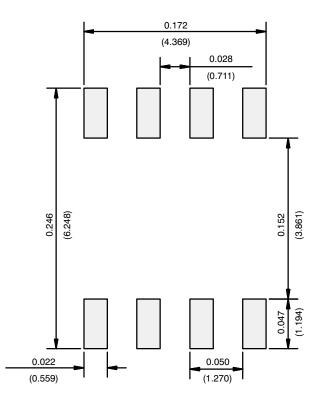


Figure 2. Dual MOSFET SO-8 Pad Pattern With Copper Spreading

The minimum recommended pad patterns for the single-MOSFET SO-8 with copper spreading (Figure 1) and dual-MOSFET SO-8 with copper spreading (Figure 2) show the starting point for utilizing the board area available for the heat-spreading copper. To create this pattern, a plane of copper overlies the drain pins. The copper plane connects the drain pins electrically, but more importantly provides planar copper to draw heat from the drain leads and start the process of spreading the heat so it can be dissipated into the ambient air. These patterns use all the available area underneath the body for this purpose.

Since surface-mounted packages are small, and reflow soldering is the most common way in which these are affixed to the PC board, "thermal" connections from the planar copper to the pads have not been used. Even if additional planar copper area is used, there should be no problems in the soldering process. The actual solder connections are defined by the solder mask openings. By combining the basic footprint with the copper plane on the drain pins, the solder mask generation occurs automatically.


A final item to keep in mind is the width of the power traces. The absolute minimum power trace width must be determined by the amount of current it has to carry. For thermal reasons, this minimum width should be at least 0.020 inches. The use of wide traces connected to the drain plane provides a low impedance path for heat to move away from the device.

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru