

HIGH-SPEED 3.3V 256K x 18 SYNCHRONOUS BANK-SWITCHABLE DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE

IDT70V7319S

Features:

- 256K x 18 Synchronous Bank-Switchable Dual-ported SRAM Architecture
 - 64 independent 4K x 18 banks
 - 4 megabits of memory on chip
- Bank access controlled via bank address pins
- High-speed data access
 - Commercial: 3.4ns (200MHz)/3.6ns (166MHz)/ 4.2ns (133MHz) (max.)
 - Industrial: 3.6ns (166MHz)/4.2ns (133MHz) (max.)
- Selectable Pipelined or Flow-Through output mode
- Counter enable and repeat features
- Dual chip enables allow for depth expansion without additional logic
- Full synchronous operation on both ports
 - 5ns cycle time, 200MHz operation (14Gbps bandwidth)
 - Fast 3.4ns clock to data out

- 1.5ns setup to clock and 0.5ns hold on all control, data, and address inputs @ 200MH
- Data input, address, byte enable and control registers
- Self-timed write allows fast cycle time
- Separate byte controls for multiplexed bus and bus matching compatibility
- LVTTL- compatible, 3.3V (±150mV) power supply for core
- LVTTL compatible, selectable 3.3V (±150mV) or 2.5V (±100mV) power supply for I/Os and control signals on each port
- Industrial temperature range (-40°C to +85°C) is available at 166MHz and 133MHz
- Available in a 208-pin fine pitch Ball Grid Array (fpBGA) and 256-pin Ball Grid Array (BGA)
- Supports JTAG features compliant with IEEE 1149.1
- Green parts available, see ordering information

Functional Block Diagram PL/FTL PL/FTR OPTL **OPT**R CLKL CLKR ADSL **ADS**R CNTENL **CNTEN**R REPEATR REPEATL R/W R/\overline{W}_{R} CONTROL CONTROL CFor CF_{0B} LOGIC LOGIC CE₁L CE_{1R} 4Kx18 ŪBi **UB**R MEMORY LBL \overline{LB}_R ARRAY ŌΕι **OE**R (BANK 0) MŪX MUX I/O I/O I/O0L-17L I/O₀R-17R CONTROL CONTROL 4Kx18 **MEMORY** ARRAY (BANK 1) ADDRESS ADDRESS ፥ DECODE DECODE Αoı MUX BA₅R BA₅L BA_{4B} RΔaı ВАзв BANK BA₃L BANK BA₂R BA2I DECODE DECODE MUX BA_{1R} BA₁I BAOR BAnı 4Kx18 **MEMORY** ARRAY (BANK 63) NOTE: MUX 1. The Bank-Switchable dual-port uses a true SRAM core instead of the traditional dual-port SRAM core. As a result, it 5629 drw 01 TMS has unique operating characteristics. Please refer to the TDI TCK TRST .JTAG functional description on page 19 for details.

JUNE 2015

DSC 5629/10

Description:

The IDT70V7319 is a high-speed 256Kx18 (4Mbit) synchronous Bank-Switchable Dual-Ported SRAM organized into 64 independent 4Kx18 banks. The device has two independent ports with separate control, address, and I/O pins for each port, allowing each port to access any 4Kx18 memory block not already accessed by the other port. Accesses by the ports into specific banks are controlled via the bank address pins under the user's direct control.

Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times. With an input data register, the IDT70V7319 has been optimized for applications having unidirectional or bidirectional data flow in bursts. An automatic power down feature, controlled by CE0 and CE1, permits the on-chip circuitry of each port to enter a very low standby power mode. The dual chip enables also facilitate depth expansion.

The 70V7319 can support an operating voltage of either 3.3V or 2.5V on one or both ports, controllable by the OPT pins. The power supply for the core of the device(VDD) remains at 3.3V. Please refer also to the functional description on page 18.

Pin Configuration^(1,2,3,4)

A1 IO9L	A2 NC	A3 Vss	A4 TDO	A5 NC	A6 BA4L	A7 BA0L	A8 A 8L	A9 NC	A10 VDD	A11 CLKL	A12 CNTENL	A13 A 4L	A14 A0L	A15 OPTL	A16 NC	A17 Vss
B1 NC	B2 Vss	B3 NC	^{B4} TDI	B5 BA5L	B6 BA1L	B7 A 9L	B8 NC	B9 CE0L	B10 Vss	B11 ADSL	B12 A 5L	B13 A 1L	B14 Vss	B15 VDDQR	B16 I/O8L	B17 NC
C1 VDDQL	C2 I/O9R	C3 VDDQR	C4 PL/FTL	C5 NC	C6 B A 2L	C7 A 10L	C8 UB L	C9 CE1L	C10 Vss	C11 R/WL	C12 A 6L	C13 A 2L	C14 VDD	C15 I/O8R	C16 NC	C17 Vss
D1 NC	D2 Vss	D3 I/O10L	D4 NC	D5 B A 3L	D6 A 11L	D7 A 7L	D8 LBL	D9 VDD	D10 OEL	D11 REPEATL	D12 A 3L	D13 VDD	D14 NC	D15 VDDQL	D16 I/O7L	D17 I/O7R
E1 I/O11L	E2 NC	E3 Vddqr	E4 I/O10R										E14 I/O6L	E15 NC	E16 Vss	E17 NC
F1 Vddql	F2 I/O11R	F3 NC	F4 Vss										F14 Vss	F15 I/O6R	F16 NC	F17 VDDQR
G1 NC	G2 Vss	G3 I/O12L	G4 NC										G14 NC	G15 Vddql	G16 I/O5L	G17 NC
H1 VDD	H2 NC	H3 Vddqr	H4 I/O12R					/7319 208					H14 VDD	H15 NC	H16 V SS	H17 I/O5R
J1 VDDQL	J2 Vdd	J3 Vss	J4 Vss			,							J14 Vss	J15 Vdd	J16 Vss	J17 Vddqr
K1 I/O14R	K2 Vss	K3 I/O13R	K4 Vss			4		Pin fp		1			K14 I/O3R	K15 VDDQL	K16 I/O4R	K17 V SS
L1 NC	L2 I/O14L	l3 Vddqr	L4 I/O13L										L14 NC	L15 I/O3L	L16 Vss	L17 I/O4L
M1 VDDQL	M2 NC	мз I/O15R	M4 Vss										M14 Vss	M15 NC	M16 I/O2R	M17 VDDQR
N1 NC	N2 Vss	N3 NC	N4 I/O15L										N14 I/O1R	N15 Vddql	N16 NC	N17 I/O2L
P1 I/O16R	P2 I/O16L	p3 Vddqr	P4 NC	P5 TRST	P6 BA4R	P7 BAor	P8 A 8R	P9 NC	P10 VDD	P11 CLKR	P12 CNTENR	P13 A 4R	P14 NC	P15 I/O1L	P16 Vss	P17 NC
R1 Vss	R2 NC	R3 I/O17R	R4 TCK	R5 B A 5R	R6 BA1R	R7 A 9R	R8 NC	R9 CE0R	R10 Vss	R11 ADSR	R12 A 5R	R13 A1R	R14 Vss	R15 VDDQL	R16 I/O0R	R17 VDDQR
T1 NC	T2 I/O17L	T3 Vddql	T4 TMS	T5 NC	T6 BA2R	T7 A 10R	T8 UB R	T9 CE1R	T10 Vss	T11 R/WR	T12 A 6R	T13 A 2R	T14 Vss	T15 NC	T16 Vss	T17 NC
U1 V SS	U2 NC	∪3 PL/FTR	U4 NC	U5 BA зR	U6 A 11R	U7 A 7R	U8 LBR	U9 VDD	U10 OER	U11 REPEATR	U12 А ЗR	U13 A 0R	U14 VDD	U15 OPTR	U16 NC	U17 I/O0L

5629 drw 02c

- All VDD pins must be connected to 3.3V power supply.
- All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is set to VIL (0V).
- All Vss pins must be connected to ground supply.
- 4. Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch.
- 5. This package code is used to reference the package diagram.
- 6. This text does not indicate orientation of the actual part-marking.

Pin Configuration^(1,2,3,4) (con't.)

70V7319BC BC-256⁽⁵⁾

256-Pin BGA Top View⁽⁶⁾

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16
NC	TDI	NC	BA 5L	B A 2L	A 11L	A 8L	NC	CE1L	OEL	CNTENL	A 5L	A 2L	A 0L	NC	NC
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13	B14	B15	B16
NC	NC	TDO	NC	BA3L	BA0L	A 9L	UBL	CE ₀ L	R/WL	REPEATL	A 4L	A 1L	VDD	NC	NC
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16
NC	I/O9L	Vss	B A 4L	BA1L	A 10L	A 7L	NC	LBL	CLKL	ADSL	A 6L	A 3L	OPTL	NC	I/O8L
D1	D2	D3	D4	D5	d6	d7	d8	D9	D10	D11	D12	D13	D14	D15	D16
NC	I/O9R	NC	PL/FTL	V DDQL	Vddql	Vddqr	Vddqr	VDDQL	V DDQL	VDDQR	Vddqr	VDD	NC	NC	I/O8R
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14	E15	E16
I/O10R	I/O10L	NC	VDDQL	VDD	V DD	Vss	Vss	Vss	Vss	VDD	VDD	VDDQR	NC	I/O7L	I/O7R
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16
I/O11L	NC	I/O11R	Vddql	Vdd	Vss	V SS	Vss	Vss	Vss	Vss	VDD	VDDQR	I/O6R	NC	I/O6L
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12	G13	G14	G15	G16
NC	NC	I/O12L	Vddqr	Vss	Vss	V SS	Vss	Vss	Vss	Vss	Vss	VDDQL	I/O5L	NC	NC
H1	H2	нз	H4	H5	H6	H7	H8	H9	H10	H11	H12	H13	H14	H15	H16
NC	I/O12R	NC	VDDQR	Vss	V SS	Vss	Vss	Vss	Vss	Vss	Vss	VDDQL	NC	NC	I/O5R
J1	J2	J3	J4	J5	J6	J7	J8	J9	J10	J11	J12	J13	J14	J15	J16
I/O13L	I/O14R	I/O13R	VDDQL	Vss	Vss	V SS	Vss	Vss	V SS	V SS	Vss	Vddqr	I/O4R	I/О 3R	I/O4L
K1	K2	K3	K4	K5	K6	K7	K8	K9	K10	K11	K12	K13	K14	K15	K16
NC	NC	I/O14L	Vddql	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vss	VDDQR	NC	NC	I/O3L
L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16
I/O15L	NC	I/O15R	VDDQR	VDD	Vss	Vss	Vss	Vss	Vss	Vss	Vdd	VDDQL	I/O2L	NC	I/O2R
M1	M2	мз	m4	M5	M6	M7	M8	м9	M10	M11	M12	M13	M14	M15	M16
I/O16R	I/O16L	NC	Vddqr	Vdd	VDD	Vss	Vss	Vss	V SS	VDD	VDD	VDDQL	I/O1R	I/O1L	NC
N1	N2	N3	N4	N5	n6	N7	n8	N9	N10	N11	N12	N13	N14	N15	N16
NC	I/O17R	NC	PL/FTR	VDDQR	Vddqr	V DDQL	Vddql	Vddqr	VDDQR	VDDQL	Vddql	VDD	NC	I/O0R	NC
P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15	P16
NC	I/O17L	TMS	B A 4R	BA1R	A 10R	A 7R	NC	LBR	CLKR	ADSR	A 6R	A 3R	NC	NC	I/OoL
R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16
NC	NC	TRST	NC	BA 3R	BAor	A 9R	UBr	CE0R	R/W R	REPEATR	A 4R	A 1R	OPTR	NC	NC
T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	T11	T12	T13	T14	T15	T16
NC	TCK	NC	BA 5R	BA 2R	A 11R	A 8R	NC	CE1R	OEr	CNTENR	A 5R	A 2R	A 0R	NC	NC

5629 drw 02d

- 1. All VDD pins must be connected to 3.3V power supply.
- 2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is set to VIL (0V).
- 3. All Vss pins must be connected to ground supply.
- 4. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.
- 5. This package code is used to reference the package diagram.
- 6. This text does not indicate orientation of the actual part-marking.

Pin Names

<u>Pin Nam</u>	<u>es</u>	
Left Port	Right Port	Names
CEOL, CE1L	CEOR, CE1R	Chip Enables
R/WL	R/WR	Read/Write Enable
ŌĒL	ŌĒR	Output Enable
BAOL - BA5L	BAor - BAsr	Bank Address ⁽⁴⁾
A0L - A11L	A0R - A11R	Address
I/O0L - I/O17L	I/O0R - I/O17R	Data Input/Output
CLKL	CLKR	Clock
PL/FTL	PL/FT _R	Pipeline/Flow-Through
ĀDSL	ĀD\$R	Address Strobe Enable
CNTENL	<u>CNTEN</u> R	Counter Enable
REPEATL	REPEATR	Counter Repeat ⁽³⁾
LBL, UBL	ŪBR, ŪBR	Byte Enables (9-bit bytes)
VDDQL	VDDQR	Power (I/O Bus) (3.3V or 2.5V) ⁽¹⁾
OPTL	OPTR	Option for selecting VDDqx ^(1,2)
	VDD	Power (3.3V) ⁽¹⁾
	Vss	Ground (0V)
	TDI	Test Data Input
	TDO	Test Data Output
	TCK	Test Logic Clock (10MHz)
	TMS	Test Mode Select
	TRST	Reset (Initialize TAP Controller)

5629 tbl 01

- VDD, OPTx, and VDDQx must be set to appropriate operating levels prior to applying inputs on the I/Os and controls for that port.
- OPTx selects the operating voltage levels for the I/Os and controls on that port. If OPTx is
 set to VIH (3.3V), then that port's I/Os and controls will operate at 3.3V levels and VDDOX must
 be supplied at 3.3V. If OPTx is set to VIL (0V), then that port's I/Os and address controls will
 operate at 2.5V levels and VDDOX must be supplied at 2.5V. The OPT pins are independent
 of one another—both ports can operate at 3.3V levels, both can operate at 2.5V levels, or either
 can operate at 3.3V with the other at 2.5V.
- 3. When $\overline{\text{REPEAT}}$ x is asserted, the counterwill reset to the last valid address loaded via $\overline{\text{ADS}}$ x.
- 4. Accesses by the ports into specific banks are controlled by the bank address pins under the user's direct control: each port can access any bank of memory with the shared array that is not currently being accessed by the opposite port (i.e., BAoL - BA5L ≠ BAOR - BA5R). In the event that both ports try to access the same bank at the same time, neither access will be valid, and data at the two specific addresses targeted by the ports within that bank may be corrupted (in the case that either or both ports are writing) or may result in invalid output (in the case that both ports are trying to read).

Truth Table I—Read/Write and Enable Control^(1,2,3,4)

ŌE³	CLK	Œ	CE ₁	ŪB	ĪΒ	R/W	Upper Byte I/O9-17	Lower Byte I/O ₀₋₈	MODE
Х	1	Н	Χ	Χ	Χ	Χ	High-Z	High-Z	Deselected-Power Down
Х	↑	Х	L	Х	Х	Х	High-Z	High-Z	Deselected-Power Down
Х	1	L	Н	Н	Н	Χ	High-Z	High-Z	All Bytes Deselected
Х	1	L	Н	Н	L	L	High-Z	Din	Write to Lower Byte Only
Х	1	L	Н	L	Н	L	Din	High-Z	Write to Upper Byte Only
Х	1	L	Н	L	L	L	Din	Din	Write to both Bytes
L	1	L	Н	Н	L	Н	High-Z	Dout	Read Lower Byte Only
L	1	L	Н	L	Н	Н	Douт	High-Z	Read UpperByte Only
L	1	L	Н	L	L	Н	Dоит	Dout	Read both Bytes
Н	Х	Χ	Χ	Χ	Χ	Χ	High-Z	High-Z	Outputs Disabled

NOTES: 5629 tbl 02

- 1. "H" = VIH, "L" = VIL, "X" = Don't Care.
- 2. ADS, CNTEN, REPEAT are set as appropriate for address access. Refer to Truth Table II for details.
- 3. OE is an asynchronous input signal.
- 4. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.

Truth Table II—Address and Address Counter Control (1,2,7)

Address	Previous Address	Addr Used	CLK	ĀDS	CNTEN	REPEAT ⁽⁶⁾	I/O ⁽³⁾	MODE
An	Х	An	↑	L ⁽⁴⁾	Х	Н	Dvo (n)	External Address Used
Х	An	An + 1	↑	Н	L ⁽⁵⁾	Н	Dvo(n+1)	Counter Enabled—Internal Address generation
Х	An + 1	An + 1	↑	Н	Н	Н	Dvo(n+1)	External Address Blocked—Counter disabled (An + 1 reused)
Х	Х	An	↑	Χ	Χ	L ⁽⁴⁾	Di/o(0)	Counter Set to last valid ADS load

5629 tbl 03

- 1. "H" = VIH, "L" = VIL, "X" = Don't Care.
- 2. Read and write operations are controlled by the appropriate setting of R/W, CEo, CE1, UB/LB and OE.
- 3. Outputs configured in flow-through output mode: if outputs are in pipelined mode the data out will be delayed by one cycle.
- 4. ADS and REPEAT are independent of all other memory control signals including CEo, CE1 and UB/LB
- The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other memory control signals including CE₀, CE₁, UB/LB.
- 6. When REPEAT is asserted, the counter will reset to the last valid address loaded via ADS. This value is not set at power-up: a known location should be loaded via ADS during initialization if desired. Any subsequent ADS access during operations will update the REPEAT address location.
- 7. The counter includes bank address and internal address. The counter will advance across bank boundaries. For example, if the counter is in Bank 0, at address FFFh, and is advanced one location, it will move to address 0h in Bank 1. By the same token, the counter at FFFh in Bank 63 will advance to 0h in Bank 0. Refer to Timing Waveform of Counter Repeat, page 17. Care should be taken during operation to avoid having both counters point to the same bank (i.e., ensure BAoL BA5L ≠ BAOR BA5R), as this condition will invalidate the access for both ports. Please refer to the functional description on page 18 for details.

Recommended Operating Temperature and Supply Voltage⁽¹⁾

Grade	Ambient Temperature	GND	V DD
Commercial	0°C to +70°C	0V	3.3V <u>+</u> 150mV
Industrial	-40°C to +85°C	0V	3.3V <u>+</u> 150mV

NOTE:

1. This is the parameter TA. This is the "instant on" case temperature.

Absolute Maximum Ratings(1)

Symbol	Rating	Commercial & Industrial	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-65 to +150	°C
Іоит	DC Output Current	50	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
 permanent damage to the device. This is a stress rating only and functional operation of the
 device at these or any other conditions above those indicated in the operational sections of
 this specification is not implied. Exposure to absolute maximum rating conditions for extended
 periods may affect reliability.
- 2. VTERM must not exceed VDD + 150mV for more than 25% of the cycle time or 4ns maximum, and is limited to \leq 20mA for the period of VTERM \geq VDD + 150mV.

Recommended DC Operating Conditions with VDDQ at 2.5V

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Core Supply Voltage	3.15	3.3	3.45	٧
VDDQ	I/O Supply Voltage ⁽³⁾	2.4	2.5	2.6	٧
Vss	Ground	0	0	0	٧
VIH	Input High Voltage (Address & Control Inputs)	1.7		VDDQ + 100mV ⁽²⁾	V
VIH	Input High Voltage - I/O ⁽³⁾	1.7	_	VDDQ + 100mV ⁽²⁾	V
VIL	Input Low Voltage	-0.3 ⁽¹⁾	_	0.7	V

5629 tb1 05a

NOTES:

5629 tbl 04

- 1. Undershoot of $V_{IL\geq}$ -1.5V for pulse width less than 10ns is allowed.
- 2. VTERM must not exceed VDDQ + 100mV.
- To select operation at 2.5V levels on the I/Os and controls of a given port, the OPT pin for that port must be set to V_{IL} (0V), and V_{DDQX} for that port must be supplied as indicated above.

Recommended DC Operating Conditions with VDDQ at 3.3V

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Core Supply Voltage	3.15	3.3	3.45	٧
VDDQ	I/O Supply Voltage ⁽³⁾	3.15	3.3	3.45	٧
Vss	Ground	0	0	0	٧
VIH	Input High Voltage (Address & Control Inputs) ⁽³⁾	2.0		VDDQ + 150mV ⁽²⁾	V
VIH	Input High Voltage - I/O(3)	2.0	_	VDDQ + 150mV ⁽²⁾	V
VIL	Input Low Voltage	-0.3 ⁽¹⁾	_	0.8	V

5629 tbl 05b

- 1. Undershoot of VIL > -1.5V for pulse width less than 10ns is allowed.
- 2. VTERM must not exceed VDDQ + 150mV.
- To select operation at 3.3V levels on the I/Os and controls of a given port, the OPT pin for that portmust be set to VIH (3.3V), and VDDOX for that portmust be supplied as indicated above.

Capacitance⁽¹⁾

(TA = +25°C, F = 1.0MHz) PQFP ONLY

Symbol	Parameter	Conditions ⁽²⁾	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	8	pF
Соит ⁽³⁾	Output Capacitance	Vout = 3dV	10.5	pF

5629 tbl

NOTES:

- $1. \quad \text{These parameters are determined by device characterization, but are not production tested.} \\$
- 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V.
- 3. Cout also references Ci/o.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 150mV)

			70V7	'319S	
Symbol	Parameter	Min.	Max.	Unit	
lu	Input Leakage Current ⁽¹⁾	VDDQ = Max., VIN = 0V to VDDQ	_	10	μA
llo	Output Leakage Current ⁽¹⁾	$\overline{\overline{\text{CE}}}_0$ = ViH or CE1 = ViL, VouT = 0V to VDDQ		10	μA
Vol (3.3V)	Output Low Voltage ⁽²⁾	IOL = +4mA, VDDQ = Min.		0.4	V
Vон (3.3V)	Output High Voltage ⁽²⁾	IOH = -4mA, VDDQ = Min.	2.4	_	V
Vol (2.5V)	Output Low Voltage ⁽²⁾	IOL = +2mA, VDDQ = Min.		0.4	V
Voн (2.5V)	Output High Voltage ⁽²⁾	IOH = -2mA, VDDQ = Min.	2.0	_	V

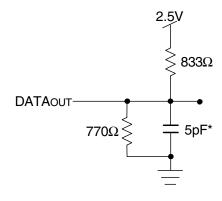
NOTES:

5629 tbl 08

- $1. \quad \text{At VDD} \! \leq \! 2.0 \text{V leakages are undefined}.$
- 2. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to page 4 for details.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁵⁾ (VDD = 3.3V ± 150mV)

						9S200 ⁽⁷⁾ Only	Co	9S166 ⁽⁶⁾ m'l Ind	70V7319S133 Com'l & Ind		
Symbol	Parameter	Test Condition	Version		Typ. ⁽⁴⁾	Max.	Typ. ⁽⁴⁾	Max.	Typ. ⁽⁴⁾	Max.	Unit
IDD	Dynamic Operating	CEL and CER= VIL,	COM'L	S	815	950	675	790	550	645	mA
	Current (Both Ports Active)	Outputs Disabled, $f = fMAX^{(1)}$	IND	S	_	_	675	830	550	675	
ISB1	Standby Current	CEL = CER = VIH	COM'L	S	340	410	275	340	250	295	mA
	(Both Ports - TTL Level Inputs)	f = fMAX ⁽¹⁾	IND	S	_	_	275	355	250	310	
ISB2	Standby Current	CE"A" = VIL and CE"B" = VIH ⁽³⁾	COM'L	S	690	770	515	640	460	520	mA
	(One Port - TTL Level Inputs)	Active Port Outputs Disabled, f=fMAX ⁽¹⁾	IND	S	_	_	515	660	460	545	
ISB3	Full Standby Current	Both Ports \overline{CEL} and $\overline{CER} \ge VDDQ - 0.2V$,	COM'L	S	10	30	10	30	10	30	mA
	(Both Ports - CMOS Level Inputs)	$VIN \ge VDDQ - 0.2V \text{ or } VIN \le 0.2V,$ $f = 0^{(2)}$	IND	S	_		10	40	10	40	
ISB4	Full Standby Current (One Port - CMOS	$\overline{\text{CE}}$ "A" \leq 0.2V and $\overline{\text{CE}}$ "B" \geq VDDQ - 0.2V ⁽⁵⁾ VIN \geq VDDQ - 0.2V or VIN \leq 0.2V,	COM'L	S	690	770	515	640	460	520	mA
	Level Inputs)	Active Port, Outputs Disabled, f = fMAX ⁽¹⁾	IND	S		_	515	660	460	545	


NOTES: 5629 tbl 09

- 1. Atf=fmax, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcvc, using "ACTEST CONDITIONS" at input levels of GND to 3V.
- $2. \quad f=0 \, means \, no \, address, clock, or control \, lines \, change. \, Applies \, only \, to \, input \, at \, CMOS \, level \, standby.$
- 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 120mA (Typ).
- 5. $\overline{CE}x = V_{IL} \text{ means } \overline{CE}_{0x} = V_{IL} \text{ and } CE_{1x} = V_{IH}$
 - $\overline{CE}x = VIH \text{ means } \overline{CE}0x = VIH \text{ or } CE1x = VIL$
 - $\overline{CE}x \le 0.2V$ means $\overline{CE}_0x \le 0.2V$ and $CE_1x \ge V_{DDQ} 0.2V$
 - $\overline{\text{CE}}x \ge V_{DDQ} 0.2V \text{ means } \overline{\text{CE}}0x \ge V_{DDQ} 0.2V \text{ or } \text{CE}1x \le 0.2V$
 - "X" represents "L" for left port or "R" for right port.
- $6.\,\,166 MHz\,Industrial\,Temperature\,not\,available\,in\,BF-208\,package.$
- 7. This speed grade available when VDDQ = 3.3.V for a specific port (i.e., OPTx = VIH). This speed grade available in BC-256 package only.

AC Test Conditions (VDDQ - 3.3V/2.5V)

AO ICST OCHUITIONS	4DDQ - 3:34/2:34)
Input Pulse Levels (Address & Controls)	GND to 3.0V/GND to 2.4V
Input Pulse Levels (I/Os)	GND to 3.0V/GND to 2.4V
Input Rise/Fall Times	2ns
Input Timing Reference Levels	1.5V/1.25V
Output Reference Levels	1.5V/1.25V
Output Load	Figures 1 and 2

5629 tbl 10

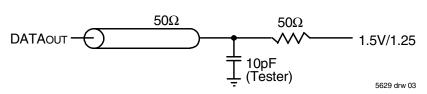


Figure 1. AC Output Test load.

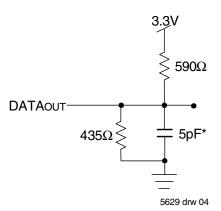


Figure 2. Output Test Load (For tcкLz, tcкнz, toLz, and toнz).
*Including scope and jig.

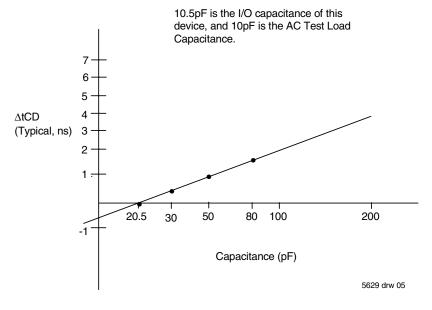


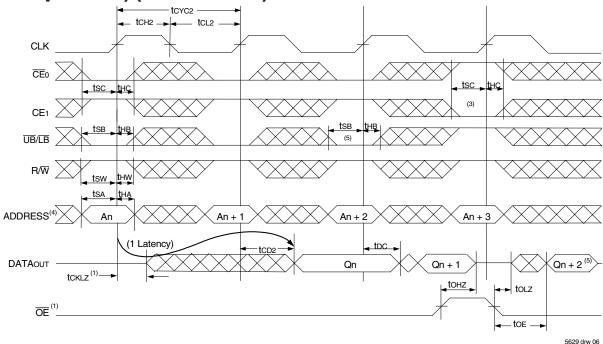
Figure 3. Typical Output Derating (Lumped Capacitive Load).

AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing)^(2,3) (VDD = 3.3V ± 150mV, TA = 0°C to +70°C)

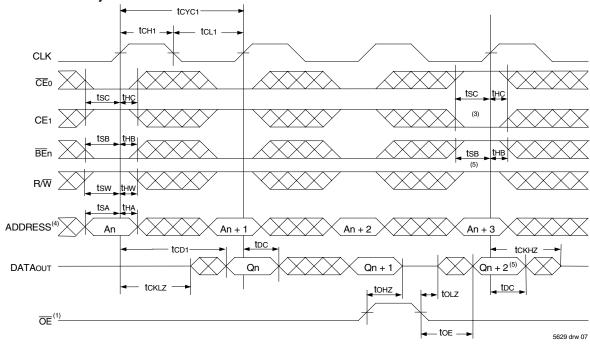
	and Write Cycle Timing)(2,3) (VDD = 3.3	70V73 ⁻	19S200 ⁽⁵⁾ 'I Only	70V7319	9S166 ^(3,4) om'l Ind	70V731	9\$133 ⁽³⁾ om'l Ind	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tcyc1	Clock Cycle Time (Flow-Through) ⁽¹⁾	15	_	20	_	25	_	ns
tcyc2	Clock Cycle Time (Pipelined) ⁽¹⁾	5	_	6	_	7.5	_	ns
tcH1	Clock High Time (Flow-Through) ⁽¹⁾	5	_	6	_	7	_	ns
tCL1	Clock Low Time (Flow-Through) ⁽¹⁾	5	_	6	_	7	_	ns
tcH2	Clock High Time (Pipelined) ⁽²⁾	2.0	_	2.1	_	2.6	_	ns
tCL2	Clock Low Time (Pipelined) ⁽¹⁾	2.0	_	2.1	_	2.6	_	ns
tr	Clock Rise Time	_	1.5		1.5	_	1.5	ns
tF	Clock Fall Time	_	1.5		1.5	_	1.5	ns
tsa	Address Setup Time	1.5	_	1.7	_	1.8	_	ns
tha	Address Hold Time	0.5	_	0.5	_	0.5	_	ns
tsc	Chip Enable Setup Time	1.5	_	1.7	_	1.8	_	ns
thc	Chip Enable Hold Time	0.5	_	0.5	_	0.5	_	ns
tsB	Byte Enable Setup Time	1.5	_	1.7	_	1.8	_	ns
tHB	Byte Enable Hold Time	0.5	_	0.5	_	0.5	_	ns
tsw	R/W Setup Time	1.5	_	1.7	_	1.8	_	ns
tHW	R/W Hold Time	0.5	_	0.5	_	0.5	_	ns
tsD	Input Data Setup Time	1.5	—	1.7	—	1.8	—	ns
tHD	Input Data Hold Time	0.5	—	0.5	—	0.5	_	ns
tsad	ADS Setup Time	1.5	_	1.7	_	1.8	_	ns
thad	ADS Hold Time	0.5		0.5	_	0.5	_	ns
tscn	CNTEN Setup Time	1.5	_	1.7	_	1.8	_	ns
thcn	CNTEN Hold Time	0.5	_	0.5	_	0.5	_	ns
tsrpt	REPEAT Setup Time	1.5	_	1.7	_	1.8	_	ns
tHRPT	REPEAT Hold Time	0.5	_	0.5	_	0.5	_	ns
toe	Output Enable to Data Valid	_	4.0		4.0		4.2	ns
toLZ	Output Enable to Output Low-Z	0.5		0.5	_	0.5	_	ns
tонz	Output Enable to Output High-Z	1	3.4	1	3.6	1	4.2	ns
tCD1	Clock to Data Valid (Flow-Through) ⁽¹⁾	_	10		12		15	ns
tCD2	Clock to Data Valid (Pipelined) ⁽¹⁾	_	3.4	_	3.6	_	4.2	ns
toc	Data Output Hold After Clock High	1	_	1	_	1	_	ns
tckHz	Clock High to Output High-Z	1	3.4	1	3.6	1	4.2	ns
tcklz	Clock High to Output Low-Z	0.5	_	0.5	_	0.5	_	ns
Port-to-Port D	lelay	-						
tco	Clock-to-Clock Offset	5.0	_	6.0	_	7.5	_	ns
				_				

NOTES

1. The Pipelined output parameters (tcvc2, tcp2) apply to either or both left and right ports when FT/PIPEx=VIH. Flow-through parameters (tcvc1, tcp1) apply when FT/PIPEx=VIL for that port.

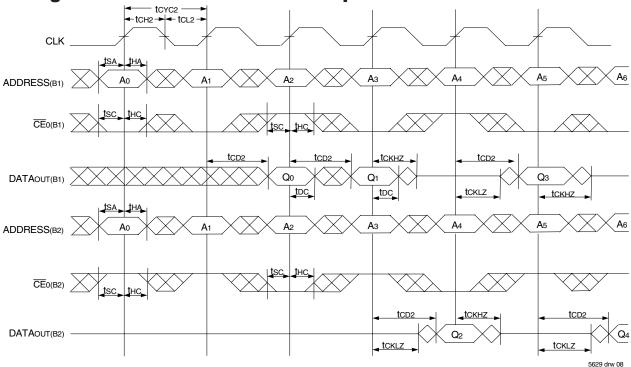

- $3. \quad \text{These values are valid for either level of V_{DDQ} (3.3$V/2.5$V). See page 4 for details on selecting the desired operating voltage levels for each port.} \\$
- 4. 166MHz Industrial Temperature not available in BF-208 package.
- 5. This speed grade available when VDDQ = 3.3V for a specific port (i.e., OPTx = VIH). This speed grade available in BC-256 package only.

d an arating valtage lavale for each part

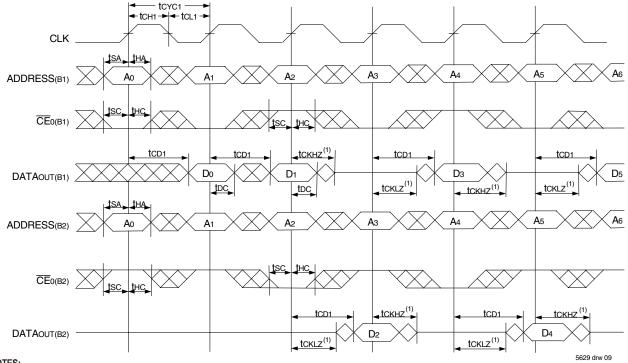

5629 tbl 11

All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE) and FT/PIPEx. FT/PIPEx should be treated as a DC signal, i.e. steady state during operation.

Timing Waveform of Read Cycle for Pipelined Operation (ADS Operation) (PL/ \overline{FT} 'x' = VIH)⁽²⁾

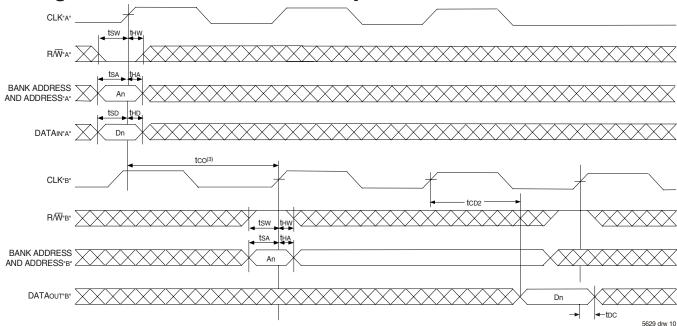


Timing Waveform of Read Cycle for Flow-through Output $(PL/FT"x" = VIL)^{(2,6)}$



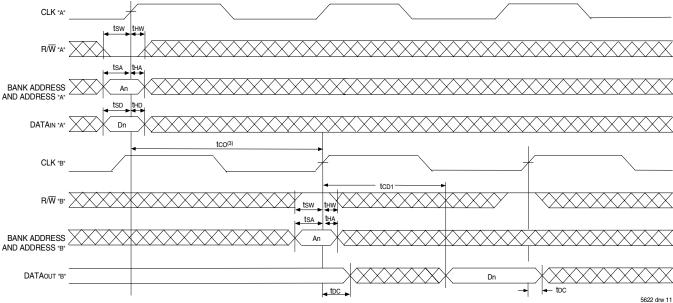
- 1. \overline{OE} is asynchronously controlled; all other inputs are synchronous to the rising clock edge.
- 2. ADS = VIL, CNTEN and REPEAT = VIH.
- 3. The output is disabled (High-Impedance state) by $\overline{CE}_0 = VIH$, $\overline{CE}_1 = VIL$, $\overline{UB}/\overline{LB} = VIH$ following the next rising edge of the clock. Refer to Truth Table 1.
- Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers
 are for reference use only.
- 5. If UB/LB was HIGH, then the appropriate Byte of DATAouT for Qn + 2 would be disabled (High-Impedance state).
- 6. "x" denotes Left or Right port. The diagram is with respect to that port.

Timing Waveform of a Multi-Device Pipelined Read^(1,2)

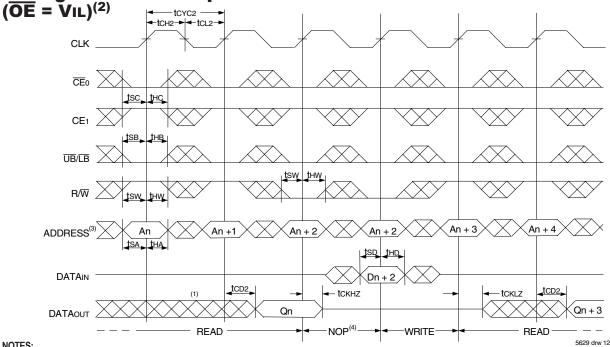

Timing Waveform of a Multi-Device Flow-Through Read^(1,2)

^{1.} B1 Represents Device #1; B2 Represents Device #2. Each Device consists of one IDT70V7319 for this waveform, and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.

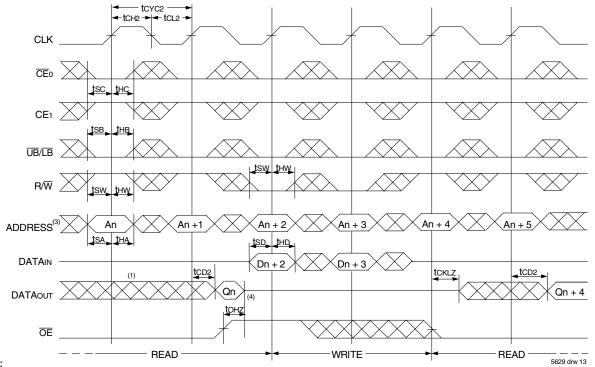
^{2.} $\overline{UB}/\overline{LB}$, \overline{OE} , and \overline{ADS} = \overline{VIL} ; $\overline{CE1(B1)}$, $\overline{CE1(B2)}$, $\overline{R/W}$, \overline{CNTEN} , and \overline{REPEAT} = \overline{VIH} .


Timing Waveform of Port A Write to Pipelined Port B Read (1,2,4)

NOTES:


- 1. $\overline{CE_0}$, \overline{BE} n, and \overline{ADS} = V_{IL}; $\overline{CE_1}$, \overline{CNTEN} , and \overline{REPEAT} = V_{IH}.
- 2. $\overline{OE} = VIL$ for the Right Port, which is being read from. $\overline{OE} = VIH$ for the Left Port, which is being written to.
- 3. If tco < minimum specified, then operations from both ports are INVALID. If tco ≥ minimum, then data from Port "B" read is available on first Port "B" clock cycle (ie, time from write to valid read on opposite port will be tco + tcyc2 + tcp2).
- 4. All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".

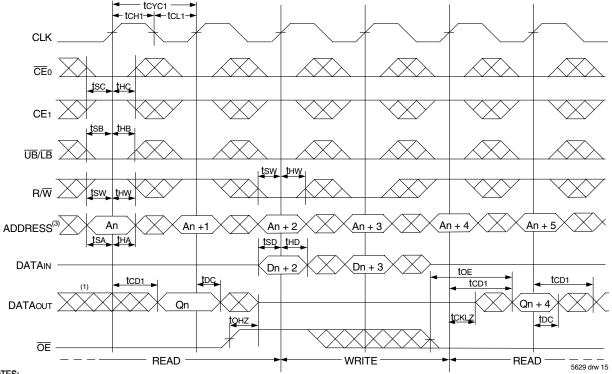
Timing Waveform with Port-to-Port Flow-Through Read (1,2,4)


- CEO, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.
- 2. $\overline{OE} = VIL$ for the Right Port, which is being read from. $\overline{OE} = VIH$ for the Left Port, which is being written to.
- 3. If tco < minimum specified, then operations from both ports are INVALID. If tco ≥ minimum, then data from Port "B" read is available on first Port "B" clock cycle (i.e., time from write to valid read on opposite port will be tco + tcb1).
- $4. \quad \text{All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".}$

Timing Waveform of Pipelined Read-to-Write-to-Read

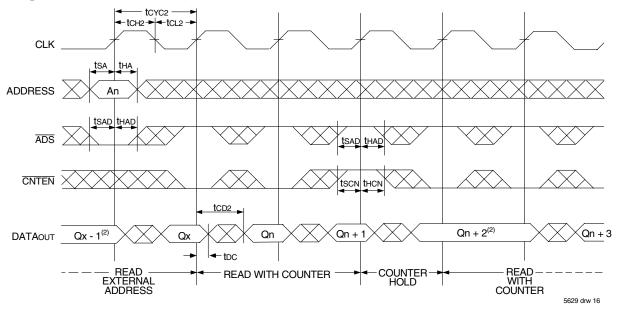
- 1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 2. \overline{CE}_0 , $\overline{UB}/\overline{LB}$, and $\overline{ADS} = VIL$; \overline{CE}_1 , \overline{CNTEN} , and $\overline{REPEAT} = VIH$. "NOP" is "No Operation".
- 3. Addresses do not have to be accessed sequentially since $\overline{ADS} = V_{IL}$ constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.

Timing Waveform of Pipelined Read-to-Write-to-Read (OE Controlled)(2)

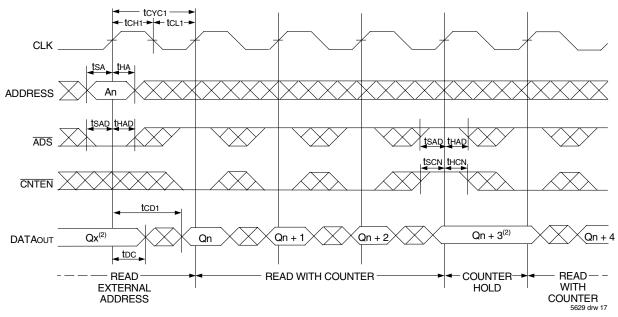


- 1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- \overline{CE} 0, \overline{UB} / \overline{LB} , and \overline{ADS} = VIL; CE1, \overline{CNTEN} , and \overline{REPEAT} = VIH.
- Addresses do not have to be accessed sequentially since \overline{ADS} = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- This timing does not meet requirements for fastest speed grade. This waveform indicates how logically it could be done if timing so allows.

Timing Waveform of Flow-Through Read-to-Write-to-Read $(\overline{OE} = V_{IL})^{(2)}$

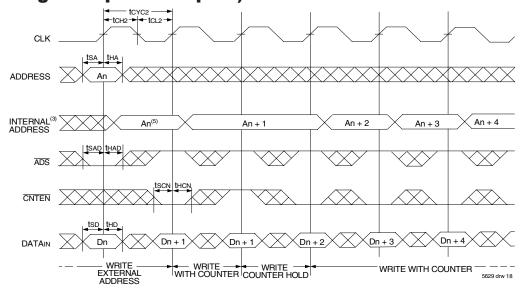


Timing Waveform of Flow-Through Read-to-Write-to-Read (OE Controlled)(2)

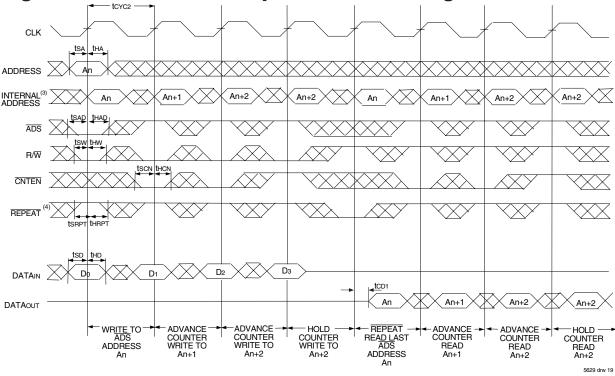


- 1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 2. $\overline{CE0}$, $\overline{UB}/\overline{LB}$, and $\overline{ADS} = VIL$, $\overline{CE1}$, \overline{CNTEN} , and $\overline{REPEAT} = VIH$.
- Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for
 reference use only.
- 4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.

Timing Waveform of Pipelined Read with Address Counter Advance⁽¹⁾



Timing Waveform of Flow-Through Read with Address Counter Advance⁽¹⁾



- 1. \overline{CE}_0 , \overline{OE} , $\overline{UB}/\overline{LB}$ = V_{IL}; CE₁, R/W, and \overline{REPEAT} = V_{IH}.
- 2. If there is no address change via $\overline{ADS} = VIL$ (loading a new address) or $\overline{CNTEN} = VIL$ (advancing the address), i.e. $\overline{ADS} = VIH$ and $\overline{CNTEN} = VIH$, then the data output remains constant for subsequent clocks.

Timing Waveform of Write with Address Counter Advance (Flow-through or Pipelined Inputs) $^{(1,6)}$

Timing Waveform of Counter Repeat for Flow Through Mode^(2,6,7)

- 1. \overline{CE}_0 , $\overline{UB}/\overline{LB}$, and $R/\overline{W} = V_{IL}$; CE_1 and $\overline{REPEAT} = V_{IH}$.
- 2. \overline{CE}_0 , $\overline{UB}/\overline{LB} = VIL$; $CE_1 = VIH$.
- The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH.
- 4. No dead cycle exists during REPEAT operation. A READ or WRITE cycle may be coincidental with the counter REPEAT cycle: Address loaded by last valid ADS load will be accessed. For more information on REPEAT function refer to Truth Table II.
- 5. CNTEN = VIL advances Internal Address from 'An' to 'An +1'. The transition shown indicates the time required for the counter to advance. The 'An +1' Address is written to during this cycle
- 6. The counter includes bank address and internal address. The counter will advance across bank boundaries. For example, if the counter is in Bank 0, at address FFFh, and is advanced one location, it will move to address 0h in Bank 1. By the same token, the counter at FFFh in Bank 63 will advance to 0h in Bank 0.
- 7. For Pipelined Mode user should add 1 cycle latency for outputs as per timing waveform of read cycle for pipelined operations.

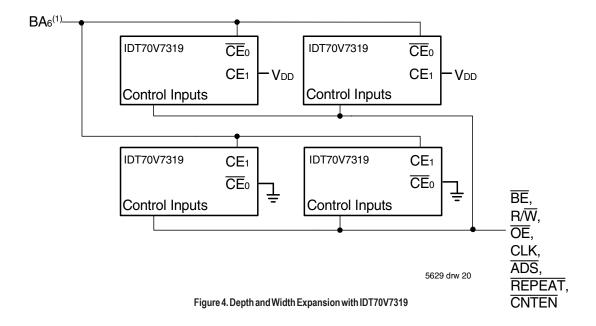
Functional Description

The IDT70V7319 is a high-speed 256Kx18 (4 Mbit) synchronous Bank-Switchable Dual-Ported SRAM organized into 64 independent 4Kx18 banks. Based on a standard SRAM core instead of a traditional true dual-port memory core, this bank-switchable device offers the benefits of increased density and lower cost-per-bit while retaining many of the features of true dual-ports. These features include simultaneous, random access to the shared array, separate clocks per port, 166 MHz operating speed, full-boundary counters, and pinouts compatible with the IDT70V3319 (256Kx18) dual-port family.

The two ports are permitted independent, simultaneous access into separate banks within the shared array. Access by the ports into specific banks are controlled by the bank address pins under the user's direct control: each port can access any bank of memory with the shared array that is not currently being accessed by the opposite port (i.e., BAOL - BA5L \pm BAOR - BA5R). In the event that both ports try to access the same bank at the same time, neither access will be valid, and data at the two specific addresses targeted by the ports within that bank may be corrupted (in the case that either or both ports are writing) or may result in invalid output (in the case that both ports are trying to read).

The IDT70V7319 provides a true synchronous Dual-Port Static RAM

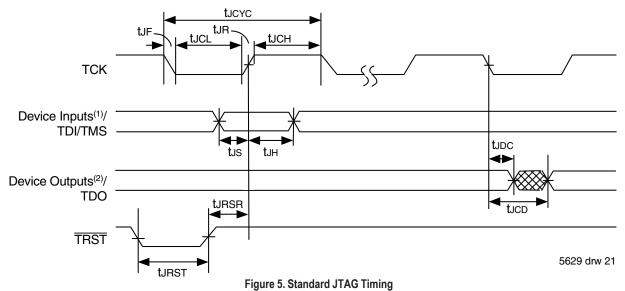
interface. Registered inputs provide minimal setup and hold times on address, data and all critical control inputs.


An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the address counters for fast interleaved memory applications.

A HIGH on $\overline{\text{CE}}_0$ or a LOW on CE1 for one clock cycle will power down the internal circuitry on each port (individually controlled) to reduce static power consumption. Dual chip enables allow easier banking of multiple IDT70V7319s for depth expansion configurations. Two cycles are required with $\overline{\text{CE}}_0$ LOW and CE1 HIGH to read valid data on the outputs.

Depth and Width Expansion

The IDT70V7319 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth.


The IDT70V7319 can also be used in applications requiring expanded width, as indicated in Figure 4. Through combining the control signals, the devices can be grouped as necessary to accommodate applications needing 36-bits or wider.

NOTE:

1. In the case of depth expansion, the additional address pin logically serves as an extension of the bank address. Accesses by the ports into specific banks are controlled by the bank address pins under the user's direct control: each port can access any bank of memory within the shared array that is not currently being accessed by the opposite port (i.e., BAOL - BAGL + BAGR). In the event that both ports try to access the same bank at the same time, neither access will be valid, and data at the two specific addresses targeted by the parts within that bank may be corrupted (in the case that either or both parts are writing) or may result in invalid output (in the case that both ports are trying to read).

JTAG Timing Specifications

NOTES:

- 1. Device inputs = All device inputs except TDI, TMS, TRST, and TCK.
- 2. Device outputs = All device outputs except TDO.

JTAG AC Electrical Characteristics^(1,2,3,4)

		70V7319		
Symbol	Parameter	Min.	Max.	Units
tucyc	JTAG Clock Input Period	100		ns
tлсн	JTAG Clock HIGH	40		ns
tucL	JTAG Clock Low	40	_	ns
tJR	JTAG Clock Rise Time	_	3 ⁽¹⁾	ns
tJF	JTAG Clock Fall Time	_	3 ⁽¹⁾	ns
turst	JTAG Reset	50	_	ns
tursr	JTAG Reset Recovery	50	_	ns
tuco	JTAG Data Output	_	25	ns
tudo	JTAG Data Output Hold	0	_	ns
tus	JTAG Setup	15	_	ns
tлн	JTAG Hold	15	_	ns

NOTES:

5629 tbl 12

- 1. Guaranteed by design.
- 2. 30pFloading on external output signals.
- 3. Refer to AC Electrical Test Conditions stated earlier in this document.
- JTAG operations occur at one speed (10MHz). The base device may run at any speed specified in this datasheet.

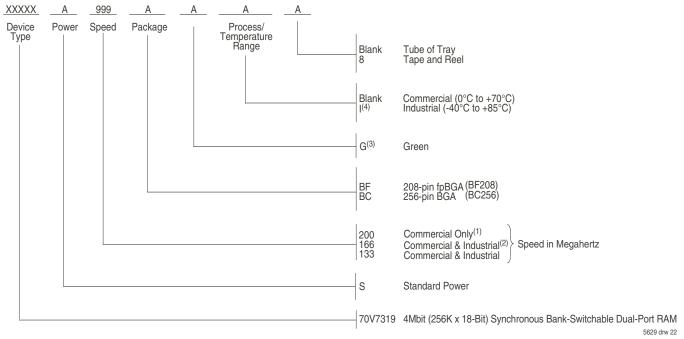
Identification Register Definitions

Instruction Field	Value	Description
Revision Number (31:28)	0x0	Reserved for version number
IDT Device ID (27:12)	0x309	Defines IDT part number
IDT JEDEC ID (11:1)	0x33	Allows unique identification of device vendor as IDT
ID Register Indicator Bit (Bit 0)	1	Indicates the presence of an ID register

5629 tbl 13

Scan Register Sizes

Register Name	Bit Size			
Instruction (IR)	4			
Bypass (BYR)	1			
Identification (IDR)	32			
Boundary Scan (BSR)	Note (3)			


5629 tbl 14

System Interface Parameters

Instruction	Code	Description
EXTEST	0000	Forces contents of the boundary scan cells onto the device outputs ⁽¹⁾ . Places the boundary scan register (BSR) between TDI and TDO.
BYPASS	1111	Places the bypass register (BYR) between TDI and TDO.
IDCODE	0010	Loads the ID register (IDR) with the vendor ID code and places the register between TDI and TDO.
HIGHZ	0100	Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state.
CLAMP	0011	Uses BYR. Forces contents of the boundary scan cells onto the device outputs. Places the bypass register (BYR) between TDI and TDO.
SAMPLE/PRELOAD	0001	Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs ⁽²⁾ and outputs ⁽¹⁾ to be captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the boundary scan cells via the TDI.
RESERVED	All other codes	Several combinations are reserved. Do not use codes other than those identified above.

- 1. Device outputs = All device outputs except TDO.
- 2. Device inputs = All device inputs except TDI, TMS, TRST, and TCK.
- 3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local IDT sales representative.

Ordering Information

NOTES:

03/18/02:

- 1. Available in BC-256 package only.
- 2. Industrial Temperature at 166Mhz not available in BF-208 package.
- 3. Green parts available. For specific speeds, packages and powers contact your local sales office.
- 4. Contact your local sales office for industrial temp range for other speeds, packages and powers.

Datasheet Document History

01/05/00: Initial Public Offering

06/20/01: Page 1 Added JTAG information for TQFP package

Page 4 & 22 Changed TQFP package from DA to DD Corrected Pin number on TQFP package from 100 to 110

Page 20 Increased tucp from 20ns to 25ns

08/06/01: Page 4 Changed body size for DD package from 22mm x 22mm x 1.6mm to 20mm x 20mm x 1.4mm

Page 9 Changed ISB3 values for commercial and industrial DC Electrical Characteristics

11/20/01: Page 2, 3 & 4 Added date revision for pin configurations

Page 11 Changed to Evalue in AC Electrical Characteristics, please refer to Errata #SMEN-01-05

Page 1 & 22 Replaced ™ logo with ® logo Page 1, 9, 11 & 22 Added 200MHz specification

Page 9 Tightened power numbers in DC Electrical Characteristics

Page 14 Changed waveforms to show INVALID operation if too < minimum specified

Page 1 - 22 Removed "Preliminary" status

12/04/02: Page 9, 11 & 22 Designated 200Mhz speed grade available in BC-256 package only

01/16/04: Page 11 Added byte enable setup time and byte enable hold time parameters and values to all speed grades in the AC Electrical

Characteristics Table

07/25/08: Page 9 Corrected a typo in the DC Chars table 01/29/09: Page 22 Removed "IDT" from orderable part number

Datasheet Document History (con't)

04/20/10: Page 1 Added green availability to features

Page 21 Added green indicator to ordering information

Removed the DD 144-pin TQFP (DD-144) Thin Quad Flatpack per PDN: F-08-01

Page 2, & 21 The package code for BF-208 changed to BF208 to match the standard package codes 06/15/15:

> Page 2 & 3 Removed the date from all of the pin configurations BF208 & BC256 Page 21 Added T&R indicator and updated footnotes to Ordering Information

CORPORATE HEADQUARTERS

6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200

fax: 408-284-2775 www.idt.com

for Tech Support: 408-284-2794 DualPortHelp@idt.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IDT (Integrated Device Technology):

70V7319S166BC8 70V7319S166BF8 70V7319S166BCGI 70V7319S166BF 70V7319S166BC 70V7319S200BC 70V7319S133BFI 70V7319S200BC8 70V7319S133BCI 70V7319S133BFI 70V7319S133BCI 70V7319S166BCI 70V7319S133BCI 70V7319S166BCI 70V7319S133BCI 70V7319S166BCI8

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru