SY89838U # Precision 1:8 LVDS Clock Fanout Buffer with 2:1 Runt Pulse Eliminator Input MUX ### **General Description** The SY89838U is a low jitter, low skew, high-speed 1:8 fanout buffer with a unique, 2:1 differential input multiplexer (MUX) optimized for redundant source switchover applications. Unlike standard multiplexers, the SY89838U unique 2:1 Runt Pulse Eliminator (RPE) MUX prevents any short cycles or "runt" pulses during switchover. In addition, a unique fail-safe input protection prevents metastable conditions when the selected input clock fails to a DC voltage (voltage between the pins of the differential input drops below 100mV). The SY89838U distributes clock frequencies from 1kHz to 1.5GHz, guaranteed, over temperature and voltage. The differential input includes Micrel's unique, 3-pin input termination architecture that allows customers to interface to any differential signal (AC- or DC-coupled) as small as 100mV (200Mv_{PP}) without any level shifting or termination resistor networks in the signal path. The outputs are 350mV compatible LVDS with fast rise/fall times guaranteed to be less than 150ps. The SY89838U operates from a 2.5V ±5% supply and is guaranteed over the full industrial temperature range of -40°C to +85°C. For applications that require 800mV LVPECL outputs, consider the SY89837U. The SY89838U is part of Micrel's high-speed, Precision Edge® product line. All support documentation can be found on Micrel's web site at: www.micrel.com. Precision Edge® ### **Features** - Selects between two clocks, and provides 8 precision, low skew LVDS output copies - 2:1 MUX input provides a glitch-free, stable LVDS output - Guaranteed AC performance over temperature and supply voltage: - Wide operating frequency: 1kHz to >1.5GHz - <150ps t_r/t_f - <40ps output-to-output skew</p> - Unique patent-pending input isolation design minimizes crosstalk - Fail-safe input prevents oscillation - Ultra-low jitter design: - <1ps_{RMS} random jitter - <1ps_{RMS} cycle-to-cycle jitter - <10ps_{PP} total jitter (clock) - <0.7ps_{RMS} MUX crosstalk induced jitter - Unique patent-pending input termination and VT pin accepts DC- and AC-coupled inputs (CML, PECL, LVDS) - 350mV LVDS output swing - Power supply 2.5V <u>+</u>5% - -40°C to +85°C industrial temperature range - Available in 32-pin (5mm x 5mm) MLF[®] package ### **Applications** - · Redundant clock switchover - Failsafe clock protection ### **Markets** - LAN/WAN - Enterprise Servers - ATE - Test and Measurements Precision Edge is a registered trademark of Micrel, Inc MicroLeadFrame and MLF are registered trademarks of Amkor Technology, Inc. SY89838U Micrel, Inc. # **Typical Application** # Ordering Information⁽¹⁾ | Part Number | Package
Type | Operating
Range | Package Marking | Lead
Finish | |-----------------------------|-----------------|--------------------|---|-------------------| | SY89838UMG | MLF-32 | Industrial | SY89838U with bar line
Pb-Free indicator | NiPdAu
Pb-Free | | SY89838UMGTR ⁽²⁾ | MLF-32 | Industrial | SY89838U with bar line
Pb-Free indicator | NiPdAu
Pb-Free | ### Notes: - 1. Contact factory for die availability. Dice are guaranteed at $T_A = +25^{\circ}C$, DC Electrical only. - 2. Tape and Reel. # **Pin Configuration** # **Pin Description** | Pin Number | Pin Name | Pin Function | | | | |---|-------------------------|---|--|--|--| | 1, 3,
6, 8 | IN0, /IN0,
IN1, /IN1 | Differential Inputs: These input pairs are the differential signal inputs to the device. These inputs accept AC or DC-coupled signals as small as 100mV (200mV _{PP}). Each pin of a pair internally terminates to a VT pin through 50Ω . Please refer to the "Input Interface Applications" section for more details. | | | | | 2, 7 | VT0, VT1 | Input Termination Center-Tap: Each side of the differential input pair terminates to a VT pin. The VT0 and VT1 pins provide a center-tap to a termination network for maximum interface flexibility. See the "Input Interface Applications" section for more details. | | | | | 31 | SEL | This single-ended TTL/CMOS-compatible input selects the inputs to the multiplexer. Note that this input is internally connected to a 25k Ω pull-up resistor and will default to a logic HIGH state if left open. Input threshold is V _{CC} /2. | | | | | 9, 19, 22, 32 | VCC | Positive Power Supply: Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors as close to VCC pins as possible. | | | | | 30, 28, 26, 24,
18, 16, 14, 12,
29, 27, 25, 23,
17, 15, 13, 11 | Q0 – Q7,
/Q0 – /Q7 | Differential Outputs: These LVDS output pairs are a logic function of the I IN1, and SEL inputs. Please refer to the truth table below for details. Unu output pairs must be terminated with 100Ω across the pair. | | | | | 20, 21 | GND,
Exposed Pad | Ground: Ground pin and exposed pad must be connected to the same ground plane. | | | | | 10 | CAP | Power-On Reset (POR) Initialization capacitor. When using the multiplexer with RPE capability, this pin is tied to a capacitor to VCC. The purpose is to ensure the internal RPE logic starts up in a known state. See "Power-On Rest (POR) Description" section for more details regarding capacitor selection. If this pin is tied directly to VCC, the RPE function will be disabled and the multiplexer will function as a normal multiplexer. The CAP pin should never be left open. | | | | | 4, 5 | VREF-AC0
VREF-AC1 | Reference Voltage: These outputs bias to V_{CC} –1.2V. They are used for AC-coupling inputs (IN, /IN). Connect VREF_AC directly to the VT pin. Bypass with 0.01µF low ESR capacitor to VCC. See "Input Interface Applications" section. Maximum sink/source current is ± 1.5 mA. | | | | ## **Truth Table** | | Inputs | | | | | puts | |-----|--------|-----|------|-----|---|------| | IN0 | /INO | IN1 | /IN1 | SEL | Q | /Q | | 0 | 1 | Х | Х | 0 | 0 | 1 | | 1 | 0 | Х | Х | 0 | 1 | 0 | | Х | Х | 0 | 1 | 1 | 0 | 1 | | Х | Х | 1 | 0 | 1 | 1 | 0 | # **Absolute Maximum Ratings**(1) | Supply Voltage (V _{CC}) | 0.5V to +4.0V | |--|-------------------------| | Input Voltage (V _{IN}) | 0.5V to V _{CC} | | Input Current | | | Source or sink current on IN, /IN | ±50mA | | Termination Current | | | Source or sink current on V _T | ±100mA | | V _{REF-AC} Source or sink current | ±2mA | | Lead Temperature (soldering, 20 sec. | .)+260°C | | Storage Temperature (T _s) | –65°C to 150°C | | | | # Operating Ratings⁽²⁾ | Supply Voltage (V _{CC}) | +2.375V to +2.625\ | |---|--------------------| | Ambient Temperature (T _A) | 40°C to +85°C | | Package Thermal Resistance ⁽³⁾ | | | MLF [®] (θ _{JA}) | | | Still-Air | 35°C/V | | MLF [®] (ψ _{JB}) | | | Junction-to-Board | 16°C/V | # DC Electrical Characteristics⁽⁴⁾ $T_A = -40$ °C to +85°C, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |----------------------|---|-------------------------------|----------------------|----------------------|----------------------|-------| | V _{CC} | Power Supply | | 2.375 | 2.5 | 2.625 | V | | Icc | Power Supply Current | No load, max. V _{CC} | | 250 | 350 | mA | | R _{IN} | Input Resistance
(IN-to-V _T) | | 45 | 50 | 55 | Ω | | R _{DIFF_IN} | Differential Input Resistance (IN-to-/IN) | | 90 | 100 | 110 | Ω | | V _{IH} | Input High Voltage
(IN, /IN) | | 1.2 | | V _{CC} | V | | V _{IL} | Input Low Voltage
(IN, /IN) | | 0 | | V _{IH} -0.2 | V | | V_{IN} | Input Voltage Swing (IN, /IN) | See Figure 1a. Note 5 | 0.2 | | V _{CC} | V | | V_{DIFF} IN | Differential Input Voltage Swing IN-/IN | See Figure 1b. | 0.4 | | | V | | V _{IN_FSI} | Input Voltage Threshold that Triggers FSI | | | 30 | 100 | mV | | V _{T_IN} | IN-to-V _T
(IN, /IN) | | | | 1.8 | V | | V _{REF-AC} | Output Reference Voltage | | V _{CC} -1.3 | V _{CC} -1.2 | V _{CC} -1.1 | V | ### Notes: - 1. Permanent device damage may occur if the absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability. - 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings. - 3. Package Thermal Resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θ_{JA} and ψ_{JB} values are determined for a 4-layer board in still air, unless otherwise stated. - 4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. - V_{IN} (max) is specified when V_T is floating. # LVDS Outputs DC Electrical Characteristics⁽⁶⁾ V_{CC} = +2.5V ±5%; T_A = -40°C to + 85°C; R_L = 100 Ω across output pair, or equivalent, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------------|---|----------------------|-------|-----|-------|-------| | V _{OUT} | Output Voltage Swing (Q, /Q) | See Figure 1a and 4a | 250 | 325 | | mV | | V _{DIFF-OUT} | Differential Output Voltage Swing Q - /Q | See Figure 1b | 500 | 650 | | mV | | V _{OCM} | Output Common Mode Voltage | See Figure 4b | 1.125 | | 1.275 | V | | ΔV_{OCM} | Change in Common Mode Voltage | See Figure 4b | -50 | | +50 | mV | # LVTTL/CMOS DC Electrical Characteristics⁽⁶⁾ V_{CC} = +2.5V ±5%; T_A = -40°C to + 85°C, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------|--------------------|-----------|------|-----|-----|-------| | V _{IH} | Input HIGH Voltage | | 2.0 | | | V | | V _{IL} | Input LOW Voltage | | | | 0.8 | V | | I _{IH} | Input HIGH Current | | -125 | | 30 | μA | | I _{IL} | Input LOW Current | | -300 | | | μA | #### Note: ^{1.} The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. ## **AC Electrical Characteristics**⁽⁷⁾ V_{CC} = +2.5V ±5%; T_A = -40°C to +85°C, RPE enabled, Input $t_r/t_f \le 600$ ps (20% to 80%), R_L = 100 Ω , unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |--------------------------------|---|---|-----|-----|------|-------------------| | f _{MAX} | Maximum Operating Frequency | RPE enabled | 1.5 | 2.0 | | GHz | | t _{pd} | Differential Propagation Delay | | | | | | | | IN-to-Q | V _{IN} ≥ 250mV, Note 8 | 500 | 700 | 950 | ps | | | SEL-to-Q | RPE enabled, see Timing Diagram | | | 17 | Cycles | | | SEL-to-Q | RPE disabled (V _{IN} = V _{CC} /2) | | | 1000 | ps | | t _{pd}
Tempco | Differential Propagation Delay
Temperature Coefficient | | | 115 | | fs/°C | | t _{skew} | Output-to-Output Skew | Note 9 | | 20 | 40 | ps | | | Part-to-Part Skew | Note 10 | | | 200 | ps | | t _{Jitter} | Clock Random Jitter | Note 11 | | | 1 | ps _{RMS} | | | Cycle-to-cycle Jitter | Note 12 | | | 1 | ps _{RMS} | | | Total Jitter | Note 13 | | | 10 | ps _{PP} | | | Crosstalk-Induced Jitter | Note 14 | | | 0.7 | ps _{RMS} | | t _{R,} t _F | Output Rise/Fall Time (20% to 80%) | At full output swing. | 40 | 80 | 150 | ps | #### Notes: - 1. High-frequency AC-parameters are guaranteed by design and characterization. - 2. Propagation delay is a function of rise and fall time at IN. See "Typical Operating Characteristics" for more details. - 3. Output-to-output skew is measured between two different outputs under identical transitions. - 4. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs. - 5. Random jitter is measured with a K28.7 character pattern, measured at $< f_{MAX}$. - 6. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, T_n T_{n-1} where T is the time between rising edges of the output signal. - Total Jitter definition: with an ideal clock input of frequency <f_{MAX}, no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value. - 8. Crosstalk is measured at the output while applying two similar differential clock frequencies that are asynchronous with respect to each other at the inputs. ### **Functional Description** ### **RPE MUX and Fail-Safe Input** The SY89838U is optimized for clock switchover applications where switching from one clock to another clock without runt pulses (short cycles) is required. It features two unique circuits: ### Runt-Pulse Eliminator (RPE) Circuit: The RPE MUX provides a "glitchless" switchover between two clocks and prevents any runt pulses from occurring during the switchover transition. The design of both clock inputs is identical (i.e., the switchover sequence and protection is symmetrical for both input pair, INO or IN1. Thus, either input pair may be defined as the primary input). If not required, the RPE function can be permanently disabled to allow the switchover between inputs to occur immediately. If the CAP pin is tied directly to V_{CC}, the RPE function will be disabled and the multiplexer will function as a normal multiplexer. ### Fail-Safe Input (FSI) Circuit: The FSI function provides protection against a selected input pair that drops below the minimum amplitude requirement. If the selected input pair drops sufficiently below the 100mV minimum singleended input amplitude limit (V_{IN}), or 200mV differentially (V_{DIFF IN}), the output will latch to the last valid clock state. ### **RPE and FSI Functionality** The basic operation of the RPE MUX and FSI functionality is described with the following four case descriptions. All descriptions are related to the true inputs and outputs. The primary (or selected) clock is called CLK1; the secondary (or alternate) clock is called CLK2. Due to the totally asynchronous relation of the IN and SEL signals and an additional internal protection against metastability, the number of pulses required for the operations described in cases 1-4 can vary within certain limits. Refer to "Timing Diagrams" for more detailed information. ### Case #1 Two Normal Clocks and RPE Enabled In this case the frequency difference between the two running clocks INO and IN1 must not be greater than 1.5:1. For example, if the INO clock is 500MHz, the IN1 clock must be within the range of 334MHz to If the SEL input changes state to select the alternate clock, the switchover from CLK1 to CLK2 will occur in three stages. - Stage 1: The output will continue to follow CLK1 for a limited number of pulses. - Stage 2: The output will remain LOW for a limited number of pulses of CLK2. - Stage 3: The output follows CLK2. Case #2 Input Clock Failure: Switching from a selected clock stuck HIGH to a valid clock (RPE enabled) If CLK1 fails HIGH before the RPE MUX selects CLK2 (using the SEL pin), the switchover will occur in three stages. - Stage 1: The output will remain HIGH for a limited number of pulses of CLK2. - Stage 2: The output will switch to LOW and then remain LOW for a limited number of falling edges of CLK2. Stage 3: The output will follow CLK2. Note: Output shows extended clock cycle during switchover. Pulse width for both high and low of this cycle will always be greater than 50% of the CLK2 period. Case #3 Input Clock Failure: Switching from a selected clock stuck Low to a valid clock (RPE enabled) If CLK1 fails LOW before the RPE MUX selects CLK2 (using the SEL pin), the switchover will occur in two stages. - Stage 1: The output will remain LOW for a limited number of falling edges of CLK2. - Stage 2: The output will follow CLK2. Case #4 Input Clock Failure: Switching from the selected clock input stuck in an undetermined state to a valid clock input (RPE enabled) If CLK1 fails to an undetermined state (e.g., amplitude falls below the 100mV (V_{IN}) minimum single-ended input limit, or 200mV differentially) before the RPE MUX selects CLK2 (using the SEL pin), the switchover to the valid clock CLK2 will occur either following Case #2 or Case #3, depending on the last valid state at the CLK1. If the selected input clock fails to a floating, static, or extremely low signal swing, including 0mV, the FSI function will eliminate any metastable condition and quarantee a stable output signal. No ringing and no undetermined state will occur at the output under these conditions. Please note that the FSI function will not prevent duty cycle distortions or runt pulses in case of a slowly deteriorating (but still toggling) input signal. Due to the FSI function, the propagation delay will depend on rise and fall time of the input signal and on its amplitude. Refer to "Typical Operating Characteristics" for more detailed information. ## Power-On Reset (POR) Description The SY89838U includes an internal power-on reset (POR) function to ensure the RPE logic starts-up in a known logic state once the power-supply voltage is An external capacitor connected between stable. V_{CC} and the CAP pin (pin 10) controls the delay for the power-on reset function. Calculation of the required capacitor value is based on the time the system power supply needs to power up to a minimum of 2.3V. The time constant for the internal power-on-reset must be greater than the time required for the power supply to ramp up to a minimum of 2.3V. The following formula describes this relationship: $$C(\mu F) \ge \frac{t_{dPS}(ms)}{12(ms/\mu F)}$$ As an example, if the time required for the system power supply to power up past 2.3V is 12ms, the required capacitor value on pin 10 would be: $$C(\mu F) \ge \frac{12ms}{12(ms / \mu F)}$$ $$C(\mu F) \ge 1\mu F$$ ## **Typical Operating Characteristics** V_{CC} = 2.5V, GND = 0V, $V_{IN} \ge 250 \text{mV}_{pk}$, $t_r/t_f \le 300 \text{ps}$, R_L = 100 Ω across output pair; T_A = 25°C, unless otherwise stated. # **Singled-Ended and Differential Swings** Figure 1a. Singled-Ended Voltage Swing Figure1b. Differential Voltage Swing ## **Input Stage** Figure 2. Simplified Differential Input Stage # **Input Interface Applications** Figure 3a. LVPECL Interface (DC-Coupled) Figure 3b. LVPECL Interface (AC-coupled) option: may connect V_T to V_{CC} Figure 3c. CML Interface (DC-Coupled) Figure 3d. CML Interface (AC-Coupled) Figure 3e. LVDS Interface (DC-Coupled) # **LVDS Output Interface Applications** LVDS specifies a small swing of 325mV typical, on a nominal 1.2V common mode above ground. The common mode voltage has tight limits to permit large variations in ground between an LVDS driver and V_{OH}, V_{OL} V_{OH}, V_{OL} ±1% Figure 4a. LVDS Differential Measurement receiver. Also, change in common mode voltage, as a function of data input, is kept to a minimum, to keep EMI low. Figure 4b. LVDS Common Mode Measurement # **Related Product and Support Documentation** | Part Number | Function | Data Sheet Link | |---------------|---|--| | SY89837U | Presision 1:8 LVPECL Fanout Buffer with 2:1 Runt Pulse Eliminator Input Mux | www.micrel.com/_PDF/HBW/SY89837u.pdf | | | MLF [™] Application Note | www.amkor.com/products/notes papers/MLFAppNote.pdf | | HBW Solutions | New Products and Applications | www.micrel.com/product-info/products/solutions.shtml | # **Package Information** TOP VIEW NOTE: - NOTE: 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. MAX. PACKAGE WARPAGE IS 0.05 mm. 3. MAXIMUM ALLOWABE BURRS IS 0.076 mm IN ALL DIRECTIONS. 4. PIN #1 ID ON TOP WILL BE LASER/INK MARKED. DIMENSION APPLIES TO METALIZED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25 mm FROM TERMINAL TIP. APPLIED ONLY FOR TERMINALS. - APPLIED FOR EXPOSED PAD AND TERMINALS. SIDE VIEW 32-Pin (5mm x 5mm) MLF® (MLF-32) SY89838U Micrel, Inc. PCB Thermal Consideration for 32-Pin MLF® Package (Always solder, or equivalent, the exposed pad to the PCB) ### **Package Notes:** - Package meets Level 2 qualification. - All parts are dry-packaged before shipment. - Exposed pads must be soldered to a ground for proper thermal management. ## MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2005 Micrel, Incorporated. OOO «ЛайфЭлектроникс" "LifeElectronics" LLC ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703 Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии. С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров ### Мы предлагаем: - Конкурентоспособные цены и скидки постоянным клиентам. - Специальные условия для постоянных клиентов. - Подбор аналогов. - Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям. - Приемлемые сроки поставки, возможна ускоренная поставка. - Доставку товара в любую точку России и стран СНГ. - Комплексную поставку. - Работу по проектам и поставку образцов. - Формирование склада под заказчика. - Сертификаты соответствия на поставляемую продукцию (по желанию клиента). - Тестирование поставляемой продукции. - Поставку компонентов, требующих военную и космическую приемку. - Входной контроль качества. - Наличие сертификата ISO. В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам. Конструкторский отдел помогает осуществить: - Регистрацию проекта у производителя компонентов. - Техническую поддержку проекта. - Защиту от снятия компонента с производства. - Оценку стоимости проекта по компонентам. - Изготовление тестовой платы монтаж и пусконаладочные работы. Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru