DATA SHEET ### **General Description** The IDT8SLVD1208I is a high-performance differential LVDS fanout buffer. The device is designed for the fanout of high-frequency, very low additive phase-noise clock and data signals. The IDT8SLVD1208I is characterized to operate from a 2.5V power supply. Guaranteed output-to-output and part-to-part skew characteristics make the IDT8SLVD1208I ideal for those clock distribution applications demanding well-defined performance and repeatability. Two selectable differential inputs and eight low skew outputs are available. The integrated bias voltage reference enables easy interfacing of single-ended signals to the device inputs. The device is optimized for low power consumption and low additive phase noise. #### **Features** - Eight low skew, low additive jitter LVDS output pairs - Two selectable, differential clock input pairs - Differential PCLK, nPCLK pairs can accept the following differential input levels: LVDS, LVPECL - Maximum input clock frequency: 2GHz (maximum) - LVCMOS/LVTTL interface levels for the control input (input select) - Output skew: 8ps (typical) - Propagation delay: 255ps (typical) - Low additive phase jitter, RMS; $f_{REF} = 156.25MHz$, $V_{PP} = 1V$, 10kHz - 20MHz: 65fs (typical) - Maximum device current consumption (I_{DD}): 170mA - 2.5V supply voltage - Lead-free (RoHS 6), 28-Lead VFQFN packaging - -40°C to 85°C ambient operating temperature ### **Pin Assignment** #### IDT8SLVD1208I 28 lead VFQFN 5.0mm x 5.0mm x 0.925mm package body Pad size 3.25mm x 3.25 mm **NB Package Top View** # **Block Diagram** # **Pin Descriptions and Characteristics** **Table 1. Pin Descriptions** | Number | Name | Ту | /pe | Description | |-----------|-------------------|--------|---------------------|---| | 1, 14 | GND | Power | | Ground supply pin. | | 4 | SEL | Input | Pullup/
Pulldown | Reference select control pin. See Table 3 for function. LVCMOS/LVTTL interface levels. | | 5 | PCLK1 | Input | Pulldown | Non-inverting differential clock/data input. | | 6 | nPCLK1 | Input | Pullup/
Pulldown | Inverting differential clock/data input. V _{DD} /2 default when left floating. | | 8, 15, 28 | V _{DD} | Power | | Power supply pin. | | 9 | PCLK0 | Input | Pulldown | Non-inverting differential clock/data input. | | 10 | nPCLK0 | Input | Pullup/
Pulldown | Inverting differential clock/data input. V _{DD} /2 default when left floating. | | 11 | V _{REF0} | Output | | Bias voltage reference for the PCLK0, nPCLK0 inputs. | | 7 | V _{REF1} | Output | | Bias voltage reference for the PCLK1, nPCLK1 inputs. | | 12, 13 | Q0, nQ0 | Output | | Differential output pair 0. LVDS interface levels. | | 16, 17 | Q1, nQ1 | Output | | Differential output pair 1. LVDS interface levels. | | 18, 19 | Q2, nQ2 | Output | | Differential output pair 2. LVDS interface levels. | | 20, 21 | Q3, nQ3 | Output | | Differential output pair 3. LVDS interface levels. | | 22, 23 | Q4, nQ4 | Output | | Differential output pair 4. LVDS interface levels. | | 24, 25 | Q5, nQ5 | Output | | Differential output pair 5. LVDS interface levels. | | 26, 27 | Q6, nQ6 | Output | | Differential output pair 6. LVDS interface levels. | | 2, 3 | Q7, nQ7 | Output | | Differential output pair 7. LVDS interface levels. | NOTE: Pulldown and Pullup refers to an internal input resistors. See Table 2, Pin Characteristics, for typical values. **Table 2. Pin Characteristics** | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|-------------------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 2 | | pF | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | kΩ | ### **Function Table** **Table 3. SEL Input Selection Function Table** | Input | | |-------|---| | SEL | Operation | | 0 | PCLK0, nPCLK0 is the selected differential clock input. | | 1 | PCLK1, nPCLK1 is the selected differential clock input. | | Open | Input buffers are disabled and outputs are static. | NOTE: SEL is an asynchronous control. # **Absolute Maximum Ratings** NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. | Item | Rating | |--|---------------------------------| | Supply Voltage, V _{DD} | 4.6V | | Inputs, V _I | -0.5V to V _{DD} + 0.5V | | Outputs, I _O Continuous Current Surge Current | 10mA
15mA | | Input Sink/Source, I _{REF} | ±2mA | | Maximum Junction Temperature, T _{J,MAX} | 125°C | | Storage Temperature, T _{STG} | -65°C to 150°C | | ESD - Human Body Model, NOTE 1 | 2000V | | ESD - Charged Device Model, NOTE 1 | 500V | NOTE 1: According to JEDEC/JS-001-2012/ 22-C101E. ### **DC Electrical Characteristics** Table 4A. Power Supply DC Characteristics, V_{DD} = 2.5V \pm 5%, T_A = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|----------------------|---|---------|---------|---------|-------| | V_{DD} | Power Supply Voltage | | 2.375 | 2.5V | 2.625 | V | | I _{DD} | Power Supply Current | Q0 to Q7 terminated 100Ω
between nQx, Qx | | 150 | 170 | mA | Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40$ °C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|--------------------------|--|-----------------------|---------------------|-----------------------|-------| | V_{MID} | Input voltage - open pin | Open | | V _{DD} / 2 | | V | | V _{IH} | Input High Voltage | | 0.7 * V _{DD} | | V _{DD} + 0.3 | V | | V _{IL} | Input Low Voltage | | -0.3 | | 0.2 * V _{DD} | V | | I _{IH} | Input High Current SEL | $V_{DD} = V_{IN} = 2.625V$ | | | 150 | μΑ | | I _{IL} | Input Low Current SEL | V _{DD} = 2.625V, V _{IN} = 0V | -150 | | | μΑ | Table 4C. Differential Inputs Characteristics, $V_{DD} = 2.5V \pm 5\%, T_A = -40^{\circ}C$ to $85^{\circ}C$ | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |--|-----------------------------------|--------------------------------------|--|-----------------------|------------------------|------------------------|-------| | I _{IH} | Input High Current | PCLK0,
nPCLK0
PCLK1,
nPCLK1 | $V_{IN} = V_{DD} = 2.625V$ | | | 150 | μА | | | I _{IL} Input Low Current | PCLK0,
PCLK1 | V _{IN} = 0V, V _{DD} = 2.625V | -10 | | | μΑ | | IIL | | nPCLK0,
nPCLK1 | V _{IN} = 0V, V _{DD} = 2.625V | -150 | | | μA | | V _{REF0} ,
V _{REF1} | Reference Voltage for | or Input Bias | I _{REFx} = ±1mA | V _{DD} – 1.5 | V _{DD} – 1.25 | V _{DD} – 1.15 | V | | V | Peak-to-Peak Voltag | no NOTE 1 | f _{REF} < 1.5GHz | 0.1 | | 1.5 | V | | V _{PP} Pe | reak-10-reak vollag | JE, NOIE I | f _{REF} > 1.5GHz | 0.2 | | 1.5 | V | | V _{CMR} | Common Mode Inpu
NOTE 1, 2 | it Voltage; | | 1.0 | | V _{DD} – 0.6 | V | NOTE 1: $V_{\rm IL}$ should not be less than -0.3V. NOTE 2: Common mode input voltage is defined at the crosspoint. Table 4D. LVDS DC Characteristics, V_{DD} = 2.5V \pm 5%, T_A = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|----------------------------------|----------------------------------|---------|---------|---------|-------| | V _{OD} | Differential Output Voltage | outputs loaded with 100 Ω | 247 | | 454 | mV | | ΔV _{OD} | V _{OD} Magnitude Change | | | | 50 | mV | | V _{OS} | Offset Voltage | | 1.125 | | 1.55 | V | | ΔV _{OS} | V _{OS} Magnitude Change | | | | 50 | mV | ### **AC Electrical Characteristics** Table 5. AC Electrical Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40$ °C to 85°C | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|--|--------------------------|---|---------|---------|---------|-------| | f _{REF} | Input
Frequency | PCLK[0:1],
nPCLK[0:1] | | | | 2 | GHz | | ΔV/Δt | Input
Edge Rate | PCLK[0:1],
nPCLK[0:1] | | 1.5 | | | V/ns | | t _{PD} | Propagation NOTE 1 | Delay; | PCKx, nPCLKx to any Qx, nQx
for V _{PP} = 0.1V or 0.3V | 150 | 255 | 380 | ps | | tsk(o) | Output Skev | v; NOTE 2, 3 | | | | 40 | ps | | tsk(i) | Input Skew; | NOTE 3 | | | | 60 | ps | | tsk(p) | Pulse Skew | | f _{REF} = 100MHz | | | 25 | ps | | tsk(pp) | Part-to-Part
NOTE 3, 4 | Skew; | | | | 230 | ps | | | Buffer Additive Phase
Jitter, RMS; refer to
Additive Phase Jitter
Section | | f _{REF} = 122.88MHz Square Wave, V _{PP} = 1V,
Integration Range: 1kHz – 40MHz | | 140 | 180 | fs | | | | | f _{REF} = 122.88MHz Square Wave, V _{PP} = 1V,
Integration Range: 10kHz – 20MHz | | 100 | 130 | fs | | | | | f _{REF} = 122.88MHz Square Wave, V _{PP} = 1V,
Integration Range: 12kHz – 20MHz | | 100 | 130 | fs | | | | | f _{REF} = 156.25MHz Square Wave, V _{PP} = 1V,
Integration Range: 1kHz – 40MHz | | 95 | 140 | fs | | | | | f _{REF} = 156.25MHz Square Wave, V _{PP} = 1V,
Integration Range: 10kHz – 20MHz | | 65 | 95 | fs | | t _{JIT} | | | f _{REF} = 156.25MHz Square Wave, V _{PP} = 1V,
Integration Range: 12kHz – 20MHz | | 65 | 95 | fs | | | | | f_{REF} = 156.25MHz Square Wave,
V_{PP} = 0.5V,
Integration Range: 1kHz – 40MHz | | 85 | 125 | fs | | | | | f_{REF} = 156.25MHz Square Wave,
V_{PP} = 0.5V,
Integration Range: 10kHz – 20MHz | | 61 | 100 | fs | | | | | f_{REF} = 156.25MHz Square Wave,
V_{PP} = 0.5V,
Integration Range: 12kHz – 20MHz | | 61 | 100 | fs | | t _R / t _F | Output Rise | / Fall Time | 20% to 80% outputs loaded with 100 Ω | 30 | 100 | 300 | ps | | MUX _{ISOLATION} | Mux Isolatio | n; NOTE 5 | f _{REF} = 100MHz | | -82 | | dB | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. - NOTE 1: Measured from the differential input crosspoint to the differential output crosspoint. - NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential crosspoints. - NOTE 3: This parameter is defined in accordance with JEDEC Standard 65. - NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential crosspoints. - NOTE 5: Qx, nQx outputs measured differentially. See MUX Isolation diagram in the Parameter Measurement Information section. # Typical Phase Noise at 122.88MHz # Typical Phase Noise at 156.25MHz # Typical Phase Noise at 156.25MHz ### **Parameter Measurement Information** 2.5V LVDS Output Load AC Test Circuit **Differential Input Level** **Pulse Skew** **Output Skew** Part-to-Part Skew **Output Rise/Fall Time** # **Parameter Measurement Information, continued** **Input Skew** **MUX** Isolation **Propagation Delay** Offset Voltage Setup **Differential Output Voltage Setup** ### **Applications Information** ### Recommendations for Unused Input and Output Pins #### Inputs: #### **PCLK/nPCLK Inputs** For applications not requiring the use of a differential input, both the PCLK and nPCLK pins can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from PCLK to ground. #### **Outputs:** #### **LVDS Outputs** All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If they are left floating, there should be no trace attached. ### Wiring the Differential Input to Accept Single-Ended Levels Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage V1 = $V_{DD}/2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V1 in the center of the input voltage swing. For example, if the input clock swing is 2.5V and V_{DD} = 2.5V, R1 and R2 value should be adjusted to set V1 at 1.25V. The values below are for when both the single ended swing and V_{DD} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50Ω applications, R3 and R4 can be 100Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however $V_{\rm IL}$ cannot be less than -0.3V and $V_{\rm IH}$ cannot be more than $V_{\rm DD}$ + 0.3V. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal. Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels ### 2.5V LVPECL Clock Input Interface The PCLK /nPCLK accepts LVPECL, LVDS and other differential signals. Both signals must meet the V_{PP} and V_{CMR} input requirements. *Figures 2A to 2C* show interface examples for the PCLK/ nPCLK input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements. Figure 2A. PCLK/nPCLK Input Driven by a 2.5V LVPECL Driver Figure 2B. PCLK/nPCLK Input Driven by a 2.5V LVPECL Driver with AC Couple Figure 2C. PCLK/nPCLK Input Driven by a 2.5V LVDS Driver #### **LVDS Driver Termination** For a general LVDS interface, the recommended value for the termination impedance (Z_T) is between 90Ω and 132Ω . The actual value should be selected to match the differential impedance (Z_0) of your transmission line. A typical point-to-point LVDS design uses a 100Ω parallel resistor at the receiver and a 100Ω differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The standard termination schematic as shown in *Figure 3A* can be used with either type of output structure. *Figure 3B*, which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50pF. If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the output. **LVDS Termination** #### **VFQFN EPAD Thermal Release Path** In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 5*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts. While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a quideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/ Electrically Enhance Leadframe Base Package, Amkor Technology. Figure 5. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale) ### **Power Considerations** This section provides information on power dissipation and junction temperature for the IDT8SLVD1208I. Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the IDT8SLVD1208l is the sum of the core power plus the output power dissipation due to the load. The following is the power dissipation for $V_{DD} = 2.5V + 5\% = 2.625V$, which gives worst case results. The maximum current at 85°C is as follows: $$I_{DD\ MAX} = 170 \text{mA}$$ Power (core)MAX = V_{DD MAX} * I_{DD MAX} = 2.625V * 170mA = 446.25mW Total Power _{MAX} = 446.25mW #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C. The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + TA Tj = Junction Temperature θ_{JA} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_A = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 46.2°C/W per Table 6 below. Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: $85^{\circ}\text{C} + 0.446\text{W} * 46.2^{\circ}\text{C/W} = 105.6^{\circ}\text{C}$. This is below the limit of 125°C . This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer). Table 6. Thermal Resistance θ_{JA} for 28 Lead VFQFN, Forced Convection | θ_{JA} at 0 Air Flow | | | | | | |---|----------|---------|----------|--|--| | Meters per Second | 0 | 1 | 2 | | | | Multi-Layer PCB, JEDEC Standard Test Boards | 46.2°C/W | 39.4C/W | 37.1°C/W | | | # **Reliability Information** # Table 7. θ_{JA} vs. Air Flow Table for a 28 Lead VFQFN | | θ_{JA} at 0 Air Flow | | | |---|------------------------------------|---------|----------| | Meters per Second | 0 | 1 | 2 | | Multi-Layer PCB, JEDEC Standard Test Boards | 46.2°C/W | 39.4C/W | 37.1°C/W | ### **Transistor Count** The transistor count for the IDT8SLVD1208I is: 489 ### 28 Lead VFQFN Package Outline and Package Dimensions # **Ordering Information** ### **Table 6. Ordering Information** | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|--------------|---------------------------|--|---------------| | 8SLVD1208NBGI | SLVD1208NBGI | "Lead-Free" 28 Lead VFQFN | Tray | -40°C to 85°C | | 8SLVD1208NBGI8 | SLVD1208NBGI | "Lead-Free" 28 Lead VFQFN | Tape & Reel,
pin 1 orientation: EIA-481-C | -40°C to 85°C | | 8SLVD1208NBGI/W | SLVD1208NBGI | "Lead-Free" 28 Lead VFQFN | Tape & Reel,
pin 1 orientation: EIA-481-D | -40°C to 85°C | Table 9. Pin 1 Orientation in Tape and Reel Packaging # We've Got Your Timing Solution 6024 Silver Creek Valley Road San Jose, California 95138 Sales 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT **Technical Support Sales** netcom@idt.com +480-763-2056 DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT's products for any particular purpose. IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to signifi- cantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third OOO «ЛайфЭлектроникс" "LifeElectronics" LLC ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703 Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии. С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров #### Мы предлагаем: - Конкурентоспособные цены и скидки постоянным клиентам. - Специальные условия для постоянных клиентов. - Подбор аналогов. - Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям. - Приемлемые сроки поставки, возможна ускоренная поставка. - Доставку товара в любую точку России и стран СНГ. - Комплексную поставку. - Работу по проектам и поставку образцов. - Формирование склада под заказчика. - Сертификаты соответствия на поставляемую продукцию (по желанию клиента). - Тестирование поставляемой продукции. - Поставку компонентов, требующих военную и космическую приемку. - Входной контроль качества. - Наличие сертификата ISO. В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам. Конструкторский отдел помогает осуществить: - Регистрацию проекта у производителя компонентов. - Техническую поддержку проекта. - Защиту от снятия компонента с производства. - Оценку стоимости проекта по компонентам. - Изготовление тестовой платы монтаж и пусконаладочные работы. Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru