3.3 V 100/133 MHz Differential 1:8 HCSL-Compatible Push-Pull Clock ZDB/Fanout Buffer for PCIe[®]

Description

The NB3W800L is a low–power 8–output differential buffer that meets all the performance requirements of the DB800ZL specification. The NB3W800L is capable of distributing the reference clocks for Intel[®] QuickPath Interconnect (Intel QPI), PCIe Gen1/Gen2/Gen3, SAS, SATA, and Intel Scalable Memory Interconnect (Intel SMI) applications. A fixed, internal feedback path maintains low drift for critical QPI applications.

Features

- 8 Differential Clock Output Pairs @ 0.7 V
- Low-power NMOS Push-pull HCSL Compatible Outputs
- Cycle-to-cycle Jitter <50 ps
- Output-to-output Skew <50 ps
- Input-to-output Delay Variation <100 ps
- PCIe Gen3 Phase Jitter <1.0 ps RMS
- QPI 9.6GT/s 12UI Phase Jitter < 0.2 ps RMS
- Pseudo-External Fixed Feedback for Lowest Input-to-output Delay
- Individual OE Control; Hardware Control of Each Output
- PLL Configurable for PLL Mode or Bypass Mode (Fanout Operation)
- 100 MHz or 133 MHz PLL Mode Operation; Supports PCIe and QPI Applications
- Selectable PLL Bandwidth; Minimizes Jitter Peaking in Downstream PLL's
- SMBus Programmable Configurations
- Spread Spectrum Compatible; Tracks Input Clock Spreading for Low EMI
- These are Pb–Free Devices

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

CASE 485DP

NB3W800L AWLYYWWG

NB3W800L = Specific Device Code A = Assembly Location

WL = Wafer Lot
 YY = Year
 WW = Work Week
 G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NB3W800LMNG	QFN48 (Pb-Free)	490 / Tray
NB3W800LMNTXG	QFN48 (Pb-Free)	2500 / Tape & Reel
NB3W800LMNTWG	QFN48 (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

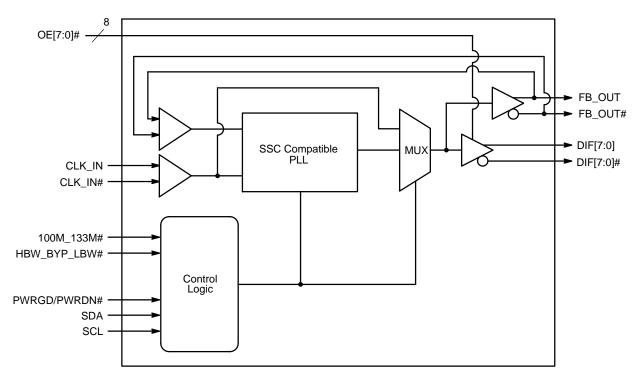


Figure 1. Simplified Block Diagram

Table 1. OE AND POWER PIN TABLE

Inp	Inputs OE# Hardware Pins & Control Register Bits Outputs		Outputs			
PWRGD/ PWRDN#	CLK_IN/ CLK_IN#	SMBUS Enable Bit	OE# Pin	DIF/DIF# [7:0]	FB_OUT/ FB_OUT#	PLL State
0	Х	Х	Х	Hi–Z	Hi–Z	OFF
1	Running	0	Х	Hi–Z	Running	ON
		1	0	Running	Running	ON
		1	1	Hi–Z	Running	ON

Table 2. FUNCTIONALITY AT POWER-UP (PLL MODE)

100M_133M#	CLK_IN MHz	DIF(7:0)
1	100.00	CLK_IN
0	133.33	CLK_IN

Table 3. POWER CONNECTIONS

Pin Number		
VDD	GND	Description
44	49	Analog PLL
3	2	Analog Input
10, 15, 19, 27, 34, 38, 42	49	DIF clocks

Table 4. SMBus ADDRESS

Address	+ Read/Write bit
D8	R

Table 5. PLL OPERATING MODE READBACK TABLE

HBW_BYP_LBW#	Byte0, bit 7	Byte 0, bit 6
Low (Low BW)	0	0
Mid (Bypass)	0	1
High (High BW)	1	1

Table 6. TRI-LEVEL INPUT THRESHOLDS

Level	Voltage
Low	<0.8 V
Mid	1.2 <vin<1.8 td="" v<=""></vin<1.8>
High	Vin > 2.2 V

Table 7. PLL OPERATING MODE

HBW_BYP_LBW#	Mode
Low	PLL Lo BW
Mid	Bypass
High	PLL Hi BW

NOTE: PLL is OFF in Bypass Mode

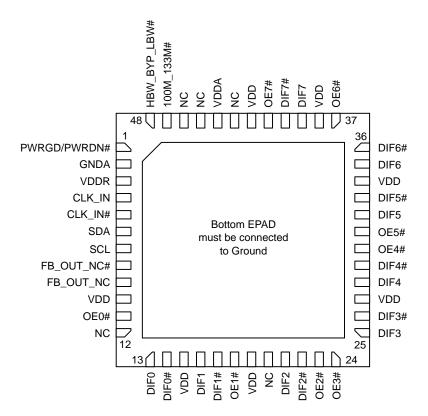


Figure 2. Pin Configuration

Table 8. PIN DESCRIPTIONS

Pin#	Pin Name	Туре	Description
1	PWRGD/PWRDN#	IN	3.3 V Input notifies device to sample latched inputs and start up on first high assertion, or exit Power Down Mode on subsequent assertions. Low enters Power Down Mode.
2	GNDA	GND	Ground for Input Receiver and PLL Core
3	VDDR	PWR	3.3 V power for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately.
4	CLK_IN	IN	0.7 V Differential true input
5	CLK_IN#	IN	0.7 V Differential complementary Input
6	SDA	I/O	Data pin of SMBus circuitry
7	SCL	IN	Clock pin of SMBus circuitry
8	FB_OUT_NC#	OUT	Complementary half of differential feedback output provides feedback signal to the PLL for synchronization with input clock to eliminate phase error. This pin should NOT be connected on the circuit board; the feedback is internal to the package.
9	FB_OUT_NC	OUT	True half of differential feedback output provides feedback signal to the PLL for synchronization with the input clock to eliminate phase error. This pin should NOT be connected on the circuit board; the feedback is internal to the package.
10	VDD	PWR	Power supply, nominal 3.3 V
11	OE0#	IN	Active low input for enabling DIF pair 0. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs
12	NC	N/A	No Connection.
13	DIF0	OUT	0.7 V differential true clock output
14	DIF0#	OUT	0.7 V differential complementary clock output
15	VDD	PWR	Power supply, nominal 3.3 V
16	DIF1	OUT	0.7 V differential true clock output

Table 8. PIN DESCRIPTIONS

17	Pin#	Pin Name	Туре	Description
1 = disable outputs, 0 = enable outputs 19	17	DIF1#	OUT	0.7 V differential complementary clock output
20	18	OE1#	IN	
21	19	VDD	PWR	Power supply, nominal 3.3 V
DIF2# OUT O.7 V differential complementary clock output	20	NC	N/A	No Connection.
Active low input for enabling DIF pair 2. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 3. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 3. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 3. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 4. This pin has an internal pull-down. 1 = disable outputs	21	DIF2	OUT	0.7 V differential true clock output
1 = disable outputs, 0 = enable outputs 24 OE3# IN Active low input for enabling DIF pair 3. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 25 DIF3 OUT 0.7 V differential true clock output 26 DIF3# OUT 0.7 V differential true clock output 27 VDD PWR Power supply, nominal 3.3 V 28 DIF4 OUT 0.7 V differential complementary clock output 29 DIF4# OUT 0.7 V differential complementary clock output 30 OE4# IN Active low input for enabling DIF pair 4. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 31 OE5# IN Active low input for enabling DIF pair 5. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 32 DIF5 OUT 0.7 V differential true clock output 33 DIF5# OUT 0.7 V differential complementary clock output 34 VDD PWR Power supply, nominal 3.3 V 35 DIF6 OUT 0.7 V differential true clock output 36 DIF6# OUT 0.7 V differential true clock output 37 OE6# IN Active low input for enabling DIF pair 6. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 38 DIF6 OUT 0.7 V differential true clock output 39 DIF6# OUT 0.7 V differential true clock output 40 DIF7# OUT 0.7 V differential complementary clock output 41 OE7# IN Active low input for enabling DIF pair 6. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 41 OE7# IN Active low input for enabling DIF pair 7. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 42 VDD PWR Power supply, nominal 3.3 V 43 NC N/A No Connection. 44 VDDA PWR Power supply, nominal 3.3 V 45 No Connection. 46 NC N/A No Connection. 47 No Connection. 48 HBW_BYP_LBW# IN Trilevel input to select leigh BW, Bypass or Low BW mode. 49 Definition Definition 40 DIF1# OUT Trilevel input to select operating frequency. See Functionality Table for Definition	22	DIF2#	OUT	0.7 V differential complementary clock output
1 = disable outputs, 0 = enable outputs 26 DIF3 OUT 0.7 V differential true clock output 27 VDD PWR Power supply, nominal 3.3 V 28 DIF4 OUT 0.7 V differential true clock output 29 DIF4# OUT 0.7 V differential true clock output 30 OE4# IN Active low input for enabling DIF pair 4. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 31 OE5# IN Active low input for enabling DIF pair 5. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 32 DIF5 OUT 0.7 V differential true clock output 33 DIF5# OUT 0.7 V differential true clock output 34 VDD PWR Power supply, nominal 3.3 V 35 DIF6 OUT 0.7 V differential complementary clock output 36 DIF6# OUT 0.7 V differential complementary clock output 37 OE6# IN Active low input for enabling DIF pair 6. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 38 VDD PWR Power supply, nominal 3.3 V 39 DIF6 OUT 0.7 V differential complementary clock output 30 OE6# IN Active low input for enabling DIF pair 6. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 39 DIF7 OUT 0.7 V differential complementary clock output 40 DIF7# OUT 0.7 V differential true clock output 41 OE7# IN Active low input for enabling DIF pair 7. This pin has an internal pull-down. 42 VDD PWR Power supply, nominal 3.3 V 43 NC N/A No Connection. 44 VDDA PWR Power supply, nominal 3.3 V 45 No Connection. 46 NC N/A No Connection. 47 No Connection. 48 HBW_BYP_LBW# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select operating frequency. See Functionality Table for Definition	23	OE2#	IN	
DIF3# OUT O.7 V differential complementary clock output	24	OE3#	IN	
27	25	DIF3	OUT	0.7 V differential true clock output
DIF4 OUT 0.7 V differential true clock output DIF4# OUT 0.7 V differential complementary clock output DIF4# OUT 0.7 V differential complementary clock output Active low input for enabling DIF pair 4. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs DIF5# IN Active low input for enabling DIF pair 5. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs DIF5# OUT 0.7 V differential true clock output DIF5# OUT 0.7 V differential complementary clock output DIF5# OUT 0.7 V differential complementary clock output DIF6# OUT 0.7 V differential complementary clock output DIF6# OUT 0.7 V differential complementary clock output Active low input for enabling DIF pair 6. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs DIF6# OUT 0.7 V differential complementary clock output Active low input for enabling DIF pair 6. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 7. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 7. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 7. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 7. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 7. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 7. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 7. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 7. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs Active low input for enabling DIF pair 7. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outpu	26	DIF3#	OUT	0.7 V differential complementary clock output
29 DIF4# OUT 0.7 V differential complementary clock output 30 OE4# IN Active low input for enabling DIF pair 4. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 31 OE5# IN Active low input for enabling DIF pair 5. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 32 DIF5 OUT 0.7 V differential true clock output 33 DIF5# OUT 0.7 V differential complementary clock output 34 VDD PWR Power supply, nominal 3.3 V 35 DIF6 OUT 0.7 V differential complementary clock output 36 DIF6# OUT 0.7 V differential complementary clock output 37 OE6# IN Active low input for enabling DIF pair 6. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 38 VDD PWR Power supply, nominal 3.3 V 39 DIF7 OUT 0.7 V differential true clock output 40 DIF7# OUT 0.7 V differential true clock output 41 OE7# IN Active low input for enabling DIF pair 7. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 42 VDD PWR Power supply, nominal 3.3 V 43 NC N/A No Connection. 44 VDDA PWR 3.3 V power for the PLL core. 45 NC N/A No Connection. 46 NC N/A No Connection. 47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	27	VDD	PWR	Power supply, nominal 3.3 V
OE4# IN Active low input for enabling DIF pair 4. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs	28	DIF4	OUT	0.7 V differential true clock output
1 = disable outputs, 0 = enable outputs 31 OE5# IN Active low input for enabling DIF pair 5. This pin has an internal pull-down. 32 DIF5 OUT 0.7 V differential true clock output 33 DIF5# OUT 0.7 V differential complementary clock output 34 VDD PWR Power supply, nominal 3.3 V 35 DIF6 OUT 0.7 V differential true clock output 36 DIF6# OUT 0.7 V differential true clock output 37 OE6# IN Active low input for enabling DIF pair 6. This pin has an internal pull-down. 38 VDD PWR Power supply, nominal 3.3 V 39 DIF7 OUT 0.7 V differential true clock output 40 DIF7# OUT 0.7 V differential true clock output 41 OE7# IN Active low input for enabling DIF pair 7. This pin has an internal pull-down. 42 VDD PWR Power supply, nominal 3.3 V 43 NC N/A No Connection. 44 VDDA PWR Power supply, nominal 3.3 V No Connection. 45 NC N/A No Connection. 46 NC N/A No Connection. 47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	29	DIF4#	OUT	0.7 V differential complementary clock output
1 = disable outputs, 0 = enable outputs 32 DIF5 OUT 0.7 V differential true clock output 33 DIF5# OUT 0.7 V differential complementary clock output 34 VDD PWR Power supply, nominal 3.3 V 35 DIF6 OUT 0.7 V differential true clock output 36 DIF6# OUT 0.7 V differential true clock output 37 OE6# IN Active low input for enabling DIF pair 6. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs 38 VDD PWR Power supply, nominal 3.3 V 39 DIF7 OUT 0.7 V differential true clock output 40 DIF7# OUT 0.7 V differential true clock output 41 OE7# IN Active low input for enabling DIF pair 7. This pin has an internal pull—down. 1 = disable outputs, 0 = enable outputs 42 VDD PWR Power supply, nominal 3.3 V 43 NC N/A No Connection. 44 VDDA PWR 3.3 V power for the PLL core. 45 NC N/A No Connection. 46 NC N/A No Connection. 47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	30	OE4#	IN	Active low input for enabling DIF pair 4. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs
33 DIF5# OUT 0.7 V differential complementary clock output 34 VDD PWR Power supply, nominal 3.3 V 35 DIF6 OUT 0.7 V differential true clock output 36 DIF6# OUT 0.7 V differential complementary clock output 37 OE6# IN Active low input for enabling DIF pair 6. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 38 VDD PWR Power supply, nominal 3.3 V 39 DIF7 OUT 0.7 V differential true clock output 40 DIF7# OUT 0.7 V differential complementary clock output 41 OE7# IN Active low input for enabling DIF pair 7. This pin has an internal pull-down. 1 = disable outputs, 0 = enable outputs 42 VDD PWR Power supply, nominal 3.3 V 43 NC N/A No Connection. 44 VDDA PWR 3.3 V power for the PLL core. 45 NC N/A No Connection. 46 NC N/A No Connection. 47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	31	OE5#	IN	
34	32	DIF5	OUT	0.7 V differential true clock output
35	33	DIF5#	OUT	0.7 V differential complementary clock output
OE6# OUT O.7 V differential complementary clock output	34	VDD	PWR	Power supply, nominal 3.3 V
37 OE6# IN	35	DIF6	OUT	0.7 V differential true clock output
1 = disable outputs, 0 = enable outputs Power supply, nominal 3.3 V DIF7 OUT 0.7 V differential true clock output OF7# OUT 0.7 V differential complementary clock output IN Active low input for enabling DIF pair 7. This pin has an internal pull–down. 1 = disable outputs, 0 = enable outputs VDD PWR Power supply, nominal 3.3 V NC N/A No Connection. VDDA PWR 3.3 V power for the PLL core. NC N/A No Connection. NO Connection. NO Connection. NO Connection. HBW_BYP_LBW# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	36	DIF6#	OUT	0.7 V differential complementary clock output
39 DIF7 OUT 0.7 V differential true clock output 40 DIF7# OUT 0.7 V differential complementary clock output 41 OE7# IN Active low input for enabling DIF pair 7. This pin has an internal pull—down. 42 VDD PWR Power supply, nominal 3.3 V 43 NC N/A No Connection. 44 VDDA PWR 3.3 V power for the PLL core. 45 NC N/A No Connection. 46 NC N/A No Connection. 47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	37	OE6#	IN	
40 DIF7# OUT 0.7 V differential complementary clock output 41 OE7# IN Active low input for enabling DIF pair 7. This pin has an internal pull–down. 42 VDD PWR Power supply, nominal 3.3 V 43 NC N/A No Connection. 44 VDDA PWR 3.3 V power for the PLL core. 45 NC N/A No Connection. 46 NC N/A No Connection. 47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	38	VDD	PWR	Power supply, nominal 3.3 V
41 OE7# IN Active low input for enabling DIF pair 7. This pin has an internal pull-down. 42 VDD PWR Power supply, nominal 3.3 V 43 NC N/A No Connection. 44 VDDA PWR 3.3 V power for the PLL core. 45 NC N/A No Connection. 46 NC N/A No Connection. 47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	39	DIF7	OUT	0.7 V differential true clock output
1 = disable outputs, 0 = enable outputs 42 VDD PWR Power supply, nominal 3.3 V 43 NC N/A No Connection. 44 VDDA PWR 3.3 V power for the PLL core. 45 NC N/A No Connection. 46 NC N/A No Connection. 47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	40	DIF7#	OUT	0.7 V differential complementary clock output
43 NC N/A No Connection. 44 VDDA PWR 3.3 V power for the PLL core. 45 NC N/A No Connection. 46 NC N/A No Connection. 47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	41	OE7#	IN	
44 VDDA PWR 3.3 V power for the PLL core. 45 NC N/A No Connection. 46 NC N/A No Connection. 47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	42	VDD	PWR	Power supply, nominal 3.3 V
45 NC N/A No Connection. 46 NC N/A No Connection. 47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	43	NC	N/A	No Connection.
46 NC N/A No Connection. 47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	44	VDDA	PWR	3.3 V power for the PLL core.
47 100M_133M# IN 3.3 V Input to select operating frequency. See Functionality Table for Definition 48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	45	NC	N/A	No Connection.
48 HBW_BYP_LBW# IN Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.	46	NC	N/A	No Connection.
See PLL Operating Mode Table for Details.	47	100M_133M#	IN	3.3 V Input to select operating frequency. See Functionality Table for Definition
49 GND PWR EPAD, must be connected to Ground	48	HBW_BYP_LBW#	IN	Trilevel input to select High BW, Bypass or Low BW mode. See PLL Operating Mode Table for Details.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	49	GND	PWR	EPAD, must be connected to Ground

Table 9. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Min	Тур	Max	Units
VDD, VDDA	3.3 V Supply Voltage (Notes 1, 2)	VDD for core logic and PLL			4.6	V
V_{IL}	Input Low Voltage (Note 1)		GND-0.5			V
V _{IH}	Input High Voltage (Note 1)	Except for SMBus interface			V _{DD} + 0.5	V
V _{IHSMB}	Input High Voltage (Note 1)	SMBus clock and data pins			5.5	V
Ts	Storage Temperature (Note 1)		-65		150	°C
Tj	Junction Temperature (Note 1)				125	°C
ESD prot	Input ESD protection (Note 1)	Human Body Model	2000			V
θ_{JA}	Thermal Resistance, Junction-to-Ambient	Still air		17		°C/W
θЈС	Thermal Resistance, Junction-to-Case			7		°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Guaranteed by design and characterization, not tested in production.
- 2. Operation under these conditions is neither implied nor guaranteed.

Table 10. ELECTRICAL CHARACTERISTICS-CLOCK INPUT PARAMETERS (HCSL-COMPATIBLE)

 $(V_{DD} = V_{DDA} = 3.3 \text{ V} \pm 5\%, T_A = 0^{\circ}\text{C} - 70^{\circ}\text{C})$, See Test Loads for Loading Conditions. (Note 5)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{IHCLK_IN}	Input High Voltage - CLK_IN (Note 3)	Differential inputs (single-ended measurement)	600	800	1150	mV
V _{ILCLK_IN}	Input Low Voltage - CLK_IN (Note 3)	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV
V _{СОМ}	Input Common Mode Voltage - CLK_IN (Note 3)	Common Mode Input Voltage (Single–ended measurement)	300		1000	mV
V _{SWING}	Input Amplitude - CLK_IN (Note 3)	Peak to Peak (differential)	300		1450	mV
dv/dt	Input Slew Rate - CLK_IN (Notes 3, 4)	Measured differentially	0.35		8	V/ns
I _{IN}	Input Leakage Current (Note 3)	$V_{IN} = V_{DD}$, $V_{IN} = GND$	- 5		5	μΑ
d _{tin}	Input Duty Cycle (Note 3)	Measurement from differential waveform	45		55	%
J _{DIFIn}	Input Jitter - Cycle to Cycle (Note 3)	Differential Measurement			125	ps

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

- 3. Guaranteed by design and characterization, not tested in production.
- 4. Slew rate measured through $\pm 75~\text{mV}$ window centered around differential zero.
- 5. Test configuration is; Rs = 27 Ω , 2 pF for 85 Ω transmission line.

Table 11. ELECTRICAL CHARACTERISTICS – Input/Supply/Common Parameters ($V_{DD} = V_{DDA} = 3.3~V~\pm 5\%$, $T_A = 0^{\circ}C~-~70^{\circ}C$), See Test Loads for Loading Conditions. (Note 11)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V_{IH}	Input High Voltage (Note 6)	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage (Note 6)	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND – 0.3		0.8	V
I _{IN}	Input Current (Note 6)	Single–ended inputs, $V_{IN} = GND, V_{IN} = V_{DD}$	- 5		5	μΑ
I _{INP}		Single-ended inputs V _{IN} = 0 V; Inputs with internal pull-up resistors V _{IN} = V _{DD} ; Inputs with internal pull-down resistors	-200		200	μΑ
F _{ibyp}	Input Frequency (Note 7)	V _{DD} = 3.3 V, Bypass mode	33		150	MHz
F _{ipII}	1	V _{DD} = 3.3 V, 100 MHz PLL mode	99	100.00	101	MHz
F _{ipII}	1	V _{DD} = 3.3 V, 133.33 MHz PLL mode	132.33	133.33	134.33	MHz
L _{pin}	Pin Inductance (Note 6)				7	nΗ
C _{IN}	Capacitance (Note 6)	Logic Inputs, except CLK_IN	1.5		4.5	pF
C _{INCLK_IN}	1	CLK_INdifferential clock inputs (Note 9)	1.5		2.7	pF
C _{OUT}	1	Output pin capacitance			4.5	pF
f _{MODIN}	Input SS Modulation Frequency (Note 6)	Allowable Frequency (Triangular Modulation)	30		33	kHz
t _{LATOE} #	OE# Latency (Notes 6. 8)	DIF start after OE# assertion DIF stop after OE# deassertion	4		8	cycles
t _{DRVPD}	Tdrive_PD# (Notes 6, 8)	DIF output enable after PD# de-assertion			300	μS
t _F	Tfall (Notes 6, 7)	Fall time of control inputs			10	ns
t _R	Trise (Notes 6, 7)	Rise time of control inputs			10	ns
V_{ILSMB}	SMBus Input Low Voltage (Note 6)				0.8	V
V _{IHSMB}	SMBus Input High Voltage (Note 6)		2.1		V_{DDSMB}	V
V _{OLSMB}	SMBus Output Low Voltage (Note 6)	@ I _{PULLUP}			0.4	V
I _{PULLUP}	SMBus Sink Current (Note 6)	@ V _{OL}	4			mA
V_{DDSMB}	Nominal Bus Voltage (Note 6)	3 V to 5 V ±10%	2.7		5.0	V
t _{RSMB}	SCL/SDA Rise Time (Note 6)	(Max V _{IL} - 0.15) to (Min V _{IH} + 0.15)			1000	ns
t _{FSMB}	SCL/SDA Fall Time (Note 6)	(Min V _{IH} + 0.15) to (Max V _{IL} - 0.15)			300	ns
f _{MAXSMB}	SMBus Operating Frequency (Notes 6, 10)	Maximum SMBus operating frequency			100	kHz

^{6.} Guaranteed by design and characterization, not tested in production.

^{7.} Control input must be monotonic from 20% to 80% of input swing.

Time from deassertion until outputs are >200 mV

^{9.} CLK_IN input

^{10.} The differential input clock must be running for the SMBus to be active

^{11.} Test configuration is; Rs = 27 Ω , 2 pF for 85 Ω transmission line.

Table 12. DIF 0.7 V AC TIMING CHARACTERISTICS (Non-Spread or -0.5% Spread Spectrum Mode)

 $(V_{DD} = V_{DDA} = 3.3 \text{ V} \pm 5\%, T_A = 0^{\circ}\text{C} - 70^{\circ}\text{C})$, See Test Loads for Loading Conditions.

