# 74AUP1Z125

# Low-power X-tal driver with enable and internal resistor; 3-state

Rev. 5 — 8 August 2012

**Product data sheet** 

# 1. General description

The 74AUP1Z125 combines the functions of the 74AUP1GU04 and 74AUP1G125 with enable circuitry and an internal bias resistor to provide a device optimized for use in crystal oscillator applications.

When not in use the  $\overline{EN}$  input can be driven HIGH, pulling up the  $\underline{X1}$  input and putting the device in a low-power disable mode. Schmitt trigger action at the  $\overline{EN}$  input makes the circuit tolerant to slower input rise and fall times across the entire  $V_{CC}$  range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using  $I_{OFF}$  at output Y. The  $I_{OFF}$  circuitry disables the output Y, preventing the damaging backflow current through the device when it is powered down.

The integration of the two devices into the 74AUP1Z125 produces the benefits of a compact footprint, lower power dissipation and stable operation over a wide range of frequency and temperature.

#### 2. Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- ESD protection:
  - ◆ HBM JESD22-A114F Class 3A exceeds 5000 V
  - ♦ MM JESD22-A115-A exceeds 200 V
  - ◆ CDM JESD22-C101E exceeds 1000 V
- Latch-up performance exceeds 100 mA per JESD78B Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V<sub>CC</sub>
- I<sub>OFF</sub> circuitry provides partial power-down mode operation at output Y
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C



#### Low-power X-tal driver with enable and internal resistor; 3-state

# 3. Ordering information

Table 1. Ordering information

| Type number  | Package           |       |                                                                                                           |         |  |  |  |
|--------------|-------------------|-------|-----------------------------------------------------------------------------------------------------------|---------|--|--|--|
|              | Temperature range | Name  | Description                                                                                               | Version |  |  |  |
| 74AUP1Z125GW | –40 °C to +125 °C | SC-88 | plastic surface-mounted package; 6 leads                                                                  | SOT363  |  |  |  |
| 74AUP1Z125GM | –40 °C to +125 °C | XSON6 | plastic extremely thin small outline package; no leads; 6 terminals; body 1 $\times$ 1.45 $\times$ 0.5 mm | SOT886  |  |  |  |
| 74AUP1Z125GF | –40 °C to +125 °C | XSON6 | plastic extremely thin small outline package; no leads; 6 terminals; body 1 $\times$ 1 $\times$ 0.5 mm    | SOT891  |  |  |  |
| 74AUP1Z125GN | –40 °C to +125 °C | XSON6 | extremely thin small outline package; no leads; 6 terminals; body $0.9 \times 1.0 \times 0.35$ mm         | SOT1115 |  |  |  |
| 74AUP1Z125GS | –40 °C to +125 °C | XSON6 | extremely thin small outline package; no leads; 6 terminals; body 1.0 $\times$ 1.0 $\times$ 0.35 mm       | SOT1202 |  |  |  |

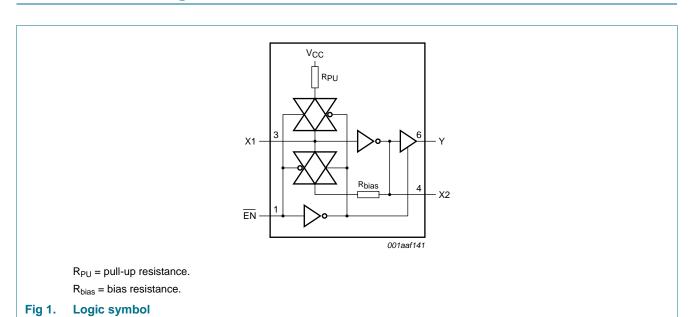

# 4. Marking

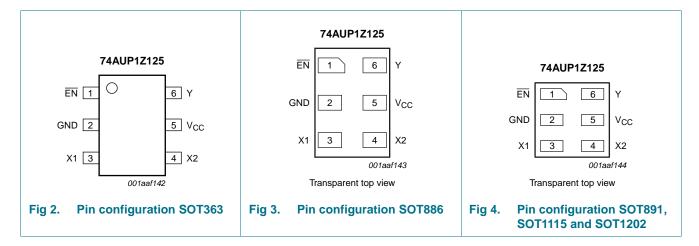
Table 2. Marking

| Type number  | Marking code <sup>[1]</sup> |
|--------------|-----------------------------|
| 74AUP1Z125GW | 55                          |
| 74AUP1Z125GM | 55                          |
| 74AUP1Z125GF | 55                          |
| 74AUP1Z125GN | 55                          |
| 74AUP1Z125GS | 55                          |

<sup>[1]</sup> The pin 1 indicator is located on the lower left corner of the device, below the marking code.

# 5. Functional diagram




74AUP1Z125

All information provided in this document is subject to legal disclaimers.

Low-power X-tal driver with enable and internal resistor; 3-state

# 6. Pinning information

#### 6.1 Pinning



#### 6.2 Pin description

Table 3. Pin description

| Symbol          | Pin | Description               |
|-----------------|-----|---------------------------|
| EN              | 1   | enable input (active LOW) |
| GND             | 2   | ground (0 V)              |
| X1              | 3   | data input                |
| X2              | 4   | unbuffered output         |
| V <sub>CC</sub> | 5   | supply voltage            |
| Υ               | 6   | data output               |

# 7. Functional description

Table 4. Function table[1]

| Input X1 |    | Output |   |  |
|----------|----|--------|---|--|
| EN       | X1 | X2     | Υ |  |
| L        | L  | Н      | Н |  |
| L        | Н  | L      | L |  |
| Н        | L  | Н      | Z |  |
| Н        | Н  | L      | Z |  |

<sup>[1]</sup> H = HIGH voltage level;

L = LOW voltage level;

Z = high-impedance OFF-state.

#### Low-power X-tal driver with enable and internal resistor; 3-state

# 8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter               | Conditions                                                           | Min               | Max  | Unit |
|------------------|-------------------------|----------------------------------------------------------------------|-------------------|------|------|
| $V_{CC}$         | supply voltage          |                                                                      | -0.5              | +4.6 | V    |
| I <sub>IK</sub>  | input clamping current  | V <sub>I</sub> < 0 V                                                 | -50               | -    | mA   |
| VI               | input voltage           |                                                                      | [ <u>1</u> ] -0.5 | +4.6 | V    |
| I <sub>OK</sub>  | output clamping current | V <sub>O</sub> < 0 V                                                 | -50               | -    | mA   |
| Vo               | output voltage          | Active mode and Power-down mode                                      | <u>[1]</u> –0.5   | +4.6 | V    |
| Io               | output current          | $V_O = 0 V \text{ to } V_{CC}$                                       | -                 | ±20  | mA   |
| I <sub>CC</sub>  | supply current          |                                                                      | -                 | 50   | mA   |
| $I_{GND}$        | ground current          |                                                                      | -50               | -    | mA   |
| $T_{\text{stg}}$ | storage temperature     |                                                                      | -65               | +150 | °C   |
| P <sub>tot</sub> | total power dissipation | $T_{amb} = -40  ^{\circ}\text{C} \text{ to } +125  ^{\circ}\text{C}$ | [2] -             | 250  | mW   |

<sup>[1]</sup> The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

# 9. Recommended operating conditions

Table 6. Recommended operating conditions

| Symbol           | Parameter                           | Conditions                       | Min | Max      | Unit |
|------------------|-------------------------------------|----------------------------------|-----|----------|------|
| $V_{CC}$         | supply voltage                      |                                  | 8.0 | 3.6      | V    |
| VI               | input voltage                       |                                  | 0   | 3.6      | V    |
| Vo               | output voltage                      |                                  | 0   | $V_{CC}$ | V    |
| T <sub>amb</sub> | ambient temperature                 |                                  | -40 | +125     | °C   |
| Δt/ΔV            | input transition rise and fall rate | V <sub>CC</sub> = 0.8 V to 3.6 V | -   | 200      | ns/V |

<sup>[2]</sup> For SC-88 packages: above 87.5  $^{\circ}$ C the value of P<sub>tot</sub> derates linearly with 4.0 mW/K. For XSON6 packages: above 118  $^{\circ}$ C the value of P<sub>tot</sub> derates linearly with 7.8 mW/K.

# Low-power X-tal driver with enable and internal resistor; 3-state

# 10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol               | Parameter                 | Conditions                                                       | Min                   | Тур | Max                  | Unit |
|----------------------|---------------------------|------------------------------------------------------------------|-----------------------|-----|----------------------|------|
| T <sub>amb</sub> = 2 | 5 °C                      |                                                                  |                       |     |                      |      |
| V <sub>IH</sub>      | HIGH-level input voltage  | X1 input                                                         |                       |     |                      |      |
|                      |                           | $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                       | $0.75 \times V_{CC}$  | -   | -                    | V    |
|                      |                           | EN input                                                         |                       |     |                      |      |
|                      |                           | $V_{CC} = 0.8 \text{ V}$                                         | $0.70 \times V_{CC}$  | -   | -                    | V    |
|                      |                           | $V_{CC} = 0.9 \text{ V to } 1.95 \text{ V}$                      | $0.65 \times V_{CC}$  | -   | -                    | V    |
|                      |                           | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$                       | 1.6                   | -   | -                    | V    |
|                      |                           | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$                       | 2.0                   | -   | -                    | V    |
| $V_{IL}$             | LOW-level input voltage   | X1 input                                                         |                       |     |                      |      |
|                      |                           | $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                       | -                     | -   | $0.25 \times V_{CC}$ | V    |
|                      |                           | EN input                                                         |                       |     |                      |      |
|                      |                           | $V_{CC} = 0.8 \text{ V}$                                         | -                     | -   | $0.30 \times V_{CC}$ | V    |
|                      |                           | $V_{CC} = 0.9 \text{ V to } 1.95 \text{ V}$                      | -                     | -   | $0.35 \times V_{CC}$ | V    |
|                      |                           | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$                       | -                     | -   | 0.7                  | V    |
|                      |                           | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$                       | -                     | -   | 0.9                  | V    |
| V <sub>OH</sub>      | HIGH-level output voltage | Y output; $V_I$ at X1 input = $V_{IH}$ or $V_{IL}$               |                       |     |                      |      |
|                      |                           | $I_{O} = -20 \mu A$ ; $V_{CC} = 0.8 \text{ V}$ to 3.6 V          | $V_{CC}-0.1$          | -   | -                    | V    |
|                      |                           | $I_O = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$                  | $0.75 \times V_{CC}$  | -   | -                    | V    |
|                      |                           | $I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                | 1.11                  | -   | -                    | V    |
|                      |                           | $I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$               | 1.32                  | -   | -                    | V    |
|                      |                           | $I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                | 2.05                  | -   | -                    | V    |
|                      |                           | $I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                | 1.9                   | -   | -                    | V    |
|                      |                           | $I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                | 2.72                  | -   | -                    | V    |
|                      |                           | $I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                | 2.6                   | -   | -                    | V    |
|                      |                           | X2 output; $V_I = GND$ or $V_{CC}$                               |                       |     |                      |      |
|                      |                           | $I_{O} = -20 \mu A$ ; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$ | V <sub>CC</sub> – 0.1 | -   | -                    | V    |
|                      |                           | $I_O = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$                  | $0.75 \times V_{CC}$  | -   | -                    | V    |
|                      |                           | $I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                | 1.11                  | -   | -                    | V    |
|                      |                           | $I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$               | 1.32                  | -   | -                    | V    |
|                      |                           | $I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                | 2.05                  | -   | -                    | V    |
|                      |                           | $I_O = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                  | 1.9                   | -   | -                    | V    |
|                      |                           | $I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                | 2.72                  | -   | -                    | V    |
|                      |                           | $I_O = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                  | 2.6                   | -   | -                    | V    |

**Table 7. Static characteristics** ....continued

At recommended operating conditions: voltages are referenced to GND (ground = 0 V).

| Symbol           | Parameter                               | Conditions                                                                                                                                 | Min   | Тур | Max                        | Uni |
|------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|----------------------------|-----|
| √oL              | LOW-level output voltage                | Y output; $V_I$ at X1 input = $V_{IH}$ or $V_{IL}$                                                                                         |       |     |                            |     |
|                  |                                         | $I_O$ = 20 $\mu$ A; $V_{CC}$ = 0.8 V to 3.6 V                                                                                              | -     | -   | 0.1                        | V   |
|                  |                                         | $I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$                                                                                           | -     | -   | $0.3 \times V_{\text{CC}}$ | V   |
|                  |                                         | $I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                                                                                             | -     | -   | 0.31                       | V   |
|                  |                                         | $I_{O} = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$                                                                                          | -     | -   | 0.31                       | V   |
|                  |                                         | $I_{O} = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                                                           | -     | -   | 0.31                       | V   |
|                  |                                         | $I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                                                           | -     | -   | 0.44                       | V   |
|                  |                                         | $I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                                                           | -     | -   | 0.31                       | V   |
|                  |                                         | $I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                                                           | -     | -   | 0.44                       | V   |
|                  |                                         | X2 output; $V_I = GND$ or $V_{CC}$                                                                                                         |       |     |                            |     |
|                  |                                         | $I_O = 20 \mu A$ ; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                                                              | -     | -   | 0.1                        | V   |
|                  |                                         | $I_O = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$                                                                                             | -     | -   | $0.3 \times V_{CC}$        | V   |
|                  |                                         | $I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                                                                                             | -     | -   | 0.31                       | V   |
|                  |                                         | $I_O = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$                                                                                            | -     | -   | 0.31                       | V   |
|                  |                                         | $I_{O} = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                                                           | -     | -   | 0.31                       | V   |
|                  |                                         | $I_O = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                                                             | -     | -   | 0.44                       | V   |
|                  |                                         | $I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                                                           | -     | -   | 0.31                       | V   |
|                  |                                         | $I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                                                           | -     | -   | 0.44                       | V   |
| l <sub>1</sub>   | input leakage current                   | X1 input                                                                                                                                   |       |     |                            |     |
|                  |                                         | $V_I = \overline{EN} = V_{CC}$ ; $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$                                                                  | -     | -   | ±0.1                       | μΑ  |
|                  |                                         | EN input                                                                                                                                   |       |     |                            |     |
|                  |                                         | $V_I = GND \text{ to } 3.6 \text{ V};$<br>$V_{CC} = 0 \text{ V to } 3.6 \text{ V}$                                                         | -     | -   | ±0.1                       | μΑ  |
| pu               | pull-up current                         | X1 input; $\overline{EN} = V_{CC}$                                                                                                         |       |     |                            |     |
|                  |                                         | $V_{I} = GND; V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                                                                    | -     | -   | 15                         | μΑ  |
| loz              | OFF-state output current                | Y output; $V_{\underline{O}} = 0 \text{ V to } 3.6 \text{ V}; V_{\underline{CC}} = 0 \text{ V to } 3.6 \text{ V}; EN = V_{\underline{CC}}$ | -     | -   | ±0.1                       | μΑ  |
| OFF              | power-off leakage current               | $V_I$ or $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V                                                                                              | [1] - | -   | ±0.2                       | μΑ  |
| $\Delta I_{OFF}$ | additional power-off<br>leakage current | $V_1$ or $V_0 = 0$ V to 3.6 V;<br>$V_{CC} = 0$ V to 0.2 V                                                                                  | [1] - | -   | ±0.2                       | μΑ  |
| CC               | supply current                          | $V_1 = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$<br>$V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                           | -     | -   | 75                         | μΑ  |
| ∆l <sub>CC</sub> | additional supply current               | EN input                                                                                                                                   |       |     |                            |     |
|                  |                                         | $V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$<br>$V_{CC} = 3.3 \text{ V}$                                                         | -     | -   | 40                         | μΑ  |
| C <sub>I</sub>   | input capacitance                       | X1 input                                                                                                                                   |       |     |                            |     |
| •                |                                         | $V_{CC} = 0 \text{ V to } 3.6 \text{ V};$<br>$V_{I} = \text{GND or } V_{CC}$                                                               | -     | 1.3 | -                          | pF  |
|                  |                                         | EN input                                                                                                                                   |       |     |                            |     |
|                  |                                         | $V_{CC} = 0 \text{ V to } 3.6 \text{ V};$ $V_{I} = \text{GND or } V_{CC}$                                                                  | -     | 0.8 | -                          | pF  |

**Table 7. Static characteristics** ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol               | Parameter                | Conditions                                                                                                                                               | Min                  | Тур  | Max                  | Unit |
|----------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|----------------------|------|
| Co                   | output capacitance       | X2 output                                                                                                                                                |                      |      |                      |      |
|                      |                          | $V_O = GND; V_{CC} = 0 V$                                                                                                                                | -                    | 1.5  | -                    | pF   |
|                      |                          | Y output                                                                                                                                                 |                      |      |                      |      |
|                      |                          | $V_O = GND; V_{CC} = 0 V$                                                                                                                                | -                    | 1.7  | -                    | pF   |
| g <sub>fs</sub>      | forward transconductance | see Figure 10 and Figure 11                                                                                                                              |                      |      |                      |      |
|                      |                          | V <sub>CC</sub> = 0.8 V                                                                                                                                  | -                    | -    | -                    | mA/V |
|                      |                          | V <sub>CC</sub> = 1.1 V to 1.3 V                                                                                                                         | 0.2                  | -    | 9.9                  | mA/V |
|                      |                          | V <sub>CC</sub> = 1.4 V to 1.6 V                                                                                                                         | 3.9                  | -    | 17.7                 | mA/V |
|                      |                          | V <sub>CC</sub> = 1.65 V to 1.95 V                                                                                                                       | 7.9                  | -    | 24.3                 | mA/V |
|                      |                          | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$                                                                                                               | 18                   | -    | 30.7                 | mA/V |
|                      |                          | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$                                                                                                               | 20.5                 | -    | 32.4                 | mA/V |
| R <sub>bias</sub>    | bias resistance          | $\overline{EN}$ = GND; f <sub>i</sub> = 0 Hz; V <sub>I</sub> = 0 V or V <sub>CC</sub> ; See <u>Figure 5</u> ; for frequency behavior see <u>Figure 6</u> | 1.08                 | 1.62 | 3.08                 | ΜΩ   |
| T <sub>amb</sub> = - | 40 °C to +85 °C          |                                                                                                                                                          |                      |      |                      |      |
| $V_{IH}$             | HIGH-level input voltage | X1 input                                                                                                                                                 |                      |      |                      |      |
|                      |                          | $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                                                                                               | $0.75 \times V_{CC}$ | -    | -                    | V    |
|                      |                          | EN input                                                                                                                                                 |                      |      |                      |      |
|                      |                          | V <sub>CC</sub> = 0.8 V                                                                                                                                  | $0.70 \times V_{CC}$ | -    | -                    | V    |
|                      |                          | $V_{CC} = 0.9 \text{ V to } 1.95 \text{ V}$                                                                                                              | $0.65 \times V_{CC}$ | -    | -                    | V    |
|                      |                          | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$                                                                                                               | 1.6                  | -    | -                    | V    |
|                      |                          | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$                                                                                                               | 2.0                  | -    | -                    | V    |
| $V_{IL}$             | LOW-level input voltage  | X1 input                                                                                                                                                 |                      |      |                      |      |
|                      |                          | $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                                                                                               | -                    | -    | $0.25 \times V_{CC}$ | V    |
|                      |                          | EN input                                                                                                                                                 |                      |      |                      |      |
|                      |                          | V <sub>CC</sub> = 0.8 V                                                                                                                                  | -                    | -    | $0.30 \times V_{CC}$ | V    |
|                      |                          | $V_{CC} = 0.9 \text{ V to } 1.95 \text{ V}$                                                                                                              | -                    | -    | $0.35 \times V_{CC}$ | V    |
|                      |                          | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$                                                                                                               | -                    | -    | 0.7                  | V    |
|                      |                          | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$                                                                                                               | -                    | -    | 0.9                  | V    |

**Table 7. Static characteristics** ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol          | Parameter                                               | Conditions                                                    | Min                 | Тур | Max                 | Unit |
|-----------------|---------------------------------------------------------|---------------------------------------------------------------|---------------------|-----|---------------------|------|
| $V_{OH}$        | HIGH-level output voltage                               | Y output; $V_I$ at X1 input = $V_{IH}$ or $V_{IL}$            |                     |     |                     |      |
|                 |                                                         | $I_O = -20~\mu\text{A};~V_{CC} = 0.8~V$ to 3.6 $V$            | $V_{CC}-0.1$        | -   | -                   | V    |
|                 |                                                         | $I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$             | $0.7 \times V_{CC}$ | -   | -                   | V    |
|                 |                                                         | $I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$             | 1.03                | -   | -                   | V    |
|                 |                                                         | $I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$            | 1.30                | -   | -                   | V    |
|                 |                                                         | $I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$             | 1.97                | -   | -                   | V    |
|                 |                                                         | $I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$             | 1.85                | -   | -                   | V    |
|                 |                                                         | $I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$             | 2.67                | -   | -                   | V    |
|                 |                                                         | $I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$             | 2.55                | -   | -                   | V    |
|                 |                                                         | $X2$ output; $V_I = GND$ or $V_{CC}$                          |                     |     |                     |      |
|                 | $I_{O} = -20 \mu A$ ; $V_{CC} = 0.8 \text{ V}$ to 3.6 V | $V_{CC} - 0.1$                                                | -                   | -   | V                   |      |
|                 | $I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$       | $0.7 \times V_{CC}$                                           | -                   | -   | V                   |      |
|                 |                                                         | $I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$             | 1.03                | -   | -                   | V    |
|                 |                                                         | $I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$            | 1.30                | -   | -                   | V    |
|                 |                                                         | $I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$             | 1.97                | -   | -                   | V    |
|                 |                                                         | $I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$             | 1.85                | -   | -                   | V    |
|                 |                                                         | $I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$             | 2.67                | -   | -                   | V    |
|                 |                                                         | $I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$             | 2.55                | -   | -                   | V    |
| / <sub>OL</sub> | LOW-level output voltage                                | Y output; $V_I$ at X1 input = $V_{IH}$ or $V_{IL}$            |                     |     |                     |      |
|                 |                                                         | $I_O = 20 \mu A$ ; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$ | -                   | -   | 0.1                 | V    |
|                 |                                                         | $I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$              | -                   | -   | $0.3 \times V_{CC}$ | V    |
|                 |                                                         | $I_O = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                | -                   | -   | 0.37                | V    |
|                 |                                                         | $I_{O} = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$             | -                   | -   | 0.35                | V    |
|                 |                                                         | $I_{O} = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$              | -                   | -   | 0.33                | V    |
|                 |                                                         | $I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$              | -                   | -   | 0.45                | V    |
|                 |                                                         | $I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$              | -                   | -   | 0.33                | V    |
|                 |                                                         | $I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$              | -                   | -   | 0.45                | V    |
|                 |                                                         | X2 output; $V_I = GND$ or $V_{CC}$                            |                     |     |                     |      |
|                 |                                                         | $I_{O}$ = 20 $\mu$ A; $V_{CC}$ = 0.8 V to 3.6 V               | -                   | -   | 0.1                 | V    |
|                 |                                                         | $I_O = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$                | -                   | -   | $0.3 \times V_{CC}$ | V    |
|                 |                                                         | $I_{O} = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$              | -                   | -   | 0.37                | V    |
|                 |                                                         | $I_{O} = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$             | -                   | -   | 0.35                | V    |
|                 |                                                         | $I_O = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                | -                   | -   | 0.33                | V    |
|                 |                                                         | $I_O = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                | -                   | -   | 0.45                | V    |
|                 |                                                         | $I_O = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                | -                   | -   | 0.33                | V    |
|                 |                                                         | $I_{O}$ = 4.0 mA; $V_{CC}$ = 3.0 V                            | -                   | -   | 0.45                | V    |
|                 |                                                         |                                                               |                     |     |                     |      |

**Table 7. Static characteristics** ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

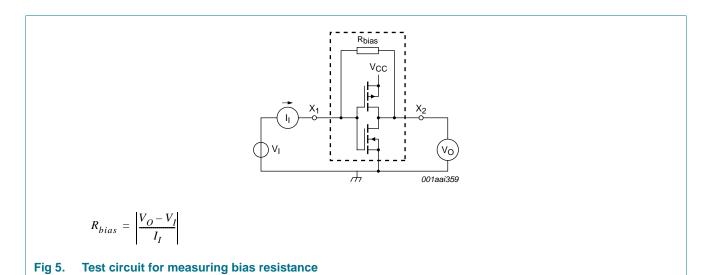
| Symbol            | Parameter                               | Conditions                                                                                                                                               | Min          | Тур | Max  | Unit |
|-------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|------|------|
| l <sub>l</sub>    | input leakage current                   | X1 input                                                                                                                                                 |              |     |      |      |
|                   |                                         | $V_I = \overline{EN} = V_{CC}$ ; $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$                                                                                | -            | -   | ±0.5 | μΑ   |
|                   |                                         | EN input                                                                                                                                                 |              |     |      |      |
|                   |                                         | $V_I = GND \text{ to } 3.6 \text{ V};$<br>$V_{CC} = 0 \text{ V to } 3.6 \text{ V}$                                                                       | -            | -   | ±0.5 | μА   |
| I <sub>pu</sub>   | pull-up current                         | X1 input; $\overline{EN} = V_{CC}$                                                                                                                       |              |     |      |      |
|                   |                                         | $V_I = GND$ ; $V_{CC} = 0.8 \text{ V}$ to 3.6 V                                                                                                          | -            | -   | 15   | μΑ   |
| l <sub>OZ</sub>   | OFF-state output current                | Y output; $V_{\underline{O}} = 0 \text{ V to } 3.6 \text{ V}; V_{CC} = 0$<br>V to 3.6 V; $\overline{EN} = V_{CC}$                                        | -            | -   | ±0.5 | μА   |
| I <sub>OFF</sub>  | power-off leakage current               | $V_I$ or $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V                                                                                                            | <u>[1]</u> _ | -   | ±0.5 | μΑ   |
| $\Delta I_{OFF}$  | additional power-off<br>leakage current | $V_1$ or $V_0 = 0$ V to 3.6 V;<br>$V_{CC} = 0$ V to 0.2 V                                                                                                | [1] -        | -   | ±0.6 | μА   |
| I <sub>CC</sub>   | supply current                          | $V_I = GND \text{ or } V_{CC}; I_O = 0 \text{ A};$<br>$V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                                         | -            | -   | 75   | μА   |
| $\Delta I_{CC}$   | additional supply current               | EN input                                                                                                                                                 |              |     |      |      |
|                   |                                         | $V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$<br>$V_{CC} = 3.3 \text{ V}$                                                                           | -            | -   | 50   | μА   |
| g <sub>fs</sub>   | forward transconductance                | see Figure 10 and Figure 11                                                                                                                              |              |     |      |      |
|                   |                                         | V <sub>CC</sub> = 0.8 V                                                                                                                                  | -            | -   | -    | mA/V |
|                   |                                         | V <sub>CC</sub> = 1.1 V to 1.3 V                                                                                                                         | -            | -   | 10.8 | mA/V |
|                   |                                         | V <sub>CC</sub> = 1.4 V to 1.6 V                                                                                                                         | 1.8          | -   | 21.2 | mA/V |
|                   |                                         | V <sub>CC</sub> = 1.65 V to 1.95 V                                                                                                                       | 7.5          | -   | 29.9 | mA/V |
|                   |                                         | V <sub>CC</sub> = 2.3 V to 2.7 V                                                                                                                         | 15.0         | -   | 38.0 | mA/V |
|                   |                                         | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$                                                                                                               | 17.8         | -   | 39.2 | mA/V |
| R <sub>bias</sub> | bias resistance                         | $\overline{EN}$ = GND; f <sub>i</sub> = 0 Hz; V <sub>I</sub> = 0 V or V <sub>CC</sub> ; See <u>Figure 5</u> ; for frequency behavior see <u>Figure 6</u> | 1.07         | -   | 3.11 | ΜΩ   |

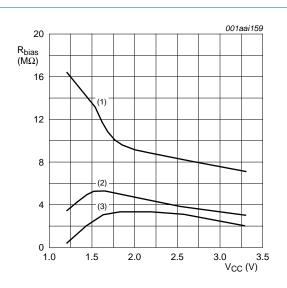
**Table 7. Static characteristics** ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol               | Parameter                 | Conditions                                                                | Min                    | Тур | Max                  | Unit |
|----------------------|---------------------------|---------------------------------------------------------------------------|------------------------|-----|----------------------|------|
| T <sub>amb</sub> = - | 40 °C to +125 °C          |                                                                           |                        |     |                      |      |
| V <sub>IH</sub>      | HIGH-level input voltage  | X1 input                                                                  |                        |     |                      |      |
|                      |                           | $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                | $0.75 \times V_{CC}$   | -   | -                    | V    |
|                      |                           | EN input                                                                  |                        |     |                      |      |
|                      |                           | $V_{CC} = 0.8 \text{ V}$                                                  | $0.75 \times V_{CC}$   | -   | -                    | V    |
|                      |                           | $V_{CC} = 0.9 \text{ V to } 1.95 \text{ V}$                               | $0.70 \times V_{CC}$   | -   | -                    | V    |
|                      |                           | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$                                | 1.6                    | -   | -                    | V    |
|                      |                           | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$                                | 2.0                    | -   | -                    | V    |
| V <sub>IL</sub>      | LOW-level input voltage   | X1 input                                                                  |                        |     |                      |      |
|                      |                           | $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                | -                      | -   | $0.25 \times V_{CC}$ | V    |
|                      |                           | EN input                                                                  |                        |     |                      |      |
|                      |                           | V <sub>CC</sub> = 0.8 V                                                   | -                      | -   | $0.25 \times V_{CC}$ | ٧    |
|                      |                           | $V_{CC} = 0.9 \text{ V to } 1.95 \text{ V}$                               | -                      | -   | $0.30 \times V_{CC}$ | V    |
|                      |                           | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$                                | -                      | -   | 0.7                  | ٧    |
|                      |                           | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$                                | -                      | -   | 0.9                  | ٧    |
| √он                  | HIGH-level output voltage | Y output; V <sub>I</sub> at X1 input = V <sub>IH</sub> or V <sub>IL</sub> |                        |     |                      |      |
|                      |                           | $I_{O} = -20 \mu A$ ; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$          | V <sub>CC</sub> - 0.11 | -   | -                    | ٧    |
|                      |                           | $I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$                         | $0.6 \times V_{CC}$    | -   | -                    | ٧    |
|                      |                           | $I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                         | 0.93                   | -   | -                    | ٧    |
|                      |                           | $I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$                        | 1.17                   | -   | -                    | ٧    |
|                      |                           | $I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                         | 1.77                   | -   | -                    | ٧    |
|                      |                           | $I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                         | 1.67                   | -   | -                    | ٧    |
|                      |                           | $I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                         | 2.40                   | -   | -                    | ٧    |
|                      |                           | $I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                         | 2.30                   | -   | -                    | V    |
|                      |                           | X2 output; $V_I = GND$ or $V_{CC}$                                        |                        |     |                      |      |
|                      |                           | $I_{O} = -20 \mu A$ ; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$          | V <sub>CC</sub> - 0.11 | -   | -                    | ٧    |
|                      |                           | $I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$                         | $0.6 \times V_{CC}$    | -   | -                    | ٧    |
|                      |                           | $I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                         | 0.93                   | -   | -                    | ٧    |
|                      |                           | $I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$                        | 1.17                   | -   | -                    | V    |
|                      |                           | $I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                         | 1.77                   | -   | -                    | V    |
|                      |                           | $I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                         | 1.67                   | -   | -                    | V    |
|                      |                           | $I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                         | 2.40                   | -   | -                    | V    |
|                      |                           | $I_O = -4.0 \text{ mA}$ ; $V_{CC} = 3.0 \text{ V}$                        | 2.30                   | -   | -                    | V    |

**Table 7. Static characteristics** ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol            | Parameter                            | Conditions                                                                                      | Min   | Тур | Max                  | Unit |
|-------------------|--------------------------------------|-------------------------------------------------------------------------------------------------|-------|-----|----------------------|------|
| V <sub>OL</sub>   | LOW-level output voltage             | Y output; $V_I = V_{IH}$ or $V_{IL}$                                                            |       |     |                      |      |
|                   |                                      | $I_O = 20 \mu A$ ; $V_{CC} = 0.8 \text{ V}$ to 3.6 V                                            | -     | -   | 0.11                 | V    |
|                   |                                      | $I_O = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$                                                  | -     | -   | $0.33 \times V_{CC}$ | V    |
|                   |                                      | $I_{O} = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                                                | -     | -   | 0.41                 | V    |
|                   |                                      | $I_{O} = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$                                               | -     | -   | 0.39                 | V    |
|                   |                                      | $I_{O} = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                | -     | -   | 0.36                 | V    |
|                   |                                      | $I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                | -     | -   | 0.50                 | V    |
|                   |                                      | $I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                | -     | -   | 0.36                 | V    |
|                   |                                      | $I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                | -     | -   | 0.50                 | V    |
|                   |                                      | X2 output; $V_I = GND$ or $V_{CC}$                                                              |       |     |                      |      |
|                   |                                      | $I_O = 20 \mu A$ ; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                   | -     | -   | 0.11                 | V    |
|                   |                                      | $I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$                                                | -     | -   | $0.33 \times V_{CC}$ | V    |
|                   |                                      | $I_{O} = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$                                                | -     | -   | 0.41                 | V    |
|                   |                                      | $I_{O} = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$                                               | -     | -   | 0.39                 | V    |
|                   |                                      | $I_{O} = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                | -     | -   | 0.36                 | V    |
|                   |                                      | $I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$                                                | -     | -   | 0.50                 | V    |
|                   |                                      | $I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                | -     | -   | 0.36                 | V    |
|                   |                                      | $I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$                                                | -     | -   | 0.50                 | V    |
| I                 | input leakage current                | X1 input                                                                                        |       |     |                      |      |
|                   |                                      | $V_I = \overline{EN} = V_{CC}$ ; $V_{CC} = 0 \text{ V to } 3.6 \text{ V}$                       | -     | -   | ±0.75                | μΑ   |
|                   |                                      | EN input                                                                                        |       |     |                      |      |
|                   |                                      | $V_I = GND \text{ to } 3.6 \text{ V};$<br>$V_{CC} = 0 \text{ V to } 3.6 \text{ V}$              | -     | -   | ±0.75                | μΑ   |
| pu                | pull-up current                      | X1 input; $\overline{EN} = V_{CC}$                                                              |       |     |                      |      |
|                   |                                      | $V_{I} = GND; V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$                                         | -     | -   | 15                   | μΑ   |
| OZ                | OFF-state output current             | Y output; $V_{\underline{O}} = 0$ V to 3.6 V; $V_{CC} = 0$ V to 3.6 V; $\overline{EN} = V_{CC}$ | -     | -   | ±0.75                | μΑ   |
| OFF               | power-off leakage current            | $V_{I}$ or $V_{O} = 0 \text{ V}$ to 3.6 V; $V_{CC} = 0 \text{ V}$                               | [1] _ | -   | ±0.75                | μΑ   |
| VI <sub>OFF</sub> | additional power-off leakage current | $V_1$ or $V_0 = 0$ V to 3.6 V;<br>$V_{CC} = 0$ V to 0.2 V                                       | [1] - | -   | ±0.75                | μΑ   |
| СС                | supply current                       | $V_I$ = GND or $V_{CC}$ ; $I_O$ = 0 A; $V_{CC}$ = 0.8 V to 3.6 V                                | -     | -   | 75                   | μΑ   |
| VI <sub>CC</sub>  | additional supply current            | EN input                                                                                        |       |     |                      |      |
|                   |                                      | $V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$<br>$V_{CC} = 3.3 \text{ V}$                  | -     | -   | 75                   | μΑ   |


# Low-power X-tal driver with enable and internal resistor; 3-state


 Table 7.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol            | Parameter                | Conditions                                                                                                                                                      | Min  | Тур | Max  | Unit |
|-------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------|------|
| 9 <sub>fs</sub>   | forward transconductance | see Figure 10 and Figure 11                                                                                                                                     |      |     |      |      |
|                   |                          | $V_{CC} = 0.8 \text{ V}$                                                                                                                                        | -    | -   | -    | mA/V |
|                   |                          | V <sub>CC</sub> = 1.1 V to 1.3 V                                                                                                                                | -    | -   | 10.8 | mA/V |
|                   |                          | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$                                                                                                                      | 1.8  | -   | 21.2 | mA/V |
|                   |                          | V <sub>CC</sub> = 1.65 V to 1.95 V                                                                                                                              | 6.9  | -   | 29.9 | mA/V |
|                   |                          | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$                                                                                                                      | 13.4 | -   | 38.0 | mA/V |
|                   |                          | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$                                                                                                                      | 15.8 | -   | 39.2 | mA/V |
| R <sub>bias</sub> | bias resistance          | $\overline{\text{EN}}$ = GND; f <sub>i</sub> = 0 Hz; V <sub>I</sub> = 0 V or V <sub>CC</sub> ; See <u>Figure 5</u> ; for frequency behavior see <u>Figure 6</u> | 1.07 | -   | 3.11 | ΜΩ   |

[1] Only for output Y and input  $\overline{EN}$ .





- (1)  $f_i = 30 \text{ kHz}.$
- (2)  $f_i = 1 \text{ MHz}.$
- (3)  $f_i = 10 \text{ MHz}.$

Fig 6. Typical bias resistance versus supply voltage

# Low-power X-tal driver with enable and internal resistor; 3-state

# 11. Dynamic characteristics

Table 8. Dynamic characteristics

| Symbol           | Parameter         | Conditions                                   |          | 25 °C  |      | -40 | 0 °C to +1     | 25 °C           | Unit |
|------------------|-------------------|----------------------------------------------|----------|--------|------|-----|----------------|-----------------|------|
|                  |                   |                                              | Min      | Typ[1] | Max  | Min | Max<br>(85 °C) | Max<br>(125 °C) |      |
| $C_L = 5 pl$     | F                 |                                              | '        | '      |      |     | '              |                 | '    |
| t <sub>pd</sub>  | propagation delay | X1 to X2; see Figure 7                       | l        |        |      |     |                |                 |      |
|                  |                   | $V_{CC} = 0.8 \text{ V}$                     | -        | 6.2    | -    | -   | -              | -               | ns   |
|                  |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   | 0.9      | 2.3    | 4.4  | 0.9 | 4.8            | 5.3             | ns   |
|                  |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   | 0.7      | 1.7    | 3.1  | 0.6 | 3.4            | 3.8             | ns   |
|                  |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | 0.5      | 1.4    | 2.6  | 0.5 | 2.9            | 3.2             | ns   |
|                  |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   | 0.4      | 1.1    | 2.0  | 0.4 | 2.3            | 2.6             | ns   |
|                  |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   | 0.3      | 1.0    | 1.8  | 0.3 | 2.1            | 2.4             | ns   |
|                  |                   | X1 to Y; see Figure 7                        | <u>l</u> |        |      |     |                |                 |      |
|                  |                   | $V_{CC} = 0.8 \text{ V}$                     | -        | 18.5   | -    | -   | -              | -               | ns   |
|                  |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   | 2.8      | 5.9    | 12.5 | 3.2 | 14.8           | 16.3            | ns   |
|                  |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   | 2.2      | 4.2    | 7.7  | 2.6 | 9.1            | 10.1            | ns   |
|                  |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | 1.9      | 3.5    | 6.2  | 2.2 | 7.8            | 8.6             | ns   |
|                  |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   | 1.6      | 2.9    | 4.8  | 1.9 | 6.2            | 6.9             | ns   |
|                  |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   | 1.4      | 2.6    | 4.1  | 1.7 | 4.7            | 5.2             | ns   |
| t <sub>en</sub>  | enable time       | EN to Y; see Figure 8                        | <u>l</u> |        |      |     |                |                 |      |
|                  |                   | $V_{CC} = 0.8 \text{ V}$                     | -        | 31.2   | -    | -   | -              | -               | ns   |
|                  |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   | 3.1      | 6.1    | 13.8 | 2.9 | 16.3           | 18.0            | ns   |
|                  |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   | 2.5      | 4.3    | 8.2  | 2.3 | 9.7            | 10.7            | ns   |
|                  |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | 2.1      | 3.6    | 6.5  | 2.0 | 7.6            | 8.4             | ns   |
|                  |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   | 1.8      | 2.9    | 4.8  | 1.7 | 5.8            | 6.4             | ns   |
|                  |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   | 1.7      | 2.6    | 4.1  | 1.7 | 4.7            | 5.2             | ns   |
| t <sub>dis</sub> | disable time      | EN to Y; see Figure 8                        | ]        |        |      |     |                |                 |      |
|                  |                   | V <sub>CC</sub> = 0.8 V                      | -        | 11.1   | -    | -   | -              | -               | ns   |
|                  |                   | V <sub>CC</sub> = 1.1 V to 1.3 V             | 2.5      | 4.5    | 9.0  | 2.9 | 9.4            | 10.4            | ns   |
|                  |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   | 2.0      | 3.3    | 6.4  | 2.3 | 6.7            | 7.4             | ns   |
|                  |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | 1.9      | 3.2    | 6.0  | 2.0 | 6.4            | 7.1             | ns   |
|                  |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   | 1.4      | 2.3    | 4.4  | 1.7 | 4.7            | 5.2             | ns   |
|                  |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   | 1.7      | 2.6    | 4.4  | 1.7 | 4.9            | 5.4             | ns   |

# Low-power X-tal driver with enable and internal resistor; 3-state

 Table 8.
 Dynamic characteristics ...continued

| Symbol                | Parameter         | Conditions                                   |     |     | 25 °C  |      | -40 | ) °C to +1     | 25 °C           | Unit |
|-----------------------|-------------------|----------------------------------------------|-----|-----|--------|------|-----|----------------|-----------------|------|
|                       |                   |                                              |     | Min | Typ[1] | Max  | Min | Max<br>(85 °C) | Max<br>(125 °C) |      |
| C <sub>L</sub> = 10 p | o <b>F</b>        |                                              |     |     |        |      |     |                | '               | '    |
| t <sub>pd</sub>       | propagation delay | X1 to X2; see Figure 7                       | [2] |     |        |      |     |                |                 |      |
|                       |                   | $V_{CC} = 0.8 \text{ V}$                     |     | -   | 9.6    | -    | -   | -              | -               | ns   |
|                       |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   |     | 1.2 | 3.1    | 6.1  | 1.2 | 6.8            | 7.5             | ns   |
|                       |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   |     | 1.0 | 2.3    | 4.0  | 0.9 | 4.6            | 5.1             | ns   |
|                       |                   | $V_{CC}$ = 1.65 V to 1.95 V                  |     | 8.0 | 1.9    | 3.3  | 0.7 | 3.8            | 4.2             | ns   |
|                       |                   | $V_{CC}$ = 2.3 V to 2.7 V                    |     | 0.6 | 1.5    | 2.7  | 0.6 | 3.1            | 3.5             | ns   |
|                       |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 0.5 | 1.3    | 2.4  | 0.5 | 2.7            | 3.0             | ns   |
|                       |                   | X1 to Y; see Figure 7                        | [2] |     |        |      |     |                |                 |      |
|                       |                   | V <sub>CC</sub> = 0.8 V                      |     | -   | 21.4   | -    | -   | -              | -               | ns   |
|                       |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   |     | 3.2 | 6.7    | 14.3 | 3.6 | 16.2           | 17.9            | ns   |
|                       |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   |     | 2.1 | 4.9    | 8.9  | 3.0 | 10.1           | 11.2            | ns   |
|                       |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |     | 1.9 | 4.1    | 6.9  | 2.6 | 8.0            | 8.8             | ns   |
|                       |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   |     | 2.1 | 3.4    | 5.4  | 2.3 | 6.6            | 7.3             | ns   |
|                       |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 1.8 | 3.1    | 4.8  | 2.1 | 5.6            | 6.2             | ns   |
| t <sub>en</sub>       | enable time       | EN to Y; see Figure 8                        | [3] |     |        |      |     |                |                 |      |
|                       |                   | $V_{CC} = 0.8 \text{ V}$                     |     | -   | 34.4   | -    | -   | -              | -               | ns   |
|                       |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   |     | 3.6 | 6.9    | 15.5 | 3.4 | 16.0           | 17.6            | ns   |
|                       |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   |     | 2.3 | 5.0    | 9.3  | 2.2 | 9.6            | 10.6            | ns   |
|                       |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |     | 2.0 | 4.2    | 7.2  | 1.9 | 7.9            | 8.7             | ns   |
|                       |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   |     | 1.8 | 3.4    | 5.5  | 1.7 | 6.4            | 7.1             | ns   |
|                       |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 1.7 | 3.2    | 4.9  | 1.7 | 5.5            | 6.1             | ns   |
| t <sub>dis</sub>      | disable time      | EN to Y; see Figure 8                        | [4] |     |        |      |     |                |                 |      |
|                       |                   | $V_{CC} = 0.8 \text{ V}$                     |     | -   | 13.0   | -    | -   | -              | -               | ns   |
|                       |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   |     | 3.4 | 5.7    | 10.4 | 3.4 | 10.8           | 11.9            | ns   |
|                       |                   | V <sub>CC</sub> = 1.4 V to 1.6 V             |     | 2.1 | 4.2    | 7.6  | 2.2 | 8.0            | 8.8             | ns   |
|                       |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |     | 2.2 | 4.3    | 7.3  | 1.9 | 7.6            | 8.4             | ns   |
|                       |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   |     | 1.6 | 3.1    | 5.3  | 1.7 | 5.5            | 6.1             | ns   |
|                       |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 2.1 | 3.8    | 6.0  | 1.7 | 6.5            | 7.2             | ns   |

# Low-power X-tal driver with enable and internal resistor; 3-state

Table 8. Dynamic characteristics ...continued

| Symbol              | Parameter         | Conditions                                   |           |     | 25 °C  |      | -40 | °C to +1       | 25 °C           | Unit |
|---------------------|-------------------|----------------------------------------------|-----------|-----|--------|------|-----|----------------|-----------------|------|
|                     |                   |                                              | N         | Min | Typ[1] | Max  | Min | Max<br>(85 °C) | Max<br>(125 °C) |      |
| C <sub>L</sub> = 15 | o <b>F</b>        | '                                            | ľ         |     |        |      |     | '              |                 |      |
| t <sub>pd</sub>     | propagation delay | X1 to X2; see Figure 7                       | 2]        |     |        |      |     |                |                 |      |
|                     |                   | $V_{CC} = 0.8 \text{ V}$                     |           | -   | 13.0   | -    | -   | -              | -               | ns   |
|                     |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   | •         | 1.6 | 3.8    | 7.9  | 1.4 | 8.8            | 9.7             | ns   |
|                     |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   |           | 1.3 | 2.8    | 4.9  | 1.1 | 5.7            | 6.3             | ns   |
|                     |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |           | 1.0 | 2.3    | 4.0  | 0.9 | 4.7            | 5.2             | ns   |
|                     |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   | (         | 8.0 | 1.9    | 3.2  | 0.8 | 3.7            | 4.1             | ns   |
|                     |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   | (         | 0.7 | 1.6    | 2.9  | 0.7 | 3.3            | 3.7             | ns   |
|                     |                   | X1 to Y; see Figure 7                        | 2]        |     |        |      |     |                |                 |      |
|                     |                   | V <sub>CC</sub> = 0.8 V                      |           | -   | 24.2   | -    | -   | -              | -               | ns   |
|                     |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   | ;         | 3.6 | 7.5    | 16.1 | 4.0 | 17.6           | 19.4            | ns   |
|                     |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   | ;         | 3.0 | 5.4    | 9.7  | 3.3 | 10.6           | 11.7            | ns   |
|                     |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | 2         | 2.2 | 4.6    | 7.7  | 2.9 | 9.0            | 9.9             | ns   |
|                     |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   | 2         | 2.0 | 3.9    | 6.1  | 2.6 | 7.3            | 8.1             | ns   |
|                     |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   | 2         | 2.0 | 3.6    | 5.4  | 2.3 | 5.9            | 6.5             | ns   |
| t <sub>en</sub>     | enable time       | EN to Y; see Figure 8                        | 3]        |     |        |      |     |                |                 |      |
|                     |                   | $V_{CC} = 0.8 \text{ V}$                     |           | -   | 37.5   | -    | -   | -              | -               | ns   |
|                     |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   | 4         | 4.0 | 7.7    | 17.2 | 3.7 | 17.5           | 19.3            | ns   |
|                     |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   | ;         | 3.0 | 5.5    | 10.0 | 2.5 | 10.2           | 11.3            | ns   |
|                     |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ | 2         | 2.3 | 4.7    | 7.9  | 2.1 | 9.2            | 10.2            | ns   |
|                     |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   | 2         | 2.0 | 3.9    | 6.2  | 2.0 | 7.4            | 8.2             | ns   |
|                     |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   | 2         | 2.0 | 3.6    | 5.5  | 1.9 | 6.0            | 6.6             | ns   |
| t <sub>dis</sub>    | disable time      | EN to Y; see Figure 8                        | <u>4]</u> |     |        |      |     |                |                 |      |
|                     |                   | $V_{CC} = 0.8 \text{ V}$                     |           | -   | 14.8   | -    | -   | -              | -               | ns   |
|                     |                   | V <sub>CC</sub> = 1.1 V to 1.3 V             | 4         | 4.3 | 6.8    | 11.2 | 3.7 | 12.4           | 13.7            | ns   |
|                     |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   | ;         | 3.0 | 5.1    | 8.1  | 2.5 | 8.9            | 9.8             | ns   |
|                     |                   | $V_{CC}$ = 1.65 V to 1.95 V                  | ;         | 3.0 | 5.4    | 8.0  | 2.1 | 9.3            | 10.3            | ns   |
|                     |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   | :         | 2.1 | 3.9    | 6.1  | 2.0 | 7.3            | 8.1             | ns   |
|                     |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   | 2         | 2.9 | 5.1    | 7.2  | 1.9 | 7.9            | 8.7             | ns   |

# Low-power X-tal driver with enable and internal resistor; 3-state

Table 8. Dynamic characteristics ...continued

| Symbol              | Parameter         | Conditions                                   |     |     | 25 °C  |      | -40 | 0 °C to +1     | 25 °C           | Unit |
|---------------------|-------------------|----------------------------------------------|-----|-----|--------|------|-----|----------------|-----------------|------|
|                     |                   |                                              |     | Min | Typ[1] | Max  | Min | Max<br>(85 °C) | Max<br>(125 °C) |      |
| C <sub>L</sub> = 30 | F                 |                                              |     |     |        |      |     |                |                 |      |
| t <sub>pd</sub>     | propagation delay | X1 to X2; see Figure 7                       | [2] |     |        |      |     |                |                 |      |
|                     |                   | $V_{CC} = 0.8 \text{ V}$                     |     | -   | 23.2   | -    | -   | -              | -               | ns   |
|                     |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   |     | 2.4 | 6.0    | 13.1 | 2.2 | 14.8           | 16.3            | ns   |
|                     |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   |     | 2.0 | 4.2    | 7.6  | 1.8 | 9.0            | 9.9             | ns   |
|                     |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |     | 1.7 | 3.6    | 6.1  | 1.5 | 7.2            | 8.0             | ns   |
|                     |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   |     | 1.4 | 2.9    | 4.8  | 1.3 | 5.7            | 6.3             | ns   |
|                     |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 1.2 | 2.5    | 4.3  | 1.1 | 5.1            | 5.7             | ns   |
|                     |                   | X1 to Y; see Figure 7                        | [2] |     |        |      |     |                |                 |      |
|                     |                   | $V_{CC} = 0.8 \text{ V}$                     |     | -   | 32.6   | -    | -   | -              | -               | ns   |
|                     |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   |     | 4.8 | 9.6    | 21.0 | 5.0 | 21.7           | 23.9            | ns   |
|                     |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   |     | 4.0 | 6.9    | 12.4 | 4.3 | 13.5           | 14.9            | ns   |
|                     |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |     | 2.9 | 5.9    | 9.8  | 3.8 | 10.7           | 11.8            | ns   |
|                     |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   |     | 2.7 | 5.0    | 7.5  | 3.3 | 8.2            | 9.1             | ns   |
|                     |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 2.7 | 4.7    | 6.8  | 3.1 | 7.7            | 8.5             | ns   |
| t <sub>en</sub>     | enable time       | EN to Y; see Figure 8                        | [3] |     |        |      |     |                |                 |      |
|                     |                   | $V_{CC} = 0.8 \text{ V}$                     |     | -   | 47.1   | -    | -   | -              | -               | ns   |
|                     |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   |     | 5.2 | 9.9    | 21.0 | 4.8 | 21.7           | 23.9            | ns   |
|                     |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   |     | 4.0 | 7.1    | 12.4 | 3.1 | 13.5           | 14.9            | ns   |
|                     |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |     | 3.0 | 6.0    | 9.9  | 2.8 | 10.7           | 11.8            | ns   |
|                     |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   |     | 2.7 | 5.0    | 7.7  | 2.6 | 8.1            | 9.0             | ns   |
|                     |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 2.7 | 4.8    | 6.8  | 2.6 | 7.7            | 8.5             | ns   |
| t <sub>dis</sub>    | disable time      | EN to Y; see Figure 8                        | [4] |     |        |      |     |                |                 |      |
|                     |                   | $V_{CC} = 0.8 \text{ V}$                     |     | -   | 20.3   | -    | -   | -              | -               | ns   |
|                     |                   | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$   |     | 6.0 | 10.2   | 15.3 | 4.8 | 16.5           | 18.2            | ns   |
|                     |                   | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$   |     | 4.4 | 7.8    | 11.2 | 3.1 | 12.3           | 13.6            | ns   |
|                     |                   | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ |     | 5.1 | 8.8    | 12.5 | 2.8 | 13.3           | 14.7            | ns   |
|                     |                   | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$   |     | 3.6 | 6.3    | 8.6  | 2.6 | 9.5            | 10.5            | ns   |
|                     |                   | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$   |     | 5.2 | 8.8    | 11.5 | 2.6 | 13.0           | 14.3            | ns   |

#### Low-power X-tal driver with enable and internal resistor; 3-state

 Table 8.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

| Symbol       | Parameter                                     | Conditions                                                                    |        | 25 °C |        |     | -40 °C to +125 °C |                |                 | Unit |
|--------------|-----------------------------------------------|-------------------------------------------------------------------------------|--------|-------|--------|-----|-------------------|----------------|-----------------|------|
|              |                                               |                                                                               | M      |       | Typ[1] | Max | Min               | Max<br>(85 °C) | Max<br>(125 °C) |      |
| $C_L = 5 pF$ | C <sub>L</sub> = 5 pF, 10 pF, 15 pF and 30 pF |                                                                               |        |       |        |     |                   |                |                 |      |
|              | power dissipation capacitance                 | $f_i = 1 \text{ MHz}; \overline{EN} = GND;$<br>$V_I = GND \text{ to } V_{CC}$ | [5][6] |       |        |     |                   |                |                 |      |
|              |                                               | $V_{CC} = 0.8 \text{ V}$                                                      |        | -     | 7.1    | -   | -                 | -              | -               | pF   |
|              |                                               | $V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$                                    |        | -     | 12.9   | -   | -                 | -              | -               | pF   |
|              |                                               | $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$                                    |        | -     | 19.2   | -   | -                 | -              | -               | pF   |
|              |                                               | $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$                                  |        | -     | 19.9   | -   | -                 | -              | -               | pF   |
|              |                                               | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$                                    |        | -     | 21.6   | -   | -                 | -              | -               | pF   |
|              |                                               | $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$                                    |        | -     | 24.3   | -   | -                 | -              | -               | pF   |

- [1] All typical values are measured at nominal  $V_{CC}$ .
- [2]  $t_{pd}$  is the same as  $t_{PLH}$  and  $t_{PHL}$ .
- [3]  $t_{en}$  is the same as  $t_{PZH}$  and  $t_{PZL}$ .
- [4]  $t_{dis}$  is the same as  $t_{PHZ}$  and  $t_{PLZ}$ .
- [5]  $C_{PD}$  is used to determine the dynamic power dissipation ( $P_D$  in  $\mu W$ ).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o) \text{ where:}$$

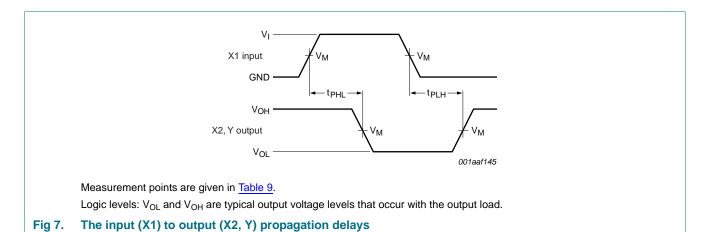
 $f_i$  = input frequency in MHz;

 $f_o$  = output frequency in MHz;

 $C_L$  = output load capacitance in pF;

 $V_{CC}$  = supply voltage in V;

N = number of inputs switching;


 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$  = sum of the outputs.

[6] Feedback current is included in C<sub>PD</sub>.

74AUP1Z125 **NXP Semiconductors** 

#### Low-power X-tal driver with enable and internal resistor; 3-state

# 12. Waveforms



**Measurement points** 

Table 9.

| Supply voltage  | Output              | Input               |                 |             |
|-----------------|---------------------|---------------------|-----------------|-------------|
| V <sub>CC</sub> | V <sub>M</sub>      | V <sub>M</sub>      | VI              | $t_r = t_f$ |
| 0.8 V to 3.6 V  | $0.5 \times V_{CC}$ | $0.5 \times V_{CC}$ | V <sub>CC</sub> | ≤ 3.0 ns    |

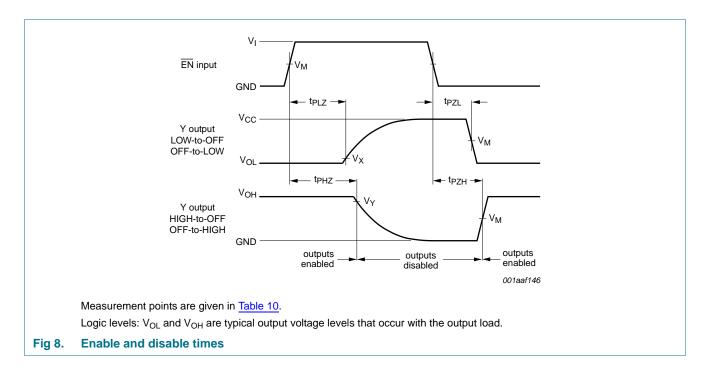
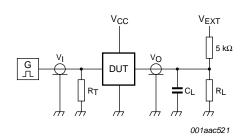




Table 10. Measurement points

| Supply voltage  | Input                      | Output                     | Output                   |                  |  |  |  |  |  |
|-----------------|----------------------------|----------------------------|--------------------------|------------------|--|--|--|--|--|
| V <sub>CC</sub> | V <sub>M</sub>             | V <sub>M</sub>             | V <sub>X</sub>           | V <sub>Y</sub>   |  |  |  |  |  |
| 0.8 V to 1.6 V  | $0.5 \times V_{\text{CC}}$ | $0.5 \times V_{\text{CC}}$ | V <sub>OL</sub> + 0.1 V  | $V_{OH} - 0.1 V$ |  |  |  |  |  |
| 1.65 V to 2.7 V | $0.5 \times V_{CC}$        | $0.5 \times V_{CC}$        | V <sub>OL</sub> + 0.15 V | $V_{OH}-0.15~V$  |  |  |  |  |  |
| 3.0 V to 3.6 V  | $0.5 \times V_{CC}$        | $0.5 \times V_{CC}$        | V <sub>OL</sub> + 0.3 V  | $V_{OH}-0.3\ V$  |  |  |  |  |  |

74AUP1Z125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

#### Low-power X-tal driver with enable and internal resistor; 3-state



Test data is given in Table 11.

Definitions for test circuit:

R<sub>L</sub> = Load resistance.

 $C_L$  = Load capacitance including jig and probe capacitance.

 $R_T$  = Termination resistance should be equal to the output impedance  $Z_o$  of the pulse generator.

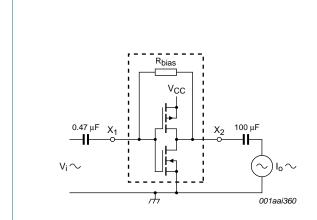
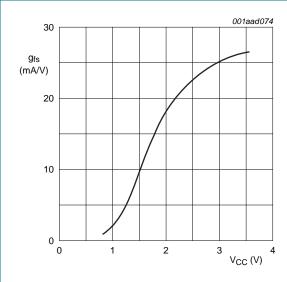

V<sub>EXT</sub> = External voltage for measuring switching times.

Fig 9. Test circuit for measuring switching times

#### Table 11. Test data

| Supply voltage  | Load                         | V <sub>EXT</sub>             |                                     |                                     |                                     |
|-----------------|------------------------------|------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| V <sub>CC</sub> | CL                           | R <sub>L</sub> [1]           | t <sub>PLH</sub> , t <sub>PHL</sub> | t <sub>PZH</sub> , t <sub>PHZ</sub> | t <sub>PZL</sub> , t <sub>PLZ</sub> |
| 0.8 V to 3.6 V  | 5 pF, 10 pF, 15 pF and 30 pF | 5 k $\Omega$ or 1 M $\Omega$ | open                                | GND                                 | $2 \times V_{CC}$                   |

[1] For measuring enable and disable times  $R_L$  = 5  $k\Omega$ , for measuring propagation delays, setup and hold times and pulse width  $R_L$  = 1  $M\Omega$ .






 $f_i = 1 \text{ kHz}.$ 

Vo is constant.

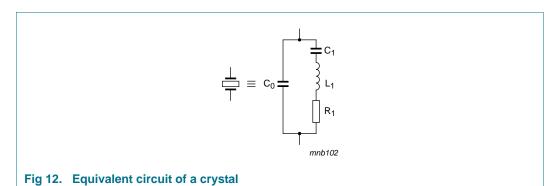
Fig 10. Test set-up for measuring forward transconductance



 $T_{amb}$  = 25 °C.

Fig 11. Typical forward transconductance as a function of supply voltage

#### Low-power X-tal driver with enable and internal resistor; 3-state


# 13. Application information

Crystal controlled oscillator circuits are widely used in clock pulse generators because of their excellent frequency stability and wide operating frequency range. The use of the 74AUP1Z125 provides the additional advantages of low power dissipation, stable operation over a wide range of frequency and temperature and a very small footprint. This application information describes crystal characteristics, design and testing of crystal oscillator circuits based on the 74AUP1Z125.

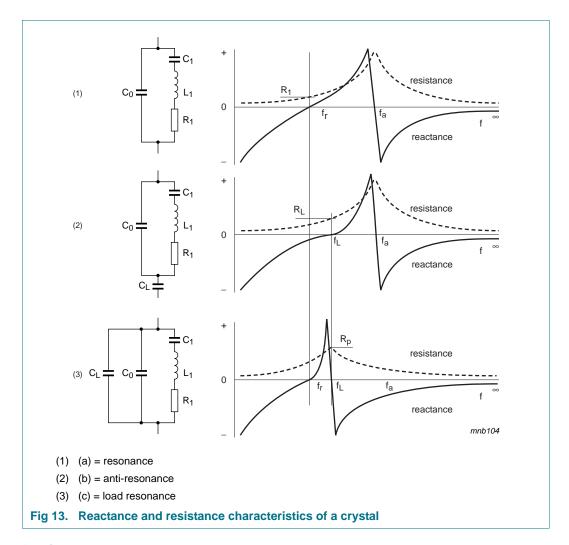

#### 13.1 Crystal characteristics

Figure 12 is the equivalent circuit of a quartz crystal.

The reactive and resistive components of the impedance of the crystal alone, and the crystal with a series and a parallel capacitance, is shown in Figure 13.

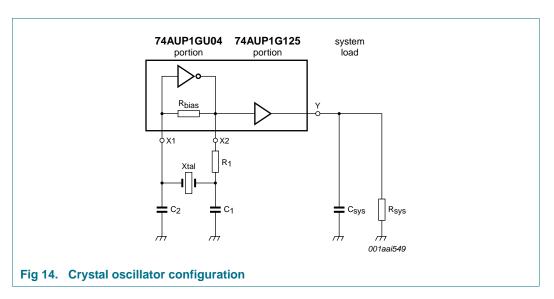


#### Low-power X-tal driver with enable and internal resistor; 3-state



#### 13.1.1 **Design**

Figure 14 shows the recommended way to connect a crystal to the 74AUP1Z125. This circuit is basically a Pierce oscillator circuit in which the crystal is operating at its fundamental frequency and tuned by the parallel load capacitance of  $C_1$  and  $C_2$ .  $C_1$  and  $C_2$  are in series with the crystal. They should be approximately equal.  $R_1$  is the drive-limiting resistor and is set to approximately the same value as the reactance of  $C_1$  at the crystal frequency ( $R_1 = X_{C1}$ ). This results in an input to the crystal of 50 % of the rail-to-rail output of X2. This keeps the drive level into the crystal within drive specifications (the designer should verify this). Overdriving the crystal can cause damage.


The internal bias resistor provides negative feedback and sets a bias point of the inverter near mid-supply, operating the 74AUP1GU04 in the high gain linear region.

To calculate the values of C<sub>1</sub> and C<sub>2</sub>, the designer can use the formula:

$$C_L = \frac{C_1 \times C_2}{C_1 + C_2} + C_s$$

 $C_L$  is the load capacitance as specified by the crystal manufacturer.  $C_s$  is the stray capacitance of the circuit and for 74AUP1Z125,  $C_s$  is equal to an input capacitance of 1.5 pF.

#### Low-power X-tal driver with enable and internal resistor; 3-state



#### **13.1.2 Testing**

After the calculations are performed for a particular crystal, the oscillator circuit should be tested. The following simple checks verify the prototype design of a crystal controlled oscillator circuit. Perform the checks after laying out the board:

- Test the oscillator over worst-case conditions (lowest supply voltage, worst-case crystal and highest operating temperature). Adding series and parallel resistors can simulate a worse case crystal.
- Insure that the circuit does not oscillate without the crystal.
- Check the frequency stability over a supply range greater than that which is likely to occur during normal operation.
- Check that the start-up time is within system requirements.

As the 74AUP1Z125 isolates the system loading, once the design is optimized, the single layout may work in multiple applications for any given crystal.

# 14. Package outline

#### Plastic surface-mounted package; 6 leads

**SOT363** 

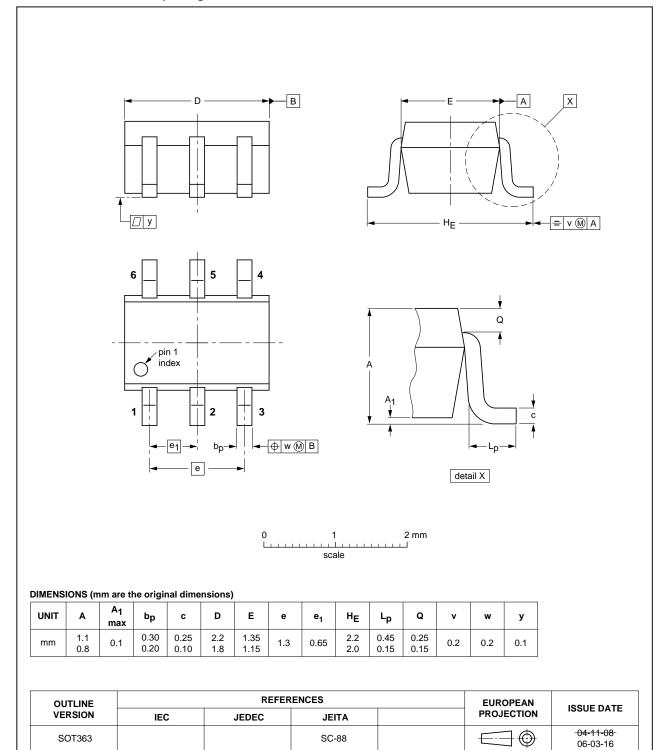



Fig 15. Package outline SOT363 (SC-88)

74AUP1Z125

All information provided in this document is subject to legal disclaimers.

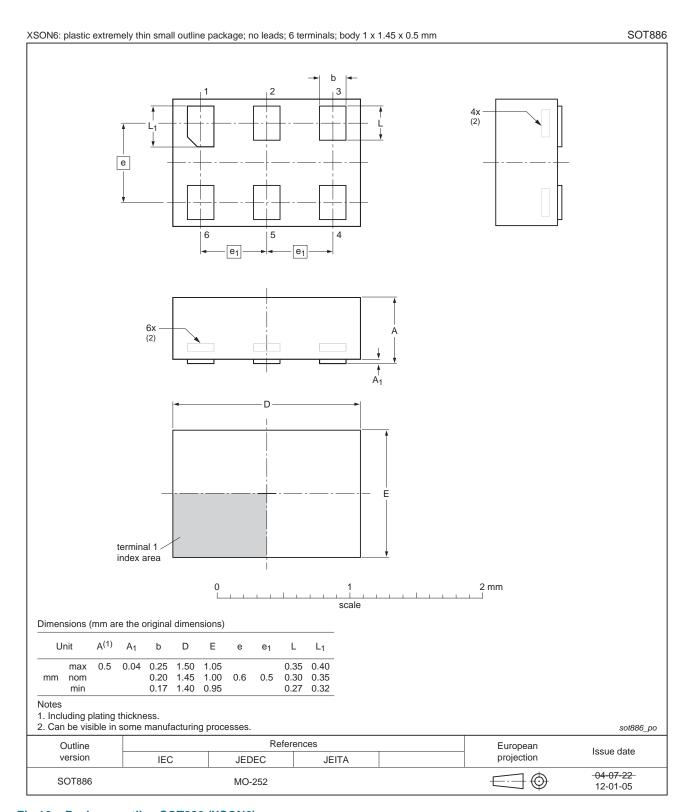



Fig 16. Package outline SOT886 (XSON6)

74AUP1Z125 All information provided in this document is subject to legal disclaimers.

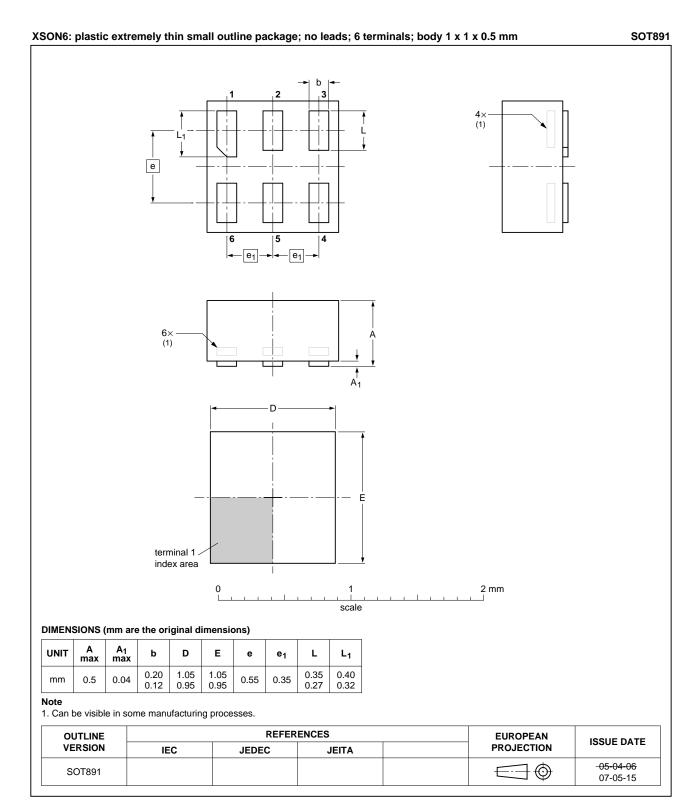



Fig 17. Package outline SOT891 (XSON6)

74AUP1Z125 All information provided in this document is subject to legal disclaimers.

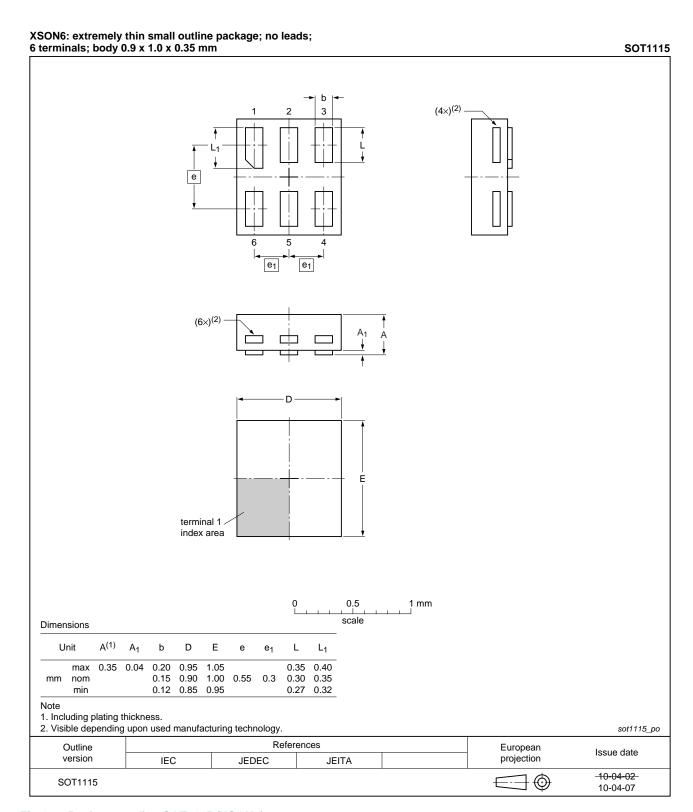



Fig 18. Package outline SOT1115 (XSON6)

74AUP1Z125 All information provided in this document is subject to legal disclaimers.

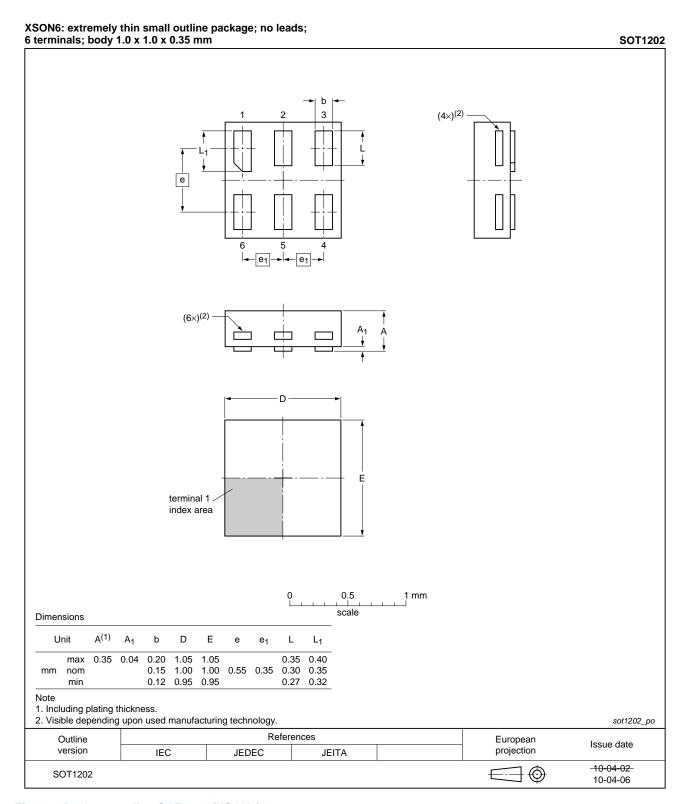



Fig 19. Package outline SOT1202 (XSON6)

74AUP1Z125 All information provided in this document is subject to legal disclaimers.

# Low-power X-tal driver with enable and internal resistor; 3-state

# 15. Abbreviations

#### Table 12. Abbreviations

| Acronym | Description             |
|---------|-------------------------|
| CDM     | Charged Device Model    |
| DUT     | Device Under Test       |
| ESD     | ElectroStatic Discharge |
| НВМ     | Human Body Model        |
| MM      | Machine Model           |

# 16. Revision history

#### Table 13. Revision history

| Document ID    | Release date                     | Data sheet status                   | Change notice    | Supersedes     |
|----------------|----------------------------------|-------------------------------------|------------------|----------------|
| 74AUP1Z125 v.5 | 20120808                         | Product data sheet                  | -                | 74AUP1Z125 v.4 |
| Modifications: | <ul> <li>Package outl</li> </ul> | ine drawing of SOT886 ( <u>Figu</u> | re 16) modified. |                |
| 74AUP1Z125 v.4 | 20111201                         | Product data sheet                  | -                | 74AUP1Z125 v.3 |
| Modifications: | <ul> <li>Legal pages</li> </ul>  | updated.                            |                  |                |
| 74AUP1Z125 v.3 | 20100909                         | Product data sheet                  | -                | 74AUP1Z125 v.2 |
| 74AUP1Z125 v.2 | 20080807                         | Product data sheet                  | -                | 74AUP1Z125 v.1 |
| 74AUP1Z125 v.1 | 20060803                         | Product data sheet                  | -                | -              |
|                |                                  |                                     |                  |                |

### Low-power X-tal driver with enable and internal resistor; 3-state

# 17. Legal information

#### 17.1 Data sheet status

| Document status[1][2]          | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <a href="http://www.nxp.com">http://www.nxp.com</a>.

#### 17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### 17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74AUP1Z125

All information provided in this document is subject to legal disclaimers.

#### Low-power X-tal driver with enable and internal resistor; 3-state

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### 17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

#### 18. Contact information

For more information, please visit: <a href="http://www.nxp.com">http://www.nxp.com</a>

For sales office addresses, please send an email to: salesaddresses@nxp.com

74AUP1Z125 **NXP Semiconductors** 

# Low-power X-tal driver with enable and internal resistor; 3-state

# 19. Contents

| 1      | General description              | . 1 |
|--------|----------------------------------|-----|
| 2      | Features and benefits            | . 1 |
| 3      | Ordering information             | . 2 |
| 4      | Marking                          | . 2 |
| 5      | Functional diagram               | . 2 |
| 6      | Pinning information              | . 3 |
| 6.1    | Pinning                          | . 3 |
| 6.2    | Pin description                  | . 3 |
| 7      | Functional description           | . 3 |
| 8      | Limiting values                  | . 4 |
| 9      | Recommended operating conditions | . 4 |
| 10     | Static characteristics           | . 5 |
| 11     | Dynamic characteristics          | 14  |
| 12     | Waveforms                        | 19  |
| 13     | Application information          | 21  |
| 13.1   | Crystal characteristics          | 21  |
| 13.1.1 | Design                           |     |
| 13.1.2 | Testing                          |     |
| 14     | Package outline                  | 24  |
| 15     | Abbreviations                    | 29  |
| 16     | Revision history                 | 29  |
| 17     | Legal information                | 30  |
| 17.1   | Data sheet status                | 30  |
| 17.2   | Definitions                      |     |
| 17.3   | Disclaimers                      |     |
| 17.4   | Trademarks                       |     |
| 18     | Contact information              |     |
| 40     | 0                                | 20  |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.



OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

#### Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.



Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru