

74AHC1G09

SINGLE 2 INPUT POSITIVE AND GATE WITH OPEN DRAIN OUTPUT

Description

The 74AHC1G09 is a single 2-input positive AND gate with an open drain output. The device is designed for operation with a power supply range of 2.0V to 5.5V. The open-drain output can be connected to other open drain outputs to implement active-low wired-OR or active-high wired-AND functions. The gate performs the positive Boolean function:

$$Y = A \bullet B$$
 or $Y = \overline{\overline{A} + \overline{B}}$

A pull-up resistor is required to achieve a high output state.

Features

- Supply Voltage Range from 2.0V to 5.5V
- 8mA sink current at 5.0 V
- CMOS low power consumption
- Schmitt Trigger Action at All Inputs Make the Circuit Tolerant for Slower Input Rise and Fall Time.
- ESD Protection per JESD 22
 - Exceeds 200-V Machine Model (A115-A)
 - Exceeds 2000-V Human Body Model (A114-A)
 - Exceeds 1000-V Charged Device Model (C101C)
- Latch-Up Exceeds 100mA per JESD 78, Class II
- SOT25 and SOT353: Assembled with "Green" Molding Compound (no Br, Sb)
 - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
 - Halogen and Antimony Free. "Green" Device (Note 3)

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.

- 2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Descriptions

Pin Name	Pin NO.	Function
A	1	Data Input
В	2	Data Input
GND	3	Ground
Y	4	Data Output
V _{CC}	5	Supply Voltage

Applications

- General Purpose Logic
- Wide array of products such as:
 - PCs, networking, notebooks, netbooks, PDAs
 - Computer peripherals, hard drives, CD/DVD ROM
 - TV, DVD, DVR, set top box
 - Personal Navigation / GPS
 - MP3 players ,Cameras, Video Recorders

Logic Diagram

Functional Table

Inp	Inputs			
Α	В	Y		
Н	Н	Z		
L	Х	L		
Х	L	L		

Absolute Maximum Ratings (Note 4) (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	KV
ESD CDM	Charged Device Model ESD Protection	1	KV
ESD MM	Machine Model ESD Protection	200	V
Vcc	Supply Voltage Range	-0.5 to 6.5	V
VI	Input Voltage Range	-0.5 to 6.5	V
Vo	Voltage applied to output in high or low state	-0.5 to V _{CC} +0.5	V
I _{IK}	Input Clamp Current V _I < 0	-20	mA
Ι _{ΟΚ}	Output Clamp Current ($V_0 < 0$ or $V_0 > V_{CC}$)	±20	mA
Io	Continuous output current ($V_O = 0$ to V_{CC})	±25	mA
I _{CC}	Continuous current through V _{CC}	50	mA
IGND	Continuous current through GND	-50	mA
TJ	Operating Junction Temperature	-40 to +150	°C
T _{STG}	Storage Temperature	-65 to +150	°C

Note: 4. Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values.

Symbol	1	Parameter	Min	Max	Unit
V _{CC}	Operating Voltage		2.0	5.5	V
		V _{CC} = 2V	1.5		
VIH	High-Level Input Voltage	V _{CC} = 3V	2.1		V
		V _{CC} = 5.5V	3.85		
		V _{CC} = 2V		0.5	
VIL	Low-Level input Voltage	V _{CC} = 3V		0.9	V
		V _{CC} = 5.5V		1.65	
VI	Input Voltage		0	5.5	V
Vo	Output Voltage		0	5.5	V
		$V_{CC} = 2V$		50	uA
IOL	Low-Level Output Current	$V_{CC} = 5V \pm 0.5V$		4	mA
		V _{CC} = 3V		8	
Δt/ΔV	Input transition rise or fall rate	$V_{CC} = 3.3V \pm 0.3V$		100	ns/V
ΔυΔν	Input transition rise or fall rate	$V_{CC} = 5V \pm 0.5V$		20	ns/v
TA	Operating free-air temperature		-40	+125	°C

Recommended Operating Conditions (Note 5) (@T_A = +25°C, unless otherwise specified.)

Note: 5. Unused inputs should be held at V_{CC} or Ground.

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Symphol	Devementer	Test Conditions	v		+25°C		-40°C t	o +85°C	-40°C to +125°C		Unit
Symbol	Parameter	lest Conditions	Vcc	Min	Тур	Мах	Min	Max	Min	Max	Unit
			2V			0.1		0.1		0.1	
		Ι _{ΟL} = 50μΑ	3V			0.1		0.1		0.1	
V _{OL}	High-level Input Voltage		4.5V			0.1		0.1		0.1	V
	vollage	I _{OL} = 4mA	3V			0.36		0.44		0.55	
		I _{OL} = 8mA	4.5V			0.36		0.44		0.55	
l _l	Input Current	V _I = 5.5V or GND	0 to 5.5V			±0.1		±1		±2	μA
loz	Z-state Output Current	V _I = 5.5V or GND	0 to 5.5V			±0.25		±2.5		±10	μA
I _{CC}	Supply Current	V _I = 5.5V or GND I _O =0	5.5V			1		10		40	μA
Ci	Input Capacitance	$V_i = V_{CC} - or GND$	5.5V		2.0	10		10		10	pF
	Thermal	SOT25			204						
θ_{JA}	Resistance Junction-to- Ambient	SOT353	(Note 6)		371						°C/W
	Thermal	SOT25			52						
θ_{JC}	Resistance Junction-to-Case	SOT353	(Note 6)		143						°C/W

Note: 6. Test conditions for SOT25, and SOT353: Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

Switching Characteristics

V_{CC} = 3.3V ±0.3 (see Figure 1)

Parameter	From	то			+25°C		-40°C to	o +85°C	-40°C to	+125°C	Unit
Parameter	(Input)	(OUTPUT)		Min	Тур	Max	Min	Max	Min	Max	Unit
	A or D	V	C _L = 15pF	0.6	4.6	7.5	0.6	8.5	0.6	9.0	ns
t _{pd}	A or B	ř	C _L = 50pF	0.6	6.5	11.0	0.6	12.0	0.6	12.5	ns

V_{CC} = 5V ±0.5V (see Figure 1)

Parameter	From	то			+25°C		-40°C to	o +85°C	-40°C to	+125°C	Unit
Farameter	(Input)	(OUTPUT)		Min	Тур	Max	Min	Max	Min	Max	Unit
+	A or B	v	C _L = 15pF	0.6	3.2	5.5	0.6	6.5	0.6	7.0	ns
τ _{pd}	AUB	r	C _L = 50pF	0.6	4.6	7.5	0.6	8.0	0.6	8.5	ns

Operating Characteristics

T_A = +25°C

	Parameter	Test Conditions	V _{CC} = 5V Typ	Unit
C _{pd}	Power dissipation capacitance	f = 1 MHz No Load	5	pF

Parameter Measurement Information

TEST	Condition
t _{PLZ} (see Notes D and E)	VLOAD
t _{PZL} (see Notes D and F)	V _{LOAD}

V	Inp	outs	V	V	C	Р	VA
V _{cc}	VI	t _r /t _f	V _M	V _{LOAD}	C∟	RL	VΔ
3.3V ±0.3V	V _{CC}	≤3ns	V _{CC} /2	V _{CC}	15pF	1ΚΩ	0.3V
3.3V ±0.3V	V _{CC}	≤3ns	V _{CC} /2	V _{CC}	50pF	1KΩ	0.3V
5V ±0.5V	V _{CC}	≤3ns	V _{CC} /2	V _{CC}	15pF	1KΩ	0.3V
5V ±0.5V	V _{CC}	≤3ns	V _{CC} /2	V _{CC}	50pF	1KΩ	0.3V

Parameter Measurement Information (cont.)

Figure 1 Load Circuit and Voltage Waveforms

- Notes:
- A. Includes test lead and test apparatus capacitance.
 B. All pulses are supplied at pulse repetition rate ≤ 1 MHz.
 C. The inputs are measured one at a time with one transition per measurement.
 - D. For the open drain device t_{PLZ} and t_{PZL} are the same as t_{PD} .

E. t_{PZL} is measured at V_M.

F. $t_{PLZ}\,$ is measured at V_OL +V_ Δ

Ordering Information

Part Nu	mhor	Package Code	Paakaging	7" Tape :	and Reel
Fart Nu	IIIbei	Fackage Code	Packaging	Quantity	Part Number Suffix
74AHC1G	09W5-7	W5	SOT25	3000/Tape & Reel	-7
74AHC1G	09SE-7	SE	SOT353	3000/Tape & Reel	-7

Marking Information

Part Number	Package	Identification Code
74AHC1G09W5	SOT25	YN
74AHC1G09SE	SOT353	YN

Package Outline Dimensions (All dimensions in mm.)

Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for latest version.

(1) Package Type: SOT25

SOT25				
Dim	Min	Max	Тур	
Α	0.35	0.50	0.38	
в	1.50	1.70	1.60	
С	2.70	3.00	2.80	
D	_		0.95	
Н	2.90	3.10	3.00	
J	0.013	0.10	0.05	
Κ	1.00	1.30	1.10	
L	0.35	0.55	0.40	
Μ	0.10	0.20	0.15	
Ν	0.70	0.80	0.75	
α	0°	8°		
All Dimensions in mm				

(2) Package Type: SOT353

Dim A B	Min 0.10	Max 0.30	
		0.30	
В		0.00	
	1.15	1.35	
С	2.00	2.20	
D	0.65 Typ		
F	0.40	0.45	
Н	1.80	2.20	
J	0	0.10	
κ	0.90	1.00	
L	0.25	0.40	
М	0.10	0.22	
α	0°	8°	
All Dimensions in mm			

Suggested Pad Layout

Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

(1) Package Type: SOT25

Dimensions	Value (in mm)
Z	3.20
G	1.60
х	0.55
Y	0.80
C1	2.40
C2	0.95

(2) Package Type: SOT353

Dimensions	Value (in mm)
Z	2.5
G	1.3
Х	0.42
Y	0.6
C1	1.9
C2	0.65

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2013, Diodes Incorporated

www.diodes.com

ООО "ЛайфЭлектроникс"

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www.lifeelectronics.ru