			CLK = 100 MH	lz, 133.33 MHz	
Symbol	Para	meter	Min	Max	Unit
Tstab (Note 32)	Clock Stabil	ization Time		1.8	ms
Laccuracy (Notes 15, 19, 27, 33)	Long A	Long Accuracy		100	ppm
Tabs (Notes 15, 16, 19)	Absolute	Absolute No Spread		10.05100 for 100 MHz	ns
	Min/Max Host CLK		7.44925 for 133 MHz	7.55075 for 133 MHz	
	Period	-0.5% Spread	9.49900 for 100 MHz	10.10126 for 100 MHz	
			7.44925 for 133 MHz	7.58845 for 133 MHz	
Slew_rate (Notes 13, 15, 19)	DIFF OUT	DIFF OUT Slew_rate		4.0	V/ns
ΔTrise / ΔTfall (Notes 15, 19, 29)	Rise and Fall	Rise and Fall Time Variation		125	ps
Rise/Fall Matching (Notes 15, 19, 30, 31)				20	%
VHigh (Notes 15, 18, 21)	Voltage High ((typ 0.70 Volts)	660	850	mV
VLow (Notes 15, 18, 22)	Voltage Low	(typ 0.0 Volts)	-150	150	mV
Vmax (Note 18)	Maximur	n Voltage		1150	mV
Vcross absolute (Notes 12, 14, 15, 18, 25)	Absolute Crossir	ng Point Voltages	250	550	mV
Vcross relative (Notes 15, 17, 18, 25)	Relative Crossin	g Point Voltages	Calc	Calc	
Total Δ Vcross (Notes 15, 18, 26)		Total Variation of Vcross Over All Edges		140	mV
Vovs (Notes 15, 18, 23)	Maximum Volta	age (Overshoot)		Vhigh + 0.3	V
Vuds (Notes 15, 18, 24)	Maximum Volta	ge (Undershoot)		Vlow – 0.3	V

- 12. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of CLK#.
- 13. Measurment taken from differential waveform on a component test board. The slew rate is measured from –150 mV to +150 mV on the differential waveform. Scope is set to average because the scope sample clock is making most of the dynamic wiggles along the clock edge Only valid for Rising CLK_IN and Falling CLK_IN#. Signal must be monotonic through the Vol to Voh region for Trise and Tfall.
- 14. This measurement refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing.
- 15. Test configuration is; Rs = 27 Ω , 2 pF for 85 Ω transmission line.
- 16. The average period over any 1 µs period of time must be greater than the minimum and less than the maximum specified period.
- 17. Vcross(rel) Min and Max are derived using the following, Vcross(rel) Min = 0.250 + 0.5 (Vhavg 0.700), Vcross(rel) Max = 0.550 0.5 (0.700 Vhavg)
- 18. Measurement taken from Single Ended waveform.
- 19. Measurement taken from differential waveform. Bypass mode, input duty cycle = 50%.
- 20. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- 21. VHigh is defined as the statistical average High value as obtained by using the Oscilloscope VHigh Math function.
- 22. VLow is defined as the statistical average Low value as obtained by using the Oscilloscope VLow Math function.
- 23. Overshoot is defined as the absolute value of the maximum voltage.
- 24. Undershoot is defined as the absolute value of the minimum voltage.
- 25. The crossing point must meet the absolute and relative crossing point specifications simultaneously.
- 26. \(\Delta \text{Vcross} \) is defined as the total variation of all crossing voltages of Rising DIF and Falling DIF#. This is the maximum allowed variance in \(\text{Vcross} \) for any particular system.
- 27. Using frequency counter with the measurement interval equal or greater than 0.15 s, target frequencies are 100,000,000 Hz, 133,333,333 Hz.
- 28. Using frequency counter with the measurement interval equal or greater than 0.15 s, target frequencies are 99,750,00 Hz, 133,000,000 Hz.
- 29. Measured with oscilloscope, averaging off, using min max statistics. Variation is the delta between min and max.
- 30. Measured with oscilloscope, averaging on, The difference between the rising edge rate (average) of DIF versus the falling edge rate (average) of DIF#. Measured in a ±75 mV window around the crosspoint of DIF and DIF#.
- 31. Rise/Fall matching is derived using the following, 2*(Trise Tfall) / (Trise + Tfall).
- 32. This is the time from the valid CLK_IN input clocks and the assertion of the PWRGD signal level at 1.8 V 2.0 V to the time that stable clocks are output from the buffer chip (PLL locked).
- 33. All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK410B+/CK420BQ accuracy requirements. The NB3W800L itself does not contribute to ppm error.

Table 13. ELECTRICAL CHARACTERISTICS – Current Consumption

 $(V_{DD} = V_{DDA} = 3.3 \text{ V} \pm 5\%$, $T_A = 0^{\circ}\text{C} - 70^{\circ}\text{C}$), See Test Loads for Loading Conditions. (Note 35)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{DDVDD}	Operating Current (Note 34)	133 MHz, VDD rail		94	105	mA
I _{DDVDDA}		133 MHz, VDDA + VDDR rail, PLL Mode		38	50	mA
I _{DDVDDPD}	Powerdown Current (Note 34)	Power Down, VDD Rail		2.0	3.5	mA
I _{DDVDDAPD}		Power Down, VDDA Rail		0.5	1.0	mA

^{34.} Guaranteed by design and characterization, not tested in production.

Table 14. ELECTRICAL CHARACTERISTICS - Skew and Differential Jitter Parameters

 $(V_{DD} = V_{DDA} = 3.3 \text{ V} \pm 5\%$, $T_A = 0^{\circ}\text{C} - 70^{\circ}\text{C}$), See Test Loads for Loading Conditions.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{SPO_PLL}	CLK_IN, DIF[x:0] (Notes 36, 37, 39, 40, 43)	Input-to-Output Skew in PLL mode nominal value @ 25°C, 3.3 V	-100		100	ps
t _{PD_BYP}	CLK_IN, DIF[x:0] (Notes 36, 37, 39, 40, 43)	Input-to-Output Skew in Bypass mode nominal value @ 25°C, 3.3 V	2.5		4.5	ns
t _{DSPO_PLL}	CLK_IN, DIF[x:0] (Notes 36, 37, 39, 40, 43)	Input-to-Output Skew Varation in PLL mode across voltage and temperature	-100		100	ps
t _{DSPO_BYP}	CLK_IN, DIF[x:0] (Notes 36, 37, 39, 40, 43)	Input-to-Output Skew Varation in Bypass mode across voltage and temperature	-250		250	ps
t _{SKEW_ALL}	DIF{x:0] (Notes 36, 37, 39, 43)	Output-to-Output Skew across all outputs (Common to Bypass and PLL mode)			50	ps
jpeak-hbw	PLL Jitter Peaking (Notes 36, 42, 43)	HBW_BYP_LBW# = 1			2.5	dB
jpeak-lbw	PLL Jitter Peaking (Notes 36, 42, 43)	HBW_BYP_LBW# = 0			2	dB
pll _{HBW}	PLL Bandwidth (Notes 36, 43, 44)	HBW_BYP_LBW# = 1	2	3	4	MHz
pll _{LBW}	PLL Bandwidth (Notes 36, 43, 44)	HBW_BYP_LBW# = 0	0.7	1	1.4	MHz
t _{DC}	Duty Cycle (Note 36, 46)	Measured differentially, PLL and Bypass Mode	45	50	55	%
t _{DCD}	Duty Cycle Distortion (Notes 36, 45)	Measured differentially, Bypass Mode @ 100 MHz	-2	0	2	%
t _{jcyc-cyc}	Jitter, Cycle to cycle	PLL mode			50	ps
	(Notes 36, 46)	Additive Jitter in Bypass Mode			50	ps

 $^{36.}C_L = 2 \text{ pF}$ with RS = 27Ω for Zo = 85Ω differential trace impedance. Input to output skew is measured at the first output edge following the corresponding input.

- 37. Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.
- 38. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.
- 39. This parameter is deterministic for a given device
- 40. Measured with scope averaging on to find mean value.
- 41.t is the period of the input clock
- 42. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
- 43. Guaranteed by design and characterization, not tested in production.
- 44. Measured at 3 db down or half power point.
- 45. Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.
- 46. Measured from differential waveform. Bypass mode, input duty cycle = 50%.

^{35.} C_L = 2 pF with RS = 27 Ω for Zo = 85 Ω differential trace impedance.

Table 15. ELECTRICAL CHARACTERISTICS - PHASE JITTER PARAMETERS

 $(V_{DD} = V_{DDA} = 3.3 \text{ V} \pm 5\%$, TA = 0°C – 70°C), See Test Loads for Loading Conditions. (Note 35)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{jphPCleG1}		PCIe Gen 1 (Notes 48, 49)			86	ps (p-p)
t _{jphPCleG2}		PCIe Gen 2 Lo Band 10 kHz < f < 1.5 MHz (Note 48)			3	ps (rms)
		PCIe Gen 2 High Band 1.5 MHz < f < Nyquist (50 MHz) (Note 48)			3.1	ps (rms)
tjphPCleG3	Phase Jitter, PLL Mode (Note 47)	PCIe Gen 3 (PLL BW of 2–4 MHz, CDR = 10 MHz) (Notes 48, 50)			1	ps (rms)
t _{jphQPI_SMI}		QPI & SMI (100 MHz or 133 MHz, 4.8 Gb/s, 6.4 Gb/s 12 UI) (Note 51)			0.5	ps (rms)
		QPI & SMI (100 MHz, 8.0 Gb/s, 12 UI) (Note 51)			0.3	ps (rms)
		QPI & SMI (100 MHz, 9.6 Gb/s, 12 UI) (Note 51)			0.2	ps (rms)
t _{jphPCleG1}		PCIe Gen 1 (Notes 48, 49)			10	ps (p-p)
^t jphPCleG2		PCIe Gen 2 Lo Band 10 kHz < f < 1.5 MHz (Notes 48, 52)			0.3	ps (rms)
		PCIe Gen 2 High Band 1.5 MHz < f < Nyquist (50 MHz) (Notes 48, 52)			0.6	ps (rms)
t _{jphPCleG3}	Additive Phase Jitter, Bypass mode	PCIe Gen 3 (PLL BW of 2–4 MHz, 2–5 MHz, CDR = 10 MHz) (Notes 48, 50, 52)			0.2	ps (rms)
t _{jphQPI_SMI}	(Note 47)	QPI & SMI (100 MHz or 133 MHz, 4.8 Gb/s, 6.4 Gb/s 12 UI) (Notes 51, 52)			0.2	ps (rms)
		QPI & SMI (100 MHz, 8.0 Gb/s, 12 UI) (Notes 51, 52)			0.1	ps (rms)
		QPI & SMI (100 MHz, 9.6 Gb/s, 12 UI) (Notes 51, 52)			0.1	ps (rms)

^{47.} Applies to all outputs.

^{48.} See http://www.pcisig.com for complete specs
49. Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1–12.
50. Subject to final ratification by PCI SIG.
51. Calculated from Intel-supplied Clock Jitter Tool v 1.6.3

^{52.} For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter)² = (total jitter)² - (input jitter)²

Table 16. CLOCK PERIODS - Differential Outputs with Spread Spectrum Disabled

		Measurement Window							
		1 Clock	1 μs	0.1 s	0.1 s	0.1 s	1 μs	1 Clock	
SSC OFF	Center Freq. MHz	-c2c Jitter Abs Per Min	-SSC Short-Term Average Min	– ppm Long–Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c Jitter Abs Per Max	Units
DIF (Notes 53, 54, 55)	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns
DIF (Notes 53, 54, 56)	133.33	7.44925		7.49925	7.50000	7.50075		7.55075	ns

Table 17. CLOCK PERIODS – Differential Outputs with Spread Spectrum Enabled

	Measurement Window								
		1 Clock	1 μs	0.1 s	0.1 s	0.1 s	1 μs	1 Clock	
SSC ON	Center Freq. MHz	-c2c Jitter Abs Per Min	-SSC Short-Term Average Min	– ppm Long–Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c Jitter Abs Per Max	Units
DIF (Notes 53, 54, 55)	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns
DIF (Notes 53, 54, 56)	133.00	7.44930	7.49930	7.51805	7.51880	7.51955	7.53830	7.58830	ns

^{53.} Guaranteed by design and characterization, not tested in production.

Measurement Points for Differential

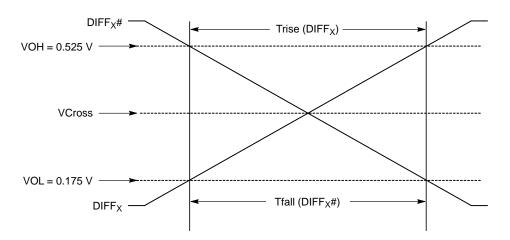


Figure 3. Single-Ended Measurement Points for Trise, Tfall

^{54.} All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy requirements (±100 ppm). The device itself does not contribute to ppm error.

^{55.} Driven by SRC output of main clock, 100 MHz PLL Mode or Bypass mode

^{56.} Driven by CPU output of main clock, 133 MHz PLL Mode or Bypass mode

Measurement Points for Differential

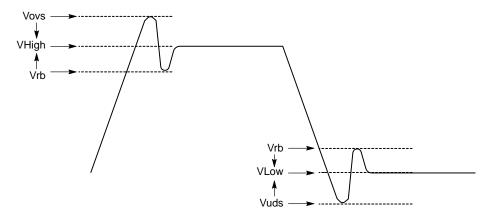


Figure 4. Single-Ended Measurement Points for Vovs, Vuds, Vrb

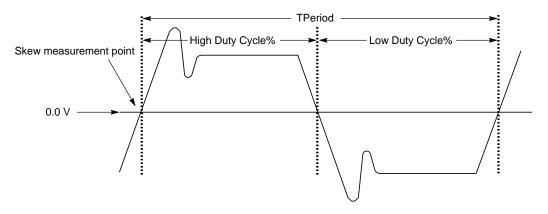


Figure 5. Differential (DIFF_X – DIFF_X#) Measurement Points (Tperiod, Duty Cycle, Jitter)

Test Loads

Differential Output Terminations						
DIF Zo (Ω)	Rs (Ω)					
100	33					
85	27					

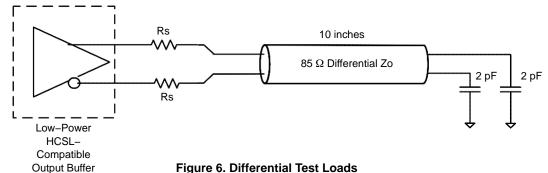


Figure 6. Differential Test Loads

SIGNAL AND FEATURE OPERATION

CLK_IN, CLK_IN#

The differential input clock is expected to be sourced from a clock synthesizer with an HCSL-compatible output, e.g. CK420BQ, CK-NET, CK-uS, or CK509B or another driver.

OE# and Output Enables (Control Registers)

Each output can be individually enabled or disabled by SMBus control register bits. Additionally, each output of the DIF[7:0] has a dedicated OE# pin. The OE# pins are asynchronous asserted—low signals. The Output Enable bits in the SMBus registers are active high and are set to enable by default.

The disabled state for the NB3W800L low power NMOS Push–Pull outputs is Low/Low.

Please note that the logic level for assertion or deassertion is different in software than it is on hardware. Output is enabled if OE# pin is pulled low and still maintains software programming logic with output enabled if OE register is true.

The assertion and de–assertion of this signal is absolutely asynchronous.

OE# Assertion (Transition from '1' to '0')

All differential outputs that were tristated will resume normal operation in a glitch free manner.

OE# De-Assertion (Transition from '0' to '1')

Corresponding output will transition from normal operation to tri-state in a glitch free manner.

100M_133M# - Frequency Selection

The 100M_133M# is a hardware pin, which programs the appropriate output frequency of the DIF pairs. Note that the CLK_IN frequency is equal to CLK_OUT frequency. An external pull—up or pull—down resistor is attached to this pin to select the input/output frequency.

PWRGD / PWRDN#

PWRGD is asserted high and de-asserted low. De-assertion of PWRGD (pulling the signal low) is equivalent to indicating a powerdown condition. PWRGD (assertion) is used by the NB3W800L to sample initial configurations such as frequency select condition.

After PWRGD has been asserted high for the first time, the pin becomes a PWRDN# (Power Down) pin that can be used to shut off all clocks cleanly and instruct the device to invoke power savings mode. PWRDN# is a completely asynchronous active low input. When entering power savings mode, PWRDN# should be asserted low prior to shutting off the input clock or power to ensure all clocks shut down in a glitch free manner.

The assertion and de-assertion of PWRDN# is absolutely asynchronous.

When PWRDN# is sampled low by two consecutive rising edges of DIF#, all differential outputs are held tri-stated on the next DIF# high to low transition.

HBW_BYPASS_LBW#

The HBW_BYPASS_LBW# is a tri level function input pin. It is used to select between PLL high bandwidth, bypass mode and PLL low bandwidth mode.

Device Power Up Sequence

The device power up should follow the sequence mentioned below for proper functioning of the device: PWRGD/PWRDN# should be asserted Low. All other Control pins should be defined to the required state. Power should be given to the device. PWRGD/PWRDN# should be asserted High.

Note: if no clock is present on the CLK_IN/CLK_IN# pins, whenever device is Powered Up, there will be no clock on DIF/DIF# outputs

POWER FILTERING EXAMPLE

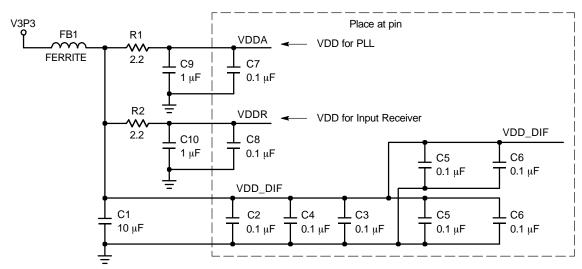


Figure 7. Schematic Example of the NB3W800L Power Filtering

General SMBus Serial Interface Information for NB3W800L

How to Write

- Controller (host) sends a start bit
- Controller (host) sends the write address
- Clock(device) will acknowledge
- Controller (host) sends the beginning byte location = N
- Clock(device) will acknowledge
- Controller (host) sends the byte count = X
- Clock(device) will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- Clock(device) will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

	Index E	Block Write C	peration
Cont	roller (Host)		Clock (Device)
Т	starT bit		
Sla	ve Address		
WR	WRite		
			ACK
Begin	ning Byte = N		
			ACK
Data E	Byte Count = X		
			ACK
Begi	nning Byte N		
			ACK
0			
0		X Byte	0
0			0
			0
Byt	e N + X – 1		
			ACK
Р	stoP bit		

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- Clock(device) will acknowledge
- Controller (host) sends the beginning byte location = N
- Clock(device) will acknowledge
- Controller (host) will send a separate start bit
- Controller (host) sends the read address
- Clock(device) will acknowledge
- Clock(device) will send the data byte count = X
- Clock(device) sends Byte N+X-1
- Clock(device) sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

	Index Bl	Index Block Read Operation								
Cor	ntroller (Host)		Clock (Device)							
Т	starT bit									
SI	ave Address									
WR	WRite									
			ACK							
Begi	nning Byte = N									
			ACK							
RT	Repeat starT									
SI	ave Address									
RD	ReaD									
			ACK							
			Data Byte Count = X							
	ACK									
			Beginning Byte N							
	ACK									
		X Byte	0							
	0	A Dyto	0							
	0		0							
0										
			Byte N + X - 1							
N	Not acknowledge									
Р	stoP bit									

Table 18. SMBus TABLE: PLL MODE, AND FREQUENCY SELECT REGISTER

Byte 0	Pin#	Name	Control Function	Туре	0	1	Default	
Bit 7	48	PLL Mode 1 PLL Operating Mode Rd back 1 R See PLL Operating Mode			Latched at power up			
Bit 6	48	PLL Mode 0	PLL Operating Mode Rd back 0	R	Readback Table		Latched at power up	
Bit 5			Reserved	Reserved				
Bit 4		Reserved					0	
Bit 3		PLL_SW_EN	Enable S/W control of PLL BW	RW	HW Latch	SMBus Control	0	
Bit 2		PLL Mode 1	PLL Operating Mode 1	RW		erating Mode	1	
Bit 1		PLL Mode 0	PLL Operating Mode 0	RW	Readback Table		1	
Bit 0	47	100M_133M#	Frequency Select Readback	R	133 MHz	100 MHz	Latched at power up	

NOTE: Setting bit 3 to '1' allows the user to overide the Latch value from pin 48 via use of bits 2 and 1. Use the values from the PLL Operating Mode Readback Table. Note that Bits 7 and 6 will keep the value originally latched on pin 48. A warm reset of the system will have to accomplished if the user changes these bits.

Table 19. SMBus TABLE: OUTPUT CONTROL REGISTER

Byte 1	Pin#	Name	Control Function	Туре	0	1	Default
Bit 7	32/33	DIF_5_En	Output Control - '0' overrides OE# pin	RW	Low/Low	Enable	1
Bit 6	28/29	DIF_4_En	Output Control - '0' overrides OE# pin	RW			1
Bit 5	25/26	DIF_3_En	Output Control - '0' overrides OE# pin	RW			1
Bit 4	21/22	DIF_2_En	Output Control - '0' overrides OE# pin	RW			1
Bit 3			Reserved	•	•	•	1
Bit 2	16/17	DIF_1_En	Output Control - '0' overrides OE# pin	RW	Low/Low	Enable	1
Bit 1	13/14	DIF_0_En	Output Control - '0' overrides OE# pin	RW			1
Bit 0 Reserved						1	

Table 20. SMBus TABLE: OUTPUT CONTROL REGISTER

Byte 2	Pin#	Name	Control Function	Туре	0	1	Default	
Bit 7			Reserved					
Bit 6			Reserved					
Bit 5			Reserved					
Bit 4			Reserved					
Bit 3			Reserved					
Bit 2	39/40	DIF_7_En	Output Control - '0' overrides OE# pin	RW	Low/Low	Enable	1	
Bit 1		Reserved						
Bit 0	35/36	DIF_6_En	Output Control - '0' overrides OE# pin	RW	Low/Low	Enable	1	

Table 21. SMBus TABLE: RESERVED REGISTER

Byte 3	Pin#	Name	Control Function	Туре	0	1	Default
Bit 7			Reserved				0
Bit 6			Reserved				
Bit 5			Reserved				
Bit 4			Reserved				0
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1			Reserved				0
Bit 0			Reserved				0

Table 22. SMBus TABLE: RESERVED REGISTER

Byte 4	Pin#	Name	Control Function	Туре	0	1	Default		
Bit 7		Reserved							
Bit 6			Reserved						
Bit 5			Reserved						
Bit 4			Reserved						
Bit 3		Reserved							
Bit 2			Reserved				0		
Bit 1			Reserved				0		
Bit 0			Reserved				0		

Table 23. SMBus TABLE: VENDOR & REVISION ID REGISTER

Byte 5	Pin#	Name	Control Function	Туре	0	1	Default
Bit 7	-	RID3	REVISION ID	R		0	
Bit 6	_	RID2		R	A rev = 0000		0
Bit 5	_	RID1		R	A lev :	0	
Bit 4	_	RID0		R		0	
Bit 3	_	VID3	VENDOR ID	R	-	-	1
Bit 2	_	VID2		R	-	-	1
Bit 1	-	VID1		R	-	_	1
Bit 0	_	VID0		R	-	_	1

Table 24. SMBus TABLE: DEVICE ID

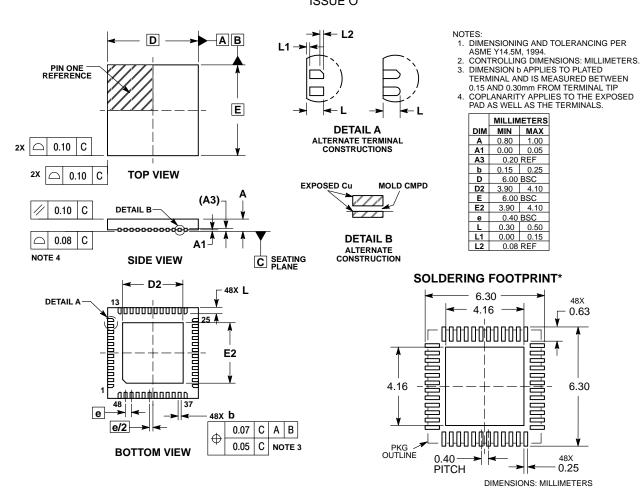

Byte 6	Pin#	Name	Control Function	Туре	0	1	Default
Bit 7	_	Device ID 7 (MSB)		R			1
Bit 6	_	Device ID 6		R			1
Bit 5	_		Device ID 5	R			1
Bit 4	_	Device ID 4		R			0
Bit 3	_	Device ID 3		R			0
Bit 2	_		Device ID 2	R			1
Bit 1	-		Device ID 1	R			1
Bit 0	_		Device ID 0	R	1		1

Table 25. SMBus TABLE: BYTE COUNT REGISTER

Byte 7	Pin#	Name	Control Function	Туре	0	1	Default	
Bit 7		Reserved						
Bit 6			Reserved					
Bit 5		Reserved						
Bit 4	_	BC4		RW		0		
Bit 3	_	BC3		RW	Default value is 8 hex, so 9 bytes (0 to 8) will be read back by default.		1	
Bit 2	-	BC2	Writing to this register configures how many bytes will be read back.	RW			0	
Bit 1	-	BC1		RW	read back	0		
Bit 0	_	BC0		RW		0		

PACKAGE DIMENSIONS

QFN48 6x6, 0.4P CASE 485DP ISSUE O

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and

PCIe is a registered trademark of PCI–Special Interest Group (PCI–SIG) Corporation. Intel is a registered trademark of Intel Corporation in the U.S. and/or other countries.

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free US

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru