

MP2309 **1A, 23V, 340KHz Synchronous Rectified Step-Down Converter**

The Future of Analog IC Technology

DESCRIPTION

The MP2309 is a monolithic synchronous buck regulator. The device integrates 140mΩ MOSFETS that provide 1A continuous load current over a wide operating input voltage of 4.75V to 23V. Current mode control provides fast transient response and cycle-by-cycle current limit.

An adjustable soft-start prevents inrush current at turn-on. Shutdown mode drops the supply current to 1µA.

This device, available in an 8-pin SOIC package, provides a very compact system solution with minimal reliance on external components.

EVALUATION BOARD REFERENCE

FEATURES

- 1A Output Current
- Wide 4.75V to 23V Operating Input Range
- Integrated 140mΩ Power MOSFET Switches
- Output Adjustable from 0.923V to 20V
- Up to 95% Efficiency
- Programmable Soft-Start
- Stable with Low ESR Ceramic Output Capacitors
- Fixed 340KHz Frequency
- Cycle-by-Cycle Over Current Protection
- Input Under Voltage Lockout

APPLICATIONS

- Distributed Power Systems
- Networking Systems
- FPGA, DSP, ASIC Power Supplies
- Green Electronics/ Appliances
- Notebook Computers

"MPS" and "The Future of Analog IC Technology" are Registered Trademarks of Monolithic Power Systems, Inc.

TYPICAL APPLICATION

MP2309 Rev. 1.5 **MP2309 Rev. 1.5** www.MonolithicPower.com **1**
9/21/2007 MPS Proprietary Information Unauthorized Photocopy and Duplication Prohibited MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited. © 2007 MPS. All Rights Reserved.

PACKAGE REFERENCE

* For Tape & Reel, add suffix –Z (eg. MP2309DS–Z) For Lead Free, add suffix –LF (eg. MP2309DS–LF–Z)

ELECTRICAL CHARACTERISTICS V_{IN} = 12V, T_{A} = +25^oC, unless otherwise noted.

ABSOLUTE MAXIMUM RATINGS (1)

Recommended Operating Conditions **(2)**

Thermal Resistance **(3)** *θJA θJC* SOIC8..................................... 90...... 45... °C/W

Notes:

1) Exceeding these ratings may damage the device.

2) The device is not guaranteed to function outside of its operating conditions.

3) Measured on approximately 1" square of 1 oz copper.

ELECTRICAL CHARACTERISTICS *(continued)*

V_{IN} = 12V, T_A = +25°C, unless otherwise noted.

Note:

4) Guaranteed by design, not tested.

PIN FUNCTIONS

Startup through Enable No Load, $Vss = 0.1 \mu F$

Shutdown through Enable V_{IN} = 12V, V_{OUT} = 3.3V, No Load

Shutdown through Enable

 V_{IN} = 12V, V_{OUT} = 3.3V, $I_{OUT} = 1A$ (Resistance Load)

Load Transient Test Short Circuit Entry Short Circuit Recovery

OPERATION

FUNCTIONAL DESCRIPTION

The MP2309 is a synchronous rectified, current-mode, step-down regulator. It regulates input voltages from 4.75V to 23V down to an output voltage as low as 0.923V, and supplies up to 1A of load current.

The MP2309 uses current-mode control to regulate the output voltage. The output voltage is measured at FB through a resistive voltage divider and amplified through the internal transconductance error amplifier. The voltage at the COMP pin is compared to the switch current measured internally to control the output voltage.

The converter uses internal N-Channel MOSFET switches to step-down the input voltage to the regulated output voltage. Since the high side MOSFET requires a gate voltage greater than the input voltage, a boost capacitor connected between SW and BS is needed to drive the high side gate. The boost capacitor is charged from the internal 5V rail when SW is low.

When the MP2309 FB pin exceeds 20% of the nominal regulation voltage of 0.923V, the over voltage comparator is tripped and the COMP pin and the SS pin are discharged to GND, forcing the high-side switch off.

APPLICATIONS INFORMATION COMPONENT SELECTION

Setting the Output Voltage

The output voltage is set using a resistive voltage divider from the output voltage to FB pin. The voltage divider divides the output voltage down to the feedback voltage by the ratio:

$$
V_{FB} = V_{OUT} \frac{R2}{R1 + R2}
$$

Thus the output voltage is:

$$
V_{OUT}=0.923\times\frac{R1+R2}{R2}
$$

Where V_{OUT} is the output voltage and V_{FB} is the feedback voltage.

R2 can be as high as 100kΩ, but a typical value is 10kΩ. Using the typical value for R2, R1 is determined by:

$$
R1 = 10.87 \times (V_{OUT} - 0.923)
$$

For example, for a 3.3V output voltage, R2 is 10kΩ, and R1 is 26.1kΩ.

Table 1 lists recommended resistor values.

VOUT	R1	R ₂
1.8V	$9.53k\Omega$	10k Ω
2.5V	$16.9k\Omega$	10k Ω
3.3V	$26.1k\Omega$	10k Ω
5V	44.2 _Ω	10k Ω
12V	121kO	10k Ω

Table1—Recommended Resistors

Inductor

The inductor is required to supply constant current to the output load while being driven by the switched input voltage. A larger value inductor will result in less ripple current that will result in lower output ripple voltage. However, the larger value inductor will have a larger physical size, higher series resistance, and/or lower saturation current. A good rule for determining the inductance to use is to allow the peak-to-peak ripple current in the inductor to be approximately 30% of the maximum switch current limit. Also, make sure that the peak inductor current is below

the maximum switch current limit. The inductance value can be calculated by:

$$
L = \frac{V_{OUT}}{f_S \times \Delta L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)
$$

Where V_{IN} is the input voltage, f_S is the switching frequency, and ΔI_L is the peak-to-peak inductor ripple current.

Choose an inductor that will not saturate under the maximum inductor peak current. The peak inductor current can be calculated by:

$$
I_{LP} = I_{LOAD} + \frac{V_{OUT}}{2 \times f_S \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)
$$

Where I_{LOAD} is the load current.

The choice of which style inductor to use mainly depends on the price vs. size requirements and any EMI requirements.

Optional Schottky Diode

During the transition between high-side switch and low-side switch, the body diode of the lowside power MOSFET conducts the inductor current. The forward voltage of this body diode is high. An optional Schottky diode may be paralleled between the SW pin and GND pin to improve overall efficiency. Table 2 lists example Schottky diodes and their Manufacturers.

Table 2—Diode Selection Guide

Part Number	Voltage/Current Rating	Vendor
B ₁₃₀	30V, 1A	Diodes, Inc.
SK ₁₃	30V, 1A	Diodes, Inc.
MBRS130	30V, 1A	International Rectifier

Input Capacitor

The input current to the step-down converter is discontinuous, therefore a capacitor is required to supply the AC current to the step-down converter while maintaining the DC input voltage. Use low ESR capacitors for the best performance. Ceramic capacitors are preferred, but tantalum or low-ESR electrolytic capacitors may also suffice. Choose X5R or X7R dielectrics when using ceramic capacitors.

Since the input capacitor (C1) absorbs the input switching current it requires an adequate ripple current rating. The RMS current in the input capacitor can be estimated by:

$$
I_{C1} = I_{LOAD} \times \sqrt{\frac{V_{OUT}}{V_{IN}}} \left(1 - \frac{V_{OUT}}{V_{IN}}\right)
$$

The worst-case condition occurs at $V_{IN} = 2V_{OUT}$, where $I_{C1} = I_{LOAD}/2$. For simplification, choose the input capacitor whose RMS current rating greater than half of the maximum load current.

The input capacitor can be electrolytic, tantalum or ceramic. When using electrolytic or tantalum capacitors, a small, high quality ceramic capacitor, i.e. 0.1µF, should be placed as close to the IC as possible. When using ceramic capacitors, make sure that they have enough capacitance to provide sufficient charge to prevent excessive voltage ripple at input. The input voltage ripple caused by capacitance can be estimated by:

$$
\Delta V_{IN} = \frac{I_{LOAD}}{C1} \times \frac{V_{OUT}}{V_{IN}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)
$$

Output Capacitor

The output capacitor is required to maintain the DC output voltage. Ceramic, tantalum, or low ESR electrolytic capacitors are recommended. Low ESR capacitors are preferred to keep the output voltage ripple low. The output voltage ripple can be estimated by:

$$
\Delta V_{OUT} = \frac{V_{OUT}}{f_S \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times \left(R_{ESR} + \frac{1}{8 \times f_S \times C2}\right)
$$

Where C2 is the output capacitance value and R_{FSR} is the equivalent series resistance (ESR) value of the output capacitor.

In the case of ceramic capacitors, the impedance at the switching frequency is dominated by the capacitance. The output voltage ripple is mainly caused by the capacitance. For simplification, the output voltage ripple can be estimated by:

$$
\Delta V_{OUT} = \frac{V_{OUT}}{8 \times f_S^2 \times L \times C2} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)
$$

In the case of tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, the output ripple can be approximated to:

$$
\Delta V_{OUT} = \frac{V_{OUT}}{f_S \times L} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \times R_{ESR}
$$

The characteristics of the output capacitor also affect the stability of the regulation system. The MP2309 can be optimized for a wide range of capacitance and ESR values.

Compensation Components

MP2309 employs current mode control for easy compensation and fast transient response. The system stability and transient response are controlled through the COMP pin. COMP pin is the output of the internal transconductance error amplifier. A series capacitor-resistor combination sets a pole-zero combination to control the characteristics of the control system.

The DC gain of the voltage feedback loop is given by:

$$
A_{\text{VDC}} = R_{\text{LOAD}} \times G_{\text{CS}} \times A_{\text{VEA}} \times \frac{V_{\text{FB}}}{V_{\text{OUT}}}
$$

Where V_{FB} is the feedback voltage, 0.923V; A_{VEA} is the error amplifier voltage gain; G_{CS} is the current sense transconductance and R_{LOAD} is the load resistor value.

The system has 2 poles of importance. One is due to the compensation capacitor (C3) and the output resistor of error amplifier, and the other is due to the output capacitor and the load resistor. These poles are located at:

$$
f_{P1} = \frac{G_{EA}}{2\pi \times C3 \times A_{VEA}}
$$

$$
f_{P2} = \frac{1}{2\pi \times C2 \times R_{LOAD}}
$$

Where G_{EA} is the error amplifier transconductance.

The system has one zero of importance, due to the compensation capacitor (C3) and the compensation resistor (R3). This zero is located at:

$$
f_{Z1}=\frac{1}{2\pi\times C3\times R3}
$$

The system may have another zero of importance, if the output capacitor has a large capacitance and/or a high ESR value. The zero, due to the ESR and capacitance of the output capacitor, is located at:

$$
f_{ESR} = \frac{1}{2\pi \times C2 \times R_{ESR}}
$$

In this case (as shown in Figure 2), a third pole set by the compensation capacitor (C6) and the compensation resistor (R3) is used to compensate the effect of the ESR zero on the loop gain. This pole is located at:

$$
f_{P3}=\frac{1}{2\pi\times C6\times R3}
$$

The goal of compensation design is to shape the converter transfer function to get a desired loop gain. The system crossover frequency where the feedback loop has the unity gain is important. Lower crossover frequencies result in slower line and load transient responses, while higher crossover frequencies could cause system unstable. A good rule of thumb is to set the crossover frequency below one-tenth of the switching frequency. Determine the R3 value by the following equation:

$$
R3 = \frac{2\pi \times C2 \times f_C}{G_{EA} \times G_{CS}} \times \frac{V_{OUT}}{V_{FB}} < \frac{2\pi \times C2 \times 0.1 \times f_S}{G_{EA} \times G_{CS}} \times \frac{V_{OUT}}{V_{FB}}
$$

Where f_C is the desired crossover frequency which is typically below one tenth of the switching frequency.

To optimize the compensation components, the following procedure can be used.

1. Choose the compensation resistor (R3) to set the desired crossover frequency.

2. Choose the compensation capacitor (C3) to achieve the desired phase margin. For applications with typical inductor values, setting the compensation zero, f_{z1} , below one-forth of the crossover frequency provides sufficient phase margin.

Determine the C3 value by the following equation:

$$
C3 > \frac{4}{2\pi \times R3 \times f_C}
$$

Where R3 is the compensation resistor.

3. Determine if the second compensation capacitor (C6) is required. It is required if the ESR zero of the output capacitor is located at less than half of the switching frequency, or the following relationship is valid:

$$
\frac{1}{2\pi \times C2 \times R_{ESR}} < \frac{f_S}{2}
$$

If this is the case, then add the second compensation capacitor (C6) to set the pole f_{P3} at the location of the ESR zero. Determine the C6 value by the equation:

$$
C6 = \frac{C2 \times R_{ESR}}{R3}
$$

External Bootstrap Diode

An external bootstrap diode may enhance the efficiency of the regulator, the applicable conditions of external BST diode are:

- V_{OUT} =5V or 3.3V; and
- Duty cycle is high: $D = \frac{V_{OUT}}{V}$ IN $\frac{\rm V_{OUT}}{\rm V_{IN}}$ >65%

In these cases, an external BST diode is recommended from the output of the voltage regulator to BST pin, as shown in Fig.2

Figure 2—Add Optional External Bootstrap Diode to Enhance Efficiency

The recommended external BST diode is IN4148, and the BST cap is 0.1~1µF.

TYPICAL APPLICATION CIRCUIT

Figure 3—MP2309 with 3.3V Output, 22uF/6.3V Ceramic Output Capacito

PACKAGE INFORMATION

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

ООО "ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

- *Конкурентоспособные цены и скидки постоянным клиентам.*
- *Специальные условия для постоянных клиентов.*
- *Подбор аналогов.*
- *Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.*
- *Приемлемые сроки поставки, возможна ускоренная поставка.*
- *Доставку товара в любую точку России и стран СНГ.*
- *Комплексную поставку.*
- *Работу по проектам и поставку образцов.*
- *Формирование склада под заказчика.*
- *Сертификаты соответствия на поставляемую продукцию (по желанию клиента).*
- *Тестирование поставляемой продукции.*
- *Поставку компонентов, требующих военную и космическую приемку.*
- *Входной контроль качества.*
- *Наличие сертификата ISO.*

 В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- *Регистрацию проекта у производителя компонентов.*
- *Техническую поддержку проекта.*
- *Защиту от снятия компонента с производства.*
- *Оценку стоимости проекта по компонентам.*
- *Изготовление тестовой платы монтаж и пусконаладочные работы.*

 Tел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www[.lifeelectronics.ru](http://lifeelectronics.ru/)