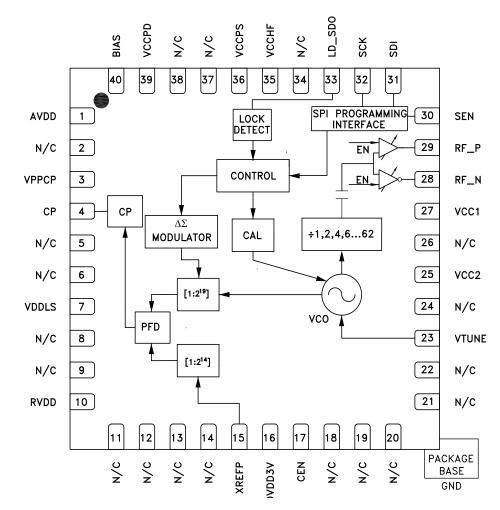


CLOCK GENERATOR WITH FRACTIONAL-N PLL & INTEGRATED VCO, 125 - 350 MHz

Typical Applications

- 1G/10G Ethernet Line Cards
- OTN and SONET/SDH Applications


v01.0712

- High Frequency Processor Clocks
- Any Frequency Clock Generation
- Low Jitter SAW Oscillator Replacement
- Fiber Channel Interface Clocks
- Cellular/4G Infrastructure
- DDS Replacement
- Optical Modules, Transponders, Line Cards

Functional Diagram

Features

Frequency Range: 125 - 350 MHz 75 fs RMS Jitter Generation (Typical) Exceeds G.8251 & GR-253-CORE Jitter Specifications -165 dBc/Hz Phase Noise floor Maximum Phase Detector Rate 100 MHz Figure of Merit (FOM) -227 dBc/Hz 24-Bit Step Size, Resolution 3 Hz Typical Exact Frequency Mode Built-in Digital Self Test 40 Lead 6x6mm SMT Package: 36mm2

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

CLOCK GENERATOR WITH FRACTIONAL-N PLL & INTEGRATED VCO, 125 - 350 MHz

General Description

The HMC1032LP6GE is a low-noise, wide-band clock generator IC with a fractional-N Phase Locked Loop (PLL) that features an integrated Voltage Controlled Oscillator (VCO). The device provides differential clock outputs between 125 and 350 MHz range. The HMC1032LP6GE features low noise Phase Detector (PD) and Delta-Sigma modulator, capable of operating at up to 100 MHz, permit wider loop-bandwidths with excellent spectral performance.

v01.0712

The HMC1032LP6GE features industry leading phase noise and jitter performance, across the operating range, that enable it to improve link level jitter performance, Bit-Error-Rates (BER) and eye diagram metrics. The superior noise floor (<-165 dBc/Hz) makes the HMC1032LP6GE an ideal source for a variety of applications –such as clock references for high speed data converters, physical layer devices (PHY), serializer/deserializer (SERDES) circuits, FPGAs and processors. The HMC1032LP6GE can also be used as reference clock and LO for 1G/10G Ethernet line cards as well as jitter attenuation and frequency translation.

The differential output of the HMC1032LP6GE includes a 2-bit output amplitude control which may be set via the SPI serial programming interface, and an output Mute function. The Delta-Sigma Modulator of the HMC1032LP6GE features Hittite's Exact Frequency Mode, which enables users to generate output frequencies with close to 0 Hz frequency error.

For theory of operation and register map refer to the "<u>PLLs with Integrated VCOs - RF VCOs Operating Guide</u>". To view the Operating Guide, please visit www.hittite.com and choose HMC1032LP6GE from the "Search by Part Number" pull down menu.

Electrical Specifications, VPPCP, VDDLS, VCC1, VCC2 = 5V; RVDD, AVDD, DVDD3V, VCCPD, VCCHF, VCCPS = 3.3V Min & Max Specified across Temperature -40 °C to 85 °C

Parameter	Condition	Min.	Тур.	Max.	Units
RF Output Characteristics	· · · ·		•		•
Output Frequency		125		350	MHz
Output Specifications					
Output Voltage	Single-Ended Swing (peak-to- peak), 50 Ohm termination	0.25		1.35	Vpp
Output Amplitude Control	Gain Setting = 00, F=350 MHz		330		mVpp
	Gain Setting = 01, F=350 MHz		450		mVpp
	Gain Setting = 10, F=350 MHz		675		mVpp
	Gain Setting = 11, F=350 MHz		1.01		Vpp
Output Common Mode Voltage	Output Common Mode Voltage AC Coupling Recommended				
VCO Output Divider					
VCO RF Divider Range	1,2,4,6,8,,62	1		62	
PLL RF Divider Characteristics					
19-Bit N-Divider Range (Integer)	Max = 2 ¹⁹ - 1	16		524,287	
19-Bit N-Divider Range (Fractional)	Fractional Nominal Divide Ratio Varies (-3 / +4) Dynamically Max	20		524,283	
REF Input Characteristics					
Max Ref Input Frequency				350	MHz
Ref Input Voltage	AC Coupled ^[1]	1	2	3.3	Vp-p
Ref Input Capacitance				5	pF
14-Bit R-Divider Range		1		16,383	

[1] Measured with 100 Ω external termination. See <u>Hittite PLL w/ Integraged VCOs Operating Guide</u> Reference Input Stage section for more details.

[2] Slew rate of greater or equal to 0.5 ns/V is recommended, see <u>PLL with Integrated RF VCOs Operating Guide</u> for more details. Frequency is guaranteed across process voltage and temperature from -40 °C to 85 °C.

[3] This maximum phase detector frequency can only be achieved if the minimum N value is respected. eg. In the case of fractional feedback mode, the maximum PFD rate = fvco/20 or 100 MHz, whichever is less.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Electrical Specifications (Continued)

v01.0712

Parameter	Condition	Min.	Тур.	Max.	Units
Phase Detector (PD) [2]			•	•	
PD Frequency Fractional Mode B	[3]	DC		100	MHz
PD Frequency Fractional Mode A (and Register 6 [17:16] = 11)		DC		80	MHz
PD Frequency Integer Mode		DC		125	MHz
Charge Pump	· · · · ·		•		
Output Current		0.02		2.54	mA
Charge Pump Gain Step Size			20		μA
PD/Charge Pump SSB Phase Noise	50 MHz Ref, Input Referred				
1 kHz			-143		dBc/Hz
10 kHz	Add 1 dB for Fractional		-150		dBc/Hz
100 kHz	Add 3 dB for Fractional		-153		dBc/Hz
RF_P, RF_N					
Output Rise Time	Measured from 20% to 80% of Output Signal, F=350 MHz Gain Setting = 00			150	ps
	Measured from 20% to 80% of Output Signal, F=350 MHz Gain Setting = 11			250	ps
Output Fall Time	Measured from 80% to 20% of Output Signal, F=350 MHz Gain Setting = 00			150	ps
	Measured from 80% to 20% of Output Signal, F=350MHz Gain Setting = 11			250	ps
Output Duty Cycle	Measured at 50% of Output Signal. F=350 MHz, F=312.5 MHz & F=155.52 MHz	47.5		52.5	%
Logic Inputs	^ · · · · · · · · · · · · · · · · · · ·				
Vsw	Switching threshold for logic levels	40	50	60	% DVDD
Logic Outputs					
VOH Output High Voltage			DVDD		V
VOL Output Low Voltage			0		V
Output Impedance		100		200	Ω
Maximum Load Current				1.5	mA
Power Supply Voltages	· · ·				
3.3V Supplies	AVDD, VCCHF, VCCPS, VCCPD, RVDD,DVDD	3.0	3.3	3.5	V
5V Supplies	VPPCP, VDDCP, VCC1, VCC2	4.8	5	5.2	V
Power Supply Currents					
+5V Analog Charge Pump	VPPCP, VDDCP		8		mA
+5V VCO Core & VCO Buffer	fo/1 Mode VCC2		105		mA
	fo/N Mode VCC2		80		mA
+5V VCO Divider & RF/PLL Buffer	fo/1 Mode VCC1		25		mA
	fo/N Mode VCC1	80		100	mA
+3.3V	AVDD, VCCHF, VCCPS, VCCPD, RVDD, DVDD3V		52		mA
Power Down - Crystal Off	Reg 01h=0, Crystal Not Clocked		10		μA
Power Down - Crystal On, 100 MHz	Reg 01h=0, Crystal Clocked 100 MHz		5		mA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

CLOCK GENERATOR WITH FRACTIONAL-N PLL & INTEGRATED VCO, 125 - 350 MHz

Electrical Specifications (Continued)

v01.0712

Parameter	Condition	Min.	Тур.	Max.	Units
Power on Reset			•		·
Typical Reset Voltage on DVDD			700		mV
Minimum DVDD Voltage for No Reset		1.5			V
Power on Reset Delay			250		μs
Figure of Merit	· · · · · · · · · · · · · · · · · · ·		•		·
Floor Integer Mode	Normalized to 1 Hz		-230		dBc/Hz
Floor Fractional Mode	Normalized to 1 Hz		-227		dBc/Hz
Flicker (Both Modes)	Normalized to 1 Hz		-268		dBc/Hz
Phase Jitter RMS	Measured at 155.52 MHz, Integration Bandwidth: 12 kHz to 20 MHz, 50 MHz reference, fractional mode		116		fs
Phase Jitter RMS	Measured at 350 MHz, Integration Bandwidth: 12 kHz to 20 MHz Charge Pump (CP) Current set at 2.54 mA, 50 MHz reference		75		fs

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Figure 1. Typical Closed Loop Integer Phase Noise @ 312.5 MHz 🖽

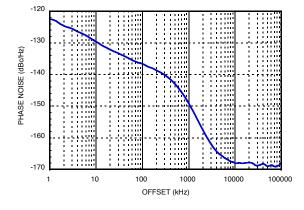


Figure 3. Free Running Phase Noise [3]

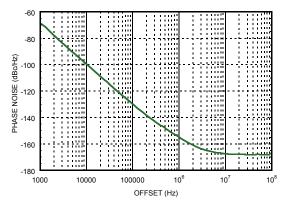


Figure 5. Figure of Merit

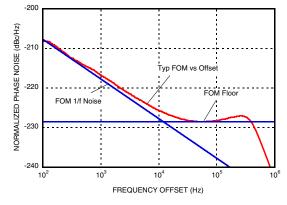


Figure 2. Typical Closed Loop Fractional Phase Noise @ 312.5 MHz [2]

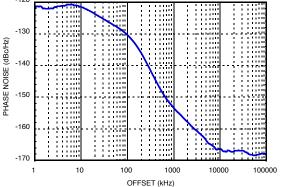


Figure 4. Integrated RMS Jitter [4]

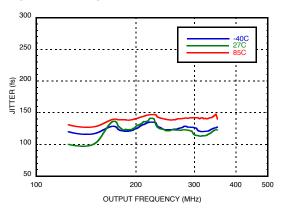
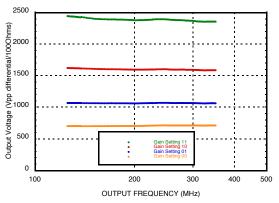
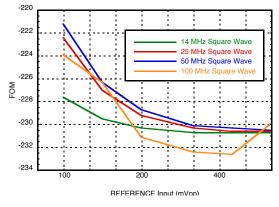



Figure 6. Typical Output Voltage

[1] The PN plot is measured with a 50 MHz Crystal Oscillator, RMS Jitter is 72 fs with 12 kHz to 20 MHz Integrated Bandwidth [2] The PN plot is measured with a 50 MHz Crystal Oscillator, RMS Jitter is 120 fs with 12 kHz to 20 MHz Integrated Bandwidth [3] Free Running Phase Noise @ fout = 350 MHz


[4] RMS Jitter data is measured in fractional mode with 100 kHz Loop bandwidth using 50 MHz reference frequency from 1 kHz to 20 MHz integration bandwidth.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Figure 7. Reference Input Sensitivity, Square Wave [5]

v01.0712

Figure 9. Output Rise Time

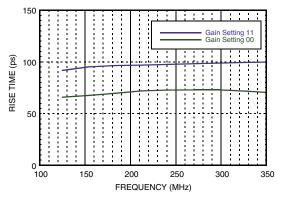
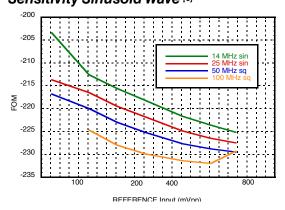
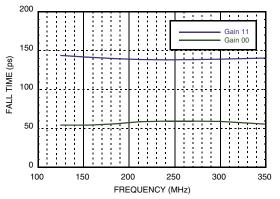




Figure 8. Reference Input Sensitivity Sinusoid Wave [6]

Loop Filter Configuration Table

Loop Filter BW (kHz)	C1 (pF)	C2 (nF)	C3 (pF)	C4 (pF)	R2 (kΩ)	R3 (kΩ)	R4 (kΩ)	Loop Filter Design
250	3.9	15	N/A	N/A	2.7	0	0	
135	91	33	91	91	0.82	1	1	$C1 \xrightarrow{+} C3 \xrightarrow{+} C4$
74	150	27	220	220	0.82	1	1	

[5] Measured from a 50 Ω source with a 100 Ω external resistor termination. See <u>PLL with Integrated RF VCOs Operating Guide</u> Reference Input Stage section for more details. Full FOM performance up to maximum 3.3 Vpp input voltage.

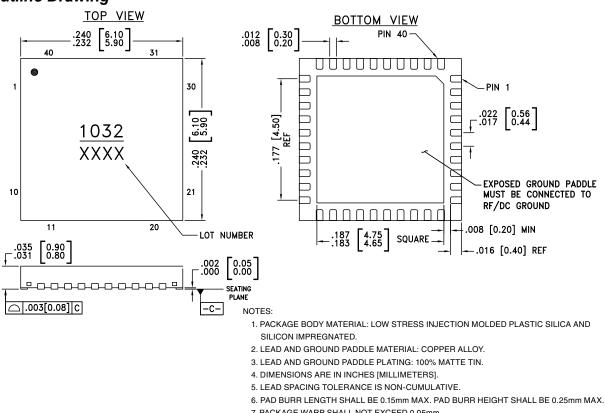
[6] Measured from a 50 Ω source with a 100 Ω external resistor termination. See <u>PLL with Integrated RF VCOs Operating Guide</u> Reference Input Stage_section for more details. Full FOM performance up to maximum 3.3 Vpp input voltage.

CLOCK GENERATORS - SMT

6

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

CLOCK GENERATOR WITH FRACTIONAL-N PLL & INTEGRATED VCO, 125 - 350 MHz


Absolute Maximum Ratings

•
-0.3V to +3.6V
-0.3V to +5.5V
-0.3V to +5.5V
-40°C to +85°C
-65°C to 150°C
125 °C
20 °C/W
260°C
40 sec
Class 1B

