
Cat. No. W165-E1-04

OPERATION MANUAL

SYSMAC

C200H-ASC02
ASCII Unit

C200H-ASC02 ASCII Unit
Operation Manual

Revised September 2002

iv

Terms and Conditions of Sale
1. Offer; Acceptance. These terms and conditions (these "Terms") are deemed

part of all quotes, agreements, purchase orders, acknowledgments, price lists,
catalogs, manuals, brochures and other documents, whether electronic or in
writing, relating to the sale of products or services (collectively, the "Products")
by Omron Electronics LLC and its subsidiary companies (“Omron”). Omron
objects to any terms or conditions proposed in Buyer’s purchase order or other
documents which are inconsistent with, or in addition to, these Terms.

2. Prices; Payment Terms. All prices stated are current, subject to change with-
out notice by Omron. Omron reserves the right to increase or decrease prices
on any unshipped portions of outstanding orders. Payments for Products are
due net 30 days unless otherwise stated in the invoice.

3. Discounts. Cash discounts, if any, will apply only on the net amount of invoices
sent to Buyer after deducting transportation charges, taxes and duties, and will
be allowed only if (i) the invoice is paid according to Omron’s payment terms
and (ii) Buyer has no past due amounts.

4. Interest. Omron, at its option, may charge Buyer 1-1/2% interest per month or
the maximum legal rate, whichever is less, on any balance not paid within the
stated terms.

5. Orders. Omron will accept no order less than $200 net billing.
6. Governmental Approvals. Buyer shall be responsible for, and shall bear all

costs involved in, obtaining any government approvals required for the impor-
tation or sale of the Products.

7. Taxes. All taxes, duties and other governmental charges (other than general
real property and income taxes), including any interest or penalties thereon,
imposed directly or indirectly on Omron or required to be collected directly or
indirectly by Omron for the manufacture, production, sale, delivery, importa-
tion, consumption or use of the Products sold hereunder (including customs
duties and sales, excise, use, turnover and license taxes) shall be charged to
and remitted by Buyer to Omron.

8. Financial. If the financial position of Buyer at any time becomes unsatisfactory
to Omron, Omron reserves the right to stop shipments or require satisfactory
security or payment in advance. If Buyer fails to make payment or otherwise
comply with these Terms or any related agreement, Omron may (without liabil-
ity and in addition to other remedies) cancel any unshipped portion of Prod-
ucts sold hereunder and stop any Products in transit until Buyer pays all
amounts, including amounts payable hereunder, whether or not then due,
which are owing to it by Buyer. Buyer shall in any event remain liable for all
unpaid accounts.

9. Cancellation; Etc. Orders are not subject to rescheduling or cancellation
unless Buyer indemnifies Omron against all related costs or expenses.

10. Force Majeure. Omron shall not be liable for any delay or failure in delivery
resulting from causes beyond its control, including earthquakes, fires, floods,
strikes or other labor disputes, shortage of labor or materials, accidents to
machinery, acts of sabotage, riots, delay in or lack of transportation or the
requirements of any government authority.

11. Shipping; Delivery. Unless otherwise expressly agreed in writing by Omron:
a. Shipments shall be by a carrier selected by Omron; Omron will not drop ship

except in “break down” situations.
b. Such carrier shall act as the agent of Buyer and delivery to such carrier shall

constitute delivery to Buyer;
c. All sales and shipments of Products shall be FOB shipping point (unless oth-

erwise stated in writing by Omron), at which point title and risk of loss shall
pass from Omron to Buyer; provided that Omron shall retain a security inter-
est in the Products until the full purchase price is paid;

d. Delivery and shipping dates are estimates only; and
e. Omron will package Products as it deems proper for protection against nor-

mal handling and extra charges apply to special conditions.
12. Claims. Any claim by Buyer against Omron for shortage or damage to the

Products occurring before delivery to the carrier must be presented in writing
to Omron within 30 days of receipt of shipment and include the original trans-
portation bill signed by the carrier noting that the carrier received the Products
from Omron in the condition claimed.

13. Warranties. (a) Exclusive Warranty. Omron’s exclusive warranty is that the
Products will be free from defects in materials and workmanship for a period of
twelve months from the date of sale by Omron (or such other period expressed
in writing by Omron). Omron disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION,
EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABIL-

ITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS.
BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE
PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR
INTENDED USE. Omron further disclaims all warranties and responsibility of
any type for claims or expenses based on infringement by the Products or oth-
erwise of any intellectual property right. (c) Buyer Remedy. Omron’s sole obli-
gation hereunder shall be, at Omron’s election, to (i) replace (in the form
originally shipped with Buyer responsible for labor charges for removal or
replacement thereof) the non-complying Product, (ii) repair the non-complying
Product, or (iii) repay or credit Buyer an amount equal to the purchase price of
the non-complying Product; provided that in no event shall Omron be responsi-
ble for warranty, repair, indemnity or any other claims or expenses regarding
the Products unless Omron’s analysis confirms that the Products were prop-
erly handled, stored, installed and maintained and not subject to contamina-
tion, abuse, misuse or inappropriate modification. Return of any Products by
Buyer must be approved in writing by Omron before shipment. Omron Compa-
nies shall not be liable for the suitability or unsuitability or the results from the
use of Products in combination with any electrical or electronic components,
circuits, system assemblies or any other materials or substances or environ-
ments. Any advice, recommendations or information given orally or in writing,
are not to be construed as an amendment or addition to the above warranty.
See http://oeweb.omron.com or contact your Omron representative for pub-
lished information.

14. Limitation on Liability; Etc. OMRON COMPANIES SHALL NOT BE LIABLE
FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY
WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS
BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY.
Further, in no event shall liability of Omron Companies exceed the individual
price of the Product on which liability is asserted.

15. Indemnities. Buyer shall indemnify and hold harmless Omron Companies and
their employees from and against all liabilities, losses, claims, costs and
expenses (including attorney's fees and expenses) related to any claim, inves-
tigation, litigation or proceeding (whether or not Omron is a party) which arises
or is alleged to arise from Buyer's acts or omissions under these Terms or in
any way with respect to the Products. Without limiting the foregoing, Buyer (at
its own expense) shall indemnify and hold harmless Omron and defend or set-
tle any action brought against such Companies to the extent based on a claim
that any Product made to Buyer specifications infringed intellectual property
rights of another party.

16. Property; Confidentiality. Any intellectual property in the Products is the exclu-
sive property of Omron Companies and Buyer shall not attempt to duplicate it
in any way without the written permission of Omron. Notwithstanding any
charges to Buyer for engineering or tooling, all engineering and tooling shall
remain the exclusive property of Omron. All information and materials supplied
by Omron to Buyer relating to the Products are confidential and proprietary,
and Buyer shall limit distribution thereof to its trusted employees and strictly
prevent disclosure to any third party.

17. Export Controls. Buyer shall comply with all applicable laws, regulations and
licenses regarding (i) export of products or information; (iii) sale of products to
“forbidden” or other proscribed persons; and (ii) disclosure to non-citizens of
regulated technology or information.

18. Miscellaneous. (a) Waiver. No failure or delay by Omron in exercising any right
and no course of dealing between Buyer and Omron shall operate as a waiver
of rights by Omron. (b) Assignment. Buyer may not assign its rights hereunder
without Omron's written consent. (c) Law. These Terms are governed by the
law of the jurisdiction of the home office of the Omron company from which
Buyer is purchasing the Products (without regard to conflict of law princi-
ples). (d) Amendment. These Terms constitute the entire agreement between
Buyer and Omron relating to the Products, and no provision may be changed
or waived unless in writing signed by the parties. (e) Severability. If any provi-
sion hereof is rendered ineffective or invalid, such provision shall not invalidate
any other provision. (f) Setoff. Buyer shall have no right to set off any amounts
against the amount owing in respect of this invoice. (g) Definitions. As used
herein, “including” means “including without limitation”; and “Omron Compa-
nies” (or similar words) mean Omron Corporation and any direct or indirect
subsidiary or affiliate thereof.

Certain Precautions on Specifications and Use
1. Suitability of Use. Omron Companies shall not be responsible for conformity

with any standards, codes or regulations which apply to the combination of the
Product in the Buyer’s application or use of the Product. At Buyer’s request,
Omron will provide applicable third party certification documents identifying
ratings and limitations of use which apply to the Product. This information by
itself is not sufficient for a complete determination of the suitability of the Prod-
uct in combination with the end product, machine, system, or other application
or use. Buyer shall be solely responsible for determining appropriateness of
the particular Product with respect to Buyer’s application, product or system.
Buyer shall take application responsibility in all cases but the following is a
non-exhaustive list of applications for which particular attention must be given:
(i) Outdoor use, uses involving potential chemical contamination or electrical
interference, or conditions or uses not described in this document.
(ii) Use in consumer products or any use in significant quantities.
(iii) Energy control systems, combustion systems, railroad systems, aviation
systems, medical equipment, amusement machines, vehicles, safety equip-
ment, and installations subject to separate industry or government regulations.
(iv) Systems, machines and equipment that could present a risk to life or prop-
erty. Please know and observe all prohibitions of use applicable to this Prod-
uct.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS
RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT
ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO

ADDRESS THE RISKS, AND THAT THE OMRON’S PRODUCT IS PROP-
ERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE
OVERALL EQUIPMENT OR SYSTEM.

2. Programmable Products. Omron Companies shall not be responsible for the
user’s programming of a programmable Product, or any consequence thereof.

3. Performance Data. Data presented in Omron Company websites, catalogs
and other materials is provided as a guide for the user in determining suitabil-
ity and does not constitute a warranty. It may represent the result of Omron’s
test conditions, and the user must correlate it to actual application require-
ments. Actual performance is subject to the Omron’s Warranty and Limitations
of Liability.

4. Change in Specifications. Product specifications and accessories may be
changed at any time based on improvements and other reasons. It is our prac-
tice to change part numbers when published ratings or features are changed,
or when significant construction changes are made. However, some specifica-
tions of the Product may be changed without any notice. When in doubt, spe-
cial part numbers may be assigned to fix or establish key specifications for
your application. Please consult with your Omron’s representative at any time
to confirm actual specifications of purchased Product.

5. Errors and Omissions. Information presented by Omron Companies has been
checked and is believed to be accurate; however, no responsibility is assumed
for clerical, typographical or proofreading errors or omissions.

!

!

!

v

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1989
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

vi

TABLE OF CONTENTS

vii

PRECAUTIONS xi.
1 Intended Audience xii.
2 General Precautions xii.
3 Safety Precautions xii.
4 Operating Environment Precautions xii.
5 Application Precautions xiii.

SECTION 1
Hardware 1.

1-1 Front Panel 2.
1-2 Back Panel 4.
1-3 System Configuration 7.

SECTION 2
Data Section 9.

2-1 Bits and Bytes 10.
2-2 Data Section 11.

SECTION 3
Programming and Communication 15.

3-1 Programs 16.
3-2 Program Transfer 17.
3-3 Running the BASIC Program 18.
3-4 Assembly Routines 18.

SECTION 4
BASIC Language 19.

4-1 Program Configuration 20.
4-2 BASIC Language 25.

SECTION 5
Assembly Programming 67.

5-1 Assembly Language Programming 68.
5-2 Terminology and Formatting 69.
5-3 Monitor Mode Commands 69.

SECTION 6
Program Examples 79.

6-1 Example Programs 80.
6-2 Execution Sequence 94.
6-3 Assembly Language Example 102.

Appendices
A Standard Models 107.
B Specifications 109.
C PC Statements and Refresh Timing 117.
D Formatting and Data Conversion 125.
E ASCII Unit Memory Map 135.
F Troubleshooting 141.
G Reference Tables 145.
H Programming with Windows 95 HyperTerminal 151.
I Assembly Language Programming with a Terminal 155.

TABLE OF CONTENTS

viii

Glossary 159.
Index 163.
Revision History 165.

ix

About this Manual:

It has been assumed in the writing of this manual that the reader is already familiar with the hardware,
programming, and terminology of OMRON PCs. If a review of this information is necessary, the read-
er should refer to the appropriate OMRON PC manuals for assistance.

This manual is organized into six topic sections and six supplementary appendixes and was designed
to be read from the beginning to the end in the presented sequence. It is important to fully study the
current section before proceeding to the following section. However, because many of the concepts
presented are interrelated, in some circumstances it will not be possible to fully understand a topic
until the reader has read the whole manual. Therefore, it is recommended that the user read the man-
ual through once for general understanding and then again to fill in the details. This manual also con-
tains an index and a glossary of important terms. It is recommended that the reader become familiar
with the terms in the glossary before attempting to read this manual.

Section 1 explains the details of the external hardware of the ASCII Unit and how it connects to a PC
system.

Section 2 explains the format of the PC data section. The PC data section is an area in the PC
memory where the ASCII Unit and the PC exchange data.

Section 3 explains how the ASCII Unit program and the PC Program communicate. It also explains
how to write, load, save, and run an ASCII Unit BASIC program.

Section 4 presents the ASCII Unit BASIC programming language. Since many of the BASIC com-
mands are nonstandard and particular to an ASCII Unit-PC system, it is recommended that even
readers already proficient in BASIC pay careful attention to this section.

Section 5 explains the assembly language programming environment and how it relates to the ASCII
Unit BASIC program. It also explains in detail how to write, edit, and run an assembly language pro-
gram.

Section 6 presents programming examples that are meant to bring together all of the concepts pres-
ented in this manual. most of the programs deal with data transfer and illustrate how the ASCII Unit
and the PC work together in various applications. Also in this section are several examples used to
illustrate the execution sequence of the hardware during execution of the ASCII Unit and PC pro-
grams. Most of the detailed technical information not immediately necessary for the understanding of
a particular section has been put into one of the six appendixes and should be used for reference
when needed. For as list of the appendixes, refer to the table of contents.

Appendixes, a Glossary, and an Index are also included.

WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

!

xi

PRECAUTIONS

This section provides general precautions for using the C200H Temperature Sensor Unit and related devices.

The information contained in this section is important for the safe and reliable application of the C200H Temperature
Sensor Unit. You must read this section and understand the information contained before attempting to set up or oper-
ate the C200H Temperature Sensor Unit.

1 Intended Audience xii.
2 General Precautions xii.
3 Safety Precautions xii.
4 Operating Environment Precautions xii.
5 Application Precautions xiii.

!

!

!

!

!

4Operating Environment Precautions

xii

1 Intended Audience
This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifications
described in the relevant manuals.

Before using the product under conditions which are not described in the manual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement ma-
chines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this manual
close at hand for reference during operation.

WARNING It is extremely important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC system to the above-mentioned
applications.

3 Safety Precautions

WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing so
may result in electric shock.

WARNING Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so
may result in malfunction, fire, or electric shock.

4 Operating Environment Precautions

Caution Do not operate the control system in the following locations:

• Locations subject to direct sunlight.

• Locations subject to temperatures or humidity outside the range specified in
the specifications.

• Locations subject to condensation as the result of severe changes in tempera-
ture.

!

!

!

!

5Application Precautions

xiii

• Locations subject to corrosive or flammable gases.

• Locations subject to dust (especially iron dust) or salts.

• Locations subject to exposure to water, oil, or chemicals.

• Locations subject to shock or vibration.

Caution Take appropriate and sufficient countermeasures when installing systems in the
following locations:

• Locations subject to static electricity or other forms of noise.

• Locations subject to strong electromagnetic fields.

• Locations subject to possible exposure to radioactivity.

• Locations close to power supplies.

Caution The operating environment of the PC system can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC system. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions
Observe the following precautions when using the PC system.

WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

• Always ground the system to 100 Ω or less when installing the Units. Not con-
necting to a ground of 100 Ω or less may result in electric shock.

• Always turn OFF the power supply to the PC before attempting any of the fol-
lowing. Not turning OFF the power supply may result in malfunction or electric
shock.

• Mounting or dismounting I/O Units, CPU Units, Memory Units, or any other
Units.

• Assembling the Units.

• Setting DIP switches or rotary switches.

• Connecting cables or wiring the system.

• Connecting or disconnecting the connectors.

Caution Failure to abide by the following precautions could lead to faulty operation of the
PC or the system, or could damage the PC or PC Units. Always heed these pre-
cautions.

• Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes.

• Always use the power supply voltages specified in this manual. An incorrect
voltage may result in malfunction or burning.

• Take appropriate measures to ensure that the specified power with the rated
voltage and frequency is supplied. Be particularly careful in places where the
power supply is unstable. An incorrect power supply may result in malfunction.

• Install external breakers and take other safety measures against short-circuit-
ing in external wiring. Insufficient safety measures against short-circuiting may
result in burning.

5Application Precautions

xiv

• Do not apply voltages to the Input Units in excess of the rated input voltage.
Excess voltages may result in burning.

• Do not apply voltages or connect loads to the Output Units in excess of the
maximum switching capacity. Excess voltage or loads may result in burning.

• Disconnect the functional ground terminal when performing withstand voltage
tests. Not disconnecting the functional ground terminal may result in burning.

• Be sure that all the mounting screws, terminal screws, and cable connector
screws are tightened to the torque specified in this manual. Incorrect tighten-
ing torque may result in malfunction.

• Leave the label attached to the Unit when wiring. Removing the label may re-
sult in malfunction if foreign matter enters the Unit.

• Remove the label after the completion of wiring to ensure proper heat dissipa-
tion. Leaving the label attached may result in malfunction.

• Double-check all wiring and switch settings before turning ON the power sup-
ply. Incorrect wiring may result in burning.

• Wire correctly. Incorrect wiring may result in burning.

• Mount Units only after checking terminal blocks and connectors completely.

• Be sure that the terminal blocks, Memory Units, expansion cables, and other
items with locking devices are properly locked into place. Improper locking
may result in malfunction.

• Check the user program for proper execution before actually running it on the
Unit. Not checking the program may result in an unexpected operation.

• Confirm that no adverse effect will occur in the system before attempting any of
the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PC.

• Force-setting/force-resetting any bit in memory.

• Changing the present value of any word or any set value in memory.

• Resume operation only after transferring to the new CPU Unit the contents of
the DM Area, HR Area, and other data required for resuming operation. Not
doing so may result in an unexpected operation.

• Do not pull on the cables or bend the cables beyond their natural limit. Doing
either of these may break the cables.

• Do not place objects on top of the cables or other wiring lines. Doing so may
break the cables.

• Use crimp terminals for wiring. Do not connect bare stranded wires directly to
terminals. Connection of bare stranded wires may result in burning.

• When replacing parts, be sure to confirm that the rating of a new part is correct.
Not doing so may result in malfunction or burning.

• Before touching a Unit, be sure to first touch a grounded metallic object in order
to discharge any static built-up. Not doing so may result in malfunction or dam-
age.

1

SECTION 1
Hardware

The ASCII Unit is an intelligent PC peripheral device designed to make a PC-based control system more flexible and
powerful. The ASCII Unit, programmed in BASIC, can be used for statistical quality control, system monitoring, data
processing, report generation, and other tasks.

The ASCII Unit is a companion processor that relieves the PC of some of its housekeeping, monitoring, and decision
making functions. Using BASIC, it is easy to program the ASCII Unit to process data collected by the PC and to imple-
ment decisions based on the results.

The PC is constantly monitoring all of its input lines. Individual inputs might represent counts, time intervals, tempera-
ture, position, data values, and many other parameters. Based on the values of these inputs, the PC must send the appro-
priate signals to the various output devices to adjust or maintain the operation of the controlled system.

The PC makes decisions based on predefined values stored permanently in its memory. For example, the PC might be
programmed to monitor the temperature of a mechanical system. It continuously compares the monitored temperature
with a “danger” value stored in memory. If the system temperature exceeds this value, the PC could be programmed to
shut the system down until the temperature falls below a “safe” level.

The above is a very basic example. In a more complicated system, it might be necessary to process large quantities of
data from many different inputs, and based on the results of mathematical, relational, and logical computations, come to a
decision that the PC must take a particular course of action. With an ASCII Unit, the PC can delegate these data process-
ing and decision making tasks. Because the ASCII Unit is programmed in BASIC instead of Ladder Diagram Program-
ming, it is better suited for data processing tasks.

The ASCII Unit also allows the user easy access to any desired information in any BASIC format via an attached printer
or display terminal.

Using the ASCII Unit for intelligent support, the PC based control system becomes a more powerful, flexible, and effi-
cient tool.

This section describes the external hardware of the ASCII Unit. The front and back panels of the ASCII Unit contain
switches, buttons, connectors, and indicators which enable the user to set up, control, and monitor ASCII Unit operations.

1-1 Front Panel 2.
1-2 Back Panel 4.
1-3 System Configuration 7.

2

1-1 Front Panel
The front panel contains two RS-232C communication ports, the program-
mer’s START/STOP switch, a unit number selector, and several indicator
LEDs. The back panel contains two sets of DIP switches for setting ASCII
Unit parameters and the PC Backplane connector.

Ports The front panel of the ASCII Unit contains two RS-232C ports. These ports
are used for connecting peripheral I/O devices to the ASCII Unit. Both ports
can be used for communication devices such as printers, terminals, and mo-
dems. However, only port 1 can be used for uploading or downloading a BA-
SIC program. The standard configuration is to connect a personal computer
to port 1 and a printer or other I/O device to port 2.

Switches The START/STOP switch is a toggle switch that is used for initiating and halt-
ing execution of the ASCII Unit program.

The Machine No. switch is used for identifying the particular ASCII Unit.
Since it is possible to have more then one ASCII Unit connected to a given
PC, the Machine No. identifies each individual ASCII Unit. It is not permitted
to have two ASCII Units with the same Machine No. The Machine No. can be
set from 1 through 9. This should be done before power is applied to the
Unit.

Indicators There are four indicator lights on the front panel. They are described in the
table following the diagram on the next page.

Front Panel Section 1-1

3

Front Panel

··
··
·
··
·
·

··
··
·
··
·
·

RUN BASIC

1[T / R
ERR] 2

T / R
ERR

ASC 02

START
/ STOP

Machine
No.

Port 1

Port 2

LED Display
Indicates the operating status
of the ASCII Unit.

START/STOP switch
Starts/stops BASIC pro-
gram execution.

RS-232C connector port 1
Connects peripheral devices. Is
generally used to input the BA-
SIC program but can be used for
other peripheral devices as well.

RS-232C connector port 2
Connects peripheral devices. Cannot
be used to input a BASIC program. Is
generally used for a printer or other
RS232-C devices.

Machine No. switch
Sets the ASCII Unit Machine
Number

Indicator LEDs

Name Indication Function

Run
(green)

Lit when the ASCII Unit is operating
normally. Unlit if an error occurs.

T/R for ports 1 and 2 (green) Blinks during data transmission (port
1 and port 2).

ERR 1 (error for port 1)
ERR 2 (error for port 2)

(red) Lit if an error such as parity error
occurs, or while the ASCII Unit is
waiting for specific transmission
conditions to be satisfied.

(red - 1
only)

Blinks when the battery voltage has
fallen below the rated level or when
the battery has not been inserted
correctly.

BASIC (green) Lit while the BASIC program is
running.

(green)
Blinks when the BASIC program
stops, or when the ASCII Unit is
waiting for input while the BASIC
program is running.

(green) Unlit when in monitor mode.

Indication: Lit Blinking Unlit

Front Panel Section 1-1

4

1-2 Back Panel
This section explains the operations of the back panel of the ASCII Unit.
There are two 8-pin DIP switches on the Backplane side of the ASCII Unit.
The desired configuration must be set before the ASCII Unit can be plugged
into the Backplane.

Left-Side DIP Switch Definitions
Pin 1 is used to select the startup mode of the ASCII Unit. The BASIC pro-
gram can be automatically booted when power is applied or it can be acti-
vated after power is applied by depressing the START/STOP switch.

Pin 2 allows automatic loading of a BASIC program from the EEPROM to the
RAM when power is applied.

Pin 3 and Pin 4 are used to select which of the three BASIC programs will be
used as the boot program.

Pin 5 is not used.

Pins 6, 7, and 8 are used to select the screen size of the display terminal.

The DIP switches are described in more detail in the diagram on the follow-
ing page.

Back Panel Section 1-2

5

6: The pin numbers for port 2 corrected in the diagram. Left-Side DIP Switch Settings

OFF
ON

: 0
: 1

1 2 3 4 5 6 7 8

Start mode

Pin No. 1 Function

Setting

0

Manual start mode

In this mode, the BASIC program is not
started upon power application. To start
the program, either press the START/
STOP switch or issue a start command
from the personal computer connected
to port 1.

1

Automatic start mode

In this mode, the BASIC program is
started automatically on power applica-
tion.

Automatic program transfer from EEPROM to RAM

Pin No. Function

Set this pin to “0” if only the
RAM is to be used.

2

Set this pin to “1” to automatically
transfer the program from the EE-
PROM to RAM on power applica-
tion or reset.

0

1

Setting

Program No.

Pin No. Function3 4

0 0

1 0

0 1

1 1

No. 1

No. 2

No. 3

Setting

Screen size

Pin No. Screen Size

Setting 40 columns x 7 lines

40 columns x 8 lines

40 columns x 15 lines

40 columns x 16 lines

80 columns x 16 lines

80 columns x 15 lines

80 columns x 24 lines

80 columns x 25 lines

6 7 8

0 0 0

1

1

11

1

1

1 1

111

0 0

00

0

00

0

0

1

These pins select which program will be executed on
power application or reset. The program number can be
changed later with the PGEN command.

Not Used. Always set this pin to OFF.

Back Panel Section 1-2

6

Right-Side DIP Switch Definitions

Pins 1, 2, and 3 are used for setting the baud rate of port 1.

Pin 4 is not used.

Pins 5, 6, and 7 are used for setting the baud rate of port 2.

Pin 8 is not used.

Right-Side DIP Switch Settings

Pin No.

Setting

5 6 7

0 0 0

1

1

11

1

1

1 1

111

0 0

00

0

00

0

0

1

Pin No.

Setting

1 2 3

0 0 0

1

1

11

1

1

1 1

111

0 0

00

0

00

0

0

1

300 BPS

600 BPS

1200 BPS

2400 BPS

4800 BPS

9600 BPS

300 BPS

600 BPS

1200 BPS

2400 BPS

4800 BPS

9600 BPS

19,200 BPS

Baud rate selection for port 1

Baud Rate

Not used (Always set these pins to OFF.)

Baud rate selection for port 2

Baud Rate

Not used (Always set these pins to OFF.)

OFF
ON

: 0
: 1

1 2 3 4 5 6 7 8

Back Panel Section 1-2

7

1-3 System Configuration
If the ASCII Unit is plugged into either of the 2 CPU Backplane slots next to
the CPU Unit, it will not be possible to mount a Host Link Unit or a Program-
ming Device, such as a Programming Console. Before mounting the ASCII
Unit, the DIP switches must be set. Make sure that the power supply to the
PC is turned OFF during installation of the ASCII Unit. A personal computer
used for entering the BASIC program should be connected to Port 1 and oth-
er peripheral I/O devices such as a printer or a display terminal can be con-
nected to Port 2 (refer to the following diagram). For more detailed informa-
tion on peripheral interface connections and timing, refer to Appendix B
Specifications.

 C200H-ASC02

Port 1 (RS-232C) Port 1/Port 2 (RS-232C)

Bar-code reader

Output

Printer

Plasma Display

Personal Computer Laptop
Computer

Input

C200H PC

System Configuration Section 1-3

9

SECTION 2
Data Section

This section explains the data section of the PC, a special memory area used to communicate with the ASCII Unit. This
section also defines several important terms which are used throughout this manual. The material in this section will be-
come more clear later on when you begin working with an actual ASCII Unit program.

2-1 Bits and Bytes 10.
2-2 Data Section 11.

10

2-1 Bits and Bytes
The PC’s memory is divided up into many sections, each of which has its
own name and purpose. The ASCII Unit can access any of these memory
areas using the BASIC READ(@) and WRITE(@) statements (this is ex-
plained in more detail in Section 4 BASIC Language). However, there is a
special area in the PC’s IR data area that is assigned to each ASCII Unit.
The MACHINE NO. switch on the front panel of the ASCII Unit (refer to Sec-
tion 1-1 Front Panel) is used to select one of the nine possible positions.

The PC’s memory is organized into units called words. Information is usually
stored in word or multiple word units. Each word has a unique address in the
computer memory and can be accessed by specifying its address.

Each word contains 16 bits. A bit is the smallest piece of information that can
be stored or accessed by a computer. A bit is always either one or zero. Cer-
tain bits can be accessed individually and are used as flags. A flag is usually
set (1) or cleared (0) by the hardware to indicate some state of the computer
or to allow or disallow certain operations. Bits can also be set or cleared by
the programmer to communicate certain parameters or conditions to the
CPU.

For example: the ASCII Unit program requests data to be sent from the PC
using the BASIC GET statement; however, the PC has not yet collected the
data. The PC’s Write FLAG is cleared to zero (0), indicating that the ASCII
Unit must wait. When the PC has collected the data, it sets the Write Flag to
one (1), signaling the ASCII Unit that it may proceed to read the data.

Bits and Bytes Section 2-1

11

2-2 Data Section

Each ASCII Unit is assigned four memory words called the Data Section for
communication with the PC. The words are assigned from addresses 100 to
199 of the PC IR memory area. How this information is used will be under-
stood better after you read the BASIC Language and Programming Exam-
ples sections of this manual.

See the following tables for detailed information on the location, breakdown,
and purpose of each bit of the Data Section:

SYSMAC C200H, C200HS, C200HX/HG/HE

Transferred to each Unit every
time the I/O data is refreshed.

ASCII Unit

Refresh timing

Words n to n+2 OUT refresh

Word n+3 IN refresh

4 words are used (n: 100 + 10 + unit no.)

IR Area

Word 100 to 103 Unit 0

Word 110 to 113 Unit 1

Word 120 to 123 Unit 2

Word 130 to 133 Unit 3

word 140 to 143 Unit 4

Word 150 to 153 Unit 5

Word 160 to 163 Unit 6

Word 170 to 173 Unit 7

Word 180 to 183 Unit 8

Word 190 to 193 Unit 9

Data Section Section 2-2

12

Bit Definitions
I/O Word No. Bit Name Function

Output n 00 --- Not used

(n = 100 +
10 x unit
no.)

01 WRITE (PC to
ASCII)

This bit is used as a flag. When this flag is set (”1”) and
the PC READ command is executed, a specified
quantity of data will be transferred from the PC to the
ASCII Unit, starting from a specified word. When this
flag is cleared (”0”), execution of PC READ will be
terminated.
The interrupt numbers used by the ON PC GOSUB
command become valid at the positive transition (i.e.,
from OFF to ON) of this flag.

02 READ (ASCII to
PC)

This bit is used as a flag. When this flag is set and the
PC WRITE command is executed, a specified quantity
of data will be transferred from the ASCII Unit to the
PC. When this flag is cleared, execution of the PC
WRITE command will be terminated.

03 Restart The ASCII Unit is initialized and restarted at the
negative transition of this flag (i.e., from ON to OFF).
When this flag is set, the ASCII Unit is initialized.

04 to 07 Interrupt number These four bits constitute an interrupt number that is
used when the ON PC command is executed. These
bits are read as a hexadecimal number; numbers 01 to
15 are treated as interrupt numbers while 00 is
ignored.

08 to 15 Output data These bits constitute PC data. This data is written to
the ASCII Unit with MOV and read from the PC with
the PC GET command in the BASIC program.
Note: In addition to raw data, 8-bit address data can
also be transferred to the ASCII Unit to facilitate
branching within the BASIC program.

n + 1 00 to 11 Number of data
words to be
transferred

These bits specify the number of words to be
transferred by the PC READ or PC WRITE command.
The number of words may not exceed 255.

12 to 15 --- Not used

Data Section Section 2-2

13

Bit Definitions Continued
I/O Word No. Bit Name Function

Output (n =
100 + 10 x
unit no.)

n + 2 00 to 12 Transfer base word
No.

These bits specify the PC base word (the first word
from which data is accessed) for data transfer.

13 to 15 PC memory These bits specify the section of the PC memory from which
data will be transferred between the PC and ASCII Unit with
the PC READ or PC WRITE command.

Bit No.

Data Area

0 DM Area

IR Area

HR Area

AR Area

LR Area

TC Area

0 0

00

0

0

0

0

0

0

1

1

1 1

1

1 1

15 14 13

Input n + 3 00 ASCII busy This bit is used as a flag that is set during data
transfer.

(n = 100 +
10

01 to 03 --- Not used

x unit no.) 04 Port 1 error This bit is used as an error flag that is set if a
transmission error (such as parity error) has occurred
in port 1.

05 Port 2 error This bit is used as an error flag; it is set if a
transmission error (such as parity error) has occurred
in port 2.

06 Battery error This bit is used as a flag that is set when the supply
voltage of the built-in battery has dropped below the
rated level or the battery is not correctly connected.

07 BASIC RUN This flag is set while the BASIC program is running.

08 Input data These bits constitute data that is transferred from the
ASCII Unit to the PC. The data is written to the PC with
the ASCII Unit PC PUT command and is read by the
PC with the MOV.
Note: In addition to raw data, 8-bit control data can
also be transferred to the PC to facilitate branching
within the PC program.

Data Section Section 2-2

15

SECTION 3
Programming and Communication

Section 3-1 explains how the ASCII Unit and the PC exchange information. Section 3-2 explains how to transfer pro-
grams from one device to another. The ASCII Unit BASIC program is written on a personal computer. To run the pro-
gram, it must be transferred to the RAM of the ASCII Unit. The ASCII Unit program can be permanently stored in the
ASCII Unit EEPROM and also loaded from the EEPROM. The program can also be transferred back to the personal
computer or other storage device. Section 3-4 explains how to run a BASIC program once it has been transferred to the
ASCII Unit.

3-1 Programs 16. .
3-2 Program Transfer 17.
3-3 Running the BASIC Program 18.
3-4 Assembly Routines 18.

16

3-1 Programs
To use the ASCII Unit in conjunction with the PC, an ASCII Unit program writ-
ten in BASIC is needed. A data exchange routine must also be incorporated
into the PC program except when the READ(@...) and WRITE(@...) state-
ments are used with specific memory area designators. The PC data ex-
change routine must set the number of words to be transferred, the base
address, and the specific memory area. This can be done using the PC MOV
instruction.

There are two ways the ASCII Unit can communicate with the PC. In the first
method, the PC controls the timing of the data transfer between the two de-
vices. The ASCII Unit “requests” access to the PC data memory area using
the PC READ, PC WRITE, PC GET, or PC PUT statements, and then waits
for the PC to respond by setting either the read or write flag. The PC data
exchange routine performs the designated operations. When the PC is ready,
the appropriate flag is set and the ASCII Unit proceeds with the data transfer.

In the second method, no special PC data exchange code is necessary to
facilitate communication between the two devices. If the memory area desig-
nator parameter is specified with the PC READ or PC WRITE statement, the
ASCII Unit can directly access the specified PC memory area.

The following two figures illustrate the relationship between the PC program
and the ASCII Unit program.

PC program

General Program

General Program

Data exchange
code

ASCII Unit program

Data exchange
processing or I/
O program

write/read
data
exchange

PC program

I/O data ex-
change

 ASCII Unit program

Common
memory

I/O
memory

This diagram illustrates the relationship between the PC data exchange code
and the ASCII Unit program.

 PC READ command

 PC WRITE command

 PC PUT command

 PC GET command

MOV Instruction

MOV instruction, OUT
instruction, etc.

MOV Instruction

MOV instruction, OUT
instruction, etc.

I/O
memory

Programs Section 3-1

17

3-2 Program Transfer

Preparation For the personal computer to communicate with the ASCII Unit, set the com-
puter communication software as follows:

Baud rate: same as ASCII Unit
Data length: 8 bits
Parity: none
No. stop bits: 2

Also: Full duplex, no echo, no XON/XOFF buffer busy control, no auto line
feed.

Set the ASCII Unit DIP switches to the desired configuration.
(Refer to Section 1 for DIP switch settings.)

Transfer The ASCII Unit BASIC program must be written on a personal computer
which is connected to port 1 of the ASCII Unit through an RS-232C interface.
A program can be transferred to the ASCII Unit from the personal computer
or any other storage device connected to one of the communication ports
with the BASIC LOAD command (refer to Section 4-2-2 Commands). Pro-
grams can also be transferred from the ASCII Unit’s EEPROM to the ASCII
Unit’s RAM using the LOAD command.

Programs can be transferred from the ASCII Unit’s RAM to the EEPROM or
to a personal computer or other storage device connected to one of the com-
munication ports using the BASIC SAVE command (refer to Section 4-2-2
Commands).

The ASCII Unit can be booted on power application by a program stored in
the EEPROM. To do this, set pin 2 of the left-side DIP switch on the back
panel of the ASCII Unit to ON (refer to Section 1-2 Back Panel).

During data transfer, an overflow may occur if the buffering capacity of the
baud rate settings of the computer and the ASCII Unit are not matched. If an
overflow error does occur, set either a slower baud rate or specify XON with
the OPEN command.

Note The EEPROM’s guaranteed lifetime is 5000 write operations.

Program Transfer Section 3-2

18

Direction of Data Transfer

Computer or
other periph-
eral device

Computer or
other periph-
eral device

SAVE #1, “COMU:”

LOAD #1, “COMU:”

SAVE #2, “COMU:”

LOAD #2, “COMU:”

(1)

(2)

··
··
·
··
·
·

··
··
·
··
·
·

RUN BASIC

1[T / R
ERR] 2

T / R
ERR

ASC 02

START
/ STOP

Machine
No.

Port 1

Port 2

Note Refer to the explanation of the OPEN command in Section 4-2-4 Device
Control Statements for details on COMU.

3-3 Running the BASIC Program

The ASCII Unit can store and access three separate BASIC programs. Each
program has an associated program number. The user can specify which
program is to be used by setting a DIP switch on the back panel of the ASCII
Unit. This must be done before the Unit is activated.

There are three ways to execute the specified BASIC program:

1, 2, 3... 1. Enter the RUN command from the keyboard of the personal computer.
(Keying in CTRL+X will abort the program.)

2. Pressing the START/STOP switch on the ASCII Unit will start the pro-
gram. Pressing it again will stop the program.

3. If pin 1 of the left-side DIP switch is set to the ON position, the specified
program will be executed automatically when the Unit is turned ON or
when it is reset.

3-4 Assembly Routines
Assembly language routines can be written for the ASCII Unit and called from
the BASIC program with the USR statement. An assembly program can be
saved to the personal computer with the S command and loaded from the
personal computer with the L command (refer to Section 5-3 Monitor Mode
Commands). Assembly programs are stored in the S format.

Assembly Routines Section 3-4

19

SECTION 4
BASIC Language

This section contains an explanation of the terminology, components, structure, and use of the BASIC programming lan-
guage on the ASCII Unit. Even those familiar with BASIC should study this section carefully, as many of the ASCII Unit
BASIC commands, statements, and functions are non-standard, especially those that control I/O operations. Experienced
BASIC users may wish to skip Section 4-1 and move directly to Section 4-2. All readers should pay special attention to
the explanation of statements that are prefixed with “PC.” Also pay special attention to the OPEN statement.

4-1 Program Configuration 20.
4-2 BASIC Language 25.

4-2-1 BASIC Format 25.
4-2-2 Commands 26.
4-2-3 General Statements 32.
4-2-4 Device Control Statements 51.
4-2-5 Arithmetic Operation Functions 54.
4-2-6 Character String Functions 57.
4-2-7 Special Functions 60.

20

4-1 Program Configuration
A BASIC program consists of commands, statements, and functions.

BASIC Language Command

Function

Arithmetic operation function

Character string function

Special function

Statement

General statement

Device control statement

Basic Statements designate and control the flow of programs and are gen-
erally used in program lines within a program.

Basic Commands are usually entered from the command line and control
operations external to the program such as printing and listing.

Examples: print, list, run

Functions are self-contained programs which accept one or more argu-
ments, perform predefined calculations, and return a result/s. There are pre-
defined BASIC functions for arithmetic and string operations as well as user-
defined functions.

Examples: INT(x), LOG(x), SQR(x)

Lines and Statements A program written in BASIC is a series of lines, each of which consists of one
or more statements. If several statement are written on the same line, they
must be separated with colons(:). A line can be no longer than 255 charac-
ters. Use single quotation marks (’) to separate comments.

Example of four statements on a line:

10 FOR L=1 TO 100: J=L*I: PRINT J: NEXT L

Line Numbers Every BASIC program line begins with a line number. Line numbers indicate
the order in which the program lines are stored in memory and are also used
as references for branching and editing. Line numbers must be in the range
of 0 through 63999. A period may be used in AUTO, DELETE, EDIT, and
LIST commands to refer to the current line.

Examples:

LIST. EDIT. AUTO DEL 100-

Character Set The BASIC character set comprises alphabetical characters, numeric charac-
ters, and special characters.

The alphabetic characters in BASIC are the upper case and lower case let-
ters of the alphabet. The numeric characters in BASIC are the digits 0
through 9.

The following special characters are recognized by BASIC:

SP (space) ! ” # $ & ’ () * + , - . / : ; < = > ? [\ } ^ _

Constants The following can be used as constants:

Program Configuration Section 4-1

21

Constants Character

Numeric Integer Decimal
Octal
Hexadecimal

Real Number Single-precision

Double-precision

Character Constants A character constant is a character string enclosed by double quotation
marks (”). It can be up to 255 characters long. If it has no character, it is
called an “empty character string” or a null string.

Example: “CF-BASIC”

Integer Constants Whole numbers between -32768 and 32767 can be used. An optional per-
cent sign (%) can be added to specifically indicate an integer constant. Inte-
ger constants do not have decimal points.

Examples: 1234 -1234 12

Octal Constants Octal numbers 0 through 7 beginning with the prefix “&” and within the range
of &0 to &177777 can be used.

Examples: &0127 &7777

Hexadecimal Constants Hexadecimal numbers with the prefix “&H”, from 0 to F (0 to 9,A,B,C,D,E,F)
and in the range &H0000 to &HFFFF can be used.

Examples: &H5E &HBF4

Floating Point Constants Single precision: This type of constant is stored with seven-digit precision
and is output as a six-digit constant with the seventh digit rounded off. It is
represented by one of the following methods:

1, 2, 3... 1. As a number with seven or less digits: 1234.5
2. As a number in exponential form using E: 1.2E+3
3. As a number with the character “!” at the end: 2.34!

Double precision: This type of constant is stored with 16-digit precision and is
output as 16 digits or less. It is represented by one of the following methods:

1, 2, 3... 1. As a number with 8 or more valid digits: 1.23456789
2. As a number in exponential form using D: -1.2D-3
3. As a number with the character “#” at the end: 2.34#

Variables Variables are names used to represent values that are used in a BASIC pro-
gram. The value of a variable may be assigned as the result of calculations
or explicitly by the programmer with an assignment statement. If no value is
assigned to a numeric variable, it is assumed to be zero. If no value is as-
signed to a character variable, it is assumed to be a null string.

Variable Name A variable may be up to 255 alphanumeric characters long, but only the first
16 characters are actually valid. No variable can start with “FN” or a valid
BASIC command name.

If a parameter begins with a reserved word, syntax error will occur. TOTAL
and ABSOL, for example, cannot be used because they include reserved
words TO and ABS. Syntax errors will result if these parameters are used.

Type Declarator The variable TYPE must be declared. This is done using a type declarator
which is placed after the variable name. Even if two variables have the same
name, they will be treated differently if they are declared as different types of
variables.

Program Configuration Section 4-1

22

Integer: Uses 2 bytes per variable.

! Single-precision real: Uses 4 bytes per variable.

Double-precision real: Uses 8 bytes per variable.

$ Character: Uses a maximum of 255 characters.

There is a second way to declare variable types. The BASIC statements DE-
FINT, DEFSTR, DEFSNG, and DEFDBL may be used to declare the types
for certain variable names.

Variable Array An array is a group of values of the same TYPE that is stored and referenced
as a unit by the same variable name. Each element in an array has a unique
position and is referenced by the name of the array subscripted with an inte-
ger or integer expression.

There can be many dimensions to an array. The most common types are
one, two, and three dimensional arrays. An array has one subscript for each
dimension in the array.

For example, T(4) would reference the fourth element in the one-dimensional
array T. R(2,3) would reference the value located in the second row and third
column of the two-dimensional array R.

The maximum number of dimensions of an array is 255. The maximum num-
ber of elements per dimension is 32767. The array size and number of di-
mensions must be declared with the DIM statement. The subscript value zero
is the position of the first element in an array. All elements of an array must
be of the same TYPE.

Type Conversion When necessary, BASIC will convert a numeric constant from one TYPE to
another. The following rules and examples apply:

1, 2, 3... 1. If the numeric data on the right side of an assignment statement differs
from the type of data on the left side, the right side is converted to match
the left. However, character data cannot be converted to numerical data,
or vice versa.
Example: A = 12.3: if A is an integer, then “12” is assigned to A.

2. Double-precision data is converted to single-precision data when as-
signed to a single-precision variable.
Example:

IF “A” is a single-precision variable and the statement:

LET A = 12.3456789# occurs in a program, then 12.3456789# will be
converted to a single-precision number and then assigned to “A.”

3. When an arithmetic operation is performed using both single-precision
and double-precision values, the single-precision value is converted to
double-precision first, and then the operation is performed. Therefore,
the result is a double-precision value.
Example: 10#/3 (double-precision)

4. In logic operations, all numeric data is first converted into integer data. If
any value cannot be converted into an integer within the range of
-32768 to 32767, an error will occur.
Example: LET A = NOT 12.34, -13 is assigned as A.

5. When a real number is converted into an integer, everything to the right
of the decimal point is rounded off.

Program Configuration Section 4-1

23

Example: A = 12.3: “12” is assigned to A.

Expressions Expressions refer to constants, variables, and functions that have been com-
bined by operators. Numeric values, variables, or characters alone can also
form expressions. There are four types of expressions:

• Arithmetic
• Relational
• Logical
• Character

Of these, the first three produce numeric values as a result and are thus
called “numeric expressions”. The last type is called a “character expres-
sion.”

Arithmetic Operators An arithmetic expression is made up of constants, variables, and functions
combined using arithmetic operators. A list of valid arithmetic operators is
shown in the following table.

Arithmetic Operator Example Operation

+ A + B Addition

– A – B, –A Subtraction or negation

* A * B Multiplication

/ A / B Real number division

\ A \ B Integer division

MOD A MOD B Remainder after integer division

^ A ^ B Exponentiation

Remarks:

If A or B is a real number in an expression using the \ or MOD operator, the
decimal part is first rounded up to convert the real number into an integer,
and then the operation is performed.

Relational Operators Relational operators compare two values. The output is “-1” (&HFFFF) if the
two values are equal and “0” if they are not.

Relational Operator Example Operation

= A = B Equal

<>, >< A <> B Not equal

< A < B Less than

> A > B Greater than

≤ A ≤ B Less than or equal to

≥ A ≥ B Greater than or equal to

Character Operator A character expression is made up of character constants and variables that
are linked with the character operator “+”. Instead of adding characters to-
gether, the “+” operator links the characters together to form one character
value.

Input: A$=“CF” B$=“BASIC” PRINT A$+“-”+B$

Output: “CF-BASIC” is displayed.

Logical Operators Logical Operators perform tests on multiple relations, bit manipulation, or
Boolean operations. The logical operator returns a bitwise result which is ei-
ther “true” (not 0) or “false” (0). In an expression, logical operations are per-

Program Configuration Section 4-1

24

formed after arithmetic and relational operations. The outcome of a logical
operation is determined as shown in the following table. The operators are
listed in the order of precedence.

Logical Operator Description, Example, and Result

NOT (negation) A NOT A

1
0

0
1

AND (logical product) A B A AND B

1 1
1 0
0 1
0 0

1
0
0
0

OR (logical sum) A B A OR B

1 1
1 0
0 1
0 0

1
1
1
0

XOR (exclusive-OR) A B A XOR B

1 1
1 0
0 1
0 0

0
1
1
0

IMP (implication) A B A IMP B

1 1
1 0
0 1
0 0

1
0
1
1

EQV (equivalence) A B A EQV B

1 1
1 0
0 1
0 0

1
0
0
1

Operator Priority Arithmetic and logical operations are performed in the following order. Note,
however, that an expression or function enclosed by parentheses is executed
first, irrespective of operator priority.

1. ^ (exponentiation) 8. NOT

2. - (negation) 9. AND

3. *, / 10. OR

4. \ 11. XOR

5. MOD 12. IMP

6. +. - 13. EQV

7. Relational operators

Calculation Examples of Logical Expressions

NOT (negation)

A =1= 0000000000000001

NOT 1 = 1111111111111110 = -2

NOT A = -2

AND (logical product)

Program Configuration Section 4-1

25

A = 5 = 0000000000000101

B = 6 = 0000000000000110

A AND B = 0000000000000100 = 4

OR (logical sum)

A = 4 = 0000000000000100

B = 3 = 0000000000000011

A OR B = 0000000000000111 = 7

XOR (exclusive OR)

A = -4 = 1111111111111100

B = 5 = 0000000000000101

A XOR B = 1111111111111001 = -7

EQV (equivalent)

A = -4 =1111111111111100

B = 5 = 0000000000000101

A EQV B = 0000000000000110 = 6

IMP (implication)

A = -4 = 1111111111111100

B = 5 = 0000000000000101

A IMP B = 0000000000000111 = 7

4-2 BASIC Language
This section explains, in detail, the BASIC commands, statements, and func-
tions. They are presented in alphabetical order by section. Each description
is formatted as described in the following section.

4-2-1 BASIC Format
Purpose: Explains the purpose or use of the instruction

Format: Shows the correct format for the instruction

The following rules apply to the format descriptions of all commands, instruc-
tions, and functions:

• Items in CAPITAL LETTERS must be input as shown.
• Items in lower case letters enclosed in angle brackets (< >) are to be

supplied by the user.
• Items in square brackets ([]) are optional.
• All punctuation marks except angle and square brackets (i.e., commas, hy-

phens, semicolons, parentheses, and equal signs) must be included where
shown.

• Arguments to functions are always enclosed in parentheses. In the formats
given for the functions in this chapter, the arguments have been abbre-
viated as follows:

x and y : represent numeric expressions

I and J : represent integer expressions

BASIC Language Section 4-2

26

A$ and B$: represent string expressions

Remarks: Explain in detail how to use the instruction.

Examples: Show sample code to demonstrate the use of the instruction.

Notes: Explain additional pertinent information.

4-2-2 Commands
This section describes all of the BASIC commands for the ASCII Unit.

AUTO Command
Purpose: To automatically generate line numbers for each line of the pro-

gram

Format: AUTO [<line>][,[<increment>]]

<line> is a an integer from 0 to 63999.

<increment> is an integer value that specifies the increment of
the generated line numbers.

Examples: AUTO 100, 10

AUTO 500, 100

Remarks:

Auto begins numbering at <line> and increments each subsequent line num-
ber by <increment>. The default value for both <line> and <increment> is 10.

The AUTO Command can be canceled by entering CTRL+X.

If an already existing line number is specified, an asterisk (*) is displayed im-
mediately after the line number. If a new line number is input followed by a
CR key, the new line number will be used instead. Pressing only the CR key
leaves the line number unchanged.

CONT Command
Purpose: To resume execution of a program after a Ctrl+X has been typed,

a STOP or END statement has been executed, or an error has
occurred

Format: CONT

Remarks:

Execution resumes at the point where the break occurred. If CTRL+X is
pressed during data exchange with an external device, execution is aborted
and the program cannot be resumed.

If the program is modified after execution has been stopped, the program
cannot be resumed.

CONT is usually used in conjunction with STOP for debugging.

DEL Command
Purpose: To Delete the specified program lines

Format: DEL [<first>] [-<last>] or DEL <first> -

<first> is the first line number deleted.

<last> is the last line number deleted.

Examples:

DEL 100 Deletes line 100

BASIC Language Section 4-2

27

DEL 100- Deletes all lines from line 100

DEL -150 Deletes all lines up to line 150

DEL 100-150 Deletes all lines between 100 and 150

Remarks:

A period may be used in place of the line number to indicate the current line.

EDIT Command
Purpose: To Edit one line of the program

Format: EDIT <line>

<line> is the line number to be edited.

Remarks:

The EDIT Command is used to display a specified line and to position the
cursor at the beginning of that line. The cursor can then be moved within the
specified line and characters can be inserted or deleted. Executing “EDIT .”
will bring up the previously entered program line. “.” refers to the last line ref-
erenced by an EDIT statement, LIST statement, of error message.

LIST Command
Purpose: To list the program currently in memory on the screen or other

specified device

Format: LIST [<line>] [-[<line>]]

 LLIST [<line>] [-[<line>]]

 <line> is a valid line number from 0 to 63339.

Remarks:

LIST displays a program or a range of lines on the screen or other specified
device.

If the line range is omitted, the entire program is listed. “LIST.” displays or
prints the line that was last input or was last displayed.

Output can be aborted by entering CTRL+B or CTRL+X. If CTRL+B is used,
listing can be resumed by entering CTRL+B again.

LIST/LLIST Commands can be written into the program, but the following
statement will not be executed and the ASCII Unit will enter command input
wait status.

The LIST Command automatically outputs to port 1 and the LLIST Command
automatically outputs to port 2.

The LLIST Command outputs data to the device “LPRT” independently of the
OPEN statement.

When the dash (-) is used in a line range, three options are available:

1, 2, 3... 1. If only the first number is given, that line and all higher numbered lines
are listed.

2. If only the second number is given, all lines from the beginning of the
program through the given line are listed.

3. If both numbers are given, the inclusive range is listed.

Examples:

LIST -500 List everything up to line 500

LIST 10-100 List all lines ranging from 10 through 100

BASIC Language Section 4-2

28

LIST 200- List everything from line 200 on

LOAD Command
Purpose: To load a program from the EPROM into memory

Format: LOAD

Remarks:

The contents of the program area specified with the MSET Command are
loaded from the EEPROM.

Purpose: To load a program sent from an RS-232C device to the current
program area

Format: LOAD #<port>,“COMU:[<spec>,<vsl>]

<port> is either port 1 or port 2.

<spec>: see OPEN statement tables.

<vsl>: valid signal line--refer to the OPEN statement tables.

Example: LOAD #1,“COMU:(43)

Remarks:

When this command is executed, the BASIC indicator LED will begin blinking
rapidly. Make sure the RS-232C device is connected at this time.

During execution of the LOAD command, the START/STOP switch and key
input from port 1 will not be acknowledged.

The program area currently used is cleared immediately after the LOAD com-
mand is executed.

For details on communication parameters, valid signal lines, and COMU, re-
fer to the OPEN instruction.

MON Command
Purpose: To change to monitor mode

Format: MON

Remarks:

This Command passes control from BASIC mode to monitor mode (refer to
Section 5 for details on monitor mode).

To return to BASIC mode, enter CTRL+B.

MSET Command
Purpose: To reserve memory space for an assembly program

Format: MSET [<address>]

<address> is a hexadecimal number between &H200 and
&H7FFF.

Example: MSET &H5000

Remarks:

When an assembly program is to be used in conjunction with a BASIC pro-
gram, special memory space must be reserved for the assembly program.

The MSET command sets the lowest possible address that a BASIC program
can occupy. The assembly program is then stored “below” the BASIC pro-
gram in memory. It is necessary to reserve enough space for the assembly
program to “fit”.

BASIC Language Section 4-2

29

If no MSET address is specified, the default MSET boundary address will be
set at &H2000. Do not specify an address higher than &H7FFF or the system
stack will be overwritten.

The address specified by this command is maintained even if system power
is turned OFF. To cancel the effect of this command, execute MSET &H2000.

This diagram illustrates the PC memory map before and after the MSET
command is executed.

Under normal conditions
&H0000

&H0020

&H2000

&H8000

&HFFFF

I/O Area

System area

Basic text area

System stack area

Character String area

System area

(Standard 1K byte)

&H0000

&H0020

&H2000

&H8000

&HFFFF

When MSET is executed

I/O Area

System area

Assembly language
program area

Basic text area

System stack area

System area

Character String area

(Standard 1K byte)

&H5000

NEW Command
Purpose: To delete the program currently in memory and clear all variables

Format: NEW

Remarks:

New is used to clear memory before a new program is entered. New causes
all files and ports to be closed.

Programs named with the PNAME command cannot be erased. The name
must therefore be erased first by executing PNAME “ ” before the NEW com-
mand is executed.

PGEN Command
Purpose: To select one of three program areas for the current program

Format: PGEN <num>

<num> is an integer of value 1, 2, or 3.

Remarks:

The occupied capacity of the selected program area will be displayed. (Refer
to the discussion of the PINF command.)

PINF Command
Purpose: To display memory area information

Format: PINF [<arg>]

BASIC Language Section 4-2

30

<arg> is either an integer of value 1, 2, or 3 or the character
string “ALL”. ALL is entered without quotation marks.

Examples: PINF 1

PINF ALL

Remarks:

This Command displays the amount of program area currently being used
and the program names that have been assigned by the PNAME command.
Specify 1, 2, or 3 as <arg> for a specific program area.

If <arg> is not specified, information on the area currently being used is dis-
played.

If ALL is specified, information on all three program areas will be displayed.

PNAME Command
Purpose: To assign a name to a program stored in the area specified with

the PGEN command or to cancel a previously assigned program
name

Format: PNAME <string>

<string> is the chosen name (enclosed in quotes) for the pro-
gram or the null string, “ ”.

Examples: PNAME “PROG1”

PNAME “ ”

Remarks:

The chosen name must be eight characters or less.

Program areas assigned a name with the PNAME command are protected
from execution of the LOAD and NEW commands which erase program area
contents. It is necessary to erase all assigned program names with the
PNAME “ ” command before execution of the LOAD or NEW commands.

RENUM Command
Purpose: To renumber program lines

Format: RENUM [<new number>] [,[<old number>][,<inc>]]

<new number> is the first line number to be used in the new se-
quence. The default is 10.

<old number> is the line in the current program where the re-
numbering is to begin. The default is the first line of the program.

<inc> is the increment to be used in the new sequence. The de-
fault is 10.

Examples: RENUM 200

RENUM 500, 200, 10

Remarks:

RENUM will also change all line number references following GOTO, GO-
SUB, THEN, ELSE, ON ... GOTO, ON ... GOSUB, RESTORE, RENAME,
and ERL statements to reflect the new line numbers.

Statement numbers greater than 63999 cannot be used.

RUN Command
Purpose: To execute a program

BASIC Language Section 4-2

31

Format: RUN [<line>]

<line> is any line number less than 63999.

Remarks:

If a line number is specified, execution begins from that line. If the line num-
ber is omitted, execution starts from the first line of the program.

The RUN command clears all variables and closes all open files before ex-
ecuting the designated program.

Program execution can be aborted with CTRL+X, or the START/STOP
switch. Program execution can also be aborted from within the program by
an END or STOP statement.

SAVE Command
Purpose: To write the program area to the EEPROM

Format: SAVE

Remarks:

The contents of the BASIC program area and the assembly language pro-
gram area reserved with the MSET command are written to the EEPROM.

If the START/STOP switch is pressed during execution of the SAVE com-
mand, the process will be aborted.

Purpose: To write a program in the current program area to a storage de-
vice connected to one of the ports.

Format: SAVE #<port>,“COMU:[(<valid signal line>)]”

<port> is one of the two ports (1,2).

<valid signal line>: refer to the OPEN statement tables.

Example: SAVE #1,“COMU:(43)”

Remarks:

When this command is executed, the BASIC LED indicator on the ASCII Unit
will blink rapidly warning the user to prepare the peripheral device for data
transfer. When the device is set, press the START/STOP switch.

During execution of this command the START/STOP switch and key input
through port 1 are inhibited.

For further details on COMU refer to the OPEN command.

TRON and TROFF Commands
Purpose: To trace execution of a program

Format: TRON

Remarks:

The TRON command is a debugging tool that enables the programmer to
follow the execution of a program line by line. Execution of the TRON com-
mand will cause the line numbers of subsequent program statements to be
displayed on the screen as they are executed.

The trace can be canceled with the TROFF command, the NEW command,
by turning off the power or with the RESET switch.

VERIFY Command
Purpose: To verify the contents of the EEPROM by comparing them to the

contents of the program area

BASIC Language Section 4-2

32

Format: VERIFY

Remarks:

If the contents of the program area are identical to those of the EEPROM, the
message “READY” will be displayed; otherwise, the message “PROM ER-
ROR” is displayed.

4-2-3 General Statements
CLEAR Statement

Purpose: To initialize numeric and character variables and set the size of
the character memory area

Example: CLEAR [<size>]

<size> is the size of memory area used to process character
strings and is specified in byte units.

Remarks:

This command initializes numeric variables to zero and character strings to
empty. It also clears all user functions defined by the DEF FN statement.

This statement must be executed before the ON ERROR GOTO statement.

<size> is automatically set to 200 bytes upon power application or after reset.

COM Statement
Purpose: To enable, disable, or stop an interrupt defined by the ON COM

GOSUB statement.

Format: COM[<port number>] ON/OFF/STOP

<port number> is an integer (1 or 2).

Example: COM1 ON

Remarks:

The COM ON statement enables an interrupt defined by the ON COM GO-
SUB statement.

After this statement has been executed, an interrupt will be generated each
time data is written to the specified port buffer. The interrupt will cause pro-
gram execution to branch to a routine defined by the associated ON COM
GOSUB statement.

The COM OFF statement disables the com port interrupts. Even if data is
written to a com port buffer, branching will not take place.

The COM STOP statement stops the com port interrupts from branching pro-
gram execution. However, if the COM ON statement is subsequently ex-
ecuted, branching to the specified interrupt service routine based on the
“STOPPED” interrupt will then take place.

If no port number is specified, port 1 is selected as the default port.

Execute the COM OFF statement at the end of the program.

The COM ON/OFF/STOP statement can be executed only after the ON COM
GOSUB statement has been executed.

Program Example:

10 OPEN #2, “COMU:”
20 ON COM2 GOSUB 100
30 COM2 ON

BASIC Language Section 4-2

33

40 GOTO 40
100 IF LOC(2)<>0 THEN A$=INPUT$ (LOC(2), #2)
110 RETURN

DATA Statement
Purpose: Defines numeric and character constants to be specified in a

subsequent READ statement

Format: DATA <constant>[,<constant>]...

<constant> may be a numeric constant in any format; i.e., fixed-
point, floating-point, or integer. <constant> can also be a charac-
ter string. Quotation marks are necessary only if the constant
contains comas, colons, or spaces.

Example: DATA CF, 10, 2.5, “A.:B”

Remarks:

Any number of DATA statements can be used in a program. READ state-
ments access DATA statements in order (by line number). The data con-
tained therein may be thought of as one continuous list of items, regardless
of how many items are on a line or where the lines are placed in the pro-
gram.

DATA statements are non-executable and can be placed anywhere in a pro-
gram. A data statement can contain as many constants as will fit on one line
(separated by comas).

The variable type given in the READ statement must agree with the corre-
sponding constant in the DATA statement.

DATA statements may be reread from the beginning by use of the
RESTORE statement.

No comment (with “:” or “’”) can be written after the DATA statement.

DEF FN statement
Purpose: To define and name a function written by the user

Format: DEF FN<name>[(<arg1>[,<arg2>]...)] = <def>

<name>, which must be a legal variable name, is the name of
the function.

<argn> is a list of variable names called parameters that will be
replaced with values calculated when the function is called. The
items in the list are separated by comas.

<def> is an expression that performs the operation of the func-
tion and is limited to one line.

Example: DEF FNA (X, Y, Z) = SQR(X^2 + Y^2 + Z^2)

Remarks:

A user function must be defined with the DEF FN statement before it can be
called. To call a user function once it has been defined, append FN to the
assigned name of the function and set it equal to some variable.

distance = FNA(X,5,5)

Variable names that appear in the defining expression serve only to define
the function; they do not affect program variables that have the same name.

The variables in the parameter list represent, on a one-to-one basis, the
argument variables or values that will be given in the function call.

BASIC Language Section 4-2

34

This statement may define either numeric or string functions. If a type is spe-
cified in the function name, the value of the expression is forced to that type
before it is returned to the calling statement.

If a type is specified in the function name and the argument type does not
match, an error will occur.

DEF/INT/SNG/DBL/STR
Statement

Purpose: To declare variable types as integer, single-precision, double-
precision, or string

Format: DEF <type><letter>[-<letter>]

[<letter>[-<letter>]]...

<type> is INT, SNG, DBL, or STR

Remarks:

Any variable names beginning with the <letter(s)> listed will automatically be
assigned to the specified variable type.

The “”, “!”, and “$” declaration characters take precedence over a DEF
<type> statement.

If no type declaration statements are encountered, BASIC assumes all vari-
ables without declaration characters to be single-precision variables.

Example: DEFINT A-D, X

All variables beginning with A, B, C, D, and X will be integer variables.

DEF USER Statement
Purpose: To specify the starting address of an assembly language subrou-

tine that will be called via the USR function

Format: DEF USR [<digit>] = <offset>

<digit> is an integer from 0 to 9. The digit corresponds to the
USR routine number whose address is being specified. If <digit>
is omitted, DEF USR0 is assumed.

<offset> is the starting address of the USR routine.

Remarks:

Any number of DEF USR statements may appear in a program to redefine
subroutine starting addresses, thus allowing access to as many subroutines
as necessary.

Program Example:

100 DEF USR1=&H2100
110 POKE &H2100, &H39
120 A=USR1 (A)
130 PRINT A

DIM Statement
Purpose: To specify the maximum values for array variable subscripts and

allocate storage accordingly

Format: DIM <variable>(<subscripts>)

[,<variable>(<subscripts>)]...

<variable> is a legal variable name.

BASIC Language Section 4-2

35

<subscripts> are the maximum number of elements for each di-
mension of the array. There can be up to 255 subscripts but the
maximum size of the array cannot exceed the amount of memory
available.

Example: DIM A (10,20), B$(30)

Remarks:

If an array variable name is used without a DIM statement, the maximum val-
ue of the array’s subscript(s) is assumed to be 10. If a subscript is used that
is greater than the maximum specified, an error will occur. The minimum val-
ue for a subscript is zero.

The DIM statement initializes all the elements of numeric arrays to zero.
String array elements are initialized to NULL.

END Statement
Purpose: To terminate program execution, close all files, and return to

command level

Format: END

Remarks:

END statements may be placed anywhere in the program to terminate ex-
ecution. Unlike the STOP statement, END closes all open files or devices. An
END statement at the end of the program is optional. BASIC always returns
to command level after an END is executed.

ERROR Statement
Purpose: To simulate the occurrence of an error, or to allow error codes to

be defined by the user

Format: ERROR <n>

<n> is the error code to be simulated.

Remarks:

Error code numbers 1 to 255 are predefined and reserved by BASIC. Higher
numbers can be used for user-defined error code messages. User-defined
error codes can be used together with the ON ERROR GOTO statement to
branch the program to an error handling routine.

When the ERROR statement is executed without an accompanying ON ER-
ROR GOTO statement, the error message corresponding to the specified
error number is output and program execution is stopped. The message UN-
DEFINED ERROR is displayed if an undefined error occurs.

The error number is assigned to the variable ERR and the line number where
the error occurred is assigned to the variable ERL.

FOR and NEXT Statements
Purpose: To allow a series of instructions to be performed in a loop a given

number of times

Format: For <var>=<x> TO <y> [STEP<z>]

<x>, <y>, and <z> are numeric expressions.

Example: 100 FOR Y = base TO 10 STEP 2

110 NEXT Y

Remarks:

BASIC Language Section 4-2

36

<var> is used as a counter. The first numeric expression (<x>) is the initial
value of the counter. The second numeric expression (<y>) is the final value
of the counter.

The program lines following the FOR statement are executed until the NEXT
statement is encountered. Then the counter is incremented by the amount
specified by STEP.

A check is performed to see if the value of the counter is now greater than
the final value (<y>). If it is not greater, execution branches back to the first
statement after the FOR statement and the process is repeated. If it is great-
er, execution continues with the statement following the NEXT statement.
This is a FOR...NEXT loop.

If STEP is not specified, the increment is assumed to be one. If STEP is neg-
ative, the counter will count down instead of up. In this case, the loop will be
executed until the counter is less than the final value.

The body of the loop will never be executed if the initial value of the loop is
greater than the final value.

NESTED LOOPS

FOR...NEXT loops may be nested, that is, a loop can be placed inside of
another loop. When loops are nested, each loop must have a unique variable
name for its counter. The NEXT statement for the inside loop must come be-
fore the NEXT statement for the outer loop.

If nested loops have the same endpoint, the same NEXT statement can be
used for both of them.

If a NEXT statement is encountered before its corresponding FOR statement,
an error message is issued and execution is terminated.

GOSUB and RETURN Statements
Purpose: To branch to and return from a subroutine

Format: GOSUB <line>

<line> is the first line number of the subroutine.

Remarks:

A subroutine may be called any number of times in a program, and a subrou-
tine may be called from within another subroutine.

The RETURN statement(s) in a subroutine causes execution to branch back
to the statement following the most recent GOSUB statement.

A subroutine may contain more than one RETURN statement should logic
dictate a return at different points in the subroutine.

Subroutines can appear anywhere in the program, but it is recommended
that subroutines be readily distinguishable from the main program.

To prevent inadvertent entry into a subroutine, the subroutine may be preced-
ed by a STOP, END, or GOTO statement to direct program execution around
the subroutine.

Program Example:

10 T = Time
20 GOSUB 100
30 {stuff}
40 .
50 .
60 .

BASIC Language Section 4-2

37

 90 GOTO 150
100
110 T = T + TIME
120 RETURN
130 {stuff}

GOTO Statement
Purpose: To unconditionally branch program execution to the specified line

number

Format: GOTO <line>

<line> is a valid line number.

Remarks:

If <line> is a non-executable statement, execution will proceed at the first
executable statement encountered after <line>.

IF...THEN Statement
Purpose: To control program flow based on the results returned by an

arithmetic or logical expression

Format: IF <expression> [,] THEN <statement(s)> or <line>

[ELSE <statement(s)> or <line>]

IF <expression> [,] GOTO <line>

[[,] ELSE <statement(s)> or <line>]

Example: IF B=10 THEN PRINT “hello” ELSE 500

Remarks:

If the result of <expression> is not zero, the THEN or GOTO clause will be
executed (GOTO is always followed by a line number). THEN may be fol-
lowed by either a line number for branching or one or more statements to be
executed.

If the result of <expression> is zero, the THEN or GOTO clause will be ig-
nored and the ELSE clause, if present, will be executed. IF there is no ELSE
clause, execution will continue with the next executable statement.

INPUT Statement
Purpose: To allow input from the keyboard during program execution

Format: INPUT [;] [#<port>][<“prompt”>;]<variable>

[,<variable>]...

#<port> is the port number (1 or 2).

<“prompt”> is a message that will be displayed when the INPUT
statement is executed.

Examples: INPUT “DATA” : A$

INPUT #2, “DATA” , A$, B$

Remarks:

When an INPUT statement is executed, program execution pauses and a
question mark is displayed to indicate the program is waiting for data. If
<“prompt”> is included, the string is displayed before the question mark. The
program will not continue execution until the user has entered the required
data.

BASIC Language Section 4-2

38

A comma may be used instead of a semicolon after the prompt string to sup-
press the question mark.

Data is not accepted by the INPUT statement until a carriage return is en-
tered. Therefore input can be edited with the backspace and delete keys.

When more than two variables are input, they must be delimited by commas
or colons.

The data entered is assigned to the variables specified by the INPUT state-
ment. The number of values entered must be the same as the number of
variables in the INPUT statement.

The variable names in the list may be numeric or string variable types as well
as subscripted variables (array variable). The type of each entered data item
must agree with the type specified by the variable name.

Strings input to an INPUT statement need not be surrounded by quotation
marks.

Responding to INPUT with too many or too few items will cause an error
message to be displayed prompting the user to re-enter the data.

If a peripheral device other than TERM or COMU is selected by the OPEN
statement, neither the prompt statement nor “?” is displayed.

To eliminate “?” when COMU, etc., is selected by the OPEN statement, use
the LINE INPUT command.

The INPUT statement cannot be executed in direct mode. If the port number
is omitted, port 1 is assumed as the default port.

KEY(n) Statement
Purpose: To enable, disable, or stop an interrupt invoked by key input and

defined by the ON KEY GOTO or ON KEY GOSUB statements

Format: KEY(<n>) ON/OFF/STOP

<n> is the key number (1-8).

Example: KEY(4) ON

Remarks:

The KEY ON statement enables an interrupt invoked by keyboard input. After
this statement has been executed, an interrupt will be triggered each time the
specified key is input. Program execution then branches to an interrupt ser-
vice routine defined with the ON KEY GOTO or ON KEY GOSUB statements.

The KEY OFF statement disables the interrupt; key input will no longer trig-
ger an interrupt.

The KEY STOP statement also disables the interrupt. However, if the inter-
rupt is subsequently enabled with the KEY ON statement, execution will then
branch to the interrupt service routine defined by the ON KEY GOTO or ON
KEY GOSUB statements.

Execute the KEY OFF statement at the end of the program.

Program Example:

10 OPEN #1, “TERM:(42)”
20 ON KEY 1 GOSUB 100
30 On KEY 2 GOSUB 200
40 A=0
50 KEY ON
60 GOTO 60

BASIC Language Section 4-2

39

100 PC READ “@D,0,1,14”;A
110 RETURN
200 PC WRITE “@D,0,1,14”;A
210 RETURN

LET Statement
Purpose: To assign the value of an expression on the right side of an equal

sign to the variable on the left side

Format: [LET] <variable>=<expression>

Example: LET A = 1.2

Remarks:

Notice the word LET is optional, i.e., the equal sign is sufficient when assign-
ing an expression to a variable name.

Assignment of a character variable to a numeric variable, and the reverse,
are not permitted.

When assigning unmatched types of numeric variables, the variable type on
the right side of the equal sign is converted into the type on the left before the
assignment is performed.

String assignments should be enclosed in double quotation marks.

LINE INPUT Statement
Purpose: To input an entire line of characters (up to 255) from the key-

board or other input device without the use of delimiters

Format: LINE INPUT [#<port>,] [“<prompt>”;]<string>

<port> is the port number (1 or 2).

“<prompt>” is a message displayed on the screen prompting the
user for input.

<string> is a string variable that is assigned to the input charac-
ter string.

Example: LINE INPUT #2,”DATE”;A$

Remarks:

All of the characters input from the end of the prompt to the carriage return
are assigned to the character variable as a series of data. (Commas and co-
lons are also treated as character data.)

A question mark is not displayed unless it is part of the prompt string.

The prompt statement is not displayed if a peripheral device other than
TERM or COMU is selected with the OPEN statement.

The character string is not assigned to the variable until the carriage return
key is pressed. Until then, the BASIC LED indicator on the ASCII Unit will
blink indicating that the Unit is waiting for input of a carriage return.

If the port number is omitted, port 1 is assumed as the default port.

MID$ Statement
Purpose: To replace a portion of one string with another string

Format: MID$(<string 1>,<n>[,<m>]) = <string 2>

<string 1> is a string variable.

<n> is an integer expression from 1 to 255.

BASIC Language Section 4-2

40

<m> is an integer expression from 0 to 255.

<string 2> is a string expression.

Example: MID$(A$,2,4) = “ABCDEFGH”

Remarks:

The characters in <string 1>, beginning at position <n> are replaced by the
characters in <string 2>.

The optional <m> refers to the number of characters from <string 2> that will
be used in the replacement. If <m> is omitted, all of <string 2> is used. How-
ever, regardless of whether <m> is included, the replacement of characters
never goes beyond the original length of <string 1>.

Refer to the discussion of the MID$ function

ON COM GOSUB Statement
Purpose: Defines an interrupt service routine to handle data coming into a

com port buffer

Format: ON COM(<n>) GOSUB <line>

<n> is the port number (1 or 2).

<line> is the line number of the first statement of the interrupt
service routine.

Example: ON COM1 GOSUB 1000

Remarks:

This statement is not valid unless it is executed after the specified port has
been opened.

An interrupt service routine cannot be interrupted by another interrupt. If a
new interrupt occurs during processing of a previous interrupt, branching to
handle the new interrupt will not take place until after the RETURN statement
of the first interrupt service routine is executed. This means that, depending
on the branch timing, nothing may be in the buffer when execution branches
to the interrupt routine. It is therefore necessary to check whether data is in
the buffer by executing the LOC or EOF Command at the beginning of the
interrupt routine.

All subroutines must end with a RETURN statement.

If a statement specified by the branch line number is non-executable, execu-
tion will begin with the first executable statement following the branch line
number.

If zero is specified as the branch line number, it is assumed that the COM
OFF statement has been executed.

If the port number is omitted, port 1 is selected.

The ON COM GOTO statement is enabled with the COM ON statement and
disabled with the COM OFF statement.

Program Example:

10 OPEN #1, “COMU:(40)”
20 ON COM GOSUB 100
30 COM ON
40 PC READ “@D,0,2,2I4”;A,B
50 PRINT A, B
60 GOTO 30

BASIC Language Section 4-2

41

100 IF LOC (1)=0 THEN 120
110 PRINT INPUT$ (LOC(1),#1)
120 RETURN

Program Remarks:

If an interrupt from port 1 is detected, the buffer contents are displayed.

Note 1. If an interrupt is received on a communications line during processing of
an interrupt routine, a RETURN statement will be returned and a branch
will be made again to the interrupt routine. When this happens, there may
be nothing in the buffer depending on the timing of the interrupt. To handle
this, always place LOC and EOF at the beginning of the interrupt routine
to check if there is data in the buffer, as shown at line 100 in the applica-
tion example given above.

2. When determining the contents of processing for interrupt routines, study
the relationship between the communications speed and processing
speed so that the receive buffers do not overflow while processing the
interrupt routine.

ON ERROR Statement
Purpose: To enable error processing and to specify the first line number of

the error handling routine

Format: ON ERROR GOTO <line>

<line> is any valid line number.

Remarks:

When an error occurs, this statement directs execution to the proper error
handling routine. When an error is detected, the error number is assigned to
the variable ERR and the line number where the error occurred is assigned
to ERL.

To disable error processing, execute ON ERROR GOTO 0. Subsequent er-
rors will cause an error message to be printed and execution to be halted.

If an error occurs during execution of an error handling subroutine, a BASIC
error message will be printed and execution terminated.

Refer to the discussion of the RESUME Command, and the ERR and ERL
functions.

ON GOSUB and ON GOTO Statements
Purpose: To branch to one of several specified line numbers, depending

on the resultant evaluation of a numeric or logical expression

Format: ON <expression> GOTO <list>

ON <expression> GOSUB <list>

<expression> is any valid expression.

<list> is a list of valid line numbers separated by comas.

Example: ON X-2 GOSUB 50,100,150

Remarks:

The value of <expression> determines which line number in the list will be
used for branching. For example, if the result is 2, then the second line num-
ber in the list will be chosen for branching. If the resultant value is not an inte-
ger, the fractional part is rounded off.

In the ON...GOSUB statement, each line number in the list must be the first
line number of a subroutine.

BASIC Language Section 4-2

42

If the value of <expression> is zero or greater than the number of items in the
list, execution continues with the next executable statement. If the value of
<expression> is negative or greater than 255, an error message will be dis-
played.

ON KEY GOSUB Statement
Purpose: Defines an interrupt service subroutine to handle specific key-

board input

Format: ON KEY(<n>) GOSUB <line>

<n> is a numeric expression from one to eight indicating a spe-
cific key.

Example: ON KEY 1 GOSUB 1000

Remarks:

An interrupt service routine cannot be interrupted by another interrupt. If a
new interrupt occurs during processing of a previous interrupt, branching to
handle the new interrupt will not take place until after the RETURN statement
of the first interrupt service routine is executed.

If a statement specified by the branch line number is non-executable, execu-
tion will begin with the first executable statement following the branch line
number.

If zero is specified as the branch line number, it is assumed that the KEY
OFF statement has been executed.

If the port number is omitted, port 1 is selected.

There should be only one ON KEY GOTO statement for each key number.

Key input will not be processed during execution of an assembly language
program.

The ON KEY GOSUB statement is enabled with the KEY ON statement and
disabled with the KEY OFF statement.

Program Example:

10 OPEN #1,“TERM:(42)”
20 ON KEY 1 GOSUB 100
30 ON KEY 2 GOSUB 200
40 ON KEY 3 GOSUB 300
50 KEY ON

100 PRINT A
110 RETURN
200 PRINT B
210 RETURN
300 PRINT C
310 RETURN

Program Remarks:

“A”, “B”, and “C” are displayed by pressing keys 1, 2, and 3, respectively. To
cancel the specification, write 0 as the branch destination.

ON KEY GOTO Statement
Purpose: To branch program execution to a specified line number in re-

sponse to a specific key input

Format: ON KEY<n> GOTO <line>

<n> is an integer in the range of 1 to 8.

BASIC Language Section 4-2

43

<line> is any valid line number.

Example: ON KEY 1 GOTO 1000

Remarks:

If a statement specified by the branch line number is non-executable, execu-
tion will begin with the first executable statement following the branch line
number.

If zero is specified as the branch line number, it is assumed that the KEY
OFF statement has been executed.

If the port number is omitted, port 1 is selected.

There should be only one ON KEY GOTO statement for each key number.

Key input will not be processed during execution of an assembly language
program.

The ON KEY GOTO statement is enabled with the KEY ON statement and
disabled with the KEY OFF statement.

Program Example:

10 OPEN #1,“TERM:(42)”
20 ON KEY 1 GOTO 100
30 ON KEY 2 GOTO 200
40 ON KEY 3 GOTO 300
50 KEY ON

100 PRINT “A”
110 GOTO 500
200 PRINT “B”
210 GOTO 5000
300 PRINT “C”
500 {cont. processing}

Program Remarks:

“A”, “B”, and “C” are displayed by pressing keys 1, 2, and 3, respectively. To
cancel the specification, write 0 as the branch destination.

ON PC ... GOSUB Statement
Purpose: Defines an interrupt service routine invoked by the PC

Format: ON PC [<int num>] GOSUB <line>

<int num> is an integer from 1 to 15.

<line> is a valid line number.

Example: ON PC 3 GOSUB 1000

Remarks:

The interrupt number is indicated with bits 04 to 07 (1 to F in hexadecimal) of
the first of the four memory words assigned to each ASCII Unit in the PC’s
data memory area.

An interrupt routine invoked by the ON PC statement cannot be interrupted
by another interrupt. If a new interrupt occurs during processing of a previous
interrupt, branching to handle the new interrupt will not take place until after
the RETURN statement of the first interrupt service routine is executed.

If the statement specified by the branch line number is non-executable, ex-
ecution will begin with the first executable statement following the branch line
number.

BASIC Language Section 4-2

44

If zero is specified as the branch line number, it is assumed that the KEY
OFF statement has been executed.

If the interrupt number is omitted, the same branch destination is assumed
for all interrupt numbers, 1 through 15.

The ON PC GOSUB statement is enabled with the PC ON statement and
disabled with the PC OFF statement.

Program Example:

10 ON PC 1 GOSUB 100
20 ON PC 2 GOSUB 200
30 PC ON

100 PC READ “H4,I2”;I, J
110 PRINT I, J
120 RETURN
200 INPUT A
220 PC WRITE “14”; A
230 RETURN

Program Remarks:

When interrupt 1 is invoked, program execution branches to statement 100,
reads two words of data from the PC, and displays them on the CRT.

When interrupt 2 is invoked, program execution branches to statement 200
and writes data entered through the keyboard to the PC.

Programming Interrupts:

Interrupting from the PC is prohibited while the ASCII busy flag is ON, and so
in this case the ON PC GOSUB statement will not be executed. For this rea-
son, interrupting will not be possible during the execution of PC READ and
other statements that turn ON the ASCII busy flag. When programming using
statements for which the ASCII busy flag turns ON during execution (e.g., PC
READ) and the ON PC GOSUB statement, design the program so that no
interrupts are invoked while the ASCII busy flag is ON. It is also recom-
mended that for programs where interrupts are activated by turning ON the
WRITE flag, correct operation is confirmed before actual use.

Ladder Program at the PC (Unit Number = #0)

@MOV (21)

#0010

100

10001

10008

10300 10308Execution

10001

10308

Interrupt input

Confirmation of
interrupt execution

BASIC Program (at the ASCII Unit)

BASIC Language Section 4-2

45

10 ON PC 1 GOSUB 100
20 PC ON

30 PC GET A, B
40 IF B=1 THEN PC PUT 0

50 GO TO 30
60 END

100 PC PUT 1

110 Interrupt processing
120 RETURN

B = Bit 10008.
If B = 1 then 10308 is turned OFF.

10308 is turned ON.

Remarks:

An interrupt is invoked at the ASCII Unit from the PC program, avoiding the
time at which the ASCII busy flag is ON. When the WRITE flag turns ON, the
ON PC GOSUB statement is executed by the ASCII Unit. The ASCII Unit
notifies the PC that interrupt processing has been executed by turning ON bit
10308. The PC acknowledges this notification by turning ON 10008. When
10008 is turned ON, the ASCII Unit turns OFF bit 10308.

PC GET Statement
Purpose: To read output data from the PC

Format: PC GET <var 1>[,<var 2>]

Example: PC GET I,J

Remarks:

Bits 0 through 7 of Data Section word (n) are read and assigned to <var 1>.
Bits 8 through 15 of Data Section word (n) are read and assigned to <var 2>.

The ASCII Unit converts the hexadecimal data into decimal data (0 through
255) before assigning it to the specified variables.

PC ... ON/OFF/STOP Statement
Purpose: To enable, disable, or stop a PC interrupt defined with an ON PC

GOSUB statement

Format: PC [<num>] ON/OFF/STOP

<num> is a specific interrupt number.

Remarks:

The PC ON statement enables an interrupt defined by the ON PC GOSUB
statement.

After this statement has been executed, each PC interrupt will cause pro-
gram execution to branch to a routine defined by the associated ON PC GO-
SUB statement.

The PC STOP statement disables PC interrupts from branching program ex-
ecution. However, if the PC ON statement is subsequently executed, execu-
tion will branch to the specified interrupt service routine based on the
“STOPPED” interrupt.

Execute the PC OFF statement at the end of the program.

The PC ON/OFF/STOP statement can be executed only after the ON PC
GOSUB statement has been executed.

If there is more than one interrupt routine in the program the specific interrupt
number should be specified. If there are two or more routines and the inter-
rupt number is not specified, the routine closest to the end of the program or

BASIC Language Section 4-2

46

at the highest line number will be executed regardless of which interrupt is
invoked.

Program Example:

10 ON PC GOSUB 100
20 PC ON

 30 GOTO 30
100 PC READ “3I2”; A, B, C
110 PRINT A, B, C
120 RETURN

PC PUT Statement
Purpose: To write data to the PC’s ASCII Unit Data Memory Area

Format: PC PUT <num exp>

<num exp> is a valid numeric expression between 0 and 255.

Examples: PC PUT I

PC PUT 123

Remarks:

Data is written to bits 8 through 15 of word n+3, where n is the first of the four
PC Data Memory words assigned to each ASCII Unit.

If the value of the numeric expression is not an integer, the INT function is
internally executed to round it off. If the value of the numeric expression is
negative or greater than 255, zero is written to the PC.

PC READ Statement
Purpose: To read data from the PC

Format: PC READ “<format>[,<format>,<format>, ...]”;
<var1>[,<var2>,]...

<format> specifies how the data will be read. For specific format
information, refer to Appendix D Formatting and Data Conver-
sion.

Examples:

PC READ “2H1, A3, I4, O2”; X, Y, A$, I, J

Remarks:

When the PC has written the data to the ASCII Unit, the PC READ statement
is executed.

If the PC has not written the data to the ASCII Unit, the ASCII Unit will wait
for the data, and the PC READ statement is not executed until the data com-
es.

If the number of data items output by the PC is greater than that specified by
the format parameters, the excess part of the output data will be ignored.

The maximum number of data items that can be transferred with one READ
statement specification is 255 in the S or A formats.

If an amount of memory greater than the actual memory area is specified by
the READ statement, a FORMAT ERROR will occur.

The PC READ statement’s formatting parameters can be assigned to a
single character variable and that variable may then be used in the PC READ
statement.

BASIC Language Section 4-2

47

Refer to Appendix D Formatting and Data Conversion for details on READ
and WRITE statement formatting.

Example:

A$ = “2H1, A3, I4, O2”

PC READ A$;X, Y, A$, I, J

PC WRITE Statement
Purpose: To write data to the PC

Format: PC WRITE “<format>[,<format> ...]”;<exp1>
[,<exp2>, ...]

Note For parameter definitions, refer to Appendix C.

Examples:

PC WRITE “H4, A2, I3, O4”; 1234, “AB”, K, L

Remarks:

If the data of the previous PC WRITE statement has not been read by the
PC, the next PC WRITE statement cannot be executed until the previous one
is completed.

The maximum number of data items that can be transferred with one WRITE
statement specification is 255 in the S or A formats.

If an amount of memory greater than the actual memory area is specified by
the WRITE instruction, a FORMAT ERROR will occur.

If the value of <exp> is not an integer, the INT function is internally executed
to round it off.

Single-precision and double-precision numeric expressions are internally
converted into integer expressions.

The PC WRITE statement’s formatting parameters can be assigned to a
single character variable and that variable may then be used in the PC
WRITE statement.

Example:

A$=“H4, A2, I3, O4”

PC WRITE A$; 1234, “AB”, K, L

POKE Statement
Purpose: To write one byte to a specified memory address

Format: POKE <address>,<data>

<address> is the memory location where data will be POKEd.

<data> is an integer from 0 to 255.

Example: POKE &H2000,&H39

Remarks:

The address must be a 2-byte integer ranging from 0 to 65535 (&HFFFF). Do
not write data to addresses &H0000 to &H2000, and &H8000 to &HFFFF;
they are reserved for system use.

PRINT/LPRINT Statement
Purpose: To output data and text to the screen or printer

Format: PRINT [#<port>,] [<list of exp>][;]

BASIC Language Section 4-2

48

 LPRINT

<port> is an integer (1 or 2).

<list of exp> can be numeric or character expressions. Character
expressions should be enclosed in double quotation marks.

Example: PRINT #1,A,B$;“BASIC”

Remarks:

The list of expressions must be separated by commas, semicolons, or
blanks. When the expressions are separated with blanks or semicolons, the
next value is output immediately after the preceding value. When the expres-
sions are separated with commas, the values are output at intervals of nine
characters.

If the list of expressions is not terminated with a semicolon, a carriage return
is appended after the last expression.

If numeric expressions are used, a blank is output before and after the resul-
tant value. The blank before the value is used for a minus sign, if one is re-
quired.

If <list of exp> is omitted, execution of this statement causes a carriage re-
turn to be output.

If the port specification is omitted, port 1 is assumed for the PRINT state-
ment, and port 2 for the LPRINT statement.

The LPRINT statement outputs data under control of the device connected to
port 2, irrespective of the OPEN statement directives.

PRINT/ LPRINT USING
Statement

Purpose: To output strings or numbers according to a specified format

Format: PRINT [#<port>,] USING “<format>”; <list of exp>

Example: PRINT #1, USING “####,# \\###”;A;B

Remarks:

The following characters control the format of the output:

! Outputs the first character only.

& & Outputs the characters enclosed by &.

@ Outputs the corresponding character string.

Outputs the corresponding character string.

. Inserts a decimal point at any desired place.

+ Places a plus sign before and after a numeric value.

- Places a minus sign before and after a numeric value. (Write this
character at the end of the format character string.)

** Places two asterisks in the blank, upper digit positions of a numeric
value.

\\ Places one \ in the blank digit position immediately before a numeric
value.

**\ Combines the functions of ** and \\.

, Delimits an integer at every third digit position from the right.

BASIC Language Section 4-2

49

^^^^ Indicates the output in exponential format (E+nn). Add this character
after #.

“” is output before the numeric value if the specified number of digits is
too great.

If the port number is omitted, port 1 is assumed for the PRINT USING state-
ment and port 2 for the LPRINT USING statement.

The LPRINT statement outputs data under control of the peripheral device
connected to port 2 irrespective of the OPEN statement directives.

RANDOM Statement
Purpose: To reseed the random number generator

Format: RANDOM [<exp>]

<exp> is a single or double-precision integer that is used as the
random number seed.

Example: RANDOM 5649

Remarks:

The value of <exp> should be from -32768 to 32767. If the expression is
omitted, a message requesting the random number seed will be displayed.

If the random number generator is not reseeded, the RND function returns
the same sequence of random numbers each time the program is run. To
change the sequence of random numbers each time the program is RUN,
place a RANDOM statement at the beginning of the program and change the
seed with each RUN.

For more information, refer to the explanation of RND.

READ Statement
Purpose: To read values from a DATA statement and assign them to the

specified variables

Format: READ <list of var>

Example: READ A,B$

Remarks:

A read statement must always be used in conjunction with a DATA state-
ment. READ statements assign variables to DATA statement values on a
one-to-one basis. READ statement variables may be numeric or string, and
the values read must be the same type as the corresponding variable. If they
do not agree, a syntax error will occur.

A single READ statement may access one or more DATA statements (they
will be accessed in order), or several READ statements may access the
same DATA statement.

If the number of variables in <list of var> exceeds the number of elements in
the DATA statement(s), an error message will be displayed. If the number of
variables specified is fewer than the number of elements in the DATA state-
ment(s), subsequent READ statements will begin reading data at the first
unread element. If there are no subsequent READ statements, the extra data
is ignored.

To reread DATA statements from the beginning, use the RESTORE state-
ment.

REM Statement
Purpose: To insert non-executable comments in a program

BASIC Language Section 4-2

50

Format: REM <remark>

<remark> text does not need to be enclosed in quotes.

Example: REM SAMPLE PROGRAM

Remarks:

The REM statement is used to provide titles to programs and to insert helpful
comments to be used during program debugging or modification.

Remarks may be added to the end of a line by preceding the remark with a
single quotation mark instead of: REM.

Do not use a REM statement in a DATA statement as it will be taken as legal
data.

RESTORE Statement
Purpose: To allow DATA statements to be reread from a specified line

Format: RESTORE [<line>]

 <line> should be the line number of a valid DATA statement.

Example: RESTORE 1000

Remarks:

This statement causes the next READ statement to read the first element in
the first DATA statement that exists in the program. If <line> is specified, the
next READ statement accesses the first item in the specified DATA state-
ment.

RESUME Statement
Purpose: To resume program execution after an error handling procedure

has been performed

Formats: RESUME [0]: execution resumes at the statement which caused
the error.

RESUME NEXT: execution resumes at the statement immediate-
ly following the one which caused the error.

RESUME <line>: execution resumes at <line>.

Example: RESUME 100

Remarks: Any one of the above formats may be used.

STOP Statement
Purpose: To terminate program execution and return to the BASIC com-

mand level

Format: STOP

Remarks:

Execution of this statement causes the message “BREAK IN xxxx” to be dis-
played and the ASCII Unit to return to the command level.

The ports will not be closed.

Program execution can be resumed with the CONT command.

WAIT Statement
Purpose: Sets a time limit for the execution of a specific statement

Format: WAIT “<wait time>”[,<line number>]

BASIC Language Section 4-2

51

 <wait time> is the allowable time for the monitored statement to
be executed.

 <line number> is any valid line number.

Example: WAIT “10:30.5”,100

Remarks:

The delay time is set in the form MM.SS.F, where:

MM is the number of minutes up to 59

SS is the number of seconds

F is tenths of seconds.

The statement immediately following the WAIT statement is the monitored
statement. If execution of this statement is not completed within the set wait
time, program execution will branch to <line number>.

Interrupts invoked by the ON COM, ON KEY, ON PC, or ON ERROR state-
ments will not be recognized until after the WAIT statement or the monitored
statement has been processed.

The WAIT statement can monitor the following statements:

INPUT, INPUT$, LINE INPUT, PC READ, PC WRITE, PRINT, LPRINT,
PRINT USING, LPRINT USING

If a statement other than one of those listed above is specified to be moni-
tored by a WAIT statement, and if execution of that statement is not com-
pleted within the set time of the WAIT statement, an error will occur.

Program Example:

10 WAIT “10.0”, 100
20 PC READ “3I4”; A, B, C,
30 PRINT A, B, C
40 END

100 PRINT “PC ERR”
110 GOTO 40

Program Remarks:

This example will display the message “PC ERR” if the PC READ statement
is not executed within 10 seconds.

4-2-4 Device Control Statements
This section describes statements that control hardware and communica-
tions.

CLOSE Statement
Purpose: To close a port

Format: CLOSE [#<port>]

 <port> is an integer (1 or 2).

Remarks:

If the port number is omitted, both ports will be closed.

Once the port has been closed, it cannot be used for data transfer until it is
opened again.

Be sure to execute the CLOSE statement to correctly end the output pro-
cess. CLOSE dumps any data remaining in the buffer from output operations.
It does not dump data from input operations.

BASIC Language Section 4-2

52

The END statement and the NEW command automatically close the ports,
but the STOP statement does not.

CLS Statement
Purpose: To clear the screen

Format: CLS [#<port>]

 <port> is an integer (1 or 2).

Remarks:

This statement clears the screen and moves the cursor to the home position.
If the port number is omitted, port 1 is assumed.

OPEN Statement
Purpose: To allow input/output operations to take place through the speci-

fied port

Format: OPEN #<port>, “<device name>:[(<com spec. or vsl>)]”

<port> is an integer (1 or 2).

<device name> identifies the device.

<com spec> stands for the communication specifications.

<vsl> stands for valid signal line.

Examples: OPEN #1,“KYBD:”

OPEN #2,“COMU:(14)”

The following three tables define the communication parameters for the
OPEN Statement.

Peripheral Device Name Output from ASCII
Unit

Input to ASCII Unit

Terminal TERM: YES YES

Keyboard KYBD: NO YES

Display SCRN: YES NO

Printer LPRT: YES NO

RS-232C device COMU: YES YES

Communication
Specifications

Character Length Parity Stop Bit

0 7 bits Even 2 bits

1 7 bits Odd 2 bits

2 7 bits Even 1 bit

3 7 bits Odd 1 bit

4 8 bits None 2 bits

5 8 bits None 1 bit

6 8 bits Even 1 bit

7 8 bits Odd 1 bit

BASIC Language Section 4-2

53

Signal Line CTS DSR RTS XON/XOFF

0 Valid Valid Valid Invalid

1 Valid Valid Invalid

2 Valid Invalid Valid

3 Valid Invalid Invalid

4 Invalid Valid Valid

5 Invalid Valid Invalid

6 Invalid Invalid Valid

7 Invalid Invalid Invalid

8 Valid Valid Valid Valid

9 Valid Valid Invalid

A Valid Invalid Valid

B Valid Invalid Invalid

C Invalid Valid Valid

D Invalid Valid Invalid

E Invalid Invalid Valid

F Invalid Invalid Invalid

Remarks:

To make the CTS signal invalid at port 2, pull the CTS line high or connect it
to the RTS line.

When the RTS is specified to be ON (valid), the RTS signal goes high when
the port is opened and remains high until the port is closed. When the RTS
signal is specified to be OFF (invalid), the RTS signal remains low unless an
I/O statement such as PRINT or INPUT is executed.

When continuously receiving data from a peripheral device, specify RTS ON.
When implementing the interrupt function with ON COM, specify RTS ON. If
RTS OFF is specified, interrupts will not be received.

When data is received with the XON code specified to be valid, and the data
buffer is filled to 3/4 of its capacity, the XOFF code is sent, requesting a
pause of transfer. If the contents of the receive buffer decrease to 1/4 of the
buffer capacity, the XON code is sent, requesting resumption of transfer.

When the XOFF code is received during data transfer, transfer is paused.
When the XON code is received, transfer is resumed.

If the communication specification and the valid signal line are omitted, their
defaults are:

Peripheral Device Communication
Conditions

Valid Signal Line

Terminal 4 3

Keyboard 4 3

Display 4 3

RS-232C device 4 3

Printer 4 5

Ports already open cannot be opened again. When the OPEN and CLOSE
statements are used, port 1 is assumed to be for a terminal and port 2 is as-
sumed to be for a printer. Port 2 cannot be selected for a terminal.

I/O statements specifying #<port> cannot be used to transfer data through a
port that has not been opened with the OPEN statement. To input/output data
in the case where the OPEN statement has not been executed, use the I/O
statements without the #<port> specification.

BASIC Language Section 4-2

54

The following two tables illustrate peripheral device output levels during ex-
ecution of the OPEN statement.

Device When Opened During Operation

RTS DTR RTS DTR

TERM LOW HIGH HIGH No Change

SCRN LOW LOW HIGH No Change

KEYB LOW HIGH HIGH No Change

COMU LOW HIGH HIGH No Change

LPRT LOW LOW HIGH No Change

Port When Closed

RTS DTR

1 LOW HIGH

2 LOW LOW

Remarks:

The default selection for the ports is as follows:

port 1: Terminal device

port 2: Printer

The following table presents the output control codes for the terminal, printer,
and COMU device.

SCRN
TERM

Open Clears the screen buffer when code &H0C (CLR) is output..The
column position is set to 0 (i.e., the leftmost position) when
code &H0A (LF), &H0D (CR), &H0B (HOME), or &H08 (BS) is
output.
The cursor is moved as specified on the screen when code
&H08 (BS), &H1C (->), or &H1D (<-) is output.
Codes &H00 to &H09 and &H0E to &H1B are ignored (not
output).

Closed Nothing is executed.

LPRT Open Sets the column position to 0 (i.e., the leftmost position) when
code &H0A, &H0D, &H0B, or &H0C is output.
Characters exceeding 80th character are output with code
&H0A (LF) appended.

Closed If characters (80 characters or less) remain in the buffer, they
are output along with &H0A (LF).

COMU Open If characters are input to the buffer, they are output.

Closed If characters remain in the buffer, they are output.

4-2-5 Arithmetic Operation Functions
ABS Function

Purpose: To return the absolute value of the numeric expression specified
by the argument

Format: ABS(<x>)

Example: A = ABS (-1.5)

ACOS Function
Purpose: To return the arc cosine of the numeric expression given by the

argument

Format: ACOS(<x>)

 <x> is a number in the range of -1 to 1.

BASIC Language Section 4-2

55

Example: A = ACOS (1)

Remarks: The arc cosine is given in radian units in the range of 0 to pi.

ASIN Function
Purpose: To return the arc sine of the value given by the argument

Format: ASIN(<x>)

 <x> is a number in the range of -1 to 1.

Example: A = ASIN (1)

Remarks: The arc sine is given in radian units in the range of -pi/2 to pi/2.

ATN Function
Purpose: To return the arc tangent of the value given by the argument

Format: ATN(<x>)

 <x> is a number in the range of -1 to 1.

Example: A = ATN (1)

Remarks: The arc tangent is given in radian units in the range of -pi/2 to
pi/2.

CDBL Function
Purpose: To convert a single-precision numeric value into

double-precision

Format: CDBL(<x>)

Example: CDBL (2/3)

CINT Function
Purpose: To round off a numeric value at the decimal point and convert it

into an integer

Format: CINT(<x>)

Example: A = CINT(B#)

COS Function
Purpose: To return the cosine of the numeric value given by the argument

Format: COS(<x>)

 <x> is an expression in radian units.

Example: A = COS(pi/2)

CSNG Function
Purpose: To convert a numeric value into a single-precision real number

Format: CSNG(<x>)

Example: B = CSNG(C#)

FIX Function
Purpose: To return the integer part of the expression specified by the argu-

ment

Format: FIX(<x>)

Example: A = FIX(B/3)

Remarks: If the value of the argument is negative, this function returns a
different value than the INT function returns.

BASIC Language Section 4-2

56

INT Function
Purpose: To return the truncated integer of a numeric value

Format: INT(<x>)

Example: A = INT(B)

Remarks:

Returns the largest integer value less than or equal to the value specified by
the argument.

If the value of the argument is negative, this function returns a different value
than the FIX function returns.

LOG Function
Purpose: To return the natural logarithm of the argument

Format: LOG(<x>)

 <x> must be greater than 0.

Example: A = LOG(5)

RND Function
Purpose: To return a random number between 0 and 1.

Format: RND [<x>]

Example: A = RND(1)

Remarks:

If <x> is negative, a new random number is generated.

If <x> is omitted, or if it is positive, the next random number of the sequence
is generated.

If <x> is 0, the last generated random number is repeated.

The sequence can be changed by executing the RANDOM statement.

SGN Function
Purpose: To return the sign of an argument

Format: SIGN(<x>)

Example: B = SGN(A)

Remarks:

If the value of <x> is positive, SGN returns 1.

If the value of <x> is negative, SGN returns -1.

If the the value of <x> is 0, SGN returns 0.

SIN Function
Purpose: To return the sine of the numeric value given by the argument

Format: SIN(<x>)

 <x> is an expression in radian units.

Example: A = SIN(pi)

TAN Function
Purpose: To return the tangent of the numeric value given by the argument

Format: TAN(<x>)

BASIC Language Section 4-2

57

 <x> is an expression in radian units.

Example: A = TAN(3.141592/2)

4-2-6 Character String Functions
ASC Function

Purpose: To return the ASCII character code of the first character of the
given string

Format: ASC(<x$>)

Example: A = ASC(A$)

Remarks:

An empty string cannot be specified. The CHR$ function performs the in-
verse operation.

CHR$ Function
Purpose: To return a character corresponding to the specified character

code

Format: CHR$(<i>)

Example: A$ = CHR$(&H41)

Remarks:

<i> must be from 0 to 255. If <i> is a real number, it will be rounded off and
converted into an integer. The ASC function performs the inverse operation.

HEX$ Function
Purpose: To return a string which represents the hexadecimal value of the

decimal argument

Format: HEX$(<x>)

Example: A$ = HEX$(52)

Remarks:

If the value of the decimal number includes a decimal point, the INT function
is internally executed to round it off to an integer.

INSTR Function
Purpose: To return the position of the first occurrence of string <y$> within

string <$x>

Format: INSTR([<i>,]<x$>,<y$>)

 <i> is the position from where the search starts. <i> must be be-
tween one and 255.

<x$> is the string to be searched.

<y$> is the desired string.

Example: A = INSTR(5,B$,“BASIC”)

Remarks:

If <i> is omitted, the search begins with the first character in <x$>. If the data
cannot be found, 0 is returned as the function value. If <y$> is an empty
string, INSTR returns <i> or 1.

LEFT$ Function
Purpose: To return the specified number of characters beginning from the

leftmost character of the character string

BASIC Language Section 4-2

58

Format: LEFT$(<x$>,<i>)

<x$> is the string to be searched.

<i> is the number of characters to be returned.

Example: A$ = LEFT$(B$,5)

Remarks:

<i> must be an integer from 0 to 255. If <i> is 0, an empty string is returned
as the function value. If <i> is greater than the number of characters in <x$>,
the entire character string is returned.

LEN Function
Purpose: To return the number of characters in a character string

Format: LEN(<x$>)

Example: A = LEN(A$)

Remarks: A value of 0 is returned if the “character expression” is an empty
string.

MID$ Function
Purpose: To return the requested part of a given string

Format: MID$(<x$>,<i>[,<j>])

 <x$> is the given string.

<i> is the position of the first character to be returned.

<j> is the number of characters to be returned.

Example: B$ = MID$(A$,2,5)

Remarks:

<i> must be from 1 to 255.

<j> must be from 0 to 255.

If <j> is 0, or if the value of the specified character position (<i>) is greater
than the number of characters in the character expression (x$), an empty
string is returned.

If <j> is omitted, or if <j> exceeds the number of characters to the right of the
specified position (<i>) in the character expression, all the characters to the
right are returned.

OCT$ Function
Purpose: To convert the specified decimal number into an octal character

string

Format: OCT$(<x>)

 <x> is a numeric expression in the range of -32768 to 32767.

Example: A$ = OCT$(B)

Remarks:

If the value of <x> includes a decimal point, the INT function is internally ex-
ecuted to round it off.

RIGHT$ Function
Purpose: To return the specified number of characters from the rightmost

character of the character string

BASIC Language Section 4-2

59

Format: RIGHT$(<x$>,<i>)

<x$> is the string to be searched.

<i> is the number of characters to be returned.

Example: A$ = RIGHT$(B$,5)

Remarks:

<i> must be an integer from 0 to 255. If <i> is 0, an empty string is returned
as the function value. If <i> is greater than the number of characters in <x$>,
the entire character string is returned.

SPACE$ Function
Purpose: To return a string of spaces of the specified length

Format: SPACE$(<x>)

 <x> is the number of spaces.

Example: A$ = “CF”+SPACE$(5)+“BASIC”

Remarks:

<x> must be from 0 to 255. If <x> is not an integer, it will be rounded off. If 0
is specified, an empty character string is returned.

STR$ Function
Purpose: Converts the specified numeric value into a character string

Format: STR$(<x>)

Example: B$ = “A”+STR$(123)

Remarks: The VAL function performs the inverse operation.

STRING$ Function
Purpose: To return a character string of the specified character and length

Formats: STRING$(<i>,<j>)

STRING$(<i>,<x$>)
<i> is the number of characters to be returned.

<j> is the ASCII code of some character.

<x$> is a given string.

Example: A$ = STRING$(10,“A”)

Remarks:

<i> and <j> must be from 0 to 255.

An empty string is returned if the <i> is 0.

If the <x$> is made up of two or more characters, only the first character is
used.

TAB Function
Purpose: To move the cursor to a specific position on the terminal display

Format: TAB(<i>)

<i> is the cursor position counting from the leftmost side of the
display.

Example: PRINT “CF” TAB (10) “BASIC”

BASIC Language Section 4-2

60

Remarks:

The “column position” must be from 1 to 255.

If the current print position is already beyond <i>, the cursor moves to the
<i>th position on the next line. TAB is only valid for the PRINT and LPRINT
statements.

VAL Function
Purpose: To convert a character string into a numeric value

Format: VAL(<x$>)

Example: A = VAL(A$)

Remarks:

The VAL function also strips leading blanks, tabs, and linefeeds from the ar-
gument string. If the first character of <x$> is not numeric, zero is returned.

4-2-7 Special Functions
DATE$ Function

Purpose: To set or display the current date

Format: As a statement: DATE$ = <x$>

As a variable: <y$> = DATE$

<x$>: the date in one of the following formats:

mm-dd-yy

mm-dd-yyyy

mm/dd/yy

mm/dd/yyyy

<y$>: A ten character string in mm-dd-yyyy format:

mm: two digit value for the month (01-12)

dd: two digit value for the day (01-31)

yy: two digit value for the year

yyyy: for digit value for the year

Example: DATE$ = “89/05/23”

Remarks:

If DATE$ is on the right side of the assignment statement or in a PRINT
statement, the current date is assigned or printed, respectively. If DATE$ is
on the left side of the assignment, the right side of the assignment statement
becomes the new current date. If any of the values are out of range or are
missing, an error message will be displayed.

DAY Function
Purpose: To give or set the current day of the week

Format: DAY = <num>
I = DAY

Remarks:

In the first format, DAY returns a number between 0 and 6, corresponding to
Sunday through Saturday. In the second format, the day of the week is as-
signed to DAY.

BASIC Language Section 4-2

61

EOF Function
Purpose: To check whether the specified port buffer is empty

Format: EOF (<port#>)

Example: IF EOF (2) THEN CLOSE#1 ELSE GOTO 100

Remarks:

This function returns true (-1) if the specified port is empty. If not, it returns
false (0). Note that the port specified by <port#> must already be open and in
the input mode.

ERR and ERL Variables
Purpose: To return the error code and the location (line number) of the

error

Format: x = ERL

y = ERR

Remarks:

When an error occurs, the error code is assigned to the variable ERR and
the statement number is assigned to ERL.

If the statement that caused the error was executed in direct mode, state-
ment number 65535 is assigned to ERL.

ERL and ERR can be used in error handling routines to control the execution
flow of the program.

FRE Function
Purpose: To return the amount of unused memory

Format: FRE(0)

FRE(<x$>)

Example: PRINT FRE (0)

Remarks:

If the argument is numeric, the number of unused bytes in the program area
is given.

If the argument is a character expression, the number of unused bytes in the
character variable area is given.

INKEY$ Function
Purpose: To return the character code of the key being pressed

Format: INKEY$ [#<port>]

Example: A$ = INKEY$

Remarks:

A null string is returned if no key is being pressed. Any key input other than
CTRL+X is valid. Port 1 is the default port.

INPUT$ Function
Purpose: To Read a string of characters from the keyboard or from a pe-

ripheral device

Format: INPUT$ (<num>[,#<port>])

<num> is the number of characters to be input. <num> must be
from 1 to 255.

BASIC Language Section 4-2

62

<port> is the port number (1 or 2).

Example: A$ = INPUT$(10,#1)

Remarks:

All characters except CTRL+X can be read, including CR and LF: CR and LF
cannot be read with the LINE INPUT statement.

The BASIC LED indicator on the ASCII Unit will blink indicating that the Unit
is waiting for input. It will continue blinking until the specified number of char-
acters is entered.

Example Program:

10 CLS
20 A$ = INPUT$ (1)
30 A$ = HEX$ (ASC(A$))
40 PRINT A$
50 GOTO 20

Remarks:

Displays key character codes.

LOC Function
Purpose: To return the number of data items in the specified port buffer.

Format: x = LOC(<port#>)

Example: A = LOC(2)

Remarks:

The port specified must already be open and in input mode. The number of
data items in the buffer of the specified port is given in byte units.

PEEK Function
Purpose: To read the contents of a specified memory address

Format: PEEK(<I>)

<I> is the memory location and must be in the range of 0 to
65535 (&HFFFF).

Example: A = PEEK(&H3000)

Remarks:

If the specified address is not an integer, it is converted into one.

Do not try to read reserved system addresses &H0000 through &H1FFF and
&H8000 through HFFFF.

Note For details of memory structure, refer to Appendix E ASCII Unit Memory
Map.

TIME$ Function
Purpose: Sets or gives the time

Format: TIME$ = <x$>

<y$> = TIME$

<x$> is a string expression indicating the time to be set. The fol-
lowing formats may be used:

hh: sets the hour (minutes and seconds 00)

BASIC Language Section 4-2

63

hh:mm: sets the hours and minutes (seconds 00)

hh:mm:ss: sets the hours, minutes, and seconds

<y$> is a string variable to which the current value of the time is
to be assigned.

Example: TIME$ = “09:10:00”

PRINT TIME$

Remarks:

In the form <y$> = TIME$, TIME$ returns an eight character string in the

form: hh:mm:ss. If <x$> is not a valid string, an error message will be dis-
played.

USR Function
Purpose: To call a user-written assembly language program.

Format: USR [<number>](<argument>)[,W]

<number> is a digit from 1 to 9 that was previously assigned to
the given assembly program with the DEF USR statement.

<x> is an argument used to pass data from the BASIC program
to the assembly program.

Example: J = USR2(I),W

Remarks:

If <number> is omitted, the default value is zero.

If the W parameter in the USR statement is not specified, the watchdog timer
refresh will be performed as usual. If the W parameter is specified, then the
user must include a watchdog timer refresh routine in the assembly program.

The watchdog timer prevents the program from overrunning. When the set
time has run out, the ASCII Unit is reset, and the message “I/O ERR” is dis-
played on the programming console of the PC.

By refreshing the watchdog timer before its set value is up, the program can
be continuously executed.

To refresh the watchdog timer in the assembly program, execute the follow-
ing two steps every 90 milliseconds:

AIM #DF,03
OIM #20,03

The following table lists the Argument type and its corresponding Accumula-
tor code number.

Accumulator Value Argument Type

2 Integer

3 Character

4 Single-precision, real number

8 Double-precision, real number

Index register X contains the memory address where the argument is stored.
The address differs depending on the type of the argument as shown in the
following diagram.

BASIC Language Section 4-2

64

Integer Type

Higher 8 bits

Lower 8 bits

← X

Character Type

Length of character string

Address storing argument (higher)

Address storing argument (lower)

← X

← X
(MSB is always 1.)

Single-Precision, Real
Number Type

Exponent

Higher 8 bits of mantissa

Middle 8 bits of mantissa

Lower 8 bits of mantissa

Sign (most significant bit)

← X
(MSB is always 1.)

Double-Precision, Real
Number Type

Exponent

Higher 8 bits of mantissa

Lower 8 bits of mantissa

Sign (most significant bit)

Program Example:

BASIC Program:

100 A$ = &H1234
110 DEF USR0 = &H2000
120 A = USER (A)
130 PRINT A
140 END

Assembly language program:
2000 PSHA
2001 PSHX

BASIC Language Section 4-2

65

2002 LDD 2,X
2004 ADD #10
2007 STD 2,X
2009 PULX
2010 PULA
2011 RTS

Program Remarks:

When program execution branches to the assembly language routine, the
TYPE of <argument> is stored in the accumulator A, and the memory ad-
dress where the argument is stored is input to the index register X. The value
of the argument is stored in the accumulator D, to whose contents &H10 will
be added. The result of the addition is written to the address of <argument>.

VARPTR Function
Purpose: Returns the memory address of the variable argument

Format: <x> = VARPTR(<variable>)

<variable> is a number, string, or array variable.

Example: B = VARPTR (A)

Remarks:

The VARPTR function returns the address of the first byte of data identified
with the variable. A value must be assigned to the variable prior to the call to
VARPTR or an error will result. Any type variable name may be used (numer-
ic, string, array).

Note that all simple variables should be assigned before calling VARPTR for
an array because addresses of arrays change whenever a new simple vari-
able is assigned.

VARPTR is used to obtain the address of a variable or array so that it may be
passed to an assembly language subroutine. A function call of the form
VARPTR(A(0)) is specified when passing an array, so that the lowest ad-
dressed element of the array is returned.

The following figure illustrates the relationship between the variable type and
the address indicated by VARPTR.

BASIC Language Section 4-2

66

Integer Type

0010

Variable name

Higher 8 bits

Lower 8 bits

← Address →

≈≈

Character Type

0011 Variable name length -1

Variable name

≈≈

Address storing variable (higher)

Address storing variable (lower)

Length of character string

Single-Precision, Real Number Type

0100 Variable name length -1

Variable name

← Address →

Double-Precision, Real Number Type

1000 Variable name length -1

Variable name

≈≈ ≈≈

Sign and higher 7 bits of mantissa

ExponentExponent

Sign and higher 7 bits of mantissa

Middle 8 bits of mantissa

Lower 8 bits of mantissa

Lower 8 bits of mantissa

Variable name length -1

BASIC Language Section 4-2

67

SECTION 5
Assembly Programming

This section explains how to create, edit, transfer, and use an assembly language program. Assembly programs are faster
and use memory more efficiently than higher level programs such as BASIC. In certain situations it is advantageous to
use assembly routines instead of BASIC to perform specialized functions. An assembly routine can be called from the
BASIC program and used in much the same way as a BASIC subroutine.

Assembly programs are written, edited, and tested in what is called monitor mode. The monitor mode commands and
examples of their use are presented in this section.

5-1 Assembly Language Programming 68.
5-2 Terminology and Formatting 69.
5-3 Monitor Mode Commands 69.

68

5-1 Assembly Language Programming

Memory Area Special memory space for assembly language programs must be reserved
with the MSET command. When programming in assembly language, you
cannot use the BASIC program area to store the assembly program. The
MSET command will move an existing BASIC program to another part of
memory.

There are two ways to write an assembly language program:

• By using the monitor functions
• By directly writing the program to the memory using the POKE

statement in BASIC.

In most cases the first method is quicker and easier; however, the second
method can be used to create short programs consisting of only a few steps.

Assembly language programs can be written to and read from RAM using the
S and L commands, respectively. They can also be written to or read from
the EEPROM by using the SAVE and LOAD commands, respectively.

Addresses &H0000 to &H1FFF and &H8000 to &HFFFF are reserved for the
ASCII Unit operating system and must not be altered by the user.

Note When it is necessary to load or save data using a peripheral device other
than the input terminal connected to port 1, perform the peripheral data trans-
fer procedure as follows:

1, 2, 3... 1. Enter the command and key-in a carriage return.
2. Disconnect the input terminal from port 1 and connect the peripheral

device.
3. Press the START/STOP switch on the ASCII Unit to start data transfer.
4. Reconnect the input terminal and key-in ctrl+x.

An assembly language program can be called from BASIC with the USR
function:

USR [<number>][<argument>]

Before the USR function can be used, the DEF USR statement must be ex-
ecuted to reserve space for the assembly routine. When the USR function is
executed, it calls the specified assembly routine and passes it an argument
defined in the BASIC program. (Refer to Section 4-2-7 Special Functions.)

Variables other than the argument specified by the USR function can also be
passed to the assembly language program by using the VARPTR function.

The following arguments are passed to the assembly program:

Accumulator A contents: type of <argument>

Index register X contents: address of <argument>

The RTS command should be the last command of the assembly routine; it
returns execution back to the BASIC program.

The value of the stack pointer must not be altered by the assembly routine.
Therefore, the data should be pushed on the stack at the beginning of the
routine and then pulled off before the RTS command is executed.

The assembly routine must store any data needed by the BASIC program in
the same address as that of the argument(s) passed by the USR or VARPTR
functions. Any data passed back to the BASIC program must be of the same
TYPE as the USR or VARPTR function argument(s).

Writing an Assembly
Program

The Assembly Language
Program

Assembly Language Programming Section 5-1

69

Do not disable any interrupts in the assembly language program.

It is recommended that the assembly language program be saved on an ex-
ternal storage device or in the EEPROM for safety.

Monitor Mode To enter monitor mode from BASIC mode, key-in “mon” followed by a car-
riage return when the message “READY” is displayed on the console:

READY
mon
*

When in monitor mode “*” is displayed on the leftside of the screen. Also,
when in monitor mode, the BASIC LED on the ASCII Unit front panel is unlit.

To return to BASIC mode, key-in CTRL+B.

5-2 Terminology and Formatting
Terminology Start address refers to the first memory address where a group of values

stored in consecutive memory locations is stored: e.g., an array or a block of
data.

For some monitor mode commands, indicating a start address is optional.
For these commands, the address immediately following the highest or larg-
est address used by the previous monitor command is taken to be the start
address for the current monitor command. To simplify following explanations,
this address will be called the base address.

An assembly language program can be edited, traced, and debugged in
monitor mode.

Note that the address held in the program counter is the base address used
for displaying and writing data when using the monitor commands.

Format The left and right arrow brackets “<” and “>” that have been previously used
to denote “user supplied text” in BASIC programming format statements are
used as actual operators in monitor mode. Therefore, whenever you see an
arrow bracket character in a monitor mode command, it must be entered as
such. The arrow character is used to delineate address ranges.

For monitor format statements only, left and right parentheses “()” will be
used to denote user-supplied text.

Brackets “[]” still indicate optional entry. Pay close attention to periods “.”;
they must be entered as such whenever indicated.

The carriage return key is indicated with ↵. Whenever this appears in a com-
mand, a carriage return must be entered by the user.

Do not insert spaces within a monitor command unless explicitly indi-
cated.

In the following examples, and also on the actual terminal, the “*” character
indicates that the user must enter a command. Lines of text that do not start
with “*” are generated by the computer in response to a user command.

5-3 Monitor Mode Commands
The following table lists the monitor mode commands with a short description
of each command’s function as well as the page number on which its detailed
explanation can be found.

Monitor Mode Commands Section 5-3

70

Page Command Purpose

66 address Displays/changes memory contents at the specified
address.

68 M Transfers memory contents.

69 C Compares memory contents.

69 R Displays/changes register contents.

70 BP Sets/displays breakpoints.

70 N Clears breakpoints.

71 I Disassembler

71 S Outputs data to a port.

72 L Loads data from a port.

72 V Verifies data.

73 G Executes a program.

73 T Single-step program execution

74 Mini-Assembler Single-line assembly

74 Arithmetic Addition/subtraction of hexadecimal numbers.

DUMP Command
Purpose: To display the contents of memory in hexadecimal

Format: [(display start address)].[(display end address)]

Remarks:

If the carriage return ↵ is input by itself, eight bytes of data starting from the
base address will be displayed. (refer to example 2)

If an address is entered preceded by a period, e.g., “.3000”, data stored in all
the addresses from the base address to the entered address will be dis-
played (refer to examples 3 and 4).

New data can be stored in memory as well; this data will overwrite existing
data. Input data must be in hexadecimal. Upper case characters must be
used for the alphanumeric values of A through F (hex). When the leftmost
digit is a “0”, it can be omitted.

There are two ways to poke data (directly store data to a specific address).

1, 2, 3... 1. Specify the first address followed by a colon. Directly after the colon,
enter the data (1 or 2 byte hexadecimal values only) separated by
spaces. Then type a carriage return (refer to example 5).

2. Enter a colon followed by the data and type a carriage return. Data will
be stored starting from the base address (refer to example 6).

Examples:

1. Enter: *4000 ↵
Displayed: 4000-10

• Displays 1 byte of data from the specified address.
2. Enter: * ↵

Displayed: *20 30 50 60 70 80 90 9F

• Displays 8 bytes of data, starting from the base address.
3. Enter: *.4010A ↵

Displayed: 4008-A0 B0 C0 D0 E0 F0 00 10

Monitor Mode Commands Section 5-3

71

4010-01 02 03 04 05 06 07 08

4018-12 34 56

• Displays all of the data from the base address to the specified address.
4. Enter: *.3000 ↵

Displayed: 401B-78

• If the “period” address format is used and the entered address is lower than
the base address, the contents of the specified address will not be dis-
played. The contents of the base address will be displayed instead.

5. Enter: *3000:9 8 7 6 5 4 3 2 1 ↵

*3000.3007 ↵

Displayed: 3000-09 08 07 06 05 04 03 21

• Pokes data in a series of addresses starting from the specified
address.

6. Enter: *:11 22 33 44 55 ↵

*3000.3007 ↵

Displayed: 3000-11 22 33 44 55 04 03 21

• Pokes data in a series of addresses starting from the base address.

Move Command
Purpose: To transfer the data stored in a consecutive range of addresses

to another place in memory

Format: M(destination start address)< (source start address). (source
end address)

Remarks:

This command will transfer a block of data starting from (source start ad-
dress) and ending at (source end address) to (destination start address).
Note that the source address range must not overlap the destination address
range; otherwise, the data will not be transferred correctly.

Example:

Enter: *M3000<4000.4007 ↵

*4000.4007 ↵

Displayed: 4000-01 02 03 04 05 06 07 08

Enter: *3000.3007 ↵

Displayed: 3000-01 02 03 04 05 06 07 08

Example Remarks:

In the above example, the contents of addresses 4000 to 4007 are trans-
ferred to an address range starting at address 3000.

The following diagram illustrates correct and incorrect usage of the Move
command.

Monitor Mode Commands Section 5-3

72

Source start
address

Source end
address

Destination
address

Source start
address

Source end
address

Destination
address

Source start
address

Source end
address

Destination
address

Proper Data Movement

Improper Data Movement

In this example, the source start address is
smaller than the destination address and the
destination address is equal to or smaller
than the source end address. Consequently,
the data is not transferred correctly.

Compare Command
Purpose: To compare two blocks of data

Format: (start address 1)<(start address 2).(end address 2)

Remarks:

Compares the data stored from (start address 2) to (end address 2) to a
block of data of the same size beginning at (start address 1). If the contents
of the two address ranges differ, the corresponding address(es) where the
data is not the same is displayed with its contents.

Example:

Enter: *C3000<4000.4007 ↵
Displayed: 4003-FF (03)

Enter: *3000.3007 ↵
Displayed: 3000-00 01 02 03 04 05 06 07

Enter: *4000.4007 ↵
Displayed: 4000-00 01 02 FF 04 05 06 07

Example Remarks:

In the above example, data stored in addresses 3000 to 3007 is compared
with data stored in addresses 4000 to 4007. In this example, the data stored
in address 3003 has been found to differ from the data stored in address
4003. Consequently, the data stored in address 4003 (FF) and the data
stored in address 3003 (03) are displayed.

Register Command
Purpose: To display or change the contents of a register.

Format: R(register) = (data)

Monitor Mode Commands Section 5-3

73

(register) is one of the hardware registers: C, A, B, X, S, or P.

(data) is a one or two digit hexadecimal number.

Remarks:

If R is entered by itself, all of the registers and their contents will be dis-
played.

Examples:

1. Enter: *R ↵
Displayed: C-C0 A-00 B-01 X-ABCD S-2EFF P-5000

• The contents of all the registers are displayed.
2. Enter: *A=12 ↵

*X=FF00 ↵

*R ↵
Displayed: C-C0 A-12 B-01 X-FF00 S-2EFF P-5000

• The contents of the specified registers (A and X) are rewritten as specified.

Break Point Command
Purpose: To set a breakpoint at a specified address

Format: BP[(address)]

Remarks:

Up to two breakpoints can be set at the same time. If BP is entered by itself,
the current breakpoint(s) will be displayed. If BP is followed by an address, a
new breakpoint will be set at that address.

Examples:

1. Enter: *BP3000 ↵

• Sets a breakpoint.
2. Enter: *BP ↵

Displayed: BP=3000

• Displays the currently set breakpoints.
3. Enter: *BP5000 ↵

*BP ↵
Displayed: BP=5000 3000

• Up to two breakpoints can be set.

New Command
Purpose: To clear all breakpoints.

Format: N

Example:

Enter: *N ↵

Monitor Mode Commands Section 5-3

74

*BP ↵
Displayed: BP=0000 0000

Example Remarks:

Clears all the breakpoints currently set.

Disassembler Command
Purpose: To disassemble and display 20 lines of code starting from the

specified address.

Format: I(address)

Examples:

1. Enter: *I 3000

Displayed: 3000-CE 10 00 LDX #$1000

3003-FF 40 00 STX $4000

3006-86 80 LDAA #$80

 . . .

 . . .

3030-81 12 CMPA #$12

• Disassembles and displays 20 lines of code starting from the specified ad-
dress.

2. Enter: *I, I ↵
Displayed: 3032-26 02 BNE $3036

3034-A7 00 STAA $00, X

3036-39 RTS

 . .

 . .

3080-08 INX

• Each time I,I is subsequently entered, the next 20 lines of code will be dis-
played.

Save Command
Purpose: To transfer the specified block of data to port 1 in S format

Format: S(start address).(end address)

Remarks:

Transfers the data stored from (start address) to (end address) in S format to
the port 1 buffer.

Example:

Step 1: *S3000.300F ↵
Step 2: Press the START/STOP switch.

Example Remarks:

Monitor Mode Commands Section 5-3

75

The data stored from &H3000 to &H300F will be transferred to port 1. If a
peripheral device other than the input terminal needs to be connected for the
data transfer, follow the peripheral data transfer procedure explained at the
beginning of this section.

Load Command
Purpose: To load a data file in S format through port 1

Format: L[(offset)]

Examples:

1. Enter: *L ↵

Enter: *L100 ↵

Press the START/STOP switch.

• Loads a data file in S format through port 1 and stores the file in memory.
2. Enter: *3100.310F ↵

Displayed: 3100-CE 00 00 08 26 FD 08 26

3108-FD 86 55 97 17 CE 00 00

• When an offset address is specified, the loaded file is stored in memory
starting from an address whose value is the specified address plus the
offset. Data transfer will not start until the ASCII Unit START/STOP switch
is pressed.

Verify Command
Purpose: To verify whether data sent through port 1 is the same as data

stored in the specified memory locations

Format: V[(offset)]

Example:

Enter: *V100 ↵

Press the START/STOP switch.

Displayed: 3120-12

Remarks:

The input data is compared with the data stored in the specified address
range. The base address for data comparison is the specified address plus
the offset.

If a discrepancy is found, the address at which it occurs and the data con-
tained therein are both displayed. Data will not be verified until the ASCII Unit
START/STOP switch is pressed.

If a peripheral device other than the input terminal needs to be connected for
data transfer, follow the peripheral data transfer procedure explained at the
beginning of this section.

Go Command
Purpose: To execute a program

Format: G[(address)]

Monitor Mode Commands Section 5-3

76

Example:

Enter: *I3000 ↵
Displayed: 3000-86 80 LDAA #$80

3002-B7 40 00 STAA $4000

3005-20 F9 BRA $3000

Enter: *BP3005 ↵

*G3000 ↵
Displayed: C-C8 A-80 B-FF X-0000 S-2EFF P-3005

Remarks:

If an address is specified, the user program is executed starting from that
address. If no address is specified, execution will start from the address indi-
cated by the program counter.

If program execution is aborted due to a breakpoint, SW1, or an interrupt, the
register contents will be displayed.

If the stack pointer is not set to the assembly language area, this command
will not execute correctly.

Step Command
Purpose: To execute a program one step at a time. This command is used

for debugging.

Format: T[(address)]

Example:

Enter: *T3000 ↵
Displayed: 3000-86 80 LDAA #$80

C-C8 A-80 B-00 X-0000 S-2EFF P-3002

Remarks:

When (address) is specified, the instruction stored starting at (address) is
executed. If (address) is not specified, the instruction stored at the address
indicated by the program counter is executed. To execute several program
steps, execute the Step command as many times as required.

When Step is executed, the instruction stored at the specified address is dis-
played as well as the contents of all the hardware registers.

Mini-Assembler
Purpose: To assemble one line of the program at a time.

Procedure:

1, 2, 3... 1. Key in CTRL+A
2. Type in one line of code and a carriage return.
3. To stop, key in X followed by a carriage return.

Remarks:

Keying-in CTRL+A puts the monitor in mini-assembler mode. Each time a
line of code followed by a carriage return is subsequently entered, the mini-

Monitor Mode Commands Section 5-3

77

assembler will assemble and display it. To exit mini-assembler mode enter
“x” followed by a carriage return.

Example:

Enter: *CTRL+A ↵

!3000:LDA #$80 ↵

Displayed: 3000-86 80 LDAA #$80

Enter: ! LDAB #$7F ↵

Displayed: 3002-C6 7F LDAB #$7F

Enter: ! STD $4000 ↵

Displayed: 3004-FD 40 00 STD $4000

Enter: ! ASLA ↵

Displayed: 3007 48 ASLA

Enter: ! BNE $3000 ↵

Displayed: 3008 26 F6 BNE $3000

Enter: !X ↵

Arithmetic Using Hexadecimal
Purpose: To add or subtract 4-digit hexadecimal data.

Format: (hex data)+(hex data)
(hex data)-(hex data)

Examples:

Enter: *1234+5678 ↵

Displayed: 1234+5678=68AC

Enter: *ABCD+EF01 ↵

Displayed: ABCD+EF01=9ACE

Enter: *AB-12 ↵

Displayed: AB-12=0099

Monitor Mode Commands Section 5-3

79

SECTION 6
Program Examples

This section presents examples of data transfer routines written for both the PC and the ASCII Unit. In some cases, both
a PC and an ASCII Unit Program are necessary for data transfer. In other cases only an ASCII Unit Program is necessary.

Both PC and ASCII Unit Programs necessary:

• Whenever the PC PUT or PC GET statements are used.

• Whenever the PC READ and PC WRITE statements are used without the Memory Area Designator (@).

Only ASCII Unit Program is necessary:

• Whenever the PC READ and PC WRITE statements are used with the Memory Area Designator (@).

In some of the program examples, there are two versions of the ASCII Unit Program; one runs in conjunction with a PC
data transfer routine and the other runs independently of a PC program.

The purpose of the second part of this section is to give a step-by-step explanation of what the ASCII Unit and PC are
doing during execution of their respective programs. This is presented under the heading “execution sequence.”

The last part of this section presents an Assembly Language program example.

Refer to Appendix G Reference Tables for a table listing all the program examples and their page numbers.

6-1 Example Programs 80.
6-2 Execution Sequence 94.
6-3 Assembly Language Example 102.

80

6-1 Example Programs
This section presents examples of data transfer routines written for both the
PC and the ASCII Unit. The examples illustrate how the two programs work
together to transfer data. Some of the examples have two ASCII Unit rou-
tines; the first one runs in conjunction with a PC routine and the second one
runs independently of the PC and does not require a PC program.

Throughout this section, the following is assumed:

Unit no. : 0

Data area of PC: DM

Example 1a
Purpose: To transfer data from the PC to the ASCII Unit using the PC

READ statement

MOV(21)

#0005

101

Transfer base word (DM 0000)

10001

MOV(21)

#0000

102

PC Program ASCII Unit Program

Execution
statement 10300

ASCII busy
specifies the number of
words to be transferred

specifies the base word
for data transfer

WRITE flag

PC READ “5I4”; A,B,C,D,E

Number of words to be transferred Word n+1

Word n+2 (where n= 100 +10 x unit no.)

A

B

C

D

A B
C D

Remarks:

In this example, when the execution statement flag is set, the data stored in
words 0000 to 0004 is written to the ASCII Unit after the WRITE flag (word n
bit 01) has been set.

When the ASCII Unit executes the PC READ statement, five specified words
are read by the BASIC program, converted into BCD and assigned to the
variables A through E. During execution of the PC READ statement, the
ASCII Unit busy flag (word n+3 bit 00) is set. When execution is complete,
the busy flag is cleared.

Example 1b
Purpose: To use the ASCII Unit PC READ statement to specify and read

data from the PC independently of the PC program

• This example does not require a PC data transfer routine.

Example Programs Section 6-1

81

ASCII Unit Program

PC READ “@D,0,5,5I4”; A,B,C,D,E

Remarks:

The above PC READ “@...” statement accesses the PC DM memory area
when the user specifies “@D” as its first argument. When the ASCII Unit ex-
ecutes the above PC READ “@...” statement, five words are read by the BA-
SIC program starting from DM word 0000, converted into BCD and assigned
to the variables A through E. During execution of the PC READ “@...” state-
ment, the busy flag (word n+3 bit 00) is set.

Example 2a
Purpose: To write data to the PC using the PC WRITE statement

MOV(21)

#0003

101

10002

MOV(21)

#0010

102

PC Program ASCII Unit Program

Execution
statement 10300

ASCII busy

READ flag

PC WRITE “3I4”; P,Q,R

Sets the number of words to
be transferred

Sets the base word
number

Transfer base word (DM 0010)

Number of words to be transferred Word n+1

Word n+2 (where n = 100 +10 x unit no.)

A B
C D

A

B

C

D

Remarks:

In the above program, when the execution statement flag is set, data is writ-
ten to PC DM words 0010, 0011, and 0012 after the READ flag (word n bit
02) is set.

When the ASCII Unit executes the PC WRITE statement, variables P, Q, and
R are converted into BCD and stored in the specified DM addresses.

During execution of the PC WRITE statement, the ASCII busy flag (word n+3
bit 00) is set. When execution is complete, the busy flag is cleared.

The PC WRITE statement is not executed until the PC READ flag is set.

Example 2b
Purpose: To use the ASCII Unit PC WRITE statement to specify and write

data to the PC DM area independently of the PC program

• This example does not require a PC data transfer routine.

ASCII Unit Program

PC WRITE “@D,10,3,3I4”;P,Q,R

Example Programs Section 6-1

82

Remarks:

When the ASCII Unit executes the PC WRITE “@...” statement, the variables
P, Q, and R are converted into BCD and stored in DM words 0010, 0011, and
0012. During PC WRITE execution, the busy flag (word n+3 bit 00) is set.

Example 3
Purpose: To print data at fixed time intervals using the LPRINT statement

• This example does not require a PC data transfer routine.

ASCII Unit Program:

100 TH$ = MID$(TIME$,1,2)
110 IF TH$ = TH0$ GOTO 200
120 TH0$ = TH$
130 LPRINT TIME$,A

Remarks:

This program example prints a value (A) and the present time (TIME$) on a
printer every hour on the hour. The PRINT statement is executed when the
“hours” change on the internal clock (for example, when the time changes
from 9:59 to 10:00). The clock (24-hour) must be set prior to program execu-
tion.

Example 4a
Purpose: To transfer data from the keyboard to the PC using the BASIC

“INPUT” statement

10 OPEN #2, “KYBD:”
20 INPUT #2,A$
30 PC WRITE “2A3”;A$

MOV

#0002

101

10002

MOV

#0020

102

PC Program ASCII Unit Program

Execution
statement 10300

ASCII busy

READ flag

specifies the number of
words to be transferred

specifies the number of
words to be transferred

specifies the transfer
base word

Transfer base word (DM 0020)

Number of words to be transferred Word n+1

Word n+2 (where n = 100 +10 x unit no.)

A B
C D

A

B

C

D

Remarks:

In this example, “2A3” means that the low order byte of the first word and the
high order byte of the second word are written.

In this example, data is entered from a keyboard connected to port 2 of the
ASCII Unit and then written to the PC using the PC WRITE statement. Two

Example Programs Section 6-1

83

PC words are used to store the data, which consists of four characters (two
characters per word).

When the execution statement flag is set, the data is stored in DM words
0020 and 0021.

The ASCII Unit OPENs port 2 as the keyboard, and stores the entered char-
acters as a character string, A$. The character string is terminated with a car-
riage return.

Example 4b
Purpose: To use the PC WRITE statement to specify and write data to the

PC DM area

• This example does not require a PC data transfer routine.

ASCII Unit Program:

10 OPEN #2,“KYBD:”
20 INPUT #2,A$
30 PC WRITE “@D,20,2,2A3”;A$

Remarks:

When the PC WRITE “@...” statement is executed, the first four characters of
character string A$ are converted into ASCII code and stored in DM words
0020 and 0021.

During PC WRITE “@...” execution, the busy flag (word n+3 bit 00) is set.

Example 5
Purpose: To control the ASCII Unit from the PC using the ON PC state-

ment

50 ON PC 3 GOSUB 200

60 ON PC 4 GOSUB 300

70 PC ON

200 A = 1234:RETURN

300 A = 2345:RETURN
10001

PC Program ASCII Unit Program

Execution
statement

WRITE flag

MOV

#0030

100

Remarks:

In this example, the PC controls execution of the ASCII Unit by means of an
interrupt.

When the ASCII Unit ON PC GOSUB statement is executed (the PC ON
statement must be executed to enable the interrupts) the PC can then inter-
rupt the ASCII Unit. Each interrupt generated by the PC has a unique inter-
rupt number associated with it. This number is written to the ASCII Unit Pro-
gram and causes branching to a corresponding interrupt service routine. In
the above example, the unique interrupt number is 3, causing a branch to
line 200 of the BASIC program.

Example Programs Section 6-1

84

Example 6
Purpose: To direct execution of the ASCII Unit from the PC using the PC

GET statement

Another way to externally control program execution is through polling. Poll-
ing is the process of continuously checking the value of a specified bit or
word. If the value of the bit or word matches a condition set in the program, a
corresponding branch instruction is executed.

In the following program, the ASCII Unit PC GET statement is used to poll a
specific word of the PC.

10 PC GET I, J

20 K = J AND 3

30 IF K = 1 GOTO 100

40 IF K = 2 GOTO 200

50 IF K = 3 GOTO 300

60 GOTO 10

10008

PC Program ASCII Unit Program

Specification 1

Specification 3

Specification 2

Specification 3

10009

Remarks:

The PC GET statement reads bits 10008 to 10015 of the PC as a word. The
word is logically “ANDed” with 3 (00000011) and the result of this operation is
used to branch the program. When bit 10008 is set, k will be equal to 1 and
the program will branch to line 100. If bit 10009 is set, k will be equal to 2 and
the program will branch to line 200.

Example 7
Purpose: To control execution of the PC from the ASCII Unit using the PC

PUT statement

Using the PC PUT statement, the ASCII Unit can write data to word n+3 bits
08 through 15 of the PC. If the value of this data matches a condition set in
the PC program, a corresponding branch instruction will be executed.

PC Program ASCII Unit Program

Execution
statement 10308

10309

10310

Process 1

Process 2

Process 3

10 INPUT A

20 PC PUT A

Remarks:

Example Programs Section 6-1

85

In the above program, the ASCII Unit accepts external input from a keyboard
using the INPUT statement and transfers that data to the PC with the PC
PUT statement.

If the number “1” is input, bit 10308 of the PC is set, directing process (1) to
be executed.

Example 8a
Purpose: To read and print PC data at specific times using the ASCII Unit

PC READ statement

MOV

#0001

101

10001

MOV

#0000

102

PC Program ASCII Unit Program

Execution
statement 10300

ASCII busy

WRITE flag

10 OPEN #2,“LPRT:(47)”

20 A$ = “00:00”:B$ = “ “

30 C$ = MID$ (TIME$,4,5)

40 IF C$<>A$ GOTO 30

50 D$ = LEFT$ (TIME$,2)

60 IF D$ = B$ GOTO 30

70 B$ = D$

80 PC READ “I4”;X

90 PRINT #2,“DM = “;X

100 GO TO 30

Remarks:

The printer should be connected to port 2. The baud rate should be set to
4,800 baud.

Example 8b
Purpose: To read and print PC data at specific times using the ASCII Unit

PC READ(@...) statement

• This example does not require a PC data transfer routine.

ASCII Unit program:

10 OPEN #2,“LPRT:(47)”
20 A$ = “00:00”:B$ = “ “
30 C$ = MID$ (TIME$,4,5)
40 IF C$<>A$ GOTO 30
50 D$ = LEFT$ (TIME$,2)
60 IF D$ = B$ GOTO 30
70 B$ = D$
80 PC READ “@D,0,1,I4”;X
90 PRINT #2,“DM = “;X

100 GO TO 30

Example 9a
Purpose: To accept input from the keyboard and write it to the PC using

the PC WRITE statement

Example Programs Section 6-1

86

MOV

#0001

101

10002

MOV

#0000

102

PC Program ASCII Unit Program

Execution
statement 10300

ASCII busy

READ flag

10 INPUT I

20 PC WRITE “I4”; I

30 GOTO 10

Remarks:

Product codes stored in DM memory are replaced by data input through a
keyboard. The data is represented as 4-digit hexadecimal numbers.

Example 9b
Purpose: To accept input from the keyboard and write it to the PC using

the PC WRITE(@...) statement

ASCII Unit Program:

10 INPUT I
20 PC WRITE “@D,0,1,I4”;I
30 GOTO 10

Example 10
Purpose: To retrieve and print several types of data from the PC using the

PC GET statement

Example Programs Section 6-1

87

10 OPEN #2,“LPRT:(47)”

20 PC READ “2I4” ;X,Y

30 PC GET I, J

40 IF J = 1 THEN GOTO 100

50 IF J = 2 THEN GOTO 200

60 GOTO 30

100 PRINT #2,“DATA1 = “;X

200 PRINT #2,“DATA2 = “;Y

MOV

#0002

101

10001

MOV

#0000

102

PC Program ASCII Unit Program

10300

ASCII busy

WRITE flag

MOV

#0100

100

MOV

#0200

100

SW1

Start

SW1

Remarks:

Two lot size areas, stored in PC DM words 0000 and 0001, are retrieved and
printed.

Connect the printer to port 2 and set the baud rate to 4,800 bps.

Example 11
Purpose: To use PC interrupts to direct execution of the ASCII Unit

Example Programs Section 6-1

88

MOV

#0030

100

PC Program ASCII Unit Program

WRITE flag

MOV

#0010

100

MOV

#0020

100

Start 1 Start 2 Start 3

Start 1 Start 2 Start 3

Start 1 Start 2 Start 3

Start 1 Start 2 Start 3

Start 1 Start 2 Start 3

Start 1 Start 2 Start 3

10 OPEN #2,“LPRT:(47)”

20 ON PC 1 GOSUB 100

30 ON PC 2 GOSUB 200

40 ON PC 3 GOSUB 300

50 PC ON

60 GOTO 60

70 PC READ “@D,0,1,I4”;X1

80 PRINT #2,“DM0 = “;X1

90 RETURN

200 PC READ “@D,10,2,2I4”;X1,X2

210 PRINT #2,“DM10 = “;X1

220 PRINT #2,“DM11 = “;X2

230 RETURN

300 PC READ “@D,100,3,3I4”;X1,X2,X3

310 PRINT #2,“DM100 = “;X1

320 PRINT #2,“DM101 = “;X2

330 PRINT #2,“DM102 = “;X3

340 RETURN

10001

Remarks:

Three ON PC GOSUB statements are used to direct program execution to
three different interrupt service routines. After the branch destinations are
defined by the ON PC GOSUB statements, the ON PC statement is executed
enabling the interrupts. The statement “GOTO 60” at line 60 causes the pro-
gram to wait for a PC interrupt to initiate further action.

If PC interrupt 1 interrupts the ASCII Unit, the contents of DM word 0000 will
be printed. If PC interrupt 2 interrupts the ASCII Unit, the contents of DM
words 0010 and 0011 will be printed. If PC interrupt 3 interrupts the ASCII
Unit, the contents of DM words 0100, 0101, and 0102 will be printed.

Connect the printer to port 2 and set the baud rate to 4,800 bps.

The lot sizes are stored in DM words as follows:

Example Programs Section 6-1

89

DM0000 DM0010

DM0011

DM0100

DM0101

DM0102

1 2 2

Lot size Lot size

Lot size

Lot size

Lot size

Lot size

Example 12
Purpose: To print PC data and the time of data transfer

MOV

#0002

101

10001

MOV

#0100

102

PC Program ASCII Unit Program

Start 10300

ASCII busy

WRITE flag

10 OPEN #2,“LPRT:(47)”
20 PC READ “2I4”;D1,D2
30 PRINT #2,“DATA1 = “;D1,

“DATA2=“;D2,”TIME= “;TIME$
40 GOTO 20

Remarks:

PC data and the time of transfer are output to a printer connected to port 2 of
the ASCII Unit. The PC read statement is used to obtain the data from the
PC.

Output:

DATA1 = 5678

DATA1 = 3249

DATA2 = 9876

DATA2 = 12

TIME = 13:45:03

TIME = I4:02:51

Example 13
Purpose: To display the state of PC bit 1000 on a display device con-

nected to port 2

• This example does not require a PC data transfer routine.

Example Programs Section 6-1

90

ASCII Unit Program:

10 OPEN #2,“SCRN:(40)”
20 PC READ “@R,10,1,B0”;R
30 IF R = 0 THEN RS$ = “OFF”

ELSE RS$ = “ON”
40 PRINT #2,“RELAY = “;RS$

Remarks:

The PC READ “@...” statement is used with “@R” as the first argument di-
recting the read statement to obtain the data from the PC Relay memory
area.

Example 14
Purpose: To input data from a bar code reader using the PC WRITE state-

ment

Remarks: Connect the bar code reader to port 2.

STX Data 1 ETXData 2 Data 3 Data 4 Data 5 Data 6 Data 7 Data 8 Data 9 Data 10

The following figure defines the output format of the bar code reader.

PC Program:

DM000

DM001

Data 1

Data 3

DM002

DM003

Data 5

Data 7

DM004 Data 9

Data 2

Data 4

Data 6

Data 8

Data 10

ASCII Unit Program :

10 OPEN #2,“COMU:(22)”
20 A$ = INPUT$ (1,#2)
30 IF A$ = CHR$(2) GOTO 50
40 GOTO 20
50 B$ = INPUT$(11,#2)
60 IF CHR$(3) = RIGHT$ (B$,1)

THEN B$ = MID$(B$,1,10)
ELSE GOTO 20

70 PC WRITE “@D,0,5,5A3”;B$
80 GOTO 20

Note For details on the COMU statement, refer to the description of the OPEN
statement in Section 4-2-4 Device Control Statements.

Example 15
Purpose: To read data from an input file through a com port

• This example does not require a PC data transfer routine.

ASCII Unit Program

10 CLEAR 1000
100 OPEN #1,“COMU:”

Example Programs Section 6-1

91

110 OPEN #2,“COMU:”
120 ON COM1 GOSUB 1000
130 ON COM2 GOSUB 2000
I40 COM1 ON:COM2 ON
150 GOTO 150

1000 A = LOC(1)
1010 IF A<>0 THEN

A$ = A$+INPUT$(A,#1)
1020 RETURN
2000 B = LOC(2)
2010 IF B<>0 THEN

B$ = B$+INPUT$(B,#2)
2020 RETURN

Example 16
Purpose: To initiate data transfer with the START switch using the WAIT

statement

MOV

#0005

101

10001

MOV

#0000

102

PC Program ASCII Unit Program

Start 10300

ASCII busy

WRITE flag

100 PRINT “START”
110 WAIT “10:00.0”,1000
120 PC READ “5I4”;A,B,C,D,E
130 PRINT A,B,C,D,E
I40 END

1000 PRINT “ERROR READY? Y/N”
1010 F$ = INKEY$
1020 IF F$ = “Y” THEN 100
1030 IF F$ = “N” THEN END

ELSE 1010

Remarks:

Pressing the PC START switch will cause specified PC data to be transferred
to the ASCII Unit and displayed on the monitor. When the program is ex-
ecuted the message “Ready” will be displayed on the screen. If the START
switch is not pressed within ten minutes, an error message will be displayed.

Example Programs Section 6-1

92

Example 17
Purpose: To direct processing using different interrupts

10 OPEN #1,“TERM:(42)”

20 OPEN #2,“COMU:(42)”

30 ON KEY 1 GOTO 100

40 ON KEY 2 GOTO 200

50 ON PC GOSUB 300

60 ON COM2 GOSUB 400

70 KEY ON:COM2 STOP

80 GOTO 80

100 ’KEY 1 PROCESSING

110 COM2 ON:PC ON

120 GOTO 120

200 ’KEY 2 PROCESSING

210 COM2 ON

220 IF A = 1 THEN GOSUB 300

230 GOTO 220

300 ’PC INTERRUPT PROCESSING

310 B$ = MID$(STR$(LEN(A$)),2)

320 PC WRITE“@D,0,”+B$+“,”+B$+“A3”;A$

330 A = 0

340 RETURN

400 ’COM INTERRUPT PROCESSING

410 IF EOF(2) THEN RETURN

420 A$ = INPUT$ (LOC(2),#2)

430 A = 1

440 RETURN

MOV

#0010

100

10001

PC Program ASCII Unit Program

Start

ASCII busy

WRITE flag

Remarks:

In this example, a terminal is connected to port 1 and an RS-232C communi-
cation device is connected to port 2. Initially, all the interrupts are disabled.
The program will wait for one of two inputs from the keyboard -- KEY 1 or
KEY 2, each of which will direct the program to process subsequent inter-
rupts in a unique way.

1, 2, 3... 1. If key 1 is pressed, the COM2 and PC interrupts will be enabled. When
COM2 interrupts the ASCII Unit, a character is read from the communi-
cation device and assigned to the variable A$. When the PC subse-
quently interrupts the ASCII Unit, the character will be written to the PC.

2. If key 2 is pressed, only the COM 2 interrupt is enabled. When COM 2
interrupts the ASCII Unit, the data is read and written directly to the PC.

Example Programs Section 6-1

93

Example 18
Purpose: In this example, the PC initiates the transfer of ASCII data from

the PC to the ASCII Unit on the Remote I/O Unit.

PC Program Using the READ Instruction ASCII Unit Program

DIFU(13) 04000

04001

MOV(21)

#0000

140

04002

01000

04000

04001

04002

MOV(21)

#0010

140

04005

0400404002

04003

04003

MOV(21)

#0005

141

04006

04004

14001

04006

04001 14001 14308

04002

04003 14001 14308

14308

MOV(21)

#0200

142

04005

Start

(1)

(3)

(1) (3)

10 PC PUT 0

20 ON PC 1 GOSUB 100

30 PC 1 ON

40 GOTO 40

100 PC PUT 1

110 FOR I = 1 TO 50: NEXT 1

120 PC READ “514”; A1, A2, A3, A4, A5

130 PRINT A1, A2, A3, A4, A5

140 PC PUT 0

150 RETURN

Note: The time required to complete the
110 PC PUT transfer and to turn
OFF the WRITE flag must be ad-
justed according to the PC scan
time and remote scan time.

14308

Example Programs Section 6-1

94

6-2 Execution Sequence
This section presents several additional programs with the emphasis on ex-
plaining the actions of the PC and the ASCII Unit during execution of their
respective programs.

Example 1a
Purpose: To transfer data from the PC to the ASCII Unit with the ASCII

Unit maintaining control

MOV

#0005

101

10001

MOV

#0100

102

PC Program ASCII Unit Program

10300

04002

04001

DIFU 04000

10308

04000

04001

04001 10001 10300

04002

100 PC PUT 1

110 PC READ “5I4”;A1, A2, A3, A4, A5

120 PC PUT 0

130 PRINT A1, A2, A3, A4, A5

1
2/5

7
8

3

4

Execution Sequence:
1, 2, 3... 1. ASCII: The PC PUT 1 statement sets bit 10308

2. ASCII: Executes the PC READ statement
3. PC: The self-holding circuit is set on the positive edge transition of bit

10308.
4. PC: Sets the transfer base word number and the number of words to be

transferred to the ASCII Unit when contact 04001 is set and sends the
data to the ASCII Unit when the WRITE flag (10001) is set.

5. ASCII: Sets the BUSY flag (10300) when the data has been received.
6. PC: Clears the WRITE flag when the BUSY flag is set and the ASCII

Unit starts transferring the data. It also clears the self-holding circuit
(04001).

Execution Sequence Section 6-2

95

7. ASCII: After transferring the data, clears bit 10308 with PC PUT 0 and
waits for more data.

8. ASCII: Displays the read data.

Example 1b
Purpose: To transfer data from the PC to the ASCII Unit with the ASCII

Unit maintaining control

• This example does not require a PC data transfer routine.

ASCII Unit Program:

100 PC READ“@D,100,5,5I4”;A1,A2,A3,A4,A5
110 PRINT A1,A2,A3,A4,A5

Execution Sequence:

1, 2, 3... 1. ASCII: Reads data using the PC READ “@...” statement independently
of the PC program.

2. ASCII: Displays the data read in step (1).

Example 2a
Purpose: To transfer data from the ASCII Unit to the PC with the ASCII

Unit maintaining control

MOV

#0005

101

10002

MOV

#0000

102

PC Program ASCII Unit Program

10300

04002

04001

DIFU 04000

10309

04000

04001

04001 10002 10300

04002

100 PC PUT 2

110 PC WRITE “5I4”;A1,A2,A3,A4,A5

130 PC PUT 0

1

3

4

2

Execution Sequence:

Execution Sequence Section 6-2

96

1, 2, 3... 1. ASCII: Sets bit 10309 with the PC PUT 2 statement. Executes the PC
WRITE statement and waits until the program is started from the PC.

2. ASCII: Executes the PC WRITE statement after bit 10309 has been set.
3. ASCII: Sets bit 10390 with the PC PUT 0 statement after the PC WRITE

statement has been executed.
4. PC : Sets the self-holding circuit (04001) after the PC WRITE statement

has been executed (i.e., after the ASCII busy flag (10300) has been
cleared).

Remarks:

If this program is executed repeatedly, and if the time required to set bit
10309 with PC PUT 2 after it has been cleared with PC PUT 0 is longer than
the scan time of the PC, the PC cannot detect the state of bit 10309.

Example 2b
Purpose: To transfer data from the ASCII Unit to the PC with the ASCII

Unit maintaining control.

• This example does not require a PC data transfer routine.

ASCII Unit Program:

100 PC WRITE “@D,0,5,5I4”;A1,A2,A3,A4,A5
110 END

Execution Sequence Section 6-2

97

Example 3a
Purpose: To transfer data from the PC to the ASCII Unit with the PC main-

taining control.

10 ON PC 1 GOSUB 100

20 PC 1 ON

30 (ordinary processing)

90 GOTO 30

100 PC READ “5I4”;A1,A2,A3,A4,A5

110 PRINT A1,A2,A3,A4,A5

120 RETURNMOV

#0010

100

04005

PC Program ASCII Unit Program

10300

04002

04001

DIFU 04000

Start

04000

04001

04001 10001 10300

04002

MOV

#0005

101

04006

MOV

#0200

102

10300

04004

04003

04002

04003

04003 10001 10300

04004

10001

04005

04006

MOV

#0000

100

04002

2
1

1/3

3

Execution Sequence Section 6-2

98

Execution Sequence:

1, 2, 3... 1. PC: The self-holding circuit is set on the positive edge transition of bit
04001. An interrupt number is then generated for execution of the ON
PC 1 GOSUB statement, and the WRITE flag (10001) is set.

2. ASCII: Branches to an interrupt service routine (statements 100 to 120)
when the interrupt from the PC is enabled by the ON PC statement, and
then waits until the PC READ statement is processed by the PC.

3. PC: Sets interrupt number 0 when the interrupt enabled by the ON PC
statement is being processed (i.e., when the ASCII busy flag (10300)
has been set) and disables all other interrupts. Also specifies the PC
READ parameters, sets the WRITE flag (10001), and initiates process-
ing of the PC READ statement.

4. ASCII: Executes the PC READ statement on direction from the PC and
displays the data. Processing then returns to the main routine and the
ASCII Unit waits for the next interrupt.

5. PC: Returns to its initial status after execution of the PC READ state-
ment (i.e. when the ASCII busy flag (10300) has been cleared).

Example 3b
Purpose: To transfer data from the PC to the ASCII Unit with the PC main-

taining control

10 ON PC 1 GOSUB 100

20 PC 1 ON

30 (ordinary processing)

90 GOTO 30

100 PC READ “@D,200,5,5I4,”;A1,A2,A3,A4,A5

110 PRINT A1,A2,A3,A4,A5

120 RETURN

MOV

#0010

100

10001

MOV

#0000

100

PC Program ASCII Unit Program

10300

04002

04001

DIFU 04000

Start

04000

04001

04001 10001 10300

04002

04002

2

1

3

Execution Sequence Section 6-2

99

Execution Sequence:

1, 2, 3... 1. PC: The self-holding circuit (04001) is set on the leading edge of the
start statement pulse. The PC then sets an interrupt number and sets
the WRITE flag (10001).

2. ASCII: Branches to an interrupt routine (statements 100 to 120) after the
interrupt is enabled by the ON PC statement and then reads the data
with the PC READ “@...” statement.

3. PC: Changes the interrupt number to 0 to disable further interrupts after
all the data has been transferred to the ASCII Unit (i.e. when the ASCII
busy flag (10300) has been cleared).

Example 4a
Purpose: To transfer data from the ASCII Unit to the PC with the PC main-

taining control

10 ON PC 2 GOSUB 100

20 PC 2 ON

30 (ordinary processing)

40 GOTO 30

100 PC WRITE “@D,400,5,5I4,”;A1,A2,A3,A4,A5

110 PRINT A1,A2,A3,A4,A5

120 RETURN

MOV

#0020

100

10001

MOV

#0000

100

PC Program ASCII Unit Program

10300

04002

04001

DIFU 04000

Start

04000

04001

04001 10001 10300

04002

04002

3

1

2

Execution Sequence:

1, 2, 3... 1. PC: The self-holding circuit (04001) is set on the leading edge of the
start statement pulse. The PC then sets an interrupt number and sets
the WRITE flag (10001).

2. ASCII: Branches to an interrupt routine (statements 100 to 120) after the
interrupt has been enabled by the ON PC statement and then writes
data to the PC with the PC WRITE “@...” statement.

Execution Sequence Section 6-2

100

3. PC: Changes the interrupt number to 0 to disable further interrupts after
the data has been transferred from the ASCII Unit (i.e. when the ASCII
busy flag (10300) has been turned OFF).

Example 4b
Purpose: To transfer data from the ASCII Unit to the PC with the PC main-

taining control

100 PC GET I,J

110 K=J AND 2

120 IF K<>2 THEN 100

130 PC WRITE “5I4”;A1,A2,A3,A4,A5

I40 END

MOV

#0005

101

10002

MOV

#0400

102

PC Program ASCII Unit Program

10300

04002

10009

DIFU 04000

Start

04000

10009

10009 10002 10300

04002
2

3

1

Execution Sequence:

1, 2, 3... 1. PC: The self-holding circuit (10009) is set on the leading edge of the
start statement signal. The WRITE flag is then set to initiate execution of
the PC WRITE statement.

2. ASCII: Executes the PC WRITE statement

3. PC: Clears the self-holding bit after the PC WRITE statement has been
executed (i.e. when the ASCII busy flag (10300) has been cleared).

Execution Sequence Section 6-2

101

Example 5
Purpose: To process data with the ASCII Unit

100 ON PC 1 GOSUB 1000

110 PC 1 ON

190 GOTO 190

1000 PC READ “@D,100,10,10H4”;A1 ... A10

1010 (computation processing)

 assigns the results to B1 through B15

1100 PC WRITE “@D,200,15,15H4”;B1 ... B15

1110 RETURN
MOV

#0010

100

10001

MOV

#0000

100

PC Program ASCII Unit Program

10300

04002

04001

DIFU 04000

01000

04000

04001

04001 10001 10300

04002

04002

4

2

1

3

Remarks:

This program transfers 100 words of data from the PC to the ASCII Unit
(starting from PC DM word 0100) each time bit 01000 is set. The ASCII Unit
performs some calculations with the data and the results are sent back to the
PC and stored in DM words 0200 to 02I4.

Execution Sequence:

1, 2, 3... 1. PC: The self-holding circuit (04001) is set on the positive edge transition
of bit 01000. An interrupt number is then generated for execution of the
the ON PC 1 GOSUB statement and the WRITE flag (10001) is set.

2. ASCII: After the interrupt is enabled with the ON PC statement, execu-
tion branches to an interrupt service routine (statements 1000 to 1110)
and the specified PC data is read and assigned to variables A1 to A10
by the PC READ “@...” statement. Computations are then performed on
the data and the results are assigned to variables B1 through B15.
These results are then transferred back to the PC with the PC
WRITE “@...” statement.

3. PC: After the ON PC GOSUB statement is executed, the interrupt num-
ber is set to 0 disabling further interrupts (i.e., when the ASCII busy flag
(10300) has been turned OFF).

Execution Sequence Section 6-2

102

4. ASCII: Exits the interrupt service routine and waits for the next interrupt.

Example 6
Purpose: To process data using the PC

Remarks:

In this example, data is entered through the ASCII Unit keyboard and trans-
ferred to the PC. The PC performs some computations on the data and then
sends it back to the ASCII Unit.

04002

10008

13000

PC Program ASCII Unit Program

04002

04001

DIFU 04000

10308

04000

04001

04001

04002

10008

Data Processing

100 PC PUT 0

110 INPUT A,B,C

120 PC WRITE “AD,100,3,3I4”; A1,A2,A3

130 PC PUT 1

I40 PC GET I,J

150 K=J AND 1

160 IF K<>1 THEN I40

170 PC READ “:D,200,4,4I4”; B1,B2,B3,B4

180 PRINT B1,B2,B3,B4

190 GOTO 100

1

3
2

Execution Sequence:

1, 2, 3... 1. ASCII: The PC is initialized with the PC PUT 0 statement. Data is en-
tered via the keyboard and read with the INPUT statement. The data is
then written to the PC with the PC WRITE “@...” statement. PC process-
ing is then initiated with the PC PUT 1 statement.

2. PC: When data processing is complete, the self-holding circuit (10008)
is set requesting the ASCII Unit to read the processed data.

3. ASCII: Polls PC bit 10008, waiting for it to be set (it is set when data pro-
cessing is complete) and then reads the data with the PC READ “@...”
statement. The data is then displayed.

6-3 Assembly Language Example
This section presents an assembly language program that is called from a
BASIC program running on the ASCII Unit.

BASIC Program:

100 DEF USR0=&H2000
110 INPUT A$
120 A$=USR0(A$)

Assembly Language Example Section 6-3

103

130 PRINT A$
140 END

Procedure;

1, 2, 3... 1. Use MSET &H3000 to reserves an assembly language program area.
2. Key-in MON to initiate assembly language monitor mode.
3. Key-in CTRL+A <- Sets mini-assembler mode.
4. Key-in the program sequentially from $2000.
5. Key-in CTRL+B after the program has been input to return to BASIC

mode.

The following memory areas are used as a program area, work area, and
buffer area respectively:

Program Area

Address Area

$2000 to $24FF Program area

$2500 to $2507 Work area

$2600 to $27FF Buffer area

Work Area

Address Function

$2500 to $2501 Stores buffer 1 (stores numerals) pointer

$2502 to $2503 Stores buffer 2 (stores characters) pointer

$2504 to $2505 Stores transfer source word

$2506 to $2507 Stores transfer destination word

Buffer Area

Address Area

$25600 to $26FF Numeral storage area

$2700 to $27FF Character storage area

Assembly Language Example Section 6-3

104

Assembly language program operation:

The numbers and characters are separated and stored in the number stor-
age buffer and the character storage buffer, respectively. Then numeric
strings and character strings are restored as the original character variables.
This program has no practical application; it is an example only.

Assembly Program

Saves registers

Sets first address of buffer 1 in pointer 1

Sets first address of buffer 2 in pointer 2

Number of characters to GET

Character variable first address GET

DOUNTIL (number of times equal to the number of characters)

Character GET

Character variable address pointer + 1

IF ($30 min.)

THEN

 IF (numeral less than $39)

 THEN

Stores numeral in buffer 1

ENDIF

Stores character in buffer 2

Updates counter

ENDDO

Transfer from buffer 1 to a character variable

$2000 PSHA

PSHB

PSHX

LDD #$2600

STD $2500

LDD #$2700

STD $2502

LDAB 0,X

LDX 1,X

STX $2504

$2016 LDX $2504

LDAA 0,X

INX

STX $2504

CMPA #$30

BLT $2032

CMPA #$39

BHI $2032

LDX $2500

STAA 0,X

INX

STX $2500

BRA $203B

$2032 LDX $2502

STAA 0,X

INX

STX $2502

$203B DECB

BNE $2016

LDD $2500

LDX #$2600

STX $2504

Assembly Language Example Section 6-3

105

PULB

PULX

PSHX

LDX 1,X

ABX

STX $2506

LDD $2502

SUBD #$2700

JSR $2100

PULX

PULB

PULA

RTS

$2100 LDX $2504

LDAA 0,X

INX

STX $2504

LDX $2506

STAA 0,X

INX

STX $2506

DECB

BNE $2100

RTS

Data transfer subroutine

Assembly Language Example Section 6-3

107

Appendix A
Standard Models

Item Description Model No.

ASCII Unit EEPROM C200H-ASC02

Battery Set Backup battery for C200H only C200H-BAT09

109

Appendix B
Specifications

Specifications
Item Specifications

Communication mode Half duplex

Synchronization Start-stop

Baud rate Port 1: 300/600/1,200/2,400/4,800/9,600 bps
Port 2: 300/600/1,200/2,400/4,800/9,600/19,200 bps

Transmission mode Point-to-point

Transmission distance 15 m max.

Interface Conforms to RS-232C. Two ports (D-sub 9P
connectors) (see note)

Memory capacity BASIC program area and BASIC data area: 24K
bytes (RAM) (memory is protected by built-in battery
backup)
BASIC program storage area: 24K bytes
(EEPROM)
The program memory area can be segmented into 3
program areas

Transfer capacity 255 words at a maximum of 20 words per scan

Timer function Year, month, day, date, hour, minute, second (leap
year can be programmed)
Accuracy: month ±30 seconds (at 25°C)

Diagnostic functions CPU watchdog timer, battery voltage drop

Battery life 5 years at 25°C. (The life of the battery is shortened
if the ASCII Unit is used at higher temperatures.)

Internal current consumption 200 mA max. at 5 VDC

Dimensions 130(H) x 35(W) x 100.5(D) mm

Weight 400 grams max.

Note Redundant output may occur at ports during initialization at startup. Take steps to ensure that this output is
ignored at connected devices (e.g., by clearing received data).

Specifications Appendix B

110

Rear Panel

DIP switch, left
Sets the start mode,
screen size, etc.

Connector

DIP switch, right
Sets the baud rate for
each port.

Left-Side DIP Switch
Pin No. Function Description

1 Start mode Sets automatic or manual mode for
start-up of a BASIC program upon power
application.

2 Automatic program transfer
from EEPROM to RAM

Specifies whether the BASIC program is
automatically transferred from the
EEPROM to RAM on power application or
reset.

3 Program No. Sets the program number. The program
number can be changed by the PGEN

4 command.

5 Data Section mode
selector

Sets the Data Section to either two-word or
four-word mode

6 Screen size Sets the screen size of the input device

7

8

Appendix BSpecifications

111

Right-Side DIP Switch
Pin No. Function Description

1 Baud rate for port 1 Sets the baud rate for port 1.

2

3

4 Not used Always set this pin to OFF

5 Baud rate for port 2 Sets the baud rate for port 2.

6

7

8 Not used Always set this pin to OFF.

RS-232C Interface
The ASCII Unit is connected to peripheral devices through two RS-232C interfaces.

Electrical characteristics: Conform to EIA RS-232C

D-sub 9-pin connectors are used for both ports.

Assemble the cable connectors supplied with the ASCII Unit. To connect the cables correctly, refer to the fol-
lowing signal table.

··
··
·
··
·
·

··
··
·
··
·
·

Port 1

Port 2

9

9

6

6

5

1

5

1

Plug: XM2A-0901 (OMRON) or equivalent.
Applicable Connector Hood: XM2S-0901 (OMRON) or equivalent.
(Two plugs and two hoods are supplied with the ASCII Unit.)
Cable Length: 15 m

Pin No. Symbol Name Direction

1 FG Frame ground

2 SD Send data Output

3 RD Receive data Input

4 RTS Request to send Output

5 CTS Clear to send Input

6

7 Data send ready

8

–

Data terminal ready Output

9

DTR

Signal ground

Not used

InputDSR

SG

–

–

–

Specifications Appendix B

112

Connections to Peripheral Devices

FG

SG

SD

CTS

DSR

2

5

7

1

3

20

FG

SG

RXD

DTR

1

9 7

ASCII Unit Printer

(Shielded cable)

RS-232 Printer Connections

FG

SG

SD

RD

RTS

2

3

4

7

3

4

GND

TXD

RXD

RTS

1

9

2

ASCII Unit

Display Terminal

(Shielded cable)

CTS

DSR

5

7

8

20

DCD

DTR

Connections to a Plasma Display

FG

SG

SD

RD

RTS

2

3

4

1

9

CTS

DSR

5

7

FG

SG

SD

RD

RTS

CTS

DSR

DTR 8 DTR

1

7

2

3

4

5

6

20

Connections to a Personal Computer

ASCII Unit Personal Computer

(Shielded cable)

Interface Signal Timing
The RTS, CTS, DTR, and DSR signals are processed as follows:

Appendix BSpecifications

113

Transmission from the ASCII Unit to a Peripheral Device

The RTS signal is activated by the OPEN command. (The DTR signal goes HIGH or LOW depending on the
peripheral device which has been opened by the command.)

When the RTS signal goes HIGH, the status of both the CTS and DSR signals is checked, and then data is
transmitted.

For LPRT, SCRN
For TERM, COMU

For
Port 1

For
Port 2

Data transmission Data transmission

CLOSEEND

ON

OFFDTR (output)

RTS (output)

DSR (input)

CTS (input)

ON

OFF

Data

OPEN PRINT

Note 1. If the DSR or CTS signal is disabled, these signals will be ignored. How-
ever, if the CTS signal to port 2 needs to be disabled, either pull it HIGH
or connect it to the RTS signal. If the RTS signal is selected as the valid
signal by the OPEN command, the RTS signal will remain HIGH. The
RTS signal goes low when the CLOSE command is executed.

2. If the name of the peripheral device in the OPEN command is TERM or
COMU, when the OPEN command is executed, the DTR signal will go
HIGH and the RTS signal will go LOW. The RTS signal will go HIGH when
the PRINT command is executed. If both the CTS and DSR signals are
HIGH, data will then be transferred.

3. If the name of the peripheral device in the OPEN command is LPRT or
SCRN, when the OPEN command is executed, both the DTR and RTS
signals will go LOW. The RTS signal will go HIGH when the PRINT com-
mand is executed. If both the CTS and DSR signals are HIGH, data will
then be transferred.

Transmission from a Peripheral Device to the ASCII Unit

The DTR signal goes HIGH and the RTS signal goes LOW when the OPEN command is executed. (If the
DTR signal has already gone HIGH and the RTS signal has gone LOW, the state of these signals is main-
tained.)

The RTS signal goes HIGH when the INPUT command is executed and incoming data is received. (This oper-
ation is independent of the DSR and CTS signals.)

If the RTS signal is already HIGH when the OPEN command is executed, it will remain HIGH. The RTS signal
goes LOW when the CLOSE command is executed.

Specifications Appendix B

114

For
Port 1

For
Port 2

Data transmission Data transmission

CLOSEEND

ON

OFFDTR (output)

RTS (output)

ON

OFF

Data

OPEN INPUT

Device Control Codes
Peripheral Device Output

Terminal Display At execution The transmission buffer (screen) is cleared when code &H0C is output.
The cursor is set to the leftmost position of the screen when code &H0A (LF),
&H0D (CR), &H0B (HOME), or &H0C (CLR) is output.
The cursor is moved on the screen when code &H08 (BS), &H1C (->), or &H1D
(<-) is output.
Codes &H16 (cursor ON) and &H17 (cursor OFF) are ignored and are not output.

CLOSE Nothing is executed

LPRT At execution The cursor is set to the leftmost position when code &H0A, &H0D, &H0B, or
&H0C is output.
If an output line exceeds 80 characters, code &H0A (LF) is automatically
appended to the line data.

CLOSE If data remains in the transmission buffer, it is output with code &H0A appended

COMU At execution Data is output when characters are sent to the buffer.

CLOSE If data remains in the transmission buffer, it is output.

Dimensions
Dimensions with ASCII Unit Mounted on PC
The depth of the ASCII Unit is 100.5 mm as shown in the following figure. However, when the Unit is mounted
on the PC and when a cable is connected to the Unit, the depth may increase up to 200 mm. Consider this
when mounting the ASCII Unit in a control box along with the PC.

Appendix BSpecifications

115

130

35 100.5

117

Appendix C
PC Statements and Refresh Timing

Instructions and Refresh Timing
Data transfer between the ASCII Unit and the PC is executed during PC I/O refresh.

I/O Refresh

Scan Time

I/O Refresh

Instruction Execution Instruction Execution

Data Transfer Data Transfer

Processing in BASIC programASCII Unit

C200H CPU

BASIC Statements and PC Scan Time

PC GET
The ASCII Unit takes in data obtained in the last PC I/O refresh before execution of PC GET.

I/O Refresh I/O Refresh

ASCII Unit

C200H CPU Instruction Execution Instruction Execution

PC GET Statement PC GET Statement

Data from before

PC Statements and Refresh Timing Appendix C

118

PC PUT
The ASCII Unit transfers data during the first PC I/O refresh after execution of PC PUT.

PC PUT Statement

I/O Refresh I/O Refresh

ASCII Unit

C200H CPU Instruction Execution Instruction Execution

PC PUT Statement

Data Transfer Data Transfer

PC READ
In four-word mode, when the PC’s WRITE flag is set, the base address is transferred. By the next I/O refresh
the data is read.

I/O Refresh

ASCII Unit

C200H CPU

Instruction Execution

I/O Refresh I/O Refresh I/O Refresh

Write Flag (word n bit 01)

ASCII Busy (word n+3 bit 00)

Instruction Execution

Instruction Execution

PC READ statement

READ
Transfer Words

First Transfer Word

Appendix CPC Statements and Refresh Timing

119

PC READ @...
Data is read from the first I/O refresh after execution of PC READ @..., irrespective of the status of the Write
flag.

I/O refresh

Instruction execution

I/O refresh I/O refresh

ASCII Unit

C200H CPU

Transfer words

First word transfer
Instruction execution Instruction execution

READ

PC READ @...statement

ASCII busy
(word n+3 bit 00)

PC WRITE
In four-word mode, when the PC’s READ flag is set during I/O refresh, the PC WRITE statement obtains the
base word address and the number of words to be transferred. With the next I/O refresh, data is transferred.

I/O Refresh

ASCII Unit

C200H CPU

Instruction Execution

I/O Refresh I/O Refresh I/O Refresh

READ Flag (word n bit 02)

ASCII Busy (word n+3 bit 00)

Instruction Execution

Instruction Execution

PC WRITE statement

Transfer Words

First Transfer Word

WRITE

PC Statements and Refresh Timing Appendix C

120

PC WRITE @...
Data is transferred to the PC during the first I/O refresh after execution of PC WRITE @..., irrespective of the
status of the PC READ flag.

I/O refresh

Instruction execution

I/O refresh I/O refresh

ASCII Unit

C200H CPU

Instruction execution Instruction execution

PC WRITE @...statement

ASCII busy
(word n+3 bit 00)

WRITE

ON PC GOSUB
After the ON PC GOSUB statement is executed, the PC’s interrupt number is written in. When the Write flag is
set, the GOSUB statement is executed. Only when the WRITE flag is set will the ON PC GOSUB statement
be executed.

I/O Refresh I/O Refresh I/O Refresh

Instruction Execution Instruction ExecutionInstruction Execution

ASCII Unit

C200H CPU

I/O Refresh

ON PC GOSUB Statement Execution ON PC GOSUB Statement Execution

Interrupt Number
(word n bits 04 through 07)

WRITE Flag (word n bit 01)

ASCII Unit (word n+3 bit 00)

Appendix CPC Statements and Refresh Timing

121

PC ON
After the ON PC GOSUB statement is executed, the PC’s interrupt number is written in. When the Write flag is
set, the GOSUB statement is executed. Only when the WRITE flag is set will the ON PC GOSUB statement
be executed.

I/O Refresh I/O Refresh I/O Refresh

Instruction Execution Instruction ExecutionInstruction Execution

ASCII Unit

C200H CPU

I/O Refresh

PC ON Statement Execution PC ON Statement Execution

Interrupt Number
(word n bits 04 through 07)

WRITE Flag (word n bit 01)

ASCII Unit (word n+3 bit 00)

PC Statements and Refresh Timing Appendix C

122

PC STOP
After the ON PC GOSUB statement is executed, the PC’s interrupt number is written in. When the Write flag is
set, the ASCII Unit busy flag is set for one scan time, but the GOSUB statement is not executed. Only after
the PC ON statement is executed will the ON PC GOSUB statement be executed.

I/O Refresh I/O Refresh I/O Refresh

Instruction Execution Instruction ExecutionInstruction Execution

ASCII Unit

C200H CPU

I/O Refresh

PC STOP Statement Execution PC STOP Statement Execution

Interrupt Number
(word n bits 04 through 07)

WRITE Flag (word n bit 01)

ASCII Unit (word n+3 bit 00)

Appendix CPC Statements and Refresh Timing

123

PC OFF
After the ON PC GOSUB statement is executed, the PC’s interrupt number is written in. If the PC OFF state-
ment is subsequently executed, then even if the Write flag is set, the GOSUB statement will not be executed
and the ASCII busy flag will not be set.

I/O refresh I/O refresh I/O refresh

Instruction execution Instruction executionInstruction execution

ASCII Unit

C200H CPU

I/O refresh

ON PC GOSUB statement execution ON PC GOSUB statement execution

Interrupt number
(word n bits 04 through 07)

WRITE flag (word n bit 01)

ASCII Unit (word n+3 bit 00)

125

Appendix D
Formatting and Data Conversion

Memory Area Designators for PC READ/PC WRITE Statements

Memory Area Designator Address Range

@R IR Area 0000 to 0255 PC READ
0000 to 0252 PC WRITE

@H HR Area 0000 to 0099

@A AR Area 0000 to 0027

@L LR Area 0000 to 0063

@G TC Area 0000 to 0511

@D DM Area 0000 to 1999

Formatting and Data Conversion

Format Meaning Name

m I n nth byte of m decimal words I format

m H n nth byte of m hexadecimal words H format

m O n nth byte of m octal words O format

m B n nth bit of of m binary words B format

m A n nth byte of m ASCII words A format

Sm X n nth bit/byte X (where X could be I, H, O or B) of m words S format

Remarks:
When m is omitted, the default value is one.

When using the A format, one format designator corresponds to only one variable in the variable list: e.g., the
first format designator corresponds to the first variable in the list, the second format designator corresponds to
the second variable in the list, etc.

In all formats except A and S, one format designator can apply to many variables. For example:

“5H2”; A, B, C, D, E

This is the same as “1H2, 1H2, 1H2, 1H2, 1H2”; A, B, C, D, E.

All format designators must be in uppercase characters.

Under normal conditions, the maximum number of words that can be transferred at one time is 255. When
using the A or B formats, however, the maximum number of words that can be transferred is between 50 and
60.

I Format (mIn)
This format is used for decimal numbers (0 to 9):

m : number of words

I : decimal format designator

n : the nth digit of the word

Digit n Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 – – – x 100

2 – – x 101 x 100

3 – x 102 x 101 x 100

4 x 103 x 102 x 101 x 100

Formatting and Data Conversion Appendix D

126

Example: 2I3 ... Indicates 2 decimal words of 3 digits each.

H Format (mHn)
This format is used for hexadecimal numbers (0 to F):

m : number of words

H : hexadecimal format designator

n : the nth digit of the word

Digit n Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 – – – x 160

2 – – x 161 x 160

3 – x 162 x 161 x 160

4 x 163 x 162 x 161 x 160

Example: 3H4 ... Three hexadecimal words of 4 digits each.

 O Format (mOn)
This format is used for octal numbers (0 to 7):

m : number of words

O : octal format designator

n : the nth byte of the word

Digit n Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 – – – x 80

2 – – x 81 x 80

3 – x 82 x 81 x 80

4 x 83 x 82 x 81 x 80

Example: 4O2 ... Indicates four octal words of two digits each.

B Format (mBn)
This format is used for binary numbers (0 to 1):

m : number of words

B : binary format designator

n : the nth bit of the word

Appendix DFormatting and Data Conversion

127

Digit Bit

n 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 – – – – – – – – – – – – – – – x 20

1 – – – – – – – – – – – – – – x 21 –

2 – – – – – – – – – – – – – x 22 – –

3 – – – – – – – – – – – – x 23 – – –

4 – – – – – – – – – – – x 24 – – – –

5 – – – – – – – – – – x 25 – – – – –

6 – – – – – – – – – x 26 – – – – – –

7 – – – – – – – – x 27 – – – – – – –

8 – – – – – – – x 28 – – – – – – – –

9 – – – – – – x 29 – – – – – – – – –

10 – – – – – x 210 – – – – – – – – – –

11 – – – – x 211 – – – – – – – – – – –

12 – – – x 212 – – – – – – – – – – – –

13 – – x 213 – – – – – – – – – – – – –

14 – x 214 – – – – – – – – – – – – – –

15 x 215 – – – – – – – – – – – – – – –

Example: 5B14... Indicates five binary words of 14 bits each.

 A Format (mAn)
This format is used for ASCII characters:

m : number of words

A : ASCII format designator

n : the nth byte of the word

Digit n Bit

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 – ASCII code

2 ASCII code –

3 ASCII code ASCII code

Example: 6A2... Indicates six ASCII words of two characters each.

A maximum of 255 words can be transferred at one time when the A format is used because many PC words
can be represented by one BASIC variable.

Example: PC READ “50A3, 100A2, 30A1, 75A3”; A$, B$, C$, D$

A$: Fifty PC words (50 words x 2 characters = 100 characters) indicated by 50A3 are assigned to this vari-
able.

B$: One hundred PC words (100 words x 1 character = 100 characters) indicated by 100A2 are assigned to
this variable.

C$: Thirty PC words (30 words x 1 character = 30 characters) indicated by 30A1 are assigned to this variable.

D$: Seventy-five PC words (75 words x 2 characters = 150 characters) indicated by 75A3 are assigned to this
variable.

S Format (SmIn, SmHn, SmOn, SmBn)
This format is used for array variables.

S : format designator

m : number of words

n : the digits of the specified format type

Formatting and Data Conversion Appendix D

128

Format Meaning

SmIn Indicates an array in decimal format.

SmHn Indicates an array in hexadecimal format.

SmOn Indicates an array in octal format.

SmBn Indicates an array in binary format.

Remarks:

Each S Format designator corresponds to one variable from the variable list: the first designator corresponds
to the first variable in the list, etc.

The array variables must be one dimensional. Each array variable in the list must indicate (with a subscript) a
specific element within the array. The number of words to be written to or read from the array will be increm-
ented from the specified element. For example: if the array variable T(4) is specified in a READ statement and
the corresponding format is S100I4, then 100 words will be read from the array, starting at T(4) and ending at
T(104).

Example: PC READ “S100I4, S75H2, S80O3”; A(1), B(11), C(51)

A(1) to A(100): A hundred words of 4-digit decimal data indicated by S100I4 are read to these variables.

B(11) to B(85): Seventy-five words of 2-digit hexadecimal data indicated by S75H2 are read to these vari-
ables.

C(51) to C(130): Eighty words of 3-digit octal data indicated by S80O3 are read to these variables.

Appendix DFormatting and Data Conversion

129

Examples of PC READ Format Conversion

I Format

Contents of PC word

1 2 3 4

PC READ “ I 1 ” ; J → J = 4
PC READ “ I 2 ” ; J → J = 3 4
PC READ “ I 3 ” ; J → J = 2 3 4
PC READ “ I 4 ” ; J → J = 1 2 3 4

Integer variable

Character variable

PC READ “ I 1 ” ; A$ → A$ = “ 4 ”
PC READ “ I 2 ” ; A$ → A$ = “ 3 4 ”
PC READ “ I 3 ” ; A$ → A$ = “ 2 3 4 ”
PC READ “ I 4 ” ; A$ → A$ = “ 1 2 3 4 ”

8 9 A B

PC READ “ H 1 ” ; J → J = & H B = 11
PC READ “ H 2 ” ; J → J = & H A B = 171
PC READ “ H 3 ” ; J → J = & H 9 A B = 2475
PC READ “ H 4 ” ; J → J = & H 8 9 A B = -30293

PC READ “ H 1 ” ; A $ → A $ = “ B ”
PC READ “ H 2 ” ; A $ → A $ = “ A B ”
PC READ “ H 3 ” ; A $ → A $ = “ 9 A B ”
PC READ “ H 4 ” ; A $ → A $ = “ 8 9 A B ”

H Format

Contents of PC word

Integer variable

Character variable

PC READ “ O 1 ” ; J → J = & 4
PC READ “ O 2 ” ; J → J = & 3 4
PC READ “ O 3 ” ; J → J = & 2 3 4
PC READ “ O 4 ” ; J → J = & 1 2 3 4

= 4
= 2 8
= 1 5 6
= 6 6 8

PC READ “ O 1 ” ; A $ → A $ = “ 4 ”
PC READ “ O 2 ” ; A $ → A $ = “ 3 4 ”
PC READ “ O 3 ” ; A $ → A $ = “ 2 3 4 ”
PC READ “ O 4 ” ; A $ → A $ = “ 1 2 3 4 ”

1 2 3 4

O Format

Contents of PC word

Integer variable

Character variable

B Format

Contents of PC word

C 1 2 2

PC READ “ B 1 ” ; J → J = 2
PC READ “ B 2 ” ; J → J = 0
PC READ “ B 5 ” ; J → J = 3 2
PC READ “ B 1 4 ” ; J → J = 1 6 3 8 4
PC READ “ B 1 5 ” ; J → J = - 3 2 7 6 8

Integer variable

Character variable

PC READ “ B 1 ” ; A $ → A $ = “ 2 ”
PC READ “ B 2 ” ; A $ → A $ = “ 0 ”
PC READ “ B 5 ” ; A $ → A $ = “ 3 2 ”
PC READ “ B 1 4 ” ; A $ → A $ = “ 1 6 3 8 4 ”
PC READ “ B 1 5 ” ; A $ → A $ = “ - 3 2 7 6 8 ”

Note: The integer variable causes an error because it
does not match the binary data format.

5 1 5 2
PC READ “ 2 A 1 ” ; A $ → A $ = “ R T ”
PC READ “ 2 A 2 ” ; A $ → A $ = “ Q S ”
PC READ “ 2 A 3 ” ; A $ → A $ = “ Q R S T ”

A Format

Contents of PC word

Character variable5 3 5 4

Q : & H 5 1
R : & H 5 2
S : & H 5 3
T : & H 5 4

Formatting and Data Conversion Appendix D

130

0 1 2 3 PC READ “ S 4 I 4 ” ; A (1)

S Format

Contents of PC word

4 5 6 7

Integer variable
(in format I)

8 9 0 1

2 3 4 5

→ A (1) = 9 8 7 6
→ A (2) = 5 4 3 2
→ A (3) = 1 0 9 8
→ A (4) = 7 6 5 4

Examples of PC Write Format Conversion

I Format

Contents of PC word

0 0 0 4 PC WRITE “ I 1 ” ; J

Integer variable

Character variable

0 0 3 4 PC WRITE “ I 2 ” ; J

0 2 3 4 PC WRITE “ I 3 ” ; J

1 2 3 4 PC WRITE “ I 4 ” ; J

← J = 1 2 3 4

0 0 0 1 PC WRITE “ I 1 ” ; A $

0 0 1 2 PC WRITE “ I 2 ” ; A $

0 1 2 3 PC WRITE “ I 3 ” ; A $

1 2 3 4 PC WRITE “ I 4 ” ; A $

← A $ = “ 1 2 3 4 ”

Appendix DFormatting and Data Conversion

131

Contents of PC word

0 0 0 B PC WRITE “ H 1 ” ; J

Integer variable

Character variable

0 0 A B PC WRITE “ H 2 ” ; J

0 9 A B PC WRITE “ H 3 ” ; J

8 9 A B PC WRITE “ H 4 ” ; J

← J = - 3 0 2 9 3 = & H 8 9 A B

0 0 0 8 PC WRITE “ H 1 ” ; A $

0 0 8 9 PC WRITE “ H 2 ” ; A $

0 8 9 A PC WRITE “ H 3 ” ; A $

8 9 A B PC WRITE “ H 4 ” ; A $

← A $ = “ 8 9 A B ”

H Format

O Format

Contents of PC word

0 0 0 4 PC WRITE “ O 1 ” ; J

Integer variable

Character variable

0 0 3 4 PC WRITE “ O 2 ” ; J

0 2 3 4 PC WRITE “ O 3 ” ; J

1 2 3 4 PC WRITE “ O 4 ” ; J

← J = 6 6 8 = & 1 2 3 4

0 0 0 1 PC WRITE “ O 1 ” ; A $

0 0 1 2 PC WRITE “ O 2 ” ; A $

0 1 2 3 PC WRITE “ O 3 ” ; A $

1 2 3 4 PC WRITE “ O 4 ” ; A $

← A $ = “ 1 2 3 4 ”

Formatting and Data Conversion Appendix D

132

Contents of PC word

0 0 0 1 PC WRITE “ B 0 ” ; J

Integer variable

0 0 0 2 PC WRITE “ B 1 ” ; J

0 0 1 0 PC WRITE “ B 4 ” ; J

8 0 0 0 PC WRITE “ B 15 ” ; J

← J = - 3 2 7 4 9 = & H 8 0 1 3

B Format

1

Note Integer variables in B format will cause an error.

A Format

Contents of PC word

0 0 5 1

PC WRITE “ 2 A 1 ” ; A $
0 0 5 2

PC WRITE “ 2 A 2 ” ; A $
5 1 0 0

PC WRITE “ 2 A 3 ” ; A $

5 2 0 0
← A $ = “ Q R S T ”

5 1 5 2

5 3 5 4

Character variable

Q : & H 5 1
R : & H 5 2
S : & H 5 3
T : & H 5 4

← A (1) = 1 2 3
A (2) = 4 5 6 7
A (3) = 8 9 0 1
A (4) = 2 3 4 5

9 8 7 6

Contents of PC word

5 4 3 2

1 0 9 8

7 6 5 4

PC WRITE “ S 4 I 4 ” ; A (1)
Integer variable
(in format I)

S Format

Appendix DFormatting and Data Conversion

133

Execution Times
Command Execution time (ms)

PC READ “ I 4 ” ; A 8.5

PC READ “ 5 I 4 ” ; A, B, C, D, E 21.1

PC READ “ 1 0 I 4 ” ; A, B, C, D, E, G, H, I, J 43.8

PC READ “ 1 0 0 A 3, 1 0 0 A 3, 5 5 A 3 ” ; A $, B $, C $ 67.7

PC WRITE “ I 4 ” ; A 8.7

PC WRITE “ 5 I 4 ” ; A, B, C, D, E 22.1

PC WRITE “ 1 0 I 4 ” ; A, B, C, D, E, G, H, I, J 39.3

PC WRITE “ 1 0 0 A 3, 1 0 0 A 3, 5 5 A 3 ” ; A $, B $, C $ 57.9

PC READ “ @ D, 0, 1, I 4 ” ; A 5.0

PC READ “ @ D, 0, 5, 5 I 4 ” ; A, B, C, D, E 18.6
PC READ “ @ D, 0, 10, 1 0 I 4 ” ; A, B, C, D, E, G, H, I, J 40.3

PC READ “ @ D , 0, 2 5 5, 1 0 0 A 3, 1 0 0 A 3, 5 5 A 3 ” ; A $, B $, C $ 65.3

PC WRITE “ @ D, 0, 1, I 4 ” ; A 4.4

PC WRITE “ @ D, 0, 5, 5 I 4 ” ; A, B, C, D, E 19.0

PC WRITE “ @ D, 0, 10, 1 0 I 4 ” ; A, B, C, D, E, G, H, I, J 37.5

PC WRITE “ @ D , 0, 2 5 5, 1 0 0 A 3, 1 0 0 A 3, 5 5 A 3 ” ; A $, B $, C $ 54.4

Remarks:
The execution times listed in this table do not include the time required for handshaking. The actual execution
time varies depending on the scan time of the PC as follows:

Twenty or fewer words are to be transferred:

• without memory area designator: 2 PC scan times max.
• with memory area designator: 1 PC scan time max.

More than 20 words are to be transferred:

• without memory area designator: INT(No. of words -1)/20)+2 scan times max.
• with memory area designator: INT(No. of words -1)/20)+1 scan time max.

135

Appendix E
ASCII Unit Memory Map

Memory Structure
The memory structure is shown below. The addresses go from &H0000 to &HFFFF (0 to 65535) and are
divided into byte units. The 24 Kbytes (24,576 bytes) from &H2000 to &H7FFF make up the program area.
The contents of this program area can be read with the PEEK function (refer to page 62 for details). &H0000
to &H1FFF and &H8000 to &HFFFF (shaded in the diagrams below) are set by the system and so cannot be
read.

Memory Area Remarks

I/O area 1
(&H0000 to &H001F)

This area is for internal ports of the
microprocessor 63B03.

System work area
(&H0020 to &H1FFF)

This area is used by the system.

Assembly
language
program area

&H2000
to
&H7FFF

Stores assembly language program. The
size of this area can be changed with MSET
command.

BASIC Text are Stores intermediate language codes of
BASIC program. The size of this area can
be changed with the MSET command

System stack
area

Stack area used by the system.

Character string
area

Stores character strings. The size of this
area is normally 200 bytes and is set with
the CLEAR command.

Common memory area or
the Data Section
(&H8000 to &H8FFF)

RAM area for interfacing between ASCII
Unit and PC. When this area is accessed,
an I/O UNIT ERROR may occur. Do not
access this area.

I/O area 2
(&H9000 to &H9FFF)

Area to which ports ACIA, PTM, and RTC
are assigned.

System area
(&HA000 to &HFFFF)

This is the ROM area.

I/O area 1

System work area

Assembly language
program area

BASIC Text area

System stack area

Character string
area

System area

I/O area 2

Common memory
area or the Data
Section

7 0
&H0000

&H0020

&H2000

&H8000

&H9000

&HA000

&HFFFF

Set with
MSET
command

Set with the
CLEAR
command

: Program area

: System settings area

ASCII Unit Memory Map Appendix E

136

Port Address Assignments
Address R/W Contents System Default Value

$0010 Port 1 R/W Transfer rate/mode control
register

$34

$0011 ” R/W TX/RX control status register $00

$0012 ” R Receive data register None

$0013 ” W Transmit data register None

$9400 Port 2 R Status register None

$9400 ” W Control register $11

$9401 ” R Receive data register None

$9401 ” W Transmit data register None

Appendix EASCII Unit Memory Map

137

Communication Flags

Address
$0015

START

/STOP

____CTS1 DSR2 DSR1

BAT

LOW

1
IRQ2 IRQ1

___ ___ ___ ___ ___

7 6 5 4 3 2 1 0

Port for interrupts from ACIA and PTM

Port for interrupts from START/STOP
switch and PC

0 when START/STOP switch is ON

Normally 1

1 when battery voltage drops

Port 1 DSR signal, active low

Port 2 DSR signal, active low

Port 1 CTS signal, active low

Communication Input Flags

Address
$0003 BANK2 BANK1 WDREF DTR2 DTR1

___ ___

7 6 5 4 3 2 1 0

TXD1 RXD1 RTS1

Port 1 DTR signal, active low

Port 2 DTR signal, active low

1 RTS signal, active low

1 receive data

Port 1 transfer data

Watchdog timer refresh port

Bank ports (Do not change
these ports.)

Communication Output Flags

ASCII Unit Memory Map Appendix E

138

Devices

PTM HD63B40
Address R/W Contents System Default Value Remarks

$9800 R 0 None

W Control registers #1 and #3 $82 Writes to #3

$9801 R Status register None

W Control register #2 $00

$9802 R Higher byte of timer #1 counter None

W Higher byte (MSB) of buffer register None

$9803 R Lower byte (LSB) of buffer register None

W Lower byte of timer 1 latch None

$9804 R Higher byte of timer #2 counter None

W Higher byte (MSB) of buffer register None

$9805 R Lower byte (LSB) of buffer register None

W Lower byte of timer #2 latch None

$9806 R Higher byte of timer #3 counter None

W Higher byte (MSB) of buffer register None Changes depend on
transfer rate

$9807 R Lower byte (LSB) of buffer register None

W Lower byte of timer #3 latch None

RTC-62461 Real-Time Clock
Address R/W Contents System Default Value

$9000 R/W 1-second digit: 0-9 None

$9001 R/W 10-second digit: 0-5 None

$9002 R/W 1-minute digit: 0-9 None

$9003 R/W 10-minute digit: 0-5 None

$9004 R/W 1-hour digit: 0-9 None

$9005 R/W 10-hour digit: 0-2 None

$9006 R/W 1-day digit: 0-9 None

$9007 R/W 10-day digit: 0-3 None

$9008 R/W 1-month digit: 0-9 None

$9009 R/W 10-month digit: 0-1 None

$900A R/W 1-year digit: 0-9 None

$900B R/W 10-year digit: 0-9 None

$900C R/W Week digit: 0-6 None

$900D R/W Control register D 0 is set in D0.

$900E R/W Control register E None

$900F R/W Control register F 0 is set in D0, 1, and 3.

Appendix EASCII Unit Memory Map

139

Transmission and Reception Work Area
Address Contents

$0145 Port 1 Port storage pointer (reception)

$0146 Data extraction pointer (reception)

$0147 Data storage pointer (transfer)

$0148 Reception buffer, 256 bytes

$024B Port 2 Data storage pointer (reception)

$024C Data extraction pointer (reception)

$024D Data storage pointer (transfer)

$024E Reception buffer, 256 bytes

$1440 Port 1 Transfer buffer, 256 bytes

$1540 Port 2 Transfer buffer, 256 bytes

141

Appendix F
Troubleshooting

Error Message Format
When an error occurs during BASIC program execution, the error messages shown in the following tables are
output to the screen of the terminal. If a device other than a terminal is connected to port 1, the program
stops, and the messages are reserved until the terminal is attached and CTRL+X is keyed in.

Example of a displayed message:
SYNTAX ERROR IN xxxx

xxxx is displayed when a command is executed with a number specified.

Errors
Error Message Error code Explanation

BAD DATA IN PORT ERROR 58 Format of data read from port is wrong.

BAD I/O MODE ERROR 51 Wrong port or peripheral device has been specified.

BAD PORT DESCRIPTOR ERROR 55 Descriptor is incorrect.

BAD PORT NUMBER ERROR 50 Port number is incorrect.

BAD SUBSCRIPT ERROR 9 Subscript outside predetermined range is used.
Assign subscript of maximum value with the DIM
command.

CAN’T CONTINUE ERROR 17 Program execution cannot be resumed. Execute program
with RUN command.

DEVICE I/O ERROR 53 Error has occurred during communication with a peripheral
device.

DEVICE UNAVAILABLE ERROR 60 Wrong device name has been specified.

DIVISION BY ZERO ERROR 11 Attempt is made to divide data by 0.

DIRECT STATEMENT IN PORT ERROR 56 Unnumbered line has been read while program is being
loaded.

DUPLICATE DEFINITION ERROR 10 Array, or user function, is defined in duplicate.

FORMAT ERROR 67 Incorrect format or memory area designator, number of
words to be transferred or base address has not been
specified.

FOR WITHOUT NEXT ERROR 23 FOR and NEXT statements are not correctly used in pairs.

ILLEGAL DIRECT ERROR 12 Attempt is made to execute statements that cannot be
executed in direct mode. INPUT and LINE INPUT can be
executed in BASIC program only.

ILLEGAL FUNCTION CALL ERROR 5 Statement or function is called incorrectly.

INPUT PAST END ERROR 54 All data in port has been read.

MISSING OPERAND ERROR 22 Necessary parameter is missing.

NEXT WITHOUT FOR ERROR 1 NEXT and FOR statements are not used in pairs.

NO RESUME ERROR 19 RESUME statement is missing in error processing routine.

NO SUPPORT ERROR 64 That operation is not supported.

OUT OF DATA ERROR 4 No data exists to be read by READ statement. Check
number of variables in READ statements and number of
constants in DATA statements.

OUT OF MEMORY ERROR 7 Memory capacity is full. Expand BASIC program area by
CLEAR and MSET commands.

Troubleshooting Appendix F

142

Error Message ExplanationError code

OUT OF STRING SPACE ERROR 14 Character area is insufficient. Expand area by CLEAR
command.

OVERFLOW ERROR 6 Numeric value exceeds predetermined range.

PORT ALREADY OPEN ERROR 52 Port with specified number has already been opened. This
error message appears when attempt is made to open port
more than once with the OPEN statement. Delete
unnecessary OPEN statements.

PORT NOT OPEN ERROR 57 Unopened port or I/O device is specified. Open port with
the OPEN statement.

PROM ERROR 65 EEPROM is malfunctioning, or nothing is written in the
EEPROM.

PROTECTED PROGRAM ERROR 62 Program is protected. To change program, delete name
with PNAME command.

RESUME WITHOUT ERROR 20 RESUME statement is executed when no error exists.

RETURN WITHOUT GOSUB ERROR 3 RETURN statement is encountered before execution of
GOSUB statement.

STRING FORMULA TOO COMPLEX
ERROR

16 Character expression is too complex.

STRING TOO LONG ERROR 15 Character string is too long.

SYNTAX ERROR 2 Program does not conform to syntax.

TYPE MISMATCH ERROR 13 Variable types do not match.

UNDEFINED LINE NUMBER ERROR 8 Specified line number is wrong.

UNDEFINED USER FUNCTION ERROR 18 User function is not defined. Define execution start address
with the DEF USR statement.

VERIFY ERROR 66 Error occurs during EEPROM verification.

Appendix FTroubleshooting

143

Abnormalities
Item Cause Correction

All indicators do not light. Power to PC is OFF. Turn ON power to PC.

ASCII Unit is not mounted on PC
securely.

Tighten mounting screws.

One of Special I/O Units on PC is
defective. PC does not start in this
case.

Exchange defective Special I/O Unit
with new one. Defective unit is
identified by $ when I/O table is read.

Unit numbers are assigned to Special
I/O Unit in duplicate. PC does not start
in this case.

Correct unit number assignment. Unit
numbers are displayed when I/O table
is read.

Refreshing between PC and ASCII
Unit is not performed correctly. Only
ASCII Unit stops in this case.

Find and remove cause and restart
ASCII Unit by turning ON and then
OFF auxiliary memory relay (AR 0100
to 0109) corresponding to ASCII Unit.
If ASCII Unit still does not start,
replace Unit with new one.

ERR indicator comes on. Power to peripheral device is OFF. Turn ON power to device.

Cable for device is disconnected. Correctly connect cable, and tighten
screws.

Breakage in cable or faulty contact
exists.

Repair or replace cable.

Transfer rates and communication
conditions of ASCII Unit and
peripheral device do not match.

Correct transfer rates and
communication conditions.

ERR 1 indicator comes on. Battery connector is disconnected. Correctly connect battery connector.

Battery voltage has dropped. Replace battery.

Initial screen is <<PROGRAM
MEMORY ERROR>>, and CTRL+X is
ineffective.

BASIC program is damaged. Press CTRL+I, and BASIC program
will be erased. (If program is backed
up in EEPROM, program can later be
restored by LOAD command.)

Inspection Items
The following items should be periodically inspected.

Item particulars Criteria

Environment Is ambient temperature appropriate? 0± to 55°C

Is ambient humidity appropriate? 35% to 85% (without condensation)

Is dust built up? Must be free from dust.

Mounting condition Are cable screws loose? Must not be loose.

Is cable broken? Must be mounted properly.

Maintenance Parts
The battery life is 5 years at 25oC. The battery life is shortened at higher temperatures. When the battery volt-
age drops, the ERR 1 LED indicator blinks, and battery error flag (word n+3 bit 06, where n = 100 + 10 x ma-
chine number) turns ON. Replace the battery within 1 week after the indicator blinks.

Troubleshooting Appendix F

144

1. Turn OFF power to the ASCII Unit. If power
is not supplied to the Unit, apply power to
the Unit for at least 1 minute, then turn it
OFF.

2. Remove the ASCII Unit from the PC by
pushing down the locking lever on the PC
with a screwdriver.

3. With a Phillips screwdriver, remove the two
screws, from the ASCII Unit.

4. With a standard screwdriver, remove the
cover of the ASCII Unit.

5. Pull out the PC board from the housing.

6. Disconnect the battery and connector and
replace them with new ones.

7. Reassemble the ASCII Unit in the reverse
order of disassembly.

Back of Unit

Battery holder

Battery connector

Battery Set
C200H-BAT09

Notes on Handling
Replace the ASCII Unit after turning off the power to the PC.

When returning a defective Unit to OMRON, inform us of the abnormal symptom/s in as much detail as possi-
ble.

145

Appendix G
Reference Tables

The following tables list the BASIC commands, statements, and functions alphabetically. A detailed explana-
tion of each command, statement, and function may be found in Section 4-2 Basic Language.

The characters in the Command, Statement, and Function columns denote the following:

Gen: General statement Char: Character String function
Dev: Device Control statement Spec: Special function
Arith: Arithmetic Operation function Comm: Command

Item Description Command Statement Function Execution
Time (ms)

Page

ABS Returns the absolute value of a number Arith 5.2 54

ACOS Returns the arc cosine of a number Arith 2.8 54

ASC Returns the value of the first character
in a character string

Char 2.4 57

ASIN Returns the arc sine of a number Arith 2.8 55

ATN Returns the arc tangent of a number Arith 19.9 55

AUTO Automatically generates line numbers Comm 26

CDBL Rounds off a numeric value to make an
integer

Arith 5.3 55

CHR$ Returns the character corresponding to
the ASCII code given by the argument

Char 2.5 57

CINT Converts a numeric value into a
double-precision real number

Arith 3.1 55

CLEAR Initializes numeric and character
variables

Gen 1.7 32

CLOSE Closes a port Dev 1.3 51

CLS Clears the screen Dev 25.4 52

COM ON/OFF/
STOP

Enables, disables, or stops an interrupt
from a communication port

Gen 32

CONT Resumes execution of a program that
has been stopped

Comm 26

COS Returns the cosine of a number Arith 18.6 55

CSNG Converts a numeric value into a
single-precision real number

Arith 2.6 55

DATA Defines numeric and character
variables for subsequent READ
statements

Gen 33

DATE$ Sets or assigns the date Spec 2 60

DAY Sets or assigns the day (in numbers) Spec 1.5 60

DEF FN Defines and names a user-generated
function

Gen 4.5 33

DEF
INT/SNG/DBL/
STR

Declares the variable type as integer,
single-precision, double-precision or
string

Gen 1.1 34

DEF USR Specifies the start address of the
assembly language subroutine called
from memory by USR

Gen 2 34

DEL Deletes a line or portion of a line in the
program

Comm 26

DIM Specifies the maximum values for array
variables and assigns the area

Gen 18.3 34

Reference Tables Appendix G

146

Item PageExecution
Time (ms)

FunctionStatementCommandDescription

EDIT Edits one line of the program Comm 27

END Terminates the execution of a program
and closes all files

Gen 34

EOF Verifies that the port buffer of the
specified port is empty

Spec 2.8 61

ERL/ERR Returns the error code and the line
number where the error has occurred

Spec 1.7/3.2 61

ERROR Simulates an error and allows error
codes to be defined

Gen 35

FIX Returns the integer part of a number Arith 6.6 55

FOR...TO...
STEP~NEXT

Repeats a For to NEXT loop a
specified number of times

Gen 1.5 35

FRE Returns the range of available memory Spec 2.3 61

GOSUB~
RETURN

Calls and executes the subroutine and
returns to the original program line with
a “RETURN” statement

Gen 1.2/0.7 36

GOTO Branches to a specified line number Gen 0.9 37

HEX$ Returns a string representing the
hexadecimal value of the decimal
argument

Char 4 57

IF...THEN...ELSE
IF...GOTO ELSE

Selects the statement to be executed
or branch destination as the result of
an expression

Gen 5.5 37

INKEY$ Returns a character read from the
keyboard

Spec 2.1 61

INPUT Reads key input and assigns it to the
specified variable

Gen 37

INPUT$ Returns a character string read from
the keyboard and assigns it to the
specified variable

Spec 61

INSTR Searches for the first occurrence of a
character string and returns its position

Char 3.8 57

INT Shortens an expression to a whole
number

Arith 9.1 56

KEY
ON/OFF/STOP

Controls initiation, cancellation, and
halting of key input interrupt

Gen 38

LEFT$ Returns a character string of the
specified number of characters,
beginning at the left of the string

Char 3.4 57

LEN Returns the total number of characters
in a specified character string

Char 2.6 58

LET Assigns the result of the expression to
the variable

Gen 2 39

LINE INPUT Reads one line of input from the
keyboard and assigns it to a character
string variable

Gen 39

LIST/LLIST Displays or prints a program Comm 27

LOAD Loads the program from the EEPROM
or from a port

Comm 28

LOC Returns the number of characters in
the input queue waiting to be read

Spec 2.7 62

LOG Returns the natural logarithm Arith 9.1 56

MID$ Returns the specified number of
characters starting from the specified
character position

Char 3.9 39

Appendix GReference Tables

147

Item PageExecution
Time (ms)

FunctionStatementCommandDescription

MON Sets the terminal to monitor mode Comm 28

MSET Sets the address boundary for an
assembly program

Comm 6.1 28

NEW Clears the program and all currently
defined variables

Comm 29

OCT$ Returns a string which represents the
octal value of the decimal argument

Char 4.6 58

ON COM
GOSUB

Defines the branch destination of a
subroutine invoked by an interrupt from
a communication port

Gen 40

ON ERROR
GOTO

Causes branching to the specified line
in the event of an error

Gen 1.1 41

ON GOSUB
ON GOTO

Causes branching to the specified line
when “expression” is “true”

Gen 2.5 41

ON KEY GOTO
ON KEY
GOSUB

Causes branching to the specified line
when the specified key is input

Gen 1.8/1.8 41,42

ON PC GOSUB Defines an interrupt number and its
associated subroutine branch line
number

Gen 2.9 43

OPEN Opens a port Dev 3.4 52

PC GET Reads data from the PC output area
and assigns it to the specified variable

Gen 5.4/3.1 45

PC ON/STOP Enables or stops an interrupt invoked
by the PC

Gen 45

PC PUT Writes the value of a numeric
expression to the PC input data area

Gen 3 46

PC READ (@) Reads data from the specified PC
memory area, converts it to the
specified format, and assigns it to the
specified variables

Gen 9.8 46

PC WRITE
(@)_

Converts data to the specified format
and writes it to the specified PC
memory area

Gen 9.7 47

PEEK Reads the contents of a specified
memory address

Spec 3.3 62

PGEN Sets the program memory area to be
used

Comm 29

PINF Displays the program area currently
being used

Comm 29

PNAME Names, or deletes the name, of the
program selected

Comm 1.5 30

POKE Writes data to a specified memory
address

Gen 2.7 47

PRINT/LPRINT Displays or prints the value of an
expression

Gen 47

PRINT USING
LPRINT USING

Displays or prints a character string in
the specified format

Gen 48

RANDOM Reseeds the random number generator Gen 4.8 49

READ Reads values from a data statement
and assigns them to variables

Gen 3.5 49

REM Inserts a comment statement into the
program

Gen 1.4 49

RENUM Reassigns line numbers in the program Comm 30

Reference Tables Appendix G

148

Item PageExecution
Time (ms)

FunctionStatementCommandDescription

RESTORE Specifies which DATA statement will be
used by the next READ statement

Gen 1 50

RESUME Specifies the line where execution will
resume after error processing

Gen 3.7 50

RIGHT$ Returns the number of characters in a
string starting from the right

Char 3.5 58

RND Returns a random number between 0
and 1

Arith 4.2 56

RUN Executes the program Comm 30

SAVE Saves the program to the EEPROM or
to a device connected to a
communication port

Comm 30

SGN Returns the sign of an argument Arith 2.6 56

SIN Returns the sine of a number Arith 15.9 56

SPACE$ Returns an empty string of the
specified number of characters

Char 2.4 59

STOP Stops program execution Gen 50

STR$ Converts a numeric value into a
character string

Char 3.3 59

STRING$ Returns a character string of the
specified length

Char 3.1 59

TAB Outputs spaces up to the specified
column position

Char 59

TAN Returns the tangent of a number Arith 31.9 56

TIME$ Sets or gives the time Spec 1.8/2.8 59

TRON/TROFF Specifies or cancels a program trace Comm 31

Item Description Command Statement Function Execution
Time (ms)

Page

USR Calls an assembly language function
routine defined by a DEF USR
statement

Spec 2.6 63

VAL Converts a character string into a
numeric value

Char 3.2 60

VERIFY Verifies the program and the EEPROM
contents

Comm 31

VARPTR Returns the memory address where
the variable is stored

Spec 2.3 65

WAIT Sets a delay before the next command
is executed

Gen 50

Appendix GReference Tables

149

List of Program
Examples

Example No. Description Page

6-1-1 Transfers data from the PC to the ASCII Unit using the PC Read statement 80

6-1-2 Writes data to the PC using the PC Write statement 88

6-1-3 Prints data at fixed time intervals using the LPRINT statement 82

6-1-4 Inputs data from the keyboard and transfers it to the PC using the INPUT statement 89

6-1-5 The PC controls execution of the ASCII Unit by interrupt 90

6-1-6 The PC directs execution of the ASCII Unit using the PC GET statement 90

6-1-7 ASCII Unit directs execution of the PC using the PC PUT statement 91

6-1-8 Prints PC data using the PC READ Statement 92

6-1-9 Accepts input data from a terminal and writes it to the PC using the PC WRITE
Statement

92

6-1-10 Retrieves and prints PC data using the PC GET Statement 93

6-1-11 Uses PC interrupts to direct execution of the ASCII Unit 87

6-1-12 Prints PC data and the time of transfer 96

6-1-13 Displays the state of PC bit 1000 96

6-1-14 Inputs data from a bar code reader using the PC WRITE Statement 97

6-1-15 Reads data form an input file through a com port 97

6-1-16 Transfers data using the WAIT statement and the START/STOP switch 98

6-1-17 Directs processing through interrupts 99

6-2-1 Transfers data from PC to ASCII Unit with the PC maintaining control 94

6-2-2 Transfers data from ASCII Unit to PC with the ASCII Unit maintaining control 95

6-2-3 Transfers data from PC to ASCII Unit with the PC maintaining control 97

6-2-4 Transfers data from ASCII Unit to PC with the PC maintaining control 99

6-2-5 Process data with the ASCII Unit 101

6-2-6 Process data with the PC 102

6-3-1 Assembly-language program application 102

151

Appendix H
Programming with Windows 95

HyperTerminal

Overview
Previously, an FIT10 Terminal Pack or N88-DISK-BASIC was required to program the ASCII Unit. Now, how-
ever, it is possible to program using HyperTerminal and other accessories that have been added to the stan-
dard Windows 95 package.

When creating programs using HyperTerminal, the backspace and cursor keys cannot be used in operations
on the terminal screen.

Setup
Connections
Provide a connecting cable for connecting the ASCII Unit to the computer. Connector specifications and the
connection configuration are shown below.

Connector
(a) D-sub 9-pin female Hood: XM2S-0913

Connector: XM2D-0901

(b) D-sub 9-pin male Hood: XM2S-0911
Connector: XM2A-0901

IBM PC/AT or compatible C200H-ASC02

3 SD
2 RD
7 RTS
8 CTS
6 DSR
4 DTR
5 GND

2 SD
3 RD
4 RTS
5 CTS
7 DSR
8 DTR
9 GND

(a) (b)

DIP Switch Settings
Set the baud rate for port 1 to 9,600 bps using pins 1 to 3 on the DIP switch on the right side of the back panel
of the ASCII Unit.

1 2 3 4 5 6 7 8

Programming with Windows 95 HyperTerminal Appendix H

152

HyperTerminal Startup
• Start up HyperTerminal via Start/Programs/Accessories.

• After starting up HyperTerminal, make the settings shown below.

Location Information

Area code: Enter the area code and select OK.

HyperTerminal

A message prompting you to install a modem will be dis-
played. Select No.

Connection Description

Name: Enter the desired name and select OK.

Connect To

Connect using: Select COM1 and OK.

COM1 Properties

Bits per second: Set to 9,600.
Data bits: Set to 8.
Parity: Set to “None”.
Stop bits: Set to 2.
Flow control: Set to “None”.
Select OK.

Line Delay

In File/Properties/Settings/ASCII Setup..., set the Line
delay to 300.
Select OK.

• Default settings can be used for all the other settings.

• These settings do not have to be repeated each time you use HyperTerminal. Simply select the icon with the
required name.

• If the modem settings have already been made for the computer you are using, only the settings from Con-
nection Description onwards are required.

Confirming Connection
Key in Ctrl + X at the computer. The following message will be displayed indicating that connection is com-
plete.

C200H-ASC02 (CF-BASIC) V1.6 1994. 12. 28
(C) Copyright OMRON Corporation 1990
READY

Operation

Creating Programs
Programs are created using text editors, such as Notepad, and are saved as text.

Transferring Programs from the Computer
1, 2, 3... 1. Delete the program currently in the ASCII Unit memory using the NEW

command.
2. Transfer the program saved by selecting Send Text File... from the

Transfer menu as shown below.

Appendix HProgramming with Windows 95 HyperTerminal

153

Transferring Programs to the Computer
1, 2, 3... 1. Input the following.

SAVE #1, “COMU: (43)” ↵

1, 2, 3... 1. Select Capture Text from the Transfer menu, and specify the name of
the file for saving.

2. Start program transfer using the START/STOP switch on the front panel
of the ASCII Unit.

3. When program transfer has finished, select Stop in Transfer/Capture
Text, and key in Ctrl + X.

155

Appendix I
Assembly Language Programming with a

Terminal

Details on assembly language programming for ASCII Units using a Windows terminal are given below. For
details on setting up ASCII Units and programming in BASIC, refer to Appendix H Programming with Windows
95 HyperTerminal.

1. Setup
1, 2, 3... 1. Provide cables and make the settings required for connection to a termi-

nal. If necessary, refer to the relevant sections in this or other manuals.
2. Reserve an assembly language programming area in the memory area

(&H2000 to &H7FFF) using the MSET command as shown below.

READY
MSET &H3000 ↵
READY

� � � � � Reserves &H2000 to &H3000 as assembly language area.

Note: For details on actual assembly language programming, refer to the HD6303X user’s manual (Hitachi).

2. Creating Programs
The ASCII Unit has an in-built mini-assembler. The procedure for inputting programs using the mini-assembler
is given here.

First, go into mini-assembler mode.

READY
MON ↵
C200H-ASC02 MONITOR V1.6
�

� [Ctrl+A]
!

� � � � � Goes into monitor mode.

� � � � � Prompt for monitor mode.

� � � � � Goes into mini-assembler mode.

� � � � � Prompt for mini-assembler mode.

Assembly Language Programming with a Terminal Appendix I

156

Next, input the program.

! 2000: LDAA #$80
2000– 86 80 LDAA #$80
! LDAB #$7F
2002– C6 7F LDAB #$7F
! STD $4000
2004– FD 40 00 STD $4000
! X ↵
�

� � � � � Exits mini-assembler mode (“X” is upper case).

Format: !(address):(mnemonic)
! (mnemonic)

� � � � � When address is input

� � � � � When address is omitted.

Insert space

3. Transferring Assembly Language Programs to the Terminal
1, 2, 3... 1. Input the following in monitor mode.

�S2000.2100

Format: S(start address).(end address)

� � � � � &H2000 to &H2100 saved.

2. Select Capture Text from the Transfer menu, and specify the name of
the file for saving.

3. Start program transfer using the START/STOP switch on the front panel
of the ASCII Unit.

4. When program transfer has finished, select Stop in Transfer/Capture
Text, and key in Ctrl + X.

4. Returning to BASIC
Key in Ctrl + B to leave monitor mode and return to BASIC mode.

� [Ctrl+B]
READY

5. Transferring Assembly Language Programs from the Terminal
Use the following procedure to transfer the program saved in procedure 3 above back to the ASCII Unit.

1, 2, 3... 1. Input the following in monitor mode.

�L ↵

Appendix IAssembly Language Programming with a Terminal

157

2. Start program transfer using the START/STOP switch on the front panel
of the ASCII Unit.

3. Transfer the programs saved by selecting Send Text File... from the
Transfer menu.

The operations required to go between BASIC mode, monitor mode, and mini-assembler mode are summa-
rized in the diagram below.

Power ON

Ctrl + X

MON ↵

Ctrl + B

Monitor mode

Ctrl + A

X ↵

Mini-assembler
mode

BASIC mode

159

Glossary

Accumulator Register The arithmetic hardware register of the microprocessor.

ASCII Unit Program The BASIC program that runs the ASCII Unit and communicates with the PC
program.

Backplane A rack of hardware slots sharing a common bus line to which the CPU and all
of its I/O Units are connected.

base address The first address of a block of memory or data. When a block of data is to be
transferred with one of the I/O commands, the base address must be speci-
fied.

baud rate The speed at which data is transferred during I/O operations. The baud rate
for the two ports is set with the right-side DIP switch. The standard baud
rates are 300, 1200, 2400, 4800, 9600, and 19,200.

binary The number system that all computers are based on. A binary digit can have
only two values, zero and one. The octal and hexadecimal number systems
are based on binary digits.

bit The smallest piece of information that can be represented on a computer. A
bit has the value of either zero or one. A bit is one binary digit.

boot program The BASIC program that is automatically loaded into the ASCII Unit RAM
upon power up or reset.

byte A group of eight bits that is regarded as one unit.

communication port A connector through which external peripheral devices can communicate
with a host computer or microprocessor. The ASCII Unit has two communica-
tion ports used to connect to a personal computer, printer, or other I/O de-
vices.

data section A special PC memory area that is assigned to each individual ASCII Unit.
The ASCII Unit uses the data section for reading and writing data to the PC
as well as for communicating status information.

data transfer routine The PC requires a dedicated data transfer routine incorporated into its pro-
gram in order to communicate with the ASCII Unit. A data transfer routine is
not necessary when the memory area designator parameter is used with the
PC READ and PC WRITE statements.

data word PC data is organized into units called words. Each word contains 16 bits and
has a unique address in the PC memory. When transferring a block of data
between the PC and the ASCII Unit, it is necessary to specify the address of
the first data word in the block as well as the number of data words to be
transferred. Throughout this manual the terms word and data word are used
interchangeably.

device control codes Keyboard strokes entered with the control key depressed that send control
messages to peripheral devices such as a terminal display or a printer. For

Glossary

160

example, control codes can be used to position the cursor on a display or to
cause the printer to print a line of text as it is being typed.

DIP switches There are two sets of DIP switches on the back panel of the ASCII Unit. Each
DIP switch has eight pins which can be set to either zero or one. These DIP
switches are used for setting hardware parameters such as the baud rate
and the start up mode.

EPROM/EEPROM Nonvolatile memory (retains data when power is disconnected) is used for
permanent storage of up to three ASCII Unit programs. If the start mode is
set to automatic, the boot program will be loaded to the RAM from the
EPROM upon power up or reset. Programs can be read from and written to
the EPROM with the LOAD and SAVE commands, respectively.

execution sequence The order of operation in which the PC and ASCII Unit hardware execute
their respective programs.

flag A hardware flag is a bit that is set or cleared by the machine to indicate a
particular state or condition of the Unit to a peripheral device or to the pro-
gram. Examples of PC hardware flags are the Read and Write flags. A soft-
ware flag is set or cleared by the user to indicate to the hardware a particular
choice or option. For instance, software flags are sometimes used for setting
the direction of data transfer or the baud rate of a communication device.

hexadecimal Hexadecimal or hex is a numerical system based on the number 16. One hex
digit can be represented by four binary digits in the range of zero to 15. The
numbers 10 through 15 are represented by the letters A through F, respec-
tively.

Index register One of the microprocessor’s hardware registers. It is used for assembly lan-
guage programming.

interrupt number A code that is sent from the interrupting device to the microprocessor indicat-
ing which device is “calling.” The interrupt number is especially important if
there is more than one peripheral device connected to a microprocessor.

interrupt A signal sent to the microprocessor from a peripheral device that causes the
microprocessor to alter its normal processing routine. An interrupt says to the
microprocessor, “stop what you’re doing and pay attention to me !” When an
interrupt is acknowledged by the microprocessor, program execution will
branch to an interrupt service routine specifically written to handle the given
interrupt.

I/O device I/O stands for input/output. Some examples of I/O devices are printers, mo-
dems, fax machines, and display terminals.

Machine No. switch Used to select the unit number for the assignment of a data section. The Ma-
chine No. switch is located on the front panel of the ASCII Unit.

mantissa The part of a numerical expression to the right of the decimal point.

memory area designator (@) A parameter of the PC READ and PC WRITE statements used to access
specific PC data areas. When using the memory area designator for data
transfer, the ASCII Unit does not need an accompanying PC data transfer
routine.

Glossary

161

monitor mode The mode or environment where assembly language programs are written,
edited, and tested.

monitor mode commands The commands used in monitor mode for writing, editing, and debugging an
assembly language program.

MSB/LSB MSB stands for Most Significant Byte and refers to the upper or left half of a
data word (a data word contains two bytes). The Least Significant Byte re-
fers to the lower or right half of a data word.

octal A numerical system based on the number eight. One octal digit is made up of
three binary digits in the range of zero to seven.

parameter/argument A parameter is a value or symbol supplied to a BASIC or assembly language
command. A parameter either directs a command to implement a particular
option or format, or supplies a memory address where data can be stored.
Similar to a parameter and sometimes used interchangeably is the term “ar-
gument”. Where a parameter usually supplies some type of control informa-
tion to the function or command, an argument is usually a variable that sup-
plies needed data.

PC Program A program that runs the PC; it is written in the Ladder Diagram programming
language.

polling A process whereby the microprocessor periodically checks the value of a
specified bit or byte, and depending on that value, the microprocessor takes
some specified action.

port buffer Special memory that is used to temporarily store data that has just been re-
ceived or is about to be sent out through a communication port.

program counter A microprocessor register that keeps track of program execution. It is used
for assembly language programming.

RAM Stands for Random Access Memory and is used for running the ASCII Unit
program. RAM will not retain data when power is disconnected. Therefore
data should not be stored in RAM.

Read Flag A PC hardware flag that indicates when data can be read from the PC. When
this flag is set, data can be accessed by a peripheral device.

reading/writing When something is read, it is taken or copied from a remote location and
brought to the reference point. When something is written, it is sent from the
reference point to a remote or peripheral device.

RS-232C Interface The industry standard connector for serial communications. The ASCII Unit
communication ports use RS-232C connectors.

scan time and refreshing The PC is constantly scanning through its program, checking all of its inputs
and adjusting its outputs. The time required for the PC to run through its pro-
gram one time is called the scan time. Each time the PC scans its program, it
updates or refreshes its outputs. The ASCII Unit cannot read data from the
PC during data refresh.

set/clear Set means to give something the value of one. Clear means to give some-
thing the value of zero. When a flag is set, it becomes one; when a flag is
cleared, it becomes zero.

Glossary

162

stack pointer A microprocessor index register used for assembly language programming.

start address The starting address of a block of data. This term is used as a parameter in
many of the assembly language monitor mode commands.

start mode Indicates how the ASCII Unit starts up when power is first applied or the Unit
is reset. The two choices are manual mode and automatic mode. The mode
can be selected by setting pins one and two of the left-side DIP switch.

START/STOP switch A toggle switch on the front panel of the ASCII Unit used for starting and
stopping execution of the ASCII Unit program.

upload/download Upload usually refers to the transfer of a program or information from a re-
mote device to a computer or other controlling device. Download usually re-
fers to data transfer from a computer or other controlling device to a remote
device. From the users point of view, if data is being sent to another device, it
is being downloaded. If data is being received from another device, it is being
uploaded.

valid signal line A parameter of the OPEN command which specifies which communication
signals (CTS, DSR, RTS) are to be used for handshaking.

watchdog timer A clock on the PC that measures the time it takes the PC program to com-
plete one scan. If the scan time is longer than 100 ms, a warning is issued. If
the scan time is longer than 130 ms, the PC will suspend operation. The
watchdog timer is reset at the beginning of each scan.

word A word is made up of two bytes or 16 bits. The term “word” is used inter-
changeably with the term “data word” to indicate a single unit of data. Blocks
of data are transferred in “word” units. For data transfer, the address of a
data block’s first “word” and the number of “words” to be transferred must be
specified.

Write Flag A PC hardware flag that indicates when data can be written to the PC. When
this flag is set, data can be written to the PC.

XON/XOFF OPEN statement parameters that control the rate at which the port buffers
receive and transmit data. If the XON command is specified to be ON by the
OPEN statement, then when the port buffer becomes 3/4 full, the ASCII Unit
will suspend data transfer until the port buffer is less than 1/4 full. In a case
where a transmitting device is sending data at a faster baud rate than the
ASCII Unit is set for, the XON command will keep the transmitted data from
being written over.

163

Index

A

applications, precautions, xiii

ASCII Busy Flag, 13

ASCII Unit
boot program, 4
start mode, 4

Assembly language
Accumulator, 68
base address, 69
DEF USR statement, 68
format, 69
Index register, 68
LOAD command, 68
monitor commands

Compare, 72
Disassembler, 74
Dump, 70, 73
Go, 75
Hexadecimal math, 77
Load, 75
Mini–assembler, 76
Move, 71
New, 73
Register, 72
Save, 74
Step, 76
Verify, 75

monitor mode, 69
MSET command, 68
program counter, 69
RAM, 68
S and L commands, 68
SAVE command, 68
stack pointer, 68
start address, 69
terminology, 69
USR function, 68
VARPTR function, 68

assembly language, 18
S and L commands, 18

B

backplane, 4, 7

base address, 16

base word, 13

BASIC
arrays, 22
character set, 20
commands, 20, 26
configuration, 20
constants, 20
data types, 21
expressions, 23
format, 25
functions, 20
operator priority, 24
operators, 23
statements, 20

general, 32
type conversion, 22
variables, 21

BASIC program
execution, 18
storage, 17
transfer, 17

battery life, 109

baud rate, 109

baud rate setting
Port 1, 6
Port 2, 6

booted, 4

C–D
communication flags, 137

communication mode, 109

communication parameters, 52

control codes, 114

current rating, 109

data format conversion, 129

data formats, 125
A format, 127
B format, 126
H format, 126
I format, 125
O format, 126
S format, 127

data section, 11
bit definitions, 12

data transfer
direction, 18
LOAD command, 17
PC GET, 79
PC PUT, 79
PC READ, 79
PC WRITE, 79
programs, 79
SAVE command, 17

Index

164

device control codes, 114

DIP switch settings
baud rate, 6
boot mode, 5
data section mode, 5
screen size, 5
start mode, 5

DIP Switches, 4

DIP switches
left side, 5, 110
left–side, 4
right side, 6, 111

E–I
EEPROM, 5

hardware specifications, 109

indicator LEDs, 3

indicators, 2

inspection items, 143

installation, precautions, xiii

interface signal timing, 112

interrupt
assembly program, 69
interrupt number, 12

M–P
maintenance, 143

memory
capacity, 109
memory area designator, 16

memory config
bits, 10
flags, 10
words, 10

operating environment, precautions, xii

panels
back panel, 4, 110
front panel, 3

PC cycle time, 117

PC DM Area, 13

PC program, 16

PC statement execution times, 133

peripheral device, address assignments
PTM HD63B40, 138
Real-Time clock, 138
Work Area, 139

peripheral devices
connection to personal computer, 112
connection to plasma display, 112
connection to printer, 112

personal computer, communication settings, 17

physical dimensions, 109, 114

port address assignments, 136

port error flags, 13

ports, 2

precautions, xi
applications, xiii
general, xii
operating environment, xii
safety, xii

program, program transfer, 17

programs
ASCII program, 16
PC program, 16

R
RAM, 5

Read Flag, 12

refresh timing
BASIC statements, 117–123
ON PC GOSUB statement, 120
PC GET statement, 117
PC OFF statement, 123
PC ON statement, 121
PC PUT statement, 118
PC READ statement, 118
PC READ@... statement, 119
PC STOP statement, 122
PC WRITE @... statement, 120
PC WRITE statement, 119

RS–232 interface, 2, 111

S–X
safety precautions. See precautions

stack pointer, 68

switches, 2
Machine Number, 2
START/STOP, 2

system configuration, 7

Terms, 2

transfer capacity, 109

transmission mode, 109

transmission signal timing, 113

Write Flag, 12

XON, 17

165

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W165-E1-04

Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

1 February 1989 Original production

2 July 1990 Revision of text

2A July 1991 Reformat.

Page 27: CTRL + C changed to CTRL + X in Remarks for AUTO command, and
CTRL + Break changed to CTRL + X in Purpose for CONT command.

Page 35: SQR(X**2 + Y**2 + Z**2) changed to SQR(X^2 + Y^2 + Z ^2) in Example
for DEF FN statement.

Page 40: End of first sentence at top of page changed to “by commas or colons.”

Page 48: Reference to PC READ instruction changed to appendix C for PC
WRITE parameter definitions.

Page 49: “INF function” corrected to “INT function” in second sentence.

Page 129: Table at top of page revised, and table of memory area designates add-
ed for PC READ and PC WRITE.

Page 132: Definition of “n” corrected for S Format.

Page 136: Four numbers at top right of page corrected.

Appendix F: Execution times added.

2B November 1992 Page 21: Paragraph on syntax errors added to Variable Name.

Page 92: Example 18 has been added to Example Programs.

2C December 1994 Page 6: The pin numbers for port 2 corrected in the diagram.

3 February 2000 Precautions section, Appendix H and Appendix I added. In addition, the following
changes were made.

Page 7: Changes made to mounting information.

Page 11: Changes made to model numbers in diagram.

Page 44: Information added to “ON PC GOSUB Statement.”

Page 61: Information added to “PEEK Function.”

Page 109: Note added to table.

Page 113: Notes added under diagram.

Page 133: Introduction added and changes made to first table.

04 September 2002 Page 41: Notes on interrupt routines added to Program Remarks.

Page 53: Information on RTS ON/OFF specifications added to Remarks.

W165-E1-04

 Tел: +7 (812) 336 43 04 (многоканальный)
 Email: org@lifeelectronics.ru

 www.lifeelectronics.ru

ООО “ЛайфЭлектроникс” “LifeElectronics” LLC
ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и
отечественного производства от производителей и со складов крупных дистрибьюторов Европы,
Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению
коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные,
электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

 Конкурентоспособные цены и скидки постоянным клиентам.

 Специальные условия для постоянных клиентов.

 Подбор аналогов.

 Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.

 Приемлемые сроки поставки, возможна ускоренная поставка.

 Доставку товара в любую точку России и стран СНГ.

 Комплексную поставку.

 Работу по проектам и поставку образцов.

 Формирование склада под заказчика.

 Сертификаты соответствия на поставляемую продукцию (по желанию клиента).

 Тестирование поставляемой продукции.

 Поставку компонентов, требующих военную и космическую приемку.

 Входной контроль качества.

 Наличие сертификата ISO.

 В составе нашей компании организован Конструкторский отдел, призванный помогать
разработчикам, и инженерам.

 Конструкторский отдел помогает осуществить:

 Регистрацию проекта у производителя компонентов.

 Техническую поддержку проекта.

 Защиту от снятия компонента с производства.

 Оценку стоимости проекта по компонентам.

 Изготовление тестовой платы монтаж и пусконаладочные работы.

mailto:org@lifeelectronics.ru
http://lifeelectronics.ru/