v01.0712

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Outline Drawing

7. PACKAGE WARP SHALL NOT EXCEED 0.05mm.

8. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

9. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

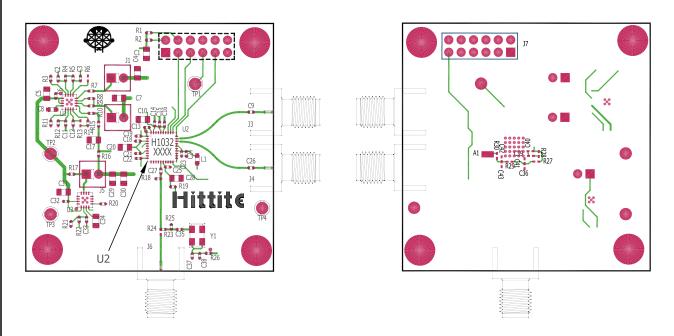
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]		
HMC1032LP6GE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1	<u>H1032</u> XXXX		
[1] 4-Digit lot number XXXX						

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0712

HMC1032LP6GE

CLOCK GENERATOR WITH FRACTIONAL-N PLL & INTEGRATED VCO, 125 - 350 MHz


Pin Descriptions

Pin Number	Function	Description	
1	AVDD	DC Power Supply for analog circuitry.	
2, 5, 6, 8, 9, 11 - 14, 18 - 22, 24, 26, 34, 37, 38	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
3	VPPCP	Power Supply for charge pump analog section	
4	СР	Charge Pump Output	
7	VDDLS	Power Supply for the charge pump digital section	
10	RVDD	Reference Supply	
15	XREFP	Reference Oscillator Input	
16	DVDD3V	DC Power Supply for Digital (CMOS) Circuitry	
17	CEN	Chip Enable. Connect to logic high for normal operation.	
23	VTUNE	VCO Varactor. Tuning Port Input.	
25	VCC2	VCO Analog Supply 2	
27	VCC1	VCO Analog Supply 1	
28	RF_N	Negative Output Signal (Differential)	
29	RF_P	Positive Output Signal (Differential) (Default = Off; Single-Ended Operation)	
30	SEN	PLL Serial Port Enable (CMOS) Logic Input	
31	SDI	PLL Serial Port Data (CMOS) Logic Input	
32	SCK	PLL Serial Port Clock (CMOS) Logic Input	
33	LD_SDO	Lock Detect, or Serial Data, or General Purpose (CMOS) Logic Output (GPO)	
35	VCCHF	DC Power Supply for Analog Circuitry	
36	VCCPS	DC Power Supply for Analog Prescaler	
39	VCCPD	DC Power Supply for Phase Detector	
40	BIAS	External bypass decoupling for precision bias circuits. Note: 1.920V ±20mV reference voltage (BIAS) is generated internally and cannot drive an external load. Must be measured with 10GΩ meter such as Agilent 34410A, normal 10MΩ DVM will read erroneously.	

Evaluation PCB

v01.0712

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Evaluation PCB Schematic

To view this <u>Evaluation PCB Schematic</u> please visit <u>www.hittite.com</u> and choose HMC1032LP6GE from the "Search by Part Number" pull down menu to view the product splash page.

Evaluation Order Information

Item	Contents	Part Number
Evaluation PCB Only	HMC1032LP6GE Evaluation PCB	EVAL01-HMC1032LP6GE
Evaluation Kit	HMC1032LP6GE Evaluation PCB USB Interface Board 6' USB A Male to USB B Female Cable CD ROM (Contains User Manual, Evaluation PCB Schematic, Evaluation Software, Hittite PLL Design Software)	EKIT01-HMC1032LP6GE

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC1032LP6GE Output Stage

A representative schematic for the HMC1032LP6GE output stage is given in Figure 11 below. The differential output buffer features adjustable amplitudes which can be set by the "Gain Setting" register values. The typical output amplitudes that correspond to each setting are provided in Figure 6.

v01.0712

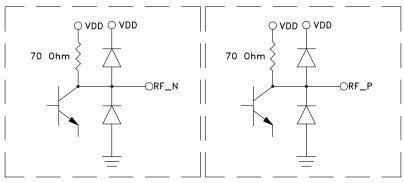


Figure 11. HMC1032LP6GE output stage

HMC1032LP6GE Application Information

The HMC1032LP6GE features a flexible Output Frequency Range (125 MHz to 350 MHz), industry leading phase noise and phase jitter performance, excellent noise floor (<-170dBc/Hz), and a high level of integration. HMC1032LP6GE is ideal as a high frequency, low jitter processor clock, a clock source for high-frequency data converters or a reference oscillator for Physical Layer Devices (PHY).

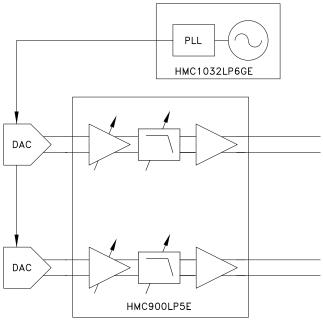


Figure 12. HMC1032LP6GE in a typical transmit chain

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

CLOCK GENERATOR WITH FRACTIONAL-N PLL & INTEGRATED VCO, 125 - 350 MHz

The HMC1032LP6GE can also be used as an LO for 10G optic modules and transponders (Figure 13), as a reference clock for 1G/10G line cards (Figure 14), and for jitter attenuation and frequency translation (Figure 15).

v01.0712

Synchronous Ethernet, SONET/SDH, and OTN applications often require jitter attenuation and frequency translation on the recovered line clock.

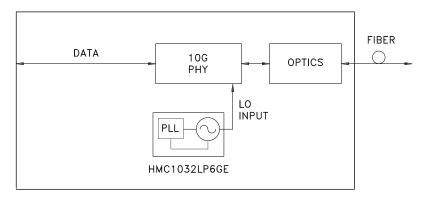


Figure 13. HMC1032LP6GE used as a local oscillator (LO) for 10G modules/transponders

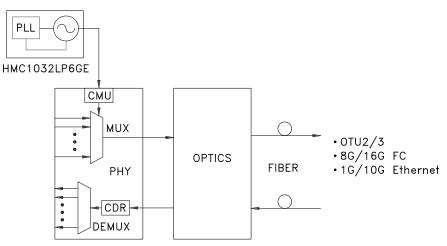


Figure 14. HMC1032LP6GE used as a reference clock for 1G/10G line cards

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

CLOCK GENERATOR WITH FRACTIONAL-N PLL & INTEGRATED VCO, 125 - 350 MHz

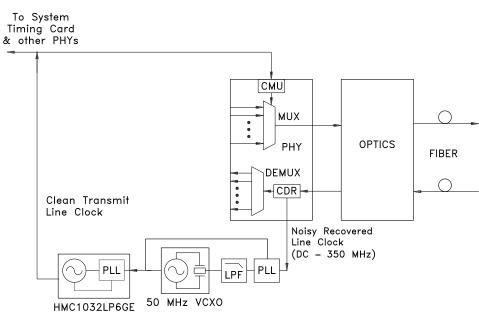


Figure 15. HMC1032LP6GE used in jitter attenuation application for Synchronous Ethernet & Line Timing

The HMC1032LP6GE supports common line and reference clock rates shown in the table (page 12).

v01.0712

Line and Reference Clock Rates

OTN	Line Rates (Gbps)	Typical Reference Clock Rates (MHz)
OTU1	2.667	41.67
OTU2	10.709	167.33
OTU2e	11.095	173.36
OTU1e	11.049	172.64
OTU2f	11.317	176.83
OTU1f	11.27	176.09
SONET/SDH		
STS-192/STM-64	9.95328	155.52
Ethernet		
1G		125
10GE LAN	10.3125	156.25
10GE WAN	9.95328	155.52
XAUI (4 x 3.125G)	3.125	156.25
Fibre Channel (FC)		
8GFC	8.5	106.25
10GFC	10.52	164.38
16GFC	14.025	212.5

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru