
Core1553BRM v4.2
Handbook

Core1553BRM v4.2 Handbook

Revision 4 2

Table of Contents

Introduction . 5
Reference Documents . 6

Version . 6

Verification and Compliance . 6

Device Requirements . 6

External Components . 14

MIL-STD-1553B Bus Overview . 14

Word Formats . 15

Message Types . 16

Functional Description . 17
Registers . 18

Core Operation . 18

Loopback Tests . 19

Bus Transceivers . 19

Typical System and Memory Requirements . 19

Tool Flows . 21
Licenses . 21

SmartDesign . 21

Simulation Flows . 23

Synthesis in Libero IDE/SoC . 23

Place-and-Route in Libero IDE/SoC . 23

Interface Descriptions . 24
Parameters on Core1553BRM . 24

I/O Signal Descriptions . 25

Backend Memory Interface Timing . 30

Interface Timing . 32
CPU Interface Timing . 32

Memory Timing . 34

RT Response Times . 37

Transceiver Loopback Delays . 37

Clock Requirements . 38

Metastability Synchronization . 38

Core1553BRM Operation as a Bus Controller . 39
Overview . 39

Features . 39

Control and Message Processing . 39

Registers . 40

Memory Structure . 40

Command Blocks . 41

MIL-STD-1553A Operation . 45

Table of Contents

3 Revision 4

Core1553BRM Operation as a Remote Terminal . 46
Overview . 46

Features . 46

Control and Message Processing . 46

Registers . 48

Memory Structure . 49

Descriptor Blocks . 50

Data Buffer Structure . 52

MIL-STD-1553A Operation . 58

Core1553BRM Operation as a Bus Monitor . 59
Overview . 59

Features . 59

Control and Message Processing . 59

Registers . 60

Memory Structure . 60

Monitor Blocks . 61

MIL-STD-1553A Operation . 63

Core1553BRM Registers . 64
Common Control Registers . 65

Bus Controller–Specific Registers . 73

Remote Terminal–Specific Registers . 74

Bus Monitor–Specific Registers . 77

Interrupts . 79

Enhanced Operation . 80
Bus Controller GOTO Enhancements . 80

Remote Terminal Ping Pong Operation . 80

Memory Access Sequence . 81

Testbench Operation and Modification . 83
Testbenches Provided . 83

Verification Testbench . 83

Supported Commands . 84

Command Files . 86

VHDL User Testbench . 87

Verilog User Testbench . 88

Implementation Hints . 90
Clock and Reset Networks . 90

RT Legalization Registers . 90

Shared versus Own Memory . 91

Transceivers . 92

Legacy Mode Operation . 93
Core Operation . 93

Legacy Mode . 93

Verification Tests Carried Out . 97

Core1553BRM v4.2 Handbook

Revision 4 4

SuMMIT Differences . 99

ACKVAL and WAITVAL Settings . 102

Ordering Information . 102
Ordering Codes . 102

List of Changes . 109

Product Support . 110
Customer Service . 110

Customer Technical Support Center . 110

Technical Support . 110

Website . 110

Contacting the Customer Technical Support Center . 110

ITAR Technical Support . 111

Index . 112

Revision 4 5

Introduction

Microsemi Core1553BRM provides a complete MIL-STD-1553B bus controller (BC), remote terminal
(RT), or bus monitor terminal (BM or MT). Core1553BRM can be configured to provide all three 1553
functions or any combination thereof. The core is supported in all recent Microsemi Flash, antifuse, and
radiation-tolerant product families. A typical system implementation using Core1553BRM is shown in
Figure 1.

A typical Core1553BRM system requires connection to an external CPU, used to set up the core
registers and initialize the data tables in memory. To facilitate system integration, Core1553BRM is
register-compatible with the SuMMITTM family of 1553B devices from Aeroflex Inc.

The external memory block is used to store the received and transmitted data. This memory can be
internal or external to the FPGA, depending upon the family targeted. The core interfaces to the 1553
bus through an external 1553 transceiver and transformer.

Three versions of the core are available:

• An Evaluation version that allows core simulation with Microsemi Libero® System-on-Chip
(SoC)/integrated design environment (IDE) or ModelSim®

• An Obfuscated version that provides obfuscated RTL and precompiled testbenches

• An RTL version with full access to the source code

Figure 1 • Typical Core1553BRM Application

Microsemi FPGA

Memory

Core1553BRM

Master
CPU

Glue
Logic

B
a

ck
e

n
d

In
te

rf
a

ce
C

P
U

In
te

rf
a

ce

1553B
Encoders

and
Decoders

Protocol
Controller

Pulse
Transformer

Pulse
Transformer

Transceiver
Not Included

Core1553BRM v4.2 Handbook

Revision 4 6

Reference Documents
MIL-STD-1553B, Notices I and II

MIL-HDBK-1553A

Enhanced SuMMIT Family Product Handbook, October 1999, UTMC Microelectronic Systems, Inc.

Version
This handbook applies to Core1553BRM v4.2 and later.

Verification and Compliance
Core1553BRM has been fully verified against the RT Validation Test Plan (MIL-HDBK-1553A,
"Verification Tests Carried Out" on page 97). This ensures that the 1553B encoders and decoders are
fully compliant with the 1553B specification. Core1553BRM is implemented on the Core1553BRM
development system using an SmartFusion2 M2S050FG484 device; this can be purchased from
Microsemi.

Device Requirements
Core1553BRM can be implemented in multiple Microsemi FPGAs. Table 1 through Table 13 on page 13
give typical utilization figures using standard synthesis tools for the complete core. Note that utilization
for Fusion and IGLOO® families is shown in Table 6 on page 9 and Table 9 on page 10. The Core column
indicates the core configuration as follows:

• B: Bus Controller enabled

• R: Remote Terminal enabled

• M: Bus Monitor enabled

• 0: RT Legalization registers disabled

• 1: RT Legalization registers implemented in logic tiles

• 2: RT Legalization registers implemented using memory

• E: Actel enhanced functions enabled

Table 1 • Device Utilization - ProASICplus Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E ProASICplus 6659 1463 8122 0 APA450 66.10%

BRM2E ProASICplus 5854 1181 7035 2 APA450 57.30%

BRM0E ProASICplus 5866 1182 7048 0 APA450 57.40%

BR1E ProASICplus 5625 1268 6893 0 APA450 56.10%

BR2E ProASICplus 4839 988 5827 2 APA450 47.40%

BR0E ProASICplus 4812 988 5800 0 APA450 47.20%

RM1E ProASICplus 5483 1381 6864 0 APA450 55.90%

RM2E ProASICplus 4844 1101 5945 2 APA450 48.40%

RM0E ProASICplus 4797 1103 5900 0 APA450 48.00%

BME ProASICplus 4135 1018 5153 0 APA450 41.90%

BE ProASICplus 2959 804 3763 0 APA450 30.60%

Introduction

7 Revision 4

R1 ProASICplus 4348 1168 5516 0 APA450 44.90%

R2 ProASICplus 3632 889 4521 2 APA450 36.80%

R0 ProASICplus 3598 888 4486 0 APA450 36.50%

M ProASICplus 2347 722 3069 0 APA450 25.00%

Table 2 • Device Utilization - ProASIC3 Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E ProASIC3 5025 1411 6436 0 A3P600 46.56%

BRM2E ProASIC3 4498 1155 5653 1 A3P600 40.89%

BRM0E ProASIC3 4429 1155 5584 0 A3P600 40.39%

BR1E ProASIC3 4257 1222 5479 0 A3P600 39.63%

BR2E ProASIC3 3753 966 4719 1 A3P600 34.14%

BR0E ProASIC3 3660 966 4626 0 A3P600 33.46%

RM1E ProASIC3 3932 1341 5273 0 A3P600 38.14%

RM2E ProASIC3 3428 1085 4513 1 A3P600 32.65%

RM0E ProASIC3 3347 1085 4432 0 A3P600 32.06%

BME ProASIC3 3029 1000 4029 0 A3P600 29.14%

BE ProASIC3 2211 793 3004 0 A3P600 21.73%

R1 ProASIC3 3105 1129 4234 0 A3P600 30.63%

R2 ProASIC3 2560 873 3433 1 A3P600 24.83%

R0 ProASIC3 2508 873 3381 0 A3P600 24.46%

M ProASIC3 1719 714 2433 0 A3P600 17.60%

Table 3 • Device Utilization - ProASIC3E Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E ProASIC3E 5025 1411 6436 0 A3PE600 46.56%

BRM2E ProASIC3E 4498 1155 5653 1 A3PE600 40.89%

BRM0E ProASIC3E 4429 1155 5584 0 A3PE600 40.39%

BR1E ProASIC3E 4248 1222 5470 0 A3PE600 39.57%

BR2E ProASIC3E 3753 966 4719 1 A3PE600 34.14%

BR0E ProASIC3E 3660 966 4626 0 A3PE600 33.46%

RM1E ProASIC3E 3933 1341 5274 0 A3PE600 38.15%

RM2E ProASIC3E 3417 1085 4502 1 A3PE600 32.57%

RM0E ProASIC3E 3350 1085 4435 0 A3PE600 32.08%

Table 1 • Device Utilization - ProASICplus Family (continued)

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

Core1553BRM v4.2 Handbook

Revision 4 8

BME ProASIC3E 3029 1000 4029 0 A3PE600 29.14%

BE ProASIC3E 2211 793 3004 0 A3PE600 21.73%

R1 ProASIC3E 3104 1129 4233 0 A3PE600 30.62%

R2 ProASIC3E 2560 873 3433 1 A3PE600 24.83%

R0 ProASIC3E 2488 873 3361 0 A3PE600 24.31%

M ProASIC3E 1719 714 2433 0 A3PE600 17.60%

Table 4 • Device Utilization - IGLOO Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E IGLOO 5025 1411 6436 0 AGL600V5 46.56%

BRM2E IGLOO 4498 1155 5653 1 AGL600V5 40.89%

BRM0E IGLOO 4429 1155 5584 0 AGL600V5 40.39%

BR1E IGLOO 4248 1222 5470 0 AGL600V5 39.57%

BR2E IGLOO 3753 966 4719 1 AGL600V5 34.14%

BR0E IGLOO 3660 966 4626 0 AGL600V5 33.46%

RM1E IGLOO 3938 1341 5279 0 AGL600V5 38.19%

RM2E IGLOO 3421 1085 4506 1 AGL600V5 32.60%

RM0E IGLOO 3347 1085 4432 0 AGL600V5 32.06%

BME IGLOO 3029 1000 4029 0 AGL600V5 29.14%

BE IGLOO 2211 793 3004 0 AGL600V5 21.73%

R1 IGLOO 3104 1129 4233 0 AGL600V5 30.62%

R2 IGLOO 2560 873 3433 1 AGL600V5 24.83%

R0 IGLOO 2488 873 3361 0 AGL600V5 24.31%

M IGLOO 1719 714 2433 0 AGL600V5 17.60%

Table 5 • Device Utilization - IGLOOE Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E IGLOOE 5025 1411 6436 0 AGLE600V5 46.56%

BRM2E IGLOOE 4498 1155 5653 1 AGLE600V5 40.89%

BRM0E IGLOOE 4429 1155 5584 0 AGLE600V5 40.39%

BR1E IGLOOE 4248 1222 5470 0 AGLE600V5 39.57%

BR2E IGLOOE 3753 966 4719 1 AGLE600V5 34.14%

BR0E IGLOOE 3660 966 4626 0 AGLE600V5 33.46%

RM1E IGLOOE 3933 1341 5274 0 AGLE600V5 38.15%

Table 3 • Device Utilization - ProASIC3E Family (continued)

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

Introduction

9 Revision 4

RM2E IGLOOE 3417 1085 4502 1 AGLE600V5 32.57%

RM0E IGLOOE 3350 1085 4435 0 AGLE600V5 32.08%

BME IGLOOE 3029 1000 4029 0 AGLE600V5 29.14%

BE IGLOOE 2211 793 3004 0 AGLE600V5 21.73%

R1 IGLOOE 3104 1129 4233 0 AGLE600V5 30.62%

R2 IGLOOE 2560 873 3433 1 AGLE600V5 24.83%

R0 IGLOOE 2488 873 3361 0 AGLE600V5 24.31%

M IGLOOE 1719 714 2433 0 AGLE600V5 17.60%

Table 6 • Device Utilization - Fusion Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E Fusion 5025 1411 6436 0 AFS1500 16.76%

BRM2E Fusion 4498 1155 5653 1 AFS1500 14.72%

BRM0E Fusion 4429 1155 5584 0 AFS1500 14.54%

BR1E Fusion 4248 1222 5470 0 AFS1500 14.24%

BR2E Fusion 3753 966 4719 1 AFS1500 12.29%

BR0E Fusion 3660 966 4626 0 AFS1500 12.05%

RM1E Fusion 3933 1341 5274 0 AFS1500 13.73%

RM2E Fusion 3417 1085 4502 1 AFS1500 11.72%

RM0E Fusion 3350 1085 4435 0 AFS1500 11.55%

BME Fusion 3029 1000 4029 0 AFS1500 10.49%

BE Fusion 2211 793 3004 0 AFS1500 7.82%

R1 Fusion 3104 1129 4233 0 AFS1500 11.02%

R2 Fusion 2560 873 3433 1 AFS1500 8.94%

R0 Fusion 2488 873 3361 0 AFS1500 8.75%

M Fusion 1719 714 2433 0 AFS1500 6.34%

Table 7 • Device Utilization - SmartFusion Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E SmartFusion 3560 1118 4678 0 A2F500M3G 40.61%

BRM2E SmartFusion 3220 845 4065 1 A2F500M3G 35.29%

BRM0E SmartFusion 2991 841 3832 0 A2F500M3G 33.26%

BR1E SmartFusion 2989 956 3945 0 A2F500M3G 34.24%

BR2E SmartFusion 2478 698 3176 1 A2F500M3G 27.57%

Table 5 • Device Utilization - IGLOOE Family (continued)

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

Core1553BRM v4.2 Handbook

Revision 4 10

BR0E SmartFusion 2447 698 3145 0 A2F500M3G 27.30%

RM1E SmartFusion 2939 1061 4000 0 A2F500M3G 34.72%

RM2E SmartFusion 2428 790 3218 1 A2F500M3G 27.93%

RM0E SmartFusion 2394 789 3183 0 A2F500M3G 27.63%

BME SmartFusion 2204 669 2873 0 A2F500M3G 24.94%

BE SmartFusion 1657 524 2181 0 A2F500M3G 18.93%

R1 SmartFusion 2331 900 3231 0 A2F500M3G 28.05%

R2 SmartFusion 1844 645 2489 1 A2F500M3G 21.61%

R0 SmartFusion 1769 644 2413 0 A2F500M3G 20.95%

M SmartFusion 1310 534 1844 0 A2F500M3G 16.01%

Table 8 • Device Utilization - SmartFusion2 Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E SmartFusion2 3314 1411 4725 0 M2S050T 8.38%

BRM2E SmartFusion2 3001 1191 4192 1 M2S050T 7.44%

BRM0E SmartFusion2 2927 1155 4082 0 M2S050T 7.25%

BR1E SmartFusion2 2750 1222 3972 0 M2S050T 7.05%

BR2E SmartFusion2 2460 1002 3462 1 M2S050T 6.15%

BR0E SmartFusion2 2411 966 3377 0 M2S050T 5.99%

RM1E SmartFusion2 2698 1341 4039 0 M2S050T 7.17%

RM2E SmartFusion2 2363 1121 3484 1 M2S050T 6.18%

RM0E SmartFusion2 2280 1085 3365 0 M2S050T 5.98%

BME SmartFusion2 2002 1000 3002 0 M2S050T 5.32%

BE SmartFusion2 1461 793 2254 0 M2S050T 4.00%

R1 SmartFusion2 2111 1129 3240 0 M2S050T 5.75%

R2 SmartFusion2 1789 909 2698 1 M2S050T 4.79%

R0 SmartFusion2 1700 873 2573 0 M2S050T 4.57%

M SmartFusion2 1285 749 2034 0 M2S050T 3.61%

Table 9 • Device Utilization - IGLOO2 Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E IGLOO2 3314 1411 4725 0 M2GL050T 8.38%

BRM2E IGLOO2 3001 1191 4192 1 M2GL050T 7.44%

BRM0E IGLOO2 2927 1155 4082 0 M2GL050T 7.25%

Table 7 • Device Utilization - SmartFusion Family (continued)

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

Introduction

11 Revision 4

BR1E IGLOO2 2750 1222 3972 0 M2GL050T 7.05%

BR2E IGLOO2 2460 1002 3462 1 M2GL050T 6.15%

BR0E IGLOO2 2411 966 3377 0 M2GL050T 5.99%

RM1E IGLOO2 2698 1341 4039 0 M2GL050T 7.17%

RM2E IGLOO2 2363 1121 3484 1 M2GL050T 6.18%

RM0E IGLOO2 2280 1085 3365 0 M2GL050T 5.98%

BME IGLOO2 2002 1000 3002 0 M2GL050T 5.32%

BE IGLOO2 1461 793 2254 0 M2GL050T 4.00%

R1 IGLOO2 2111 1129 3240 0 M2GL050T 5.75%

R2 IGLOO2 1789 909 2698 1 M2GL050T 4.79%

R0 IGLOO2 1700 873 2573 0 M2GL050T 4.57%

M IGLOO2 1285 749 2034 0 M2GL050T 3.61%

Table 10 • Device Utilization - Axcelerator Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E Axcelerator 2996 1444 4440 0 AX500 55.06%

BRM2E Axcelerator 2783 1162 3945 1 AX500 48.92%

BRM0E Axcelerator 2768 1162 3930 0 AX500 48.74%

BR1E Axcelerator 2561 1245 3806 0 AX500 47.20%

BR2E Axcelerator 2348 967 3315 1 AX500 41.11%

BR0E Axcelerator 2308 967 3275 0 AX500 40.61%

RM1E Axcelerator 2434 1371 3805 0 AX500 47.19%

RM2E Axcelerator 2239 1087 3326 1 AX500 41.25%

RM0E Axcelerator 2204 1085 3289 0 AX500 40.79%

BME Axcelerator 1939 1001 2940 0 AX500 36.46%

BE Axcelerator 1452 796 2248 0 AX500 27.88%

R1 Axcelerator 1928 1144 3072 0 AX500 38.10%

R2 Axcelerator 1710 875 2585 1 AX500 32.06%

R0 Axcelerator 1696 875 2571 0 AX500 31.88%

M Axcelerator 1163 714 1877 0 AX500 23.28%

Table 9 • Device Utilization - IGLOO2 Family (continued)

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

Core1553BRM v4.2 Handbook

Revision 4 12

Table 11 • Device Utilization – RT Axcelerator Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E RTAX-S 3004 1443 4447 0 RTAX1000S 24.51%

BRM2E RTAX-S 2794 1161 3955 1 RTAX1000S 21.80%

BRM0E RTAX-S 2775 1161 3936 0 RTAX1000S 21.69%

BR1E RTAX-S 2548 1246 3794 0 RTAX1000S 20.91%

BR2E RTAX-S 2339 966 3305 1 RTAX1000S 18.22%

BR0E RTAX-S 2300 968 3268 0 RTAX1000S 18.01%

RM1E RTAX-S 2428 1371 3799 0 RTAX1000S 20.94%

RM2E RTAX-S 2255 1085 3340 1 RTAX1000S 18.41%

RM0E RTAX-S 2204 1085 3289 0 RTAX1000S 18.13%

BME RTAX-S 1949 1001 2950 0 RTAX1000S 16.26%

BE RTAX-S 1453 795 2248 0 RTAX1000S 12.39%

R1 RTAX-S 1924 1144 3068 0 RTAX1000S 16.91%

R2 RTAX-S 1705 875 2580 1 RTAX1000S 14.22%

R0 RTAX-S 1688 875 2563 0 RTAX1000S 14.13%

M RTAX-S 1167 714 1881 0 RTAX1000S 10.37%

Table 12 • Device Utilization – SXA Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E SX-A 3345 1482 4827 0 A54SX72A 79.97%

BRM2E SX-A Not Supported

BRM0E SX-A 2935 1200 4135 0 A54SX72A 68.51%

BR1E SX-A 2769 1270 4039 0 A54SX72A 66.92%

BR2E SX-A Not Supported

BR0E SX-A 2397 994 3391 0 A54SX72A 56.18%

RM1E SX-A 2627 1386 4013 0 A54SX72A 66.48%

RM2E SX-A Not Supported

RM0E SX-A 2334 1102 3436 0 A54SX72A 56.93%

BME SX-A 2003 1021 3024 0 A54SX72A 50.10%

BE SX-A 1505 803 2308 0 A54SX72A 38.24%

R1 SX-A 2095 1171 3266 0 A54SX72A 54.11%

R2 SX-A Not Supported

R0 SX-A 1714 885 2599 0 A54SX72A 43.06%

M SX-A 1242 748 1990 0 A54SX72A 32.97%

Introduction

13 Revision 4

Table 13 • Device Utilization – RT SXA Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E RTSX-S 3327 1478 4805 0 RT54SX72S 79.61%

BRM2E RTSX-S Not Supported

BRM0E RTSX-S 2966 1182 4148 0 RT54SX72S 68.72%

BR1E RTSX-S 2768 1281 4049 0 RT54SX72S 67.08%

BR2E RTSX-S Not Supported

BR0E RTSX-S 2417 1000 3417 0 RT54SX72S 56.61%

RM1E RTSX-S 2654 1381 4035 0 RT54SX72S 66.85%

RM2E RTSX-S Not Supported

RM0E RTSX-S 2402 1110 3512 0 RT54SX72S 58.18%

BME RTSX-S 2019 1022 3041 0 RT54SX72S 50.38%

BE RTSX-S 1525 802 2327 0 RT54SX72S 38.55%

R1 RTSX-S 2072 1171 3243 0 RT54SX72S 53.73%

R2 RTSX-S Not Supported

R0 RTSX-S 1743 888 2631 0 RT54SX72S 43.59%

M RTSX-S 1292 760 2052 0 RT54SX72S 34.00%

Table 14 • Device Utilization – RTG4 Family

Core Family

Cells or Tiles
Memory
Blocks Device UTILCombinational Sequential Total

BRM1E RTG4 3642 1412 5054 0 RT4G150 3.33%

BRM2E RTG4 3293 1192 4485 1 RT4G150 2.95%

BRM0E RTG4 3256 1156 4412 0 RT4G150 2.91%

BR1E RTG4 2998 1205 4203 0 RT4G150 2.77%

BR2E RTG4 2639 985 3624 1 RT4G150 2.39%

BR0E RTG4 2561 949 3510 0 RT4G150 2.31%

RM1E RTG4 2988 1342 4330 0 RT4G150 2.85%

RM2E RTG4 2570 1122 3692 1 RT4G150 2.43%

RM0E RTG4 2508 1086 3594 0 RT4G150 2.37%

BME RTG4 2286 1008 3294 0 RT4G150 2.17%

BE RTG4 1605 776 2381 0 RT4G150 1.57%

R1 RTG4 2423 1112 3535 0 RT4G150 2.33%

R2 RTG4 1947 892 2839 1 RT4G150 1.87%

R0 RTG4 1850 856 2706 0 RT4G150 1.78%

M RTG4 1472 757 2229 0 RT4G150 1.47%

Core1553BRM v4.2 Handbook

Revision 4 14

The Core1553BRM clock rate can be programmed to be 12, 16, 20, or 24 MHz. All the Microsemi
families listed above easily meet the required performance.

Core1553BRM I/O requirements depend on the system requirements and external interfaces. If the
core and memory blocks are implemented within the FPGA and the CPU interface has a
bidirectional data bus, approximately 67 I/O pins are required. If external memory is used with a
bidirectional data bus, the number of I/O pins increases to approximately 110.

External Components
There are three external components required for proper operation of Core1553BRM:

• Memory: Between 1 kbyte and 128 kbytes (16 bits wide) of internal FPGA memory or
external memory used for data storage

• Transceivers: Standard 1553B transceiver

• CPU: Used to control the core

The requirements for these three blocks are discussed in "Implementation Hints" on page 90.

MIL-STD-1553B Bus Overview
The MIL-STD-1553B bus is a differential serial bus used in military and space equipment. It
comprises multiple redundant bus connections and communicates at 1 Mbps.

The bus has a single active BC and up to 31 RTs. The BC manages all data transfers on the bus
using the command and status protocol. The BC initiates every transfer by sending a command
word, and data if required. The selected RT will respond with a status word, and data if required.

The 1553B command word contains a 5-bit RT address, transmit or receive bit, 5-bit subaddress
and 5-bit word count. This allows for up to 32 RTs on the bus. Normally, only 31 RTs can be
connected to the bus, since RT address 31 is used to indicate a broadcast transfer. A broadcast
transfer is one where all RTs accept the following data. Each RT has 30 subaddresses reserved for
data transfers. The other two subaddresses (0 and 31) are reserved for mode codes used for bus
control functions. Data transfers contain up to thirty-two 16-bit data words. Mode code command
words are used for bus control functions such as synchronization.

Introduction

15 Revision 4

Word Formats
There are only three types of words in a 1553B message: a command word (CW), a data word
(DW), and a status word (SW). Each word consists of a 3-bit sync pattern, 16 bits of data, and a
parity bit, making up the 20-bit word. The word formats are given in Figure 2.

Figure 2 • 1553B Word Formats

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CW 5 1 5 5 1

Sync RT Address T/R Subaddress Word Count / Mode Code P

DW 16 1

Sync Data P

SW 5 1 1 1 3 1 1 1 1 1 1

Sync RT Address

M
es

sa
ge

 E
rr

or

In
st

ru
m

e
nt

at
io

n

S
e

rv
ic

e
R

eq
u

es
t

Reserved

B
ro

ad
ca

st
 R

ec
ei

ve
d

B
u

sy

S
ub

sy
st

em
 F

la
g

D
yn

am
ic

 B
us

 A
cc

e
pt

an
ce

Te
rm

in
al

P
ar

ity

Core1553BRM v4.2 Handbook

Revision 4 16

Message Types
The 1553B bus supports 10 message transfer types, allowing basic point-to-point, broadcast, and BC-to-
RT data transfers, mode code messages, and direct RT-to-RT messages. Figure 3 shows the message
formats.

BC-to-RT Transfer

BC RT BC

Transmit
Command

Data
0

Data
…

Data
n

Response
Time

Status
Word

Message
Gap

Next
Command

RT-to-BC Transfer

BC RT BC

Receive
Command

Response
Time

Status
Word

Data
0

Data
…

Data
n

Message
Gap

Next
Command

RT-to-RT Transfer

BC RT 1 RT2 BC

Receive
Command

Transmit
Command

Response
Time

Status
Word

Data
0

Data
…

Data
n

Response
Time

Status
Word

Message
Gap

Next
Command

BC-to-all-RTs Broadcast

BC BC

Transmit
Command

Data
0

Data
…

Data
n

Message
Gap

Next
Command

RT-to-All-RTs Broadcast

BC RT 1 BC

Receive
Command

Transmit
Command

Response
Time

Status
Word

Data
0

Data
…

Data
n

Message
Gap

Next
Command

Mode Command, No Data Mode Command, RT Receive Data

BC RT BC BC RT BC

Mode
Command

Response
Time

Status
Word

Message
Gap

Next
Command

Mode
Command

Mode
Data

Response
Time

Status
Word

Message
Gap

Next
Command

Mode Command, RT Transmit Data Broadcast Mode Command, No Data

BC RT BC BC BC

Mode
Command

Response
Time

Status
Word

Mode
Data

Message
Gap

Next
Command

Mode
Command

Message
Gap

Next
Command

Broadcast Mode Command with Data

BC BC

Mode
Command

Mode
Data

Message
Gap

Next
Command

Figure 3 • 1553B Message Formats

Revision 4 17

1 – Functional Description

The core consists of six main blocks: a 1553 encoder, 1553 decoders, a protocol controller block, a CPU
interface, a command word legality interface, and a backend interface (Figure 1-1).

The core can be configured to provide all three functions—BC, RT, and MT—or any combination of the
three. All core variations use all six blocks except for the command legalization interface, which is only
required in RT functions that implement the RT legalization function externally.

A single 1553 encoder takes each word to be transmitted and serializes it using Manchester encoding.
The encoder also includes loopback fail logic and independent logic to prevent Core1553BRM from
transmitting for longer than the allowed period. The loopback logic monitors the received data and
verifies that the core has correctly received every word that it transmits. The output of the encoder is
gated with the bus enable signals to select which busses the core should be transmitting on.

Two decoders take the serial Manchester received data from each bus and extract the received data
words. The decoder requires a 12, 16, 20, or 24 MHz clock to extract the data and clock from the serial
stream.

The decoder contains a digital phase-locked loop (PLL) that generates a recovery clock used to sample
the incoming serial data. The data is then deserialized and the 16-bit word decoded. The decoder detects
whether a command, status, or data word has been received and checks that no Manchester encoding or
parity errors have occurred in the word.

The protocol controller block handles all the message sequencing and error recovery for all three
operating modes—BC, RT, and BM. This is a complex state machine that processes messages based on
the message tables set up in memory, or reacts to incoming command words. The protocol controller
implementation varies depending on which functions are implemented.

The CPU interface allows the system CPU to access the control registers within the core. It also allows
the CPU to directly access the memory connected to the backend interface; this can simplify the system
design. The core includes thirty-three 16-bit registers. Of the 33 registers, 17 are used for control
functions and 16 for RT command legalization. The RT command legalization registers can be omitted
from the core, reducing device utilization.

The command legality interface allows an external circuit to legalize command words that the remote
terminal will respond to. The external legality checker allows a very small piece of logic to legalize
command words down to word-count level, rather than using the sixteen 16-bit command legality
registers within the CPU interface.

Figure 1-1 • Core1553BRM Block Diagram (all optional blocks included)

Encoder

Decoder

Decoder

Bus A

Bus B

Protocol
Controller

Backend
Interface

Command
Legalization

CPU
Interface

and
Registers

Memory
64k×16

Core1553BRM v4.2 Handbook

Revision 4 18

The memory interface for Core1553BRM allows a simple connection to a memory device. It can be
configured to connect to either synchronous or asynchronous memory devices. This allows the core to
be connected to synchronous logic or memory within the FPGA or to external memory blocks. The
interface supports a standard bus request and grant protocol, and provides a WAIT input, allowing the
core to interface to slow memory devices. This allows the core to share system memory rather than have
its own dedicated memory block.

Registers
Core1553BRM contains thirty-three 16-bit registers (Table 1-1). One of these is used to enable enhanced
Core1553BRM functions. The remaining 32 registers are used to control the core. The Control and
Operation registers are used to allow a CPU to set the core operating mode; BC, RT, MT, or combined
RT and MT. The function of the other registers varies depending on the operating mode.

Core Operation
Core1553BRM is designed to be software-compatible with existing 1553B solutions.

It supports the following features:

• Interrupt logs

• Programmable message timeouts

• Circular buffer operation

It does not support the following features:

• Buffer mode operation

• Built-in test functions, although the BIT register and the transmit BIT mode code are supported.

• Auto-initialization of internal registers and memory

Table 1-1 • Registers Address Map

Address Name

00 Control

01 Operation and Status

02 Current Command

03 Interrupt Mask

04 Pending Interrupt

05 Interrupt Pointer

06 Built-In Test (BIT) Register

07 Time Tag

08 Descriptor Pointer

09 1553B Status Word

10 Initialization Count

11 Monitor Command Pointer

12 Monitor Data Pointer

13 Monitor Block Count

14 Monitor Filter A

15 Monitor Filter B

16–31 RT Command Legalization

32 Enhanced Features

Functional Description

19 Revision 4

Loopback Tests
Core1553BRM performs loopback testing on all of its transmissions; the transmit data is fed back into the
receiver, and each transmitted word is compared to the original. If an error is detected, the transmitter
shutdown bit is set in one of the core registers. The core also supports internal data loopback that may be
used for self-testing without generating any 1553B transmissions.

Bus Transceivers
Core1553BRM needs a 1553B transceiver to drive the 1553B bus. Core1553BRM is designed to
interface directly to common MIL-STD-1553 transceivers, such as Aeroflex ACT4453. When using
ProASICPLUS, RTAX-S, or Axcelerator FPGAs, level translators are required to connect the 5 V outputs
of the 1553B transceivers to the 3.3 V inputs of the FPGA.

In addition to the transceiver, a pulse transformer is required for interfacing to the 1553B bus. Figure 1-3
shows the connections required from Core1553BRM to the transceivers and then to the bus via the pulse
transformers.

Typical System and Memory Requirements
Core1553BRM requires a master CPU to set up the registers and data tables. The CPU needs to able to
access the internal core registers as well as the memory. Core1553BRM can be configured in two ways,
with CPU shared memory and with its own memory (Figure 1-3).

Figure 1-2 • Core1553BRM with Its Own Memory

Pulse
Transformer

Microsemi FPGA

Transceiver

Memory

Master
CPU

Pulse
Transformer

B
ac

ke
nd

In
te

rf
ac

e

Core1553BRM

C
P

U
In

te
rf

ac
e

1553B
Encoders

and
Decoders

Protocol
Controller

Core1553BRM v4.2 Handbook

Revision 4 20

When configured with its own memory, only the CPU port needs to be connected to the CPU. The CPU
accesses the backend memory via Core1553BRM. This configuration also supports using internal FPGA
memory connected to the core and removes the need for external bus arbitration on the CPU bus.

Alternatively, the core can share CPU memory. In this case, both the backend memory and CPU
interfaces are connected to the CPU bus. The core provides control lines that allow the memory and
CPU interfaces to share the same top-level I/O pins. When in this configuration and the core needs to
read or write the memory, it uses the MEMREQn, MEMGNTn, and MEMACCn signals to arbitrate for the
CPU bus before completing the cycle.

Core1553BRM is compatible with legacy 1553B devices that use a single address and data bus when
using a shared CPU and memory bus. The core also includes a wrapper file with a functional pinout that
matches these legacy devices, allowing direct replacement.

For both shared and own memory systems, the core supports up to 128 kbytes of memory. The amount
of memory required depends on the system requirements. A complete BC, RT, and MT could be created
with only 1 kbyte of memory. Typical systems will have at least 4 kbytes of memory.

Figure 1-3 • Core1553BRM Using Shared Memory

Memory

CPU

Microsemi FPGA

TransceiverB
ac

ke
nd

In
te

rf
ac

e

Core1553BRM

C
P

U
In

te
rf

ac
e

Pulse
Transformer

Pulse
Transformer

1553B
Encoders

and
Decoders

Protocol
Controller

Bus
Arbitrator

Revision 4 21

2 – Tool Flows

Licenses
Core1553BRM is licensed in three ways; depending on your license, tool flow functionality may be
limited.

Evaluation
Precompiled simulation libraries are provided, allowing the core to be instantiated in SmartDesign and
simulated within Microsemi Libero IDE/SoC, as described in the "SmartDesign" section. The design may
not be synthesized, as source code is not provided.

Obfuscated
Complete RTL code is provided for the core, enabling the core to be instantiated with SmartDesign.
Simulation, Synthesis, and Layout can be performed with Libero IDE/SoC. The RTL code for the core is
obfuscated,1 and the some of the testbench source files are not provided. They are precompiled into the
compiled simulation library instead.

RTL
Complete RTL source code is provided for the core and testbenches.

SmartDesign
Core1553BRM is available for download to the SmartDesign IP Catalog, via the Libero IDE/SoC web
repository. For information on using SmartDesign to instantiate, configure, connect, and generate cores,
refer to the Libero IDE/SoC online help.

1. Obfuscated means the RTL source files have had formatting and comments removed, and all instance and net names
have been replaced with random character sequences.

Core1553BRM v4.2 Handbook

Revision 4 22

The core can be configured using the configuration GUI within SmartDesign, as shown in Figure 2-1. The
"Parameters on Core1553BRM" section on page 24 describes the function of each of the parameters
shown in Figure 2-1.

Once the core is configured, invoke the Generate function in SmartDesign. This will export all the
required files to the project directory.

Figure 2-1 • Core1553BRM Configuration within SmartDesign

Tool Flows

23 Revision 4

Simulation Flows
To run simulations, the required testbench flow must be selected within SmartDesign and Save &
Generate must be run from the Generate pane. The required testbench is selected through the core
configuration GUI in SmartDesign. The following simulation environments are supported:

• Full 1553 verification environment (VHDL only), but the user can use a VHDL verification
environment to verify the Verilog core.

• Simple testbench (VHDL and Verilog)

When SmartDesign generates the Libero IDE/SoC project, it will install the appropriate testbench files. To
run the testbenches, simply set the design root to the Core1553BRM instantiation in the Libero
IDE/SoC file manager and click the Simulation icon in Libero IDE/SoC. This will invoke ModelSim® and
automatically run the simulation.

ModelSim simulations contain a basic command word/data word template implemented with ModelSim
cursors, to assist in reading waveforms.

Synthesis in Libero IDE/SoC
To run Synthesis on the core with parameters set in SmartDesign, set the design root to the top of the
project imported from SmartDesign. This is a wrapper around the core that sets all the generics
appropriately. Click the Synthesis icon in Libero IDE/SoC. The synthesis window appears, displaying the
Synplicity® project. To run Synthesis, click the Run icon.

Place-and-Route in Libero IDE/SoC
Having set the design route appropriately and run Synthesis, click the Layout icon in Libero IDE/SoC to
invoke Designer. Core1553BRM requires no special place-and-route settings.

Revision 4 24

3 – Interface Descriptions

Parameters on Core1553BRM
Core1553BRM has several top-level parameters (generics) that are used to select the operational modes
of the core that are implemented (Table 3-1). Using these parameters allows the size of the core to be
reduced when functions are not required.

Table 3-1 • Core Parameters

Name Values Description

FAMILY 8, 9, 11, 12, 14,
15, 16, 17, 18,
19, 20, 21, 24,

25

Must be set to match the supported FPGA family:

8: SX-A

9: RTSX-S

11: Axcelerator

12: RTAX-S

14: ProASICPLUS

15: ProASIC3

16: ProASIC3E

17: Fusion

18: SmartFusion

19: SmartFusion2

20: IGLOO

21: IGLOOe

24: IGLOO2

25: RTG4

BCENABLE 0 or 1 When 1, the BC function is implemented.

RTENABLE 0 or 1 When 1, the RT function is implemented.

MTENABLE 0 or 1 When 1, the MT function is implemented.

LEGREGS 0 to 2 This controls the implementation of the RT legalization registers.

0 The legalization registers are not implemented. The user must use the
external RT legalization interface.

1 The legalization logic is implemented using registers within the FPGA.

2 The legalization logic is implemented using memory within the FPGA.

ENHANCED 0 or 1 When 1, the Enhanced Features (Table 1-1 on page 18) register is implemented.
When 0, the enhanced features are disabled and the sixth bit of the CPU
address register is ignored.

INITFREQ 12, 16, 20, or 24 Sets the operating frequency of the core. Legal values are 12, 16, 20, and
24 MHz. If the Enhanced Features register is enabled, the operating frequency
can be modified by the CPU.

LOCKFREQ 0 to 1 When 1, the core operating frequency is locked to the frequency set by
INITFREQ. When 0, the clock frequency bits in the Enhanced Features register
("Register 32 – Enhanced Features Register" on page 72) can be used to
change the clock frequency.

Interface Descriptions

25 Revision 4

I/O Signal Descriptions

1553B Bus Interface

Core Setup Signals

BETIMING 0 to 2 Modifies the backend timing requirements. Refer to Table 3-11 on page 31 and
Table 3-12 on page 31.

ACKVAL 0 to 255 Specifies the REQ/GNT timer value when BETIMING = 2.

WAITVAL 0 to 255 Specifies the WAIT timer value when BETIMING = 2.

Table 3-1 • Core Parameters (continued)

Name Values Description

Table 3-2 • Bus Interface Signals

Name Type Description

BUSAINEN Out Active high output that enables the A receiver

BUSAINP In Positive data input from the A receiver

BUSAINN In Negative data input from the A receiver

BUSBINEN Out Active high output that enables the B receiver

BUSBINP In Positive data input from the bus to the B receiver

BUSBINN In Negative data input from the bus to the B receiver

BUSAOUTIN Out Active high transmitter inhibit for the A transmitter

BUSAOUTP Out Positive data output to the bus A transmitter (held HIGH when no transmission)

BUSAOUTN Out Negative data output to the bus A transmitter (held HIGH when no transmission)

BUSBOUTIN Out Active high transmitter; inhibits the B transmitter

BUSBOUTP Out Positive data output to the bus B transmitter (held HIGH when no transmission)

BUSBOUTN Out Negative data output to the bus B transmitter (held HIGH when no transmission)

Table 3-3 • Core Setup Signals

Name Type Description

LOCKn In When 0, prevents the internal registers overriding the RTADDRIN, RTADDRPIN,
MSELIN, and ABSTDIN inputs.

RTADDRIN[4:0] In Sets the RT address.

RTADDRPIN In RT address parity input.

RTADERR Out Indicates that the RT address is incorrectly set; active high.

MSELIN[1:0] In Sets the operating mode.

00: Bus Controller

01: Remote Terminal

10: Bus Monitor

11: Bus Monitor and Remote Terminal

Core1553BRM v4.2 Handbook

Revision 4 26

All core setup signals, apart from SYSSFn, are latched on the first clock edge after an external or
software reset.

Remote Terminal Command Legalization Interface

Control and Status Signals

ABSTDIN In Sets which bus standard is supported.

0: MIL-STD-1553-B

1: MIL-STD-1553-A

SSYSFn In Controls the subsystem flag bit in the 1553B status word; active low.

Table 3-3 • Core Setup Signals (continued)

Name Type Description

Table 3-4 • Remote Terminal Command Legalization Interface

Name Type Description

CMDVAL[11:0] Out Active Command

11: 0 – Non-broadcast; 1 – Broadcast

10: 0 – Receive; 1 – Transmit

9:5: Subaddress

4:0: Word count / mode code

These outputs are valid throughout the complete 1553B message. They can be also
be used to steer data to particular backend devices. In particular, bit 11 allows non-
broadcast and broadcast messaged to be differentiated, as required by MIL-STD-
1553B Notice 2.

CMDSTB Out A single-cycle active high pulse that occurs just after CMDVAL changes

CMDOK In Command word is okay (active high). The external logic must set this within 2 µs of the
CMDVAL output changing.

CMDOKOUT Out Indicates whether the internal core command word checking logic has validated the
command word (active high).

Table 3-5 • Control and Status Signals

Name Type Description

CLK In Master clock input (either 12, 16, 20, or 24 MHz)

TCLK In External time base clock input. Maximum frequency is ¼ of CLK with a 50% duty cycle.

RSTINn In Reset input (active low)

OPMODE[1:0] Out Indicates the actual operating mode:

00: Bus Controller

01: Remote Terminal

10: Bus Monitor

11: Bus Monitor and Remote Terminal

INTOUTH Out Hardware Interrupt Request (active high). This is set whenever bits 15:12 of the interrupt
register are set. The CPU is required to read the internal status register to find the reason
for the interrupt.

INTACKH In Hardware Interrupt Acknowledge (active high). This will clear the INTOUTH output.

Interface Descriptions

27 Revision 4

The core uses a global resource (CLKINT) to drive the internal reset network.

CPU Interface
The CPU interface (Table 3-6) allows access to the Core1553BRM internal registers and direct access to
the backend memory. This interface is synchronous to the clock.

INTOUTM Out Message Interrupt Request (active high). This is set whenever bits 11:0 of the interrupt
register are set. The CPU is required to read the internal status register or interrupt log to
find the reason for the interrupt.

INTACKM In Message Interrupt Acknowledge (active high). This will clear the INTOUTM output.

INTLEVEL In Sets the interrupt operating mode:

0: The INTOUTM and INTOUTH outputs pulse active for three clock cycles.

1: The INTOUTM and INTOUTH outputs go active and stay active until INTACKH or
INTACKM are active.

MEMFAIL Out This goes HIGH if the core fails to read data from or write data to the backend interface
within the required time. This can be caused by the backend not asserting MEMGNTn fast
enough or asserting MEMWAITn for too long. It is cleared by the CPU writing to the
interrupt register.

ACTIVE Out Active reflects the setting of the STEX (Start Execution Bit - Register_00[15]).

BUSY Out This is HIGH when the core is processing a message. For BC operations, this will be HIGH
when the BC is processing a message list. For RT and MT operations, it will by HIGH
when the RT/MT is processing a 1553 message.

MSGSTART Out Indicates that the core RT has started to process a message (1 clock cycle).

CMDSYNC Out This pulses HIGH for a single clock cycle when the core detects the start of a 1553B
command word (or status word) on the bus. Provides an early signal that the RT may be
about to receive or transmit data or a mode code.

SYNCNOW Out This pulses HIGH for a single clock cycle when the RT receives a command to
synchronize with or without data mode. The pulse occurs just after the 1553B command
word (sync with no data) or data word (sync with data mode code) has been received.

BUSRESET Out This pulses HIGH for a single clock cycle whenever the RT receives a reset mode
command. The core logic will also automatically reset itself on receipt of this command.

RSTOUTn Out Reset output (active low)

The core’s internal reset uses a global network that is active whenever the RSTINn is
active or the SRST bit of register 0 (bit 13 of control register) is active.

FSM_ERROR OUT Signal which flags whether the FSMs have gone into an error condition or out of bounds in
the RT core.

Table 3-5 • Control and Status Signals (continued)

Name Type Description

Table 3-6 • CPU Interface Signals

Name Type Description

CPUCSn In CPU chip select input (active low)

CPUWRn[1:0] In CPU write input (active low). Two write inputs are provided for processors that support
byte operations. When CPUWRn[1] = 0, data bits 15:8 are written; when
CPUWRn[0] = 0, data bits 7:0 are written.

CPURDn In CPU read input (active low)

Core1553BRM v4.2 Handbook

Revision 4 28

CPUWAITn Out CPU wait output (active low)

Indicates that the CPU should hold CPURDn or CPUWRn active while the core
completes the read or write operation. CPUWAITn is not asserted when the internal
CPU registers are accessed. When accessing the backend interface through the core,
CPUWAIT will be activated for a minimum of four clock cycles for read operations and
three for write operations. CPUWAITn is asserted for extra clock cycles if the backend
interface delays asserting MEMGNTn or asserts MEMWAITn.

Timing is shown in Figure 4-4 on page 33 and Figure 4-5 on page 33.

CPUMEM In Selects whether CPU accesses internal registers or backend memory.

0: Accesses internal registers; register number is specified on CPUADDR[5:0]

1: Accesses the backend memory

CPUADDR[15:0] In CPU address input

CPUDOUT[15:0] Out CPU data output

CPUDIN[15:0] In CPU data input

CPUDEN Out Data bus enable (active high). This signal is HIGH when the core is providing data
output on the CPUDOUT bus. It is intended for a tristate enable function.

Table 3-6 • CPU Interface Signals

Name Type Description

Interface Descriptions

29 Revision 4

Memory Interface
The memory interface supports both synchronous operation and asynchronous operation to backend
devices (Table 3-7). Synchronous operation directly supports the use of internal FPGA memory blocks,
and asynchronous operation allows connection to standard external memory devices.

Table 3-7 • Backend Signals

Name Type Description

MEMREQn Out Memory Request (active low) output

Indicates that the core requires access to memory. MEMREQn will stay active until
MEMGNTn is asserted.

MEMGNTn In Memory Grant (active low) input

Indicates that the core has been granted access to the bus. The core will assert its
MEMACCn output and start memory accesses. Once MEMACCn has been asserted,
the MEMGNTn input can be deasserted.

This input should be synchronous to CLK and needs to meet the internal register setup
time.

MEMACCn Out Memory Access (active low) output

The core will assert MEMACCn when MEMGNTn is asserted. It will hold MEMACCn
active until it has completed its memory accesses. The core may do multiple memory
accesses whilst MEMACCn is asserted.

MEMWRn[1:0] Out Memory Write (active low). When MEMWRn[1] = 0, D[15:8] are written; when
MEMWRn[0] = 0, D[7:0] are written.

Synchronous mode: This output indicates that data is to be written on the rising clock
edge. If MEMWAITn is asserted, the MEMWRn pulse will be extended until
MEMWAITn becomes inactive.

Asynchronous mode: This output will be LOW for a minimum of one clock period and
can be extended by the MEMWAITn input. The address and data are valid one clock
cycle before MEMWRn is active and held for one clock cycle after MEMWRn goes
inactive.

MEMRDn Out Memory Read (active low)

Synchronous mode: This output indicates that data will be read on the next rising clock
edge. If MEMWAITn is active, the data will be sampled on the rising clock edge on
which MEMWAITn becomes inactive. This signal is intended as the read signal for
synchronous RAMs.

Asynchronous mode: This output will be LOW for a minimum of one clock period and
can be extended by the MEMWAITn input. The address is valid one clock cycle before
MEMRDn is active and held for one clock cycle after MEMRDn goes inactive. The data
is sampled as MEMRDn goes HIGH.

MEMCSn Out Memory Chip Select (active low). This output has the same timing as MEMADDR.

MEMWAITn In Memory Wait (active low)

Indicates that the backend is not ready and the core should extend the read or write
strobe period. This input should be synchronous to CLK and needs to meet the internal
register setup time. It can be permanently held HIGH.

MEMADDR[15:0] Out Memory address output

MEMDOUT[15:0] Out Memory data output

MEMDIN[15:0] In Memory data input

Core1553BRM v4.2 Handbook

Revision 4 30

Miscellaneous I/O
Several inputs are used to modify the core functionality to simplify integration in the application
(Table 3-8). These inputs should be tied to logic 0 or logic 1 as appropriate.

Backend Memory Interface Timing
The core may do multiple memory accesses in a single memory access cycle (MEMACCn asserted).
The number of memory cycles depends on the state and operating mode of the core. The minimum and
maximum number of memory cycles for each of the modes is given in Table 3-9 and Table 3-10.

MEMCEN Out Control signal enable (active high). This signal is HIGH when the core is requesting the
memory bus and has been granted control. It is intended to enable any tristate drivers
that may be implemented on the memory control and address lines.

MEMDEN Out Data bus enable (active high). This signal is HIGH when the core is requesting the
memory bus, has been granted control, and is waiting to write data. It is intended to
enable any bidirectional drivers that may be implemented on the memory data bus.

Table 3-7 • Backend Signals (continued)

Name Type Description

Table 3-8 • Miscellaneous I/O

Name Type Description

ASYNCIF In When 1, the backend interface is in asynchronous mode.

When 0, the backend interface is in synchronous mode.

CPUMEMEN In When 1, the CPU interface has access to the backend memory.

When 0, the CPU cannot access the backend memory through the core.

This must be set to 0 if the core shares the CPU memory, i.e., the CPU and memory busses
are connected to the same system bus.

Table 3-9 • Memory Access Burst Lengths

Mode Minimum Memory Cycles Maximum Memory Cycles

RT 1 See Table 3-10 on page 30.

BC 1 4

MT 1 6

RT/MT 1 6

Table 3-10 • RT Mode

RT Mode
Number of Read Cycles

in Initial Burst Read
Number of Write Cycles

in Burst Write

Ping Pong 4 5

Index 4 6

Circular Mode 1 4 6

Circular Mode 2 4 7

Interface Descriptions

31 Revision 4

The memory interface must allow the core to access memory when requested. When the core asserts
MEMREQn, the external memory interface must assert MEMGNTn within the time period specified in
Table 3-11 and Table 3-12 on page 31. The core also limits the number of wait cycles that may be
inserted and, hence, the width of the MEMRDn and MEMWRn pulses. The core supports two fixed sets
of backend timing parameters controlled by the BETIMING parameter, along with user-configurable
settings. When BETIMING = 1, the bus request/grant time is reduced and the number of wait cycles per
access is increased. BETIMING = 2 allows the user to pick the tradeoff between the REQ/GNT and wait
times; "ACKVAL and WAITVAL Settings" on page 102 lists the settings that may be used for the ACKVAL
and WAITVAL generics. When the CPU is allowed to access the memory through the core (CPUMEMEN
active), the memory access time is reduced.

Table 3-11 • Memory Access Requirements (BETIMING = 0)

CPUMEMEN
CLK Speed

in MHz

MEMREQn to
MEMGNTn

Maximum Delay
in µs

Maximum
Number of Wait

States

Maximum Read/
Write Pulse

Width Clocks

Maximum Read/
Write Pulse

Width
in ns

0 12 4.917 3 4 333.33

0 16 5.063 6 7 437.50

0 20 5.600 7 8 400.00

0 24 6.250 7 8 333.33

1 12 2.750 3 4 333.33

1 16 2.813 6 7 437.50

1 20 3.300 7 8 400.00

1 24 3.792 7 8 333.33

Table 3-12 • Memory Access Requirements (BETIMING = 1)

CPUMEMEN
CLK Speed

in MHz

MEMREQn to
MEMGNTn

Maximum Delay
in µs

Maximum
Number of Wait

States

Maximum Read/
Write Pulse

Width Clocks

Maximum
Read/Write Pulse

Width
in ns

0 12 4.000 5 6 500.00

0 16 4.000 9 10 625.00

0 20 4.250 12 13 650.00

0 24 4.917 13 14 583.33

1 12 2.000 5 6 500.00

1 16 2.000 9 10 625.00

1 20 2.250 12 13 650.00

1 24 2.750 13 14 583.33

Revision 4 32

4 – Interface Timing

CPU Interface Timing
CPUDOUT is asynchronous to CLK for all reads of registers, except for the RT legalization registers
when implemented using memory (LEGREGS = 2). In this case, CPUDOUT is synchronous to the clock.
The CPU interface must ensure that the read pulse is long enough to guarantee that one positive clock
edge occurs during the read pulse. CPU interface timing is shown in Figure 4-1 through Figure 4-7 on
page 33.

Figure 4-1 • CPU Interface Register Read Cycle

Figure 4-2 • CPU Interface Register Read Cycle – RT Legalization Registers Using Memory

Figure 4-3 • CPU Interface Register Write Cycle

CPUCSN

CPURDN

CPUADDR

CPUMEM

CPUDOUT

CPUDEN

CPUWAITN

ADDR

Data

TPD TPD

CLK

CPUCSN

CPURDN

CPUADDR

CPUMEM

CPUDOUT

CPUWAITN

ADDR

Data

TSU

TPD TPD

CLK

CPUCSN

CPUWRN[1:0]

CPUADDR

CPUMEM

CPUDIN

CPUWAITN

ADDR

Data

Write Done

Interface Timing

33 Revision 4

CPUWAITn will be driven LOW for a minimum of three write cycles or four read cycles, plus however
many clock cycles the memory backend delays the assertion of MEMGNTn and asserts MEMWAITn for.
CPUWAITn is driven LOW by CPURDn/CPUWRn becoming active, and returns HIGH on the falling clock
edge after the data is valid.

The CPU interface signals are internally sampled by the Core1553BRM master clock. If these inputs are
asynchronous, CPUCSn, CPUADDR, and CPUDATA should be valid before CPUWRn and remain valid
after the CPUWRn pulse. CPUWRn must be active for at least one clock cycle.

Figure 4-4 • CPU Interface Memory Read Cycle

Figure 4-5 • CPU Interface Memory Write Cycle

Figure 4-6 • Interrupt Timing (INTLEVEL = 1)

Figure 4-7 • Interrupt Timing (INTLEVEL = 0)

CLK

CPUCSN

CPURDN

CPUADDR

CPUMEM

CPUDOUT

CPUDEN

CPUWAITN

ADDR

Data

TPD TPD

CLK

CPUCSN

CPUWRN

CPUADDR

CPUMEM

CPUDIN

CPUWAITN

ADDR

Data

Write

TPD TPD

CLK

INTLEVEL

INTOUTM/INTOUTH

INTACKM/INTACKH

CLK

INTLEVEL

INTOUTM/INTOUTH

INTACKM/INTACKH

Core1553BRM v4.2 Handbook

Revision 4 34

Memory Timing

Figure 4-8 • Asynchronous Memory Read Cycle

Figure 4-9 • Asynchronous Memory Write Cycle

CLK

MEMREQn

MEMGNTn

MEMACCn

MEMCEN

MEMDEN

MEMCSn

MEMRDn

MEMADDR

MEMDIN

MEMWAITn

TSU

TSU TSU

TSU

CLK

MEMREQn

MEMGNTn

MEMACCn
MEMCEN

MEMDEN

MEMCSn

MEMADDR

MEMDOUT

MEMWRn

MEMWAITn

TSU

TSU TSU

Interface Timing

35 Revision 4

Figure 4-10 • Synchronous Memory Read Cycle

Figure 4-11 • Synchronous Memory Write Cycle

CLK

MEMREQn

MEMGNTn

MEMACCn
MEMCEN

MEMDEN

MEMCSn

MEMRDn

MEMADDR

MEMDIN

MEMWAITn

TSU

TSU TSU

TSU

CLK

MEMREQn

MEMGNTn

MEMACCn

MEMCEN

MEMDEN

MEMCSn

MEMADDR

MEMDOUT

MEMWRn

MEMWAITn

TSU

TSU TSU

Core1553BRM v4.2 Handbook

Revision 4 36

Figure 4-12 • Synchronous Memory Read Cycle with MEMGNTn Active

Figure 4-13 • Memory Grant Timeout

Figure 4-14 • Memory Wait Timeout

CLK

MEMREQn

MEMGNTn

MEMACCn

MEMCEN

MEMDEN

MEMCSn

MEMRDn

MEMADDR

MEMDIN

MEMWAITn

TSU

CLK

MEMREQn

MEMGNTn

MEMACCn

MEMCEN

MEMDEN

MEMCSn

MEMRDn/WRn

MEMWAITn

MEMFAIL

Timeout

CLK

MEMREQn

MEMGNTn

MEMACCn
MEMCEN

MEMDEN

MEMCSn

MEMRDn/WRn

MEMWAITn

MEMFAIL

TSU

Timeout

Interface Timing

37 Revision 4

Figure 4-15 shows the timing of the external legalization logic interface. External logic has 3 µs to assert
the CMDOK input after CMDSTB is asserted. When the internal legalization registers are used, the
CMDOKOUT output will be asserted two clock cycles after CMDSTB.

RT Response Times
RT response time is from the midpoint of the parity bit in the command word to the midpoint of the status
word sync (Table 4-1).

RT-to-RT timeout is from the first command word parity bit to the expected sync of the first data word.

Transceiver Loopback Delays
Core1553BRM verifies that all transmitted data words are correctly transmitted. As data is transmitted by
the transceiver on the 1553B bus, the data on the bus is monitored by the transceiver and decoded by
Core1553BRM. The core requires that the loopback delay, i.e., the time from BUSAOUTP to BUSAINP,
be less than the values given in Table 4-2.

The loopback delay is a function of the internal FPGA delay, PCB routing delays, internal transceiver
delay, and transmission effects from the 1553B bus. Additional register stages can be inserted in the
FPGA on either the 1553B data input or output, providing the loopback delays in Table 4-2 are not
violated. This is recommended if additional gating logic is inserted inside the FPGA between the core
and transceiver to minimize skew between the differential inputs and outputs.

Figure 4-15 • RT Legalization Interface

CLK

CMDSTB

CMDBUS

CMDOK

CMDOKOUT

Internal_legalization_valid_delay

Max_External_legalization_delay

Table 4-1 • RT Response Times

Spec Description At 12 MHz At 16 MHz At 20 MHz At 24 MHz

Trtresp RT response time 4.75 to 7.0 µs 4.75 to 7.0 µs 4.75 to 7.0 µs 4.75 to 7.0 µs

Trtrtto RT-to-RT timeout 57 µs 57 µs 57 µs 57 µs

Txxto Transmitter timeout 704 µs 668 µs 691 µs 693 µs

Table 4-2 • Transceiver Loopback Requirements

Clock Speed Maximum Loopback Delay

12 MHz 2.50 µs

16 MHz 2.50 µs

20 MHz 2.45 µs

24 MHz 2.40 µs

Core1553BRM v4.2 Handbook

Revision 4 38

Clock Requirements
To meet the 1553B transmission bit rate requirements, the Core1553BRM clock input must be 12, 16, 20,
or 24 MHz with a tolerance of ± 0.01%.

Metastability Synchronization
The 1553 Bus signals BUSAINP, BUSAINN, BUSBINP, BUSBINN, and remote terminal address
RTADDRIN/RTADDRINP have metastability synchronizers added.

Revision 4 39

5 – Core1553BRM Operation as a Bus Controller

Overview
Core1553BRM can either be synthesized to function as a BC only, or the entire core can be implemented
and then configured to operate only as a BC via signals MSELIN[1:0] or MSEL[1:0] (register 1, bits 9:8).
See "Register 01 – Operation and Status" on page 67.

Features
Properly configured, the core can implement a full-featured, fully-MIL-STD-1553A/B-compliant bus
controller. In addition, the core provides register compatibility with legacy 1553A/B BCs. The core is
designed to operate with little host intervention and offers a number of user-customizable features.

Multiple Message Processing
The core operates using an opcode command set to control the command block flow. In addition, the
core provides for chaining of multiple 1553 commands into major and minor frames as needed. This
ability to chain commands allows the core to perform complex tasks with little or no host intervention.

Message Scheduling
The core architecture provides for host control of message flow. For example, the core architecture
allows the core to perform periodic message transactions with multiple remote terminals.

Polling
The architecture also supports polling, allowing the host to request status word responses from selected
RTs. Polling can determine what action, if any, should be taken by the core (generate a specific interrupt,
branch to a new message frame, etc.)

Automatic Retry
The core supports automatic message retry, whether due to an error or a specific received status bit. The
core can retry sending a message up to four times per command block, on either the primary or the
alternate bus.

Control and Message Processing
When Core1553BRM operates as a BC, configuration data for the core is stored in registers, and
commands and data are stored in external memory. Details of the memory structure are discussed in this
section; the control registers are described both here and in "Registers" on page 40.

Message processing is controlled through the use of command blocks, eight-word, contiguous blocks of
memory that contain opcodes for controlling the core as well as 1553 command words and associated
data locations in memory. See "Command Blocks" on page 41 for more details.

The core will execute command blocks in a contiguous fashion as long as no “go to,” “branch,” “call,” or
“return” opcodes are used. The core reads the command block during minor frame processing (i.e., after
assertion of ACTIVE), during which it will arbitrate for control of the memory bus. After completing a read
of the command block, the core will surrender control of the bus (i.e., deassert MEMACCn) and begin the
acquisition of data words for either transmission or storage.

Core1553BRM v4.2 Handbook

Revision 4 40

For 1553 receive commands (BC transmits data), the data pointer determines the location of the data
words to be retrieved (see "Command Blocks" on page 41). The core will retrieve data words sequentially
from the address specified by the data pointer. Conversely, for a transmit command (BC receives data),
the data pointer determines the memory location for data storage. The core stores data words
sequentially starting from this memory location.

After transmission or reception, the core will begin command post-processing. The core will first arbitrate
for the memory bus and then perform a DMA burst to update the command block status. An optional
interrupt log entry is made after a command block update, during which the core modifies the control
word as required.

Configuration of the core as a BC is controlled though the use of 10 registers (out of the 33 defined in the
core architecture). The registers contain setup information, command and data locations, and status info.

Registers
The functionality of the core as well as its specific responses to 1553 events is controlled through
registers. In addition to the seven control registers common to all core implementations, Core1553BRM,
when implementing a BC, has three registers used to control its functions. Table 5-1 shows which bits of
the 10 control registers are used by the core in BC mode. See "Core1553BRM Registers" on page 64 for
detailed register usage information.

Memory Structure
The external memory space (up to 64 k words) can be sized and allocated by the user according to the
needs of the application. This memory space is needed to hold command blocks, data, and the interrupt
log list. How the memory is allocated is up to the user, within the restrictions listed.

As the number of command blocks needed for the application is known, the user can predetermine the
space required for their storage. The command blocks can be stored in contiguous memory locations for
ease of operation. However, with the use of “go to,” “branch,” “call,” or “return” opcodes, almost any
memory configuration is possible. Command blocks together are referred to as a command frame. If
branching is used, smaller collections of command blocks are referred to as minor frames. The “go to,”
“branch,” “call,” and “return” opcodes can be used to link these minor frames together for command
processing.

Table 5-1 • Register/Bit Applicability Map for Core153BRM as Bus Controller

Register
Address Name

Bit Locations

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 Control ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

01 Operation and Status ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

02 Current Command ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

03 Interrupt Mask ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

04 Pending Interrupt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

05 Interrupt Pointer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

06 Built-In Test Register ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

07 Minor Frame Timer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

08 Descriptor Pointer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 Initialization Count ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

32 Enhanced Features ✓ ✓ ✓ ✓

Core1553BRM Operation as a Bus Controller

41 Revision 4

The starting address is set by register 8, the Command Block Pointer. As the first command block is
processed, the value of register 8 is updated by the core to reflect the location of the next command
block.

Each command block contains a data pointer to indicate where data for the block is stored. It is
suggested that the data memory space be allocated to follow the command block space. Since the core
can store and fetch a specified number of data words, memory space can be allocated efficiently. In
addition, if the same data is to be sent to multiple RTs, this data need only be stored in a single memory
location. See "Command Blocks" for more details.

The Interrupt Log List is a 32-word ring buffer that contains information necessary to service interrupts.
The memory space for the Interrupt Log List must be allocated on a 32-word boundary. The starting
location for the Interrupt Log List is set by register 5, the Interrupt Pointer.

Command Blocks
As stated earlier, command blocks are eight-word, contiguous blocks of memory that contain opcodes for
controlling the core as well as 1553 command words and associated data locations in memory. Each
command word transmitted over the bus must be associated with a command block. The command
block's eight contiguous memory locations are one control word, two command words, a data pointer,
two status words, a branch address, and a timer value (Table 5-2).

Control Word
Located in the first memory location of each command block is the Control Word (Figure 5-1). A Control
Word contains the opcode, number of retries, bus definition, RT–RT instruction, condition codes, and
block access message error (BAME) necessary to complete a single 1553 command.

Bits 15:12 – Opcode
These bits specify the opcode to be used for the command block being processed. If the opcode does
not call for a 1553 function, all remaining bits of the control word are ignored. Table 5-4 on page 43 lists
available opcodes and their functions.

Table 5-2 • Command Block Architecture

Word Function

1 Control Word

2 Command Word 1

3 Command Word 2

4 Data Pointer

5 Status Word 1

6 Status Word 2

7 Branch Address

8 Timer Value

Figure 5-1 • Control Word

Control Word

CHA/B

RT-R
T

BAM
E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode Condition CodesRetry #

Core1553BRM v4.2 Handbook

Revision 4 42

Bits 11:10 – Retry # (Retry Number)
The Retry # bits specify the number of times the core will retry each command block, providing that the
opcode allows for retrying. The setting for PPEN (register 0, bit 2) will determine on which bus the retry
will occur. The settings are shown in Table 5-3.

Bit 9 – CHA/B (Channel A/B)
Setting this bit HIGH selects bus A as the primary bus for 1553 transmissions. LOW selects bus B.

Bit 8 – RT–RT (RT-to-RT Transfer)
The RT–RT bit defines whether the current command block involves an RT-to-RT transfer and should
therefore transmit Command Word 2. This bit is active high.

Note: The core will store all data associated with an RT-to-RT transfer.

Bit 7 – Condition Code 7
The Message Error condition will be met if the core detects an error in the response from the RT or if
there is no response after the message timeout period has expired.

Bit 6 – Condition Code 6
This condition is met if the core receives a Status Word response from the RT with the Message Error bit
set (bit 9 in 1553A mode).

Bit 5 – Condition Code 5
This condition is met if the core receives a Status Word response from the RT with the Busy bit set (bit 16
in 1553A mode).

Bit 4 – Condition Code 4
This condition is met if the core receives a Status Word response from the RT with the Terminal Flag bit
set (bit 19 in 1553A mode).

Bit 3 – Condition Code 3
This condition is met if the core receives a Status Word response from the RT with the Subsystem Fail bit
set (bit 17 in 1553A mode).

Bit 2 – Condition Code 2
This condition is met if the core receives a Status Word response from the RT with the Instrumentation bit
set (bit 10 in 1553A mode).

Bit 1 – Condition Code 1
This condition is met if the core receives a Status Word response from the RT with the Service Request
bit set (bit 11 in 1553A mode).

Table 5-3 • Bits 11:10 Retry Settings

No. of Retries Bit 11 Bit 10

1 0 1

2 1 0

3 1 1

4 0 0

Core1553BRM Operation as a Bus Controller

43 Revision 4

Bit 0 – BAME
When BAME is HIGH, this indicates that a protocol message error occurred in the RT response. The
CPU should reset this bit when writing the control word into memory.

Table 5-4 • Opcodes

Opcode Name

1553
Command
Processing Function

0000 End of List Instructs the core that the last command block has been
encountered. Command processing stops and the EOL
interrupt (register 4, bit 5) is generated if enabled.

0001 Skip Instructs the core to load the message-to-message timer with
the value stored in Timer Value (command block, word 8). The
value sets the length of time the core will wait before
proceeding to the next command block.

0010 Go To Instructs the core to branch to the command block starting at
the address located in Branch Address (command block,
word 7). The GOTO instruction also supports asynchronous
operation when enhanced functions are enabled (see "Bus
Controller GOTO Enhancements" on page 80).

0011 BIT Core1553BRM does not implement built-in self-test. This
command will clear any error conditions set in the BIT word
(register 6), and the core will jump to the next command
block.

0100 Execute Block –
Continue

✓ Instructs the core to execute the current command block and
proceed to the next upon completion.

0101 Execute Block –
Branch

✓ Instructs the core to execute the current command block and
branch unconditionally to the command block starting at the
address located in Branch Address (command block, word 7).

0110 Execute Block –
Branch on Condition

✓ Instructs the core to execute the current command block and
to branch to the command block starting at the address
located in Branch Address (command block, word 7) if the
conditions listed in bits 7:1 of the Control Word are met. If the
condition is not met, this opcode will function as opcode 0100.

0111 Retry on Condition ✓ Instructs the core to retry a message the number of times
indicated in bits 11:10 of the Control Word if the conditions in
bits 7:1 are met. If the conditions are not met, this opcode will
function as opcode 0100.

1000 Retry on Condition –
Branch

✓ Instructs the core to retry a message the number of times
indicated in bits 11:10 of the Control Word if the conditions in
bits 7:1 are met. Once the specified number of retries has
been executed, the core branches to the command block
starting at the address located in Branch Address (command
block, word 7). If the condition is not met, this opcode will
function as opcode 0100.

1001 Retry on Condition –
Branch if All Retries Fail

✓ Instructs the core to retry a message the number of times
indicated in bits 11:10 of the Control Word if the conditions in
bits 7:1 are met. If all message retries fail, the core branches
to the command block starting at the address located in
Branch Address (command block, word 7). If these conditions
are not met, this opcode will function as opcode 0100.

Core1553BRM v4.2 Handbook

Revision 4 44

Command Words
Located in the second and third memory locations of each command block are 1553 command words.
For most 1553 messages, only the first command word is needed. During RT-to-RT transfers, the first
command word is the receive command and the second is the transmit command.

Data Pointer
Located in the fourth memory location of each command block is the data pointer, indicating the first
location in memory where data associated with the command word(s) is to be stored or fetched from.

Status Word
Command block words 5 and 6 are for 1553 status word storage. The core will store the RT’s responding
status after a 1553 command. For an RT-to-RT transfer, the status word from the transmitting RT will be
stored in word 5, and the status word from the receiving RT will be stored in word 6.

Branch Address
Word 7 of the command block contains the starting address of the command block that is the destination
of a branch opcode.

Timer Value
This word of the command block contains the value for setting one of two timers: either the minor frame
timer (opcode 1110) or the message-to-message timer (opcode 0001).

Note: The minor frame timer can be driven either from the TCLK pin or an internal 15.625 kHz clock. The
message-to-message timer is clocked by the core clock input (12, 16, 20, or 24 MHz).

1010 Interrupt – Continue Instructs the core to generate an interrupt and continue with
the next command block.

1011 Call Instructs the core to branch to the command block starting at
the address located in Branch Address (command block,
word 7). The core stores the address of the next command
block for use by opcode 1100. The CALL instruction also
supports asynchronous operation when enhanced functions
are enabled (see "Bus Controller GOTO Enhancements" on
page 80).

1100 Return to Call Instructs the core to return the command block at the address
stored by opcode 1011.

1101 Reserved The core will generate an Illegal Opcode interrupt (register 4,
bit 3), if enabled, and terminate execution.

1110 Load Minor Frame Timer Instructs the core to load the minor frame timer with the value
stored in Timer Value (Control Block, word 8). The core will
load the time when the previously set timer value is
decremented to zero. Once the timer has been loaded, the
core will process the next command block.

1111 Return to Branch Instructs the core to return to the command block at the
address saved during opcodes 0101 or 0110.

Table 5-4 • Opcodes (continued)

Opcode Name

1553
Command
Processing Function

Core1553BRM Operation as a Bus Controller

45 Revision 4

MIL-STD-1553A Operation
Core1553BRM can be configured to operate compliant with MIL-STD-1553A. Taking input signal
ABSTDIN HIGH configures the core for MIL-STD-1553A-compliant operation (taking this signal LOW
actives MIL-STD-1553B mode). An alternate method for configuring the core is to use bit 7, A/B STD
(1553A or 1553B Support). When configured for MIL-STD-1553A BC operation, the core will do the
following:

• Expect a response from the RT within 9 µs after a message is sent

• Define all mode codes without data

• Define subaddress 00000b as a valid mode code

Revision 4 46

6 – Core1553BRM Operation as a Remote
Terminal

Overview
Core1553BRM can either be synthesized to function as a remote terminal only, or the entire core can be
implemented and then configured to operate only as an RT via signals MSELIN[1:0] or MSEL[1:0]
(register 1, bits 9:8). See "Register 01 – Operation and Status" on page 67.

Features

Indexing
The core, when configured as an RT, can support bulk data transfer, buffering up to 256 messages per
subaddress. Once a specified number of messages has been received, the core can signal the host
subsystem via an interrupt.

Buffer Ping Pong
The core supports the use of dual buffers per subaddress for data processing. This allows the core to
process messages using the primary buffer while the host or subsystem can access the secondary buffer
to store new data for transmission or process previously received data. The core will switch back and
forth (ping pong) between the two buffers when a message is received or transmitted.

Circular Buffers
To simplify the software servicing of the RTs during periodic or bulk data transfers, the core supports the
use of circular buffers. The user can select between two circular buffer modes at start-up or rely on the
default operation.

Broadcast
The core architecture allows the user to choose whether or not data received from broadcast commands
is to be segregated from data received from non-broadcast commands.

Interrupt History
The core architecture supports a programmable interrupt structure that can store up to 16 interrupts, and
the subaddress or command block that generated each interrupt, in a 32-word buffer before servicing.

Message Information
Along with message data words, the core also writes a Message Information Word (MIW) and Time Tag
for each processed message. The MIW contains information on the type of message transacted, the
word count, and any message errors.

Core1553BRM Operation as a Remote Terminal

47 Revision 4

Control and Message Processing
When Core1553BRM is configured as an RT, its configuration data is stored in registers, and commands
and data are stored in external memory. Details of the memory structure are discussed in this section; the
control registers are described both here and in "Registers" on page 48.

Control
Control of the core operating as an RT is accomplished through the use of control words stored in
descriptor blocks, and mode codes and subaddresses sent in 1553 messages. Control word information
allows the core to generate interrupts, buffer messages, and control message processing. Moreover, the
descriptor block contains pointers to data buffers where mode codes and subaddresses to be used by
the host or subsystem in further message processing are stored.

For receive commands, the core processes each incoming message for correct format, word count, and
contiguous data. If a message error is detected, the core will stop processing the remainder of the
message, suppress status word transmission, and set the message error bit (ME, bit 9) of the status
word. The core will track the message until the end of the message is detected.

During RT-to-RT transfers, the core will ensure that the terminal address in the incoming status message
matches that of the transmitting RT as specified in the command word. The core will set the message
error bit in the MIW and prevent transmission of the status word in the case of a mismatch.

Core Interface
The core communicates with the 1553 bus through dual Manchester II encoders/decoders. These
encoders/decoders electrically interface with the bus via 1553 bus transceivers. The core receives all
message traffic from the bus via either the primary or secondary decoder. Each decoder checks the
incoming signal for the proper sync pulse and Manchester waveform, edge skew, number of bits, and
parity.

During transmission, the encoded (transmitted) word is repeated back through the core's decoder
(loopback). This allows the core to constantly monitor transmissions for possible encoder errors. Should
the encoder word and reflected word not match, the WRAPF bit (register 6, bit 14) is set and INTOUTH is
generated (if enabled).

In addition to the loopback compare test, the core will terminate a transmission greater than 800 µs by
the assertion of Fail-Safe Timer (TIMERONAn or TIMERONBn). This timer is reset upon receipt of
another command.

Remote Terminal Address
When the core is operating as an RT, the terminal address can be set one of two ways: via input signals
RTADDRIN[4:0] and RTADDRPIN or through the Operation and Status register (register 1, bits 15:10). In
all cases, the terminal address must have odd parity, which can be achieved by correctly setting the input
signal RTADDRPIN or bit RTPTY (register 1, bit 10). If parity is not correct, the core will set TAPF
(register 1, bit 2). TAPF will be valid after the rising edge of RSTINn.

If the terminal address and parity are set from external signals, taking RSTINn LOW will latch the
address set. A new address will not be latched until RSTINn is taken HIGH for a minimum of one clock
cycle and then LOW with LOCKn set LOW. The core will check the terminal address and parity at power-
up.

If the terminal address and parity are set via register 1, bits 15:10 (with LOCKn set HIGH), the core will
load the address and check parity once the register 1 write is complete.

Note: Setting BCEN (register 0, bit 4) LOW reserves address 31 (11111b) for use as an RT address.

Core1553BRM v4.2 Handbook

Revision 4 48

Reset
The core can be reset in one of three ways:

• Input signal RSTINn

• Via the host or subsystem using SRST (register 0, bit 13)

• Through a 1553 message using Reset Remote Terminal (mode code 01000b).

Using SRST will act as a master reset of the core and will terminate current command processing. This
reset will occur immediately. The core must then be reinitialized by the host or subsystem.

If mode code Reset Remote Terminal is used, the core will partially reset after transmission of a status
word. During this reset, the encoders/decoders will be cleared, Time Tag will be reset, both busses will be
enabled, and the Terminal Flag will be enabled. The core will remain configured and continue to operate
as an RT. The CPU interface registers are not reset by the Reset Remote Terminal mode code.

Registers
The functionality of the core, as well as its specific responses to 1553 events, is controlled though
registers. In addition to the seven control registers common to all core implementations, Core1553BRM,
when implementing an RT, has 18 registers used to control its functions. Table 6-1 shows which bits of
the 18 control registers are used by the core in RT mode. See "Core1553BRM Registers" on page 64 for
detailed register usage information.

Table 6-1 • Register/Bit Applicability Map for Core1553BRM as Remote Terminal

Register
Address Name

Bit Locations

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 Control ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

01 Operation and Status ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

02 Current Command ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

03 Interrupt Mask ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

04 Pending Interrupt ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

05 Interrupt Pointer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

06 Built-In Test Register ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

07 Time Tag ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

08 Command Block Pointer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

09 Status Word ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

16–31 RT Illegalization Registers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

32 Enhanced Features ✓ ✓ ✓ ✓

Core1553BRM Operation as a Remote Terminal

49 Revision 4

Memory Structure
The host or subsystem controlling the core must allocate 512 consecutive words of memory for storing
the subaddress and mode code descriptor tables (Figure 6-1). The descriptor table is composed of
multiple descriptor blocks (each descriptor block is four words). The top of the descriptor table can be set
at any address location within the system memory. The descriptor table space is defined and initialized
by the host, with the starting address defined by the Descriptor Table Pointer (register 8).

Figure 6-1 • Remote Terminal Memory Map



 
 

 
 

 












Descriptor Blocks

Subaddress 00000b Control Word

Subaddress 00001b Data Pointer A

Data Pointer B

Broadcast Pointer

Subaddress 11110b

Subaddress 11111b MIW

Subaddress 00000b Time Tag

Subaddress 00001b Data Word 1

Data Word N

Subaddress 11110b

Subaddress 11111b

Mode Code 00000b MIW

Mode Code 00001b Time Tag

Data Word 1

Mode Code 11110b Data Word N

Mode Code 11111b

Mode Code 00000b

Mode Code 00001b MIW

Time Tag

Data Word 1

Mode Code 11110b

Mode Code 11111b Data Word N

D
es

cr
ip

to
r

T
ab

le

R
ec

ei
ve

T
ra

n
sm

it
R

ec
ei

ve
T

ra
n

sm
it

Core1553BRM v4.2 Handbook

Revision 4 50

Descriptor blocks are stored sequentially in the descriptor table space starting with the receive
subaddress descriptor blocks and followed by the transmit subaddress descriptor blocks, receive mode
code, and transmit descriptor blocks. Table 6-2 and Table 6-3 on page 54 give the starting address offset
for each descriptor block, starting from the address location specified in the Descriptor Table Pointer
register.

Descriptor Blocks
To process messages, the core accesses a descriptor block at the beginning and end of command
processing. A descriptor block is composed of four words:

• Control Word

• Data Pointer A

• Data Pointer B

• Broadcast Data Pointer

A unique descriptor block is assigned for each subaddress and mode code used for both receive and
transmit commands. Collectively, all of the descriptor blocks are referred to as the Descriptor Table. The
contents and configuration of the Descriptor Table are controlled and entered into memory by the host or
subsystem.

The Control Word contains information to allow the core to generate interrupts, buffer messages, and
control message processing.

Data pointers give the starting address where data is stored for receive commands, or read from for
transmit commands. The core will store data sequentially starting from the top of the data buffer with a
two-address location offset. This two-address offset is to allow space for the MIW (top word location) and
the Time Tag (second location).

The Broadcast Data Pointer allows for the segregation of broadcast from non-broadcast data storage.
The host or subsystem can control this feature via NII (Control Word register, bit 0). If data segregation is
not enabled, the broadcast data is stored starting at the appropriate data pointer location.

Note: Broadcast data segregation applies only to receive commands.

During command processing, the core reads the descriptor block after assertion of ACTIVE. The core
then arbitrates for the memory bus and then reads the Control Word and the three data pointers. After
reading the descriptor block, the core surrenders control of the bus (negate MEMACCn).

Next, the core starts the acquisition of data words for either transmission or storage. The core begins
command post-processing once data acquisition is complete.

During command post-processing, the core again arbitrates for the memory bus. During the descriptor
update, the core does the following:

• Modifies the Control Word index field and bits 4, 2, and 1, if required

• Updates Data Pointer A if no message errors occurred during the message transaction (the
Broadcast Data Pointer is updated if no errors occurred during broadcast message reception)

None of the data pointers will be updated if the core has ping pong mode enabled. See "Ping Pong Buffer
Operation" on page 55 for more details.

Note: An optional interrupt log entry is performed after a descriptor update.

Table 6-2 • Descriptor Block Starting Addresses

Descriptor T/R Bit Starting Address Offset

Subaddress 0 (Subaddress No. × 4) + 0

Subaddress 1 (Subaddress No. × 4) + 128

Mode Code 0 (Mode Code No. × 4) + 256

Mode Code 1 (Mode Code No. × 4) + 384

Core1553BRM Operation as a Remote Terminal

51 Revision 4

Control Word
The Control Word (Figure 6-2) is used by the core in message processing and is initialized by the host or
subsystem. The core updates the Control Word during command post-processing to provide the host or
subsystem details about the transaction.

Bits 15:8 – INDX (Index)
Received message processing: The INDX bits define the depth of the core's multiple-message buffer.
The value can range from 0 to 255. As the core does not buffer messages in ping pong mode, the setting
of INDX is invalid and should be initialized to 0. Each time a message is transacted with no errors (and
the particular mode code or subaddress has not been illegalized), the value of INDX is decremented by
1. If enabled by INTX, the core will generate an interrupt as INDX is decremented from 1 to 0.

Transmit message processing: Not used.

Bit 7 – INTX (Interrupt Equals Zero)
Received message processing: If set HIGH, the core will generate an interrupt as INDX is decremented
from 1 to 0. The interrupt will be entered into the Pending Interrupt register (register 4) if not masked. The
output signal INTOUTM will be taken HIGH after message processing.

Transmit message processing: Not used.

Bit 6 – IWA (Interrupt when Accessed)
Setting this bit enables an interrupt when the core receives a valid subaddress or mode code command.
The interrupt will be entered into the Pending Interrupt register (register 4) if not masked. The output
signal INTOUTM will be taken HIGH after message processing.

Bit 5 – IBRD (Interrupt Broadcast Received)
Setting this bit enables an interrupt when the core receives a valid subaddress or mode code broadcast
command. The interrupt will be entered into the Pending Interrupt register (register 4) if not masked. The
output signal INTOUTM will be taken HIGH after message processing.

Bit 4 – BAC (Block Accessed)
The core will set BAC at the end of message processing to indicate processing status to the host or
subsystem. The host or subsystem must initialize this bit to 0.

Bit 3 – LA/B (Last A or B Buffer)
In enhanced mode, indicates which buffer was last used (see "Bus Controller GOTO Enhancements" on
page 80).

Bit 2 – A/B (A or B Buffer)
If buffer ping pong is enabled, the host can set this bit to indicate which buffer is the primary; otherwise,
A/B is not used. A logic 1 designates buffer A as the primary; logic 0 designates buffer B.

Bit 1 – BRD (Broadcast)
The core sets this bit to indicate reception of a valid broadcast command.

Bit 0 – NII (Notice II)
Received message processing: If set HIGH, NII enables data segregation of broadcast and non-
broadcast data by enabling the use of a Broadcast Data Pointer. If set LOW, broadcast data is stored
using Data Pointer A.

Transmit message processing: Not used.

Figure 6-2 • Descriptor Block Control Words

Descriptor Block Control Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IN
TX

IW
A

IB
RD

BAC
LA

/B
A/B BRD

NIIINDX

Core1553BRM v4.2 Handbook

Revision 4 52

Data Pointer A and B
Both data pointers A and B (Figure 6-3) contain the starting address for the storage or retrieval of
message data words. At the top of each data buffer is the message information word and the Time Tag.
Actual data words are stored sequentially after the MIW and Time Tag. The data pointers point to the
location of the MIW and not to where the data words are stored.

In index mode, Data Pointer A is read by the core and used to initialize an internal counter that is
incremented after the receipt of each new data word. During post-processing, the core will update Data
Pointer A to the next MIW until the Control Word index decrements to 0.

In non-index mode, the core sequentially stores or retrieves data words starting at the Data Pointer A
address plus a two-location offset. Data Pointer A is never updated during post-processing. Non-index
mode can also be used with ping pong buffer mode, where data is stored or retrieved alternately from
Data Buffer A or B (indicated by Data Pointer A and B, respectively).

Bits 15:0 – DP[15:0] (Data Pointer)
These bits contain the starting address of either Data Buffer A or B, depending on its location in the
descriptor block.

Broadcast Data Pointer
If broadcast data segregation is selected (NII set HIGH), the broadcast data pointer operation
(Figure 6-3) is identical to that of either Data Pointer A or B.

Note: When a broadcast command is followed by a Transmit Last command or Transmit Status Word
mode code, the core will transmit a status word with bit 15 of the status word (Broadcast Command
Received) set to a logic 1. The Broadcast Command Received bit is cleared by reception of the
next valid non-broadcast command.

Bits 15:0 – BP[15:0] (Broadcast Data Pointer)
These bits contain the starting address of the Broadcast Data Buffer, if broadcast data segregation has
been enabled.

Data Buffer Structure
Each data buffer, whether data buffer A, B, or broadcast data, is composed of three parts. In the first
address location is the MIW. In the second address location is the Time Tag. Up to 32 data words are
located in the third and higher locations, consecutively. Each buffer can be located anywhere in memory,
but the MIW, Time Tag, and data words must be in consecutive locations. In case of an error condition, all
data words in the buffer are considered invalid.

Figure 6-3 • Data Pointer A or B

Data Pointer A or B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DP15
DP14

DP13
DP12

DP11
DP10

DP9
DP8

DP7
DP6

DP5
DP4

DP3
DP2

DP1
DP0

Figure 6-4 • Broadcast Data Pointer

Broadcast Data Pointer

BP15
BP14

BP13
BP12

BP11
BP10

BP9
BP8

BP7
BP6

BP5
BP4

BP3
BP2

BP1
BP0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Core1553BRM Operation as a Remote Terminal

53 Revision 4

Note: All data pointers have the address for the location of the MIW of that buffer (i.e., a data pointer
indicates the location of the MIW, not the data words).

Message Information Word
The MIW (Figure 6-5) contains information on the received or transmitted command: word count, mode
codes, status info, and any error conditions.

Bits 15:11 – WC/MC[4:0] (Word Count / Mode Code)
For subaddresses, WC contains the word count of the received or transmitted command. For mode
codes, MC contains the receive or transmit mode code. In both cases, this info comes from bits 15:10 of
the 1553 command word.

Bit 10
Not used.

Bit 9 – CHA/B (Bus A or B)
CHA/B set HIGH indicates that the message was received on bus A; LOW indicates bus B.

Bit 8 – RTRT (RT-to-RT Transfer)
Receive only: RTRT set HIGH indicates that the command processed is an RT-to-RT transfer.

Bit 7 – ME (Message Error)
This bit set HIGH indicates that an error condition was encounter during processing. Bits 4:0 give details
of the error.

Bit 6
Not used.

Bit 5 – BC (Broadcast)
Bit 5 is broadcast in enhanced mode.

Bit 4 – ILL (Illegal Command)
ILL set indicates that the error was an illegal received command.

Bit 3 – TO (Timeout)
Receive only: This bit set indicates that the number of words received was less than that specified by the
word count or mode code.

Bit 2 – OVR (Overrun)
OVR set indicates that the core received either too many words or a data word when none was expected
(e.g., a data word with a transmit command).

Bit 1 – PRTY (Parity)
Receive only: PRTY set indicates that the core encountered a parity error in the received data words.

Bit 0 – MAN (Manchester)
Receive only: This bit set HIGH indicates that the core encountered a Manchester decoding error in the
received data words.

Figure 6-5 • Message Information Word

Message Information Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W
C/M

C4

W
C/M

C3

W
C/M

C2

W
C/M

C1

W
C/M

C0

N/A
CHA/B

RTRT
M

E
N/A BC IL

L
TO

OVR
PRTY

M
AN

Core1553BRM v4.2 Handbook

Revision 4 54

Time Tag
The Time Tag field is set to the value of the internal timer (register 7) when the 1553 command word has
been received and validated.

Mode Codes
Mode codes allow the BC to communicate commands to the RT. Mode codes may or may not have an
associated data word (mode codes for MIL-STD-1553A are defined without a data word).

For all mode codes, the command word is stored within the RT protocol controller and can be accessed
via register 2 (except mode code 10010b, Transmit Last Command), and a status word is transmitted.
Table 6-3 lists all the mode codes available for use with Core1553BRM. All mode codes can be legalized
or illegalized using the RT legalization registers (registers 16 to 31).

Table 6-3 • Mode Codes

Mode Code Function
T/R
Bit

Data Word
Stored

Data Word
Transmitted Additional Operation

00000:01111 Undefined (without data) 0

10000 Undefined (with data) 0 ✓

10001 Synchronize (with data) 0 ✓ Time Tag counter load with
data word value

10010:10011 Undefined 0 ✓

10100 Selected Transmitter Shutdown 0 ✓

10101 Override Selected Transmitter
Shutdown

0 ✓

10110:11111 Reserved 0 ✓

00000 Dynamic Bus Control 1 Dynamic Bus Acceptance bit
set in outgoing status word if
enabled in the Control
Register

00001 Synchronize 1 Time Tag counter reset to
zero

00010 Transmit Status Word 1 Status word cleared after
master reset; core updates
status word if illegalized.

00011 Initiate Self-Test 1 This mode code is ignored
by Core1553BRM.

00100 Transmitter Shutdown 1 Alternate bus disabled

00101 Override Transmitter Shutdown 1 Alternate bus disabled (if
enabled in Control register);
Reset Remote Terminal
mode code clears the
transmitter shutdown.

00110 Inhibit Terminal Flag Bit 1 Terminal flag bit set to zero
and assertion disabled

00111 Override Inhibit Terminal Flag Bit 1 Terminal flag bit enabled for
assertion

01000 Reset Remote Terminal 1 Core reset

Core1553BRM Operation as a Remote Terminal

55 Revision 4

Data Buffer Operation
As stated earlier, at the top of each data buffer is the MIW and the Time Tag. Actual data words are
normally stored sequentially after the MIW and Time Tag. There are several possible schemes for data
buffering when the core is operating in RT, indexed, ping pong, or circular mode.

Indexed
In indexed mode, received data is written to the buffer sequentially. Data Pointer A sets the start of the
buffer. The MIW, Time Tag, and data words are written sequentially into memory. At the end of every
received message, Data Pointer A is updated to point to the next memory location, and the INDX value in
the subaddress Control Word is decremented. When the INDX field transitions from 1 to 0, an interrupt is
generated. Thus, the host must allocate the correct amount of memory and set the initial INDX value
correctly. If the INDX value is set to 10, at least 340 words of memory should be allocated (each
message can contain an MIW, Time Tag, and 32 data words)

When in indexed mode, transmit data is always transmitted from the location pointed to by Data Buffer A
plus two. The first two locations contain the MIW and Time Tag values.

Ping Pong Buffer Operation
The core architecture supports a dual-buffer operating mode. The core can process messages using the
primary buffer while the host or subsystem can use the secondary buffer to store new data for
transmission or process previously received data. The core will switch back and forth (ping pong)
between the two buffers on a message-by-message basis.

The core will determine the active buffer at the beginning of each message processed. At the end of
processing each message, the core will select the alternate buffer on the next message.

For the host or subsystem to effectively use the double-buffering scheme, care needs to be taken that the
host or subsystem does not try to access the active buffer currently in use by the core. The host or
subsystem can prevent a collision condition by temporarily restricting the core to a single buffer while the
host accesses the secondary buffer.

01001:01111 Reserved 1

10000 Transmit Vector Word 1 ✓ Service Request bit in status
word set; SRQ (register 9, bit
8) is cleared.

10001 Reserved 1 ✓

10010 Transmit Last Command 1 ✓ Command word not stored;
last command word
transmitted; transmitted data
word is zero after reset.

The core will store this mode
code if legalized and will
update the status word.

10011 Transmit BIT Word 1 ✓ ✓ The core will transmit the
Core1553BRM BIT word
(register 6).

10100:10101 Undefined (with data) 1 ✓

10110:11111 Reserved 1 ✓

Table 6-3 • Mode Codes (continued)

Mode Code Function
T/R
Bit

Data Word
Stored

Data Word
Transmitted Additional Operation

Core1553BRM v4.2 Handbook

Revision 4 56

To properly implement buffer servicing while the core is using the ping pong buffering scheme, the host
or subsystem needs to do the following:

• Disable the ping pong mode by setting PPEN (register 00, bit 2) LOW

• Verify that ping pong mode has been disabled by querying bit 9, MSGTO (Message Timeout)

• Determine the active buffer by querying bit 2, A/B (A or B buffer), of the current descriptor Control
Word

• Service the secondary buffer

• Re-enable ping pong mode (setting PPEN HIGH)

• Verify that ping pong mode has been enabled by querying MSGTO

Circular Buffer Operation
To conserve memory, the user has the option of using circular buffers for data storage and retrieval.
There are two modes of circular buffer operation, Mode 1 and Mode 2. Mode 1 uses the same structure
for data storage as indexed, non-indexed, and ping pong operation, i.e., MIW, Time Tag, and data words
are stored in a single buffer. Mode 2 segregates the MIW and Time Tag info into a Message Information
Buffer (MIB) and data into a separate data buffer.

Note: Both modes use a custom version of the descriptor block. In addition, ping pong mode is disabled
when using circular buffers; bit 2, PPEN (Ping Pong Enable), is ignored.

Mode 1 – Combined Storage
Mode 1 uses the default data buffer structure, i.e., MIW, Time Tag, and data words stored sequentially.
However, the descriptor block and Control Word format are altered. The Mode 1 descriptor block's four
parts are as follows:

• Control Word

• Buffer Top Address

• Current Address Pointer

• Buffer Bottom Address

The Mode 1 control word is identical to the default Control Word, except that bits 15:8, 2, and 0 (INDX,
A/B, and NII) are not used.

The Buffer Top Address is used to define the starting address for the top of the circular buffer, and the
Buffer Bottom Address is used to define the bottom of the circular buffer.

The Current Address Pointer is initially set equal to the Buffer Top Address. This pointer indicates the
starting address (plus two address locations) for data storage and retrieval. After message processing,
the core will write the MIW and Time Tag into the two reserved word spaces above the data words and
update the value of the Current Address Pointer to the next available data space. If the Current Address
Pointer is greater than the Buffer Bottom Address, it is reset to equal the Buffer Top Address.

Note: If the Current Address Pointer will result in data storage beyond the Buffer Bottom Address, the
core will read or write the data beyond the Buffer Bottom Address. This condition needs to be
anticipated in allocating the system memory.

The core will generate buffer empty and full flags. When the core reaches the end of the buffer, the core
will set bit 7, INTX (Interrupt Enable). When the core starts a new message at the top of the buffer, the
core will set bit 8, IXEQ0 (Index Equal Zero Interrupt). Either of these interrupts will be accompanied by
the output signal INTOUTH going HIGH.

The core generates a circular buffer empty/full interrupt when the buffer reaches the end (i.e., CA16
greater than BA16) and begins a new message at the top of the buffer. Bit 8 of the Mask register and bit
7 of the Descriptor Control Word mask enable the generation of the full/empty interrupt. On the
occurrence of either interrupt, the INTOUTH output asserts.

Core1553BRM Operation as a Remote Terminal

57 Revision 4

Mode 2 – Segregated Storage
In Mode 2 operation, message information (MIW and Time Tag) are stored in a MIB separate from the
associated data words. Similar to Mode 1, the descriptor block and Control Word format are altered. The
Mode 2 descriptor block’s four parts are as follows:

• Control Word

• Buffer Top Address

• Current Data Address Pointer

• MIB Base Address and Pointer

The Mode 1 Control Word is identical to the default Control Word, except that bits 15:8 define the MIB
length (maximum value is 256) and bits 2 and 0 (A/B and NII) are not used. This allows up to 128 MIW
and Time Tag pairs to be stored.

Current Data Address Pointer
The Current Data Address Pointer is initially set equal to the Buffer Top Address. This pointer indicates
the starting address (no two-address offset) for data storage and retrieval. After message processing, the
core will write the MIW and Time Tag into the MIB and update the value of the Current Data Address
Pointer to the next available data space. When the MIB is full, the Current Data Address Pointer is reset
to equal the Buffer Top Address (i.e., the data buffer size must be large enough to contain the data from
the number of messages allocated to the MIB; it does not have a fixed size).

The MIB Base Address and Pointer
The MIB Base Address and Pointer word defines the base address for the MIB as well as the MIB
Current Data Address Pointer (offset) for message information storage. The most significant bits define
the base address, and the least significant, the current address pointer. Since the length of the MIB can
vary, so can the number of bits used to define both the Base Address and Current Data Address Pointer
(Table 6-4 on page 57).

Note: The Current Data Address Pointer must be set on even word boundaries.

Note: The host or subsystem can determine the number of messages processed by querying the MIB
Current Data Address Pointer.

After message processing, the core will write the MIW and Time Tag into the MIB and update the value of
the MIB Current Data Address Pointer to the next available message space. Once the MIB pointer is
equal to the MIB length, the core will reset the pointer to zero and set the Current Data Address Pointer
equal to the Buffer Start Address.

Table 6-4 • MIB Base Address and Pointer Format

Length of MIB Buffer Control Word Bits 15:8

MIB Base Address and Pointer Word

Base Address Bits MIB Pointer Bits

1 01h Bits 15:1 Bit 0

2 03h Bits 15:2 Bits 1:0

4 07h Bits 15:3 Bits 2:0

8 0Fh Bits 15:4 Bits 3:0

16 1Fh Bits 15:5 Bits 4:0

32 3Fh Bits 15:6 Bits 5:0

64 7Fh Bits 15:7 Bits 6:0

128 FFh Bits 15:8 Bits 7:0

Core1553BRM v4.2 Handbook

Revision 4 58

Flags
Similar to Mode 1, the core will generate buffer empty and full flags. When the core reaches the end of
the buffer, the core will, if enabled, generate the IXEQ0 interrupt.

MIL-STD-1553A Operation
Core1553BRM can be configured to operate compliant with MIL-STD-1553A. Taking input signal ABSTD
HIGH configures the core for MIL-STD-1553A-compliant operation (taking this signal LOW activates MIL-
STD-1553B mode). An alternate method for configuring the core is to use bit 7, A/B STD (1553A or
1553B support).

In addition, setting XMTSW (register 0, bit 0) will enable the core to execute the Transmit Status Word
mode code when in MIL-STD-1553A mode.

When configured for MIL-STD-1553A BC operation, the core will do the following:

• Respond with a status word within 7 µs

• Define all mode codes without data

• Ignore the T/R bit setting

• Define subaddress 00000b as a valid mode code—Dynamic Bus Control

• Allow broadcast of all mode codes (except Dynamic Bus Control and Transmit Status Word, if
enabled)

When the core is configured for MIL-STD-1553A BC operation, note the following:

• All mode codes use mode code transmit control and information words.

• Only status bits ME and TF are defined; the rest are programmable.

• Both receive and transmits versions of the same mode code need to be legalized.

• The user needs to correctly program the legalization registers for MIL-STD-1553A operation.
These registers are initialized for MIL-STD-1553B operation as defined in the datasheet.

Revision 4 59

7 – Core1553BRM Operation as a Bus Monitor

Overview
Core1553BRM can either be synthesized to function as a BM only, or the entire core can be implemented
and then configured to operate only as a BM via signals MSELIN[1:0] or MSEL[1:0] (register 1, bits 9:8).
See "Register 01 – Operation and Status" on page 67.

Features

Message Information
For every message transacted on the bus, the BM will store a message information word containing
general message info and any error codes. (This MIW has a different format than the RT MIW.)

Combined RT/BM Operation
The core can be configured to operate as both an RT and a BM, allowing the core to communicate on
and monitor the bus. In this configuration, the BM cannot monitor its own transactions as an RT.

Control and Message Processing
When configured as a BM, Core1553BRM configuration data is stored in registers, and commands and
data are stored in external memory. Details of the memory structure are discussed later; the control
registers are described both here and in "Registers" on page 60.

As 1553 messages are pulled from the bus, the BM stores the information (command, status, and data
locations) in monitor blocks, eight-word locations in memory. Associated data words are also stored in
memory. During processing, the core generates a message information word that can give the host
detailed information on each message received. The monitor block and data format is similar to the
formats used by the bus controller, so it is very simple for the core to switch from BM to BC and then
retransmit the messages.

The BM can be configured to monitor-specific terminal addresses. Terminal addresses the BM should
monitor are set via registers 14 and 15 (monitor filters A and B).

If the core detects an error in the command word, data word, or RT status, the associated data will not be
stored, and the MIW will be updated to reflect the error condition.

If the core is configured to operate as a combined RT/BM, the BM can monitor traffic for a specified
terminal address, but not for its own terminal address. Moreover, RT activity takes priority over BM
activity. For example, if a message destined for the RT is detected, all BM processing will cease (even
mid-message) until the RT has completed message processing. For an RT-to-RT transfer that involves
the terminal address of the RT/BM, the RT will process the entire message regardless of which terminal
address on the bus has been issued the command first.

Core1553BRM v4.2 Handbook

Revision 4 60

Registers
The functionality of the core as well as its specific responses to 1553 events is controlled through
registers. In addition to the seven control registers common to all core implementations, Core1553BRM,
when implementing a BM, has seven additional registers used to control its functions. Table 7-1 shows
which bits of the 14 control registers are used by the core in BM mode. See "Core1553BRM Registers"
on page 64 for detailed register usage information.

Memory Structure
The external memory space (up to 64 k words) can be sized and allocated by the user according to the
needs of the application. This memory space is needed to hold monitor blocks, data, and the Interrupt
Log List. How the memory is allocated is up to the user.

As the number of monitor blocks needed for the application is known (set by register 13, Monitor Block
Count), the user can predetermine the space required for their storage. The monitor blocks can be stored
in contiguous memory locations for ease of operation.

The starting address is set by register 11, Monitor Command Pointer. As monitor blocks are stored, the
value of Monitor Block Count is decremented to 0 to the end of the memory space allocated. When the
next monitor block is to be stored, the counter is reset to the initial value and the incoming monitor block
is stored in the top location, and the cycle continues.

Each monitor block contains a data pointer to indicate where data for that block is to be stored. Data
storage for all monitor blocks starts at the location defined by register 12, Monitor Data Pointer. See
"Monitor Blocks" on page 61 for more details.

The Interrupt Log List is a 32-word ring buffer that contains information necessary to service interrupts.
The memory space for the Interrupt Log List must be allocated on a 32-word boundary. The starting
location for the Interrupt Log List is set by register 5, Interrupt Pointer (see "Interrupts" on page 79 for
more details).

Table 7-1 • Register/Bit Applicability Map for Core1553BRM as Bus Monitor

Register
Address Name

Bit Locations

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 Control ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

01 Operation and Status ✓ ✓ ✓ ✓ ✓ ✓ ✓

02 Current Command ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

03 Interrupt Mask ✓ ✓ ✓ ✓

04 Pending Interrupt ✓ ✓ ✓ ✓

05 Interrupt Pointer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

06 Built-In Test Register ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

07 Time Tag ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

11 Monitor Block Pointer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

12 Monitor Data Pointer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

13 Monitor Block Counter ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

14 Monitor Filter A ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

15 Monitor Filter B ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

32 Enhanced Features ✓ ✓

Core1553BRM Operation as a Bus Monitor

61 Revision 4

Monitor Blocks
As the BM receives each 1553 message for a terminal address to be monitored, information regarding
the message is stored in a monitor block (similar in structure to a command block), an eight-word
contiguous block. The monitor block's eight contiguous memory locations are one MIW, two command
word locations, a data pointer, two status word locations, and a Time Tag. The last location is not used
(Table 7-2).

Message Information Word
Location one of a monitor block contains the MIW (Figure 7-1), which holds information about the type of
message stored and any errors. For RT-to-RT transfers, the MIW applies to the complete message.

Bits 15:11 – Opcode
Since the BM must be able to function as a BC, these bits are set to the Execute and Continue opcode
(0100b).

Bits 11:10 – Retry # (Retry Number)
Again, since the BM must be able to function as a BC, the Retry # bits are set to 00b.

Bit 9 – CHA/B (Channel A/B)
Setting this bit HIGH indicates that the message was received on bus A; LOW indicates bus B.

Bit 8 – RT–RT (RT-RT Transfer)
The RT–RT bit indicates whether the current message involves an RT-to-RT transfer. This bit will be set if
the BM is configured to monitor the receive or transmit terminal address.

Bit 7 – ME (Message Error)
This bit set HIGH indicates that an error condition was encountered during processing. Bits 6:0 give
details of the error.

Bit 6 – MCwD (Mode Code without Data)
This bit will be set HIGH to indicate that the core has processed a mode code without an associated data
word.

Table 7-2 • Monitor Block Structure

Word Function

1 Message Information Word

2 Command Word 1

3 Command Word 2

4 Data Pointer

5 Status Word 1

6 Status Word 2

7 Time Tag

8 Not Used

Figure 7-1 • Message Information Word

Message Information Word

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Opcode Retry #
CHA/B

RT-R
T

M
E

M
CwD

BRD
N/A TO

OVR
PRTY

M
AN

Core1553BRM v4.2 Handbook

Revision 4 62

Bit 5 – BRD (Broadcast)
This bit will be set HIGH to indicate that the core has processed a broadcast message.

Bit 4
Reserved.

Bit 3 – TO (Timeout)
This bit set indicates that the number of words monitored was less than that specified by the word count
or mode code.

Bit 2 – OVR (Overrun)
OVR set indicates that the core received either too many words or a data word when none was expected
(e.g., a data word with a transmit command).

Bit 1 – PRTY (Parity)
PRTY set indicates that the core encountered a parity error in the monitored data words.

Bit 0 – MAN (Manchester)
This bit set HIGH indicates that the core encountered a Manchester decoding error in the monitored data
or status words.

Command Words
Located in the second and third memory locations of each monitor block are 1553 Command Words. For
most 1553 messages, only the first Command Word contains data. During RT-to-RT transfers, the first
Command Word is the Receive command and the second is the Transmit command.

Data Pointer
Located in the fourth memory location of each monitor block is the Data Pointer, indicating the first
location in memory where data associated with the Command Word(s) is to be stored. Data is stored
contiguously from the Data Pointer location. For RT-to-RT transfers, the pointer is used to store
transmitted data.

Status Words
Monitor block words 5 and 6 are for 1553 status word storage. The core will store the RT’s responding
status after a 1553 command. For an RT-to-RT transfer, the status word from the transmitting RT will be
stored in word 5, and the status word from the receiving RT will be stored in word 6.

Time Tag
Word 7 of the monitor block contains the Time Tag for the stored message. The value contains the value
of the internal timer (register 7) when the command word is received and validated. It is stored at the end
of message processing.

Note: Word 8 of the Monitor Block is not used.

Core1553BRM Operation as a Bus Monitor

63 Revision 4

MIL-STD-1553A Operation
Core1553BRM can be configured to operate compliant with MIL-STD-1553A. Taking input signal ABSTD
HIGH configures the core for MIL-STD-1553A-compliant operation (taking this signal LOW activates MIL-
STD-1553B mode). An alternate method for configuring the core is to use bit 7, A/B STD (1553A or
1553B support). When configured for MIL-STD-1553A BM operation, the core will do the following:

• Expect a response from the RT within 9 µs after a message is sent

• Define all mode codes without data

• Define subaddress 00000b as a valid mode code

Revision 4 64

8 – Core1553BRM Registers

Regardless of whether Core1553BRM is used to implement a BC, RT, BM, or combination of the three,
functionality of the core is controlled via register configuration. The CPU interface to the core allows the
system CPU to read and write all the control registers. The CPU can directly access the memory
connected to the backend interface as well.

The core includes thirty-three 16-bit registers. Of the 33 registers, 17 are used for control functions and
16 for RT command illegalization. Use of the RT command illegalization registers is optional and can be
omitted from the core implementation, thus reducing the required logic. Table 8-1 details each of these
33 registers as well as their applicability.

At reset, all registers are set to value 0000h, except those registers directly controlled via input signals to
the core.

Of the 17 control registers shown in Table 8-1, eight have identical functions in all three core
implementations: register addresses 00 through 06 and address 32. These common registers are
described below. The remaining registers are covered under the BC, RT, and BM detailed
implementation register sections (BC: "Bus Controller–Specific Registers" on page 73, RT: "Remote
Terminal–Specific Registers" on page 74, BM: "Bus Monitor–Specific Registers" on page 77).

Table 8-1 • Core1553BRM Registers

Register
Address Name

Applicability

RT BC BM

00 Control ✓ ✓ ✓

01 Operation and Status ✓ ✓ ✓

02 Current Command ✓ ✓ ✓

03 Interrupt Mask ✓ ✓ ✓

04 Pending Interrupt ✓ ✓ ✓

05 Interrupt Pointer ✓ ✓ ✓

06 Built-In Test register ✓ ✓ ✓

07 Time Tag / Minor Frame Timer ✓ ✓ ✓

08 Descriptor/Command Block Pointer ✓ ✓

09 1553A/B Status Word ✓ ✓ ✓

10 Initialization Count

11 Monitor Command Pointer ✓

12 Monitor Data Pointer ✓

13 Monitor Block Count ✓

14 Monitor Filter A ✓

15 Monitor Filter B ✓

16–31 RT Legalization Registers ✓

32 Enhanced Features ✓ ✓ ✓

Core1553BRM Registers

65 Revision 4

Common Control Registers

Register 00 – Control
The Control register (Figure 8-1) is used to set core configuration. The STEX bit must be taken LOW
prior to writing to this register.

Bit 15 – STEX (Start Execution)
Taking this bit HIGH initiates core operation. If operation is to be halted, STEX can be taken LOW.

BC operation: Taking STEX LOW will halt core operation after completing the current opcode. Prior to
halting, the core determines the next command block pointer address and loads the value into register 8.
For an EOL command block, register 8 is not updated.

RT operation: An RT address parity error will stop core operation regardless of how this bit is set. If an RT
address parity error occurs, register 1, bit 3 (EX) will be set LOW and bit 2 (TAPF) will be set HIGH.

BM operation: Taking STEX LOW will halt core operation after processing the current 1553 message.

Bit 14 – SBIT (Start BIT)
The core does not support BIT, but the SBIT (Start BIT) must be Low to initiate core operation.

Bit 13 – SRST (Software Reset)
When SRST is taken HIGH, the core is reset immediately. SRST will clear all internal registers. The core
will automatically clear this bit as it resets itself.

Bit 12 – BAEN (Bus A Enable)
RT operation only (ignored by BC and BM implementation): Taking BAEN HIGH enables Bus A. Set
LOW, the core will ignore all commands sent over Bus A.

Bit 11 – BBEN (Bus B Enable)
RT operation only (ignored by BC and BM implementation): Taking BBEN HIGH enables Bus B. Set
LOW, the core will ignore all commands sent over Bus B.

Bit 10 – ETCE (External Timer Clock Enable)
Assertion of ETCE will force the core to use the external timer clock source.

RT and BM operation: ETCE controls the clock source for the internal Time Tag counter.

BC operation: ETCE controls the clock source used for minor frame timing.

Note: The clock frequency must be set prior to starting core operation.

Bit 9 – MSGTO (Message Timeout)
BC and BM operation: MSGTO sets the RT no response timeout period. During MIL-STD-1553B
operation, the programmable timeout occurs at either 14 µs or 30 µs when set LOW or HIGH
respectively. In MIL-STD-1553A mode, timeout occurs at either 9 µs or 21 µs when set LOW or HIGH
respectively.

RT operation: When ping pong buffer mode is enabled (bit 2), bit 9 set HIGH serves to acknowledge to
the host that ping pong mode has been enabled; set LOW, it acknowledges that this mode has been
disabled.

Figure 8-1 • Register 00 – Control

Register 00 – Control

BUFM N/A
BM

C
BCEN

DYNBC

PPEN

IN
TEN

XMTS
W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STEX
SBIT

SRST

BAEN
BBEN

ETCE

MSGTO

Core1553BRM v4.2 Handbook

Revision 4 66

Bits 8:7 – BUFM[1:0] (Buffer Mode)
RT operation only: BUFM sets whether the core will use standard or circular buffer modes (see "Circular
Buffers" on page 46 for more details). BUFM bits are set as shown in Table 8-2 (note the reversed bit
order):

Bit 6
Not used.

Bit 5 – BMC (Bus Monitor Control)
BM operation only: If BMC is set LOW, the core will monitor all RTs on the bus. If set HIGH, the core will
monitor only the RTs specified in Monitor Filter registers 14 and 15.

Bit 4 – BCEN (Broadcast Enable)
Setting BCEN HIGH enables 1553 broadcast mode. Setting BCEN LOW reserves RT address 31
(11111b) for use as an RT address.

Bit 3 – DYNBC (Dynamic Bus Control Acceptance)
RT operation only: Setting DYNBC HIGH allows the core to respond to a Dynamic Bus Control mode
code with status word bit 18 set HIGH. When set LOW, the core will not set the Dynamic Bus acceptance
bit in the status word.

Bit 2 – PPEN (Ping Pong Enable)
RT operation: If PPEN is set HIGH, ping pong buffer mode is enabled; taking PPEN LOW enables the
message indexing features.

BC operation: If PPEN is set HIGH, the core will alternate between Bus A and Bus B on message
retries. If set LOW, the core will retry only on the programmed bus as defined in the command block
Control Word.

Ping Pong Enable/Disable Handshake: Ping Pong Enable/Disable Handshake allows a user to disable
ping-pong to service the inactive primary buffer without stopping the core or putting it into INDEX mode,
using Register_00[2]. However, it must be entered before the time for a message gap and command
word processing has elapsed otherwise the received data in the primary buffer would be overwritten.
Also, it must be exited before subsequent messages overwrite the data in the secondary buffer. Remote
terminal ping pong operation section in handbook section 9 also explains how bit 3 of the command word
can be used to determine if data has been overwritten

Bit 1 – INEN (Interrupt Log List Enable)
When INEN is set HIGH, interrupt logging is enabled.

Bit 0 – XMTSW (Transmit Word Status)
RT operation only: Setting XMTSW HIGH enables the core to execute the Transmit Status Word mode
code when in MIL-STD-1553A mode.

Table 8-2 • Buffer Modes

Reg_00[2] Reg_00[8] Reg_00[7] Buffer Mode

0 0 0 INDEX mode

0 0 1 INDEX mode

0 1 0 Circular mode 1

0 1 1 Circular mode 2

1 0 0 Ping Pong mode

1 0 1 Ping Pong mode

1 1 0 Circular mode 1

1 1 1 Circular mode 2

Core1553BRM Registers

67 Revision 4

Register 01 – Operation and Status
The Operation and Status register (Figure 8-2) reflects pertinent status information for the core. This
register is not cleared on RSTINn but will reflect the actual stimulus applied to input pins RTA[4:0],
RTPTY, MSEL[1:0], A/B STD, and LOCKn. Taking LOCKn LOW prevents writes to the remote terminal
address, mode selects, and A or B standard bits. When the core is operational (STEX = 1), this register
cannot be written.

Bits 15:11 – RTA[4:0] (Remote Terminal Address)
RT operation only: Setting these bits determines the RT address for the core. When LOCKn is active,
these bits are read-only.

Bit 10 – RTPTY (RT Address Parity)
RT operation only: This bit is set to provide odd parity for the RT address set in RTA[4:0]—required for
proper core operation. When LOCKn is active, this bit is read-only. This bit value is latched on the rising
edge of RSTINn.

Bit 9:8 – MSEL[1:0] (Mode Select)
MSEL is used to set the operating mode of the core, BC, RT, BM, or BM/RT. The settings are shown in
Table 8-3.

When LOCKn is active, these bits are read-only. Values written to these bits are latched on the rising
edge of RSTINn.

Bit 7 – A/B STD (1553A or 1553B Support)
A/B STD is set LOW for MIL-STD-1553B operation and HIGH for MIL-STD-1553A. When LOCKn is
active, this bit is read-only. This bit value is latched on the rising edge of RSTINn.

RT operation only: Setting this bit for MIL-STD-1553A operation also enables the use of XMTSW
(register 0, bit 0).

Bit 6 – LOCK (LOCK Status)
LOCK is a read-only bit indicating the inverted status of the input signal LOCKn, i.e., LOCK = 1 when the
core is locked and LOCK = 0 when the core is unlocked. This bit value is latched on the rising edge of
RSTINn.

Bit 5
Not used.

Bit 4 – SSYSF (SSYSF Status)
RT operation only: SSYSF is a read-only bit indicating the inverted status of the input signal SSYSFn.

Figure 8-2 • Register 01 – Operation and Status

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 01 – Operation and Status

RTA4

RTA3

RTA2

RTA1

RTA0

RTPTY

M
SEL1

M
SEL0

A/B
 S

TD

LO
CK

N/A
SSYSF

EX
TAPF

READY

TERACT

Table 8-3 • Mode Select Settings

MSEL[1:0] Core1553BRM Operation

00 Bus Controller

01 Remote Terminal

10 Bus Monitor

11 Bus Monitor and Remote Terminal

Core1553BRM v4.2 Handbook

Revision 4 68

Bit 3 – EX (Core Executing)
EX is a read-only bit indicating the operational status of the core: HIGH, the core is executing; LOW, the
core is idle.

Bit 2 – TAPF (RT Address Parity Fail)
RT operation only: When this read-only bit is HIGH, it indicates that there is a parity error between bits
15:11 and bit 10 of this same register.

Bit 1 – READY (READY Status)
READY is a read-only bit indicating the inverted status of the output signal READYn. This bit value is
cleared at reset.

Bit 0 – TERACT (Terminal Active)
TERACT is a read-only bit indicating the inverted status of the output signal ACTIVE, indicating that the
core is currently processing a message. This bit value is cleared at reset.

Register 02 – Current Command
This read-only register, shown in Figure 8-3, contains the current command, either received or
transmitted by the core.

Bits 15:0 – CC[15:0] (Current Command)
RT and BM operation: This register contains the last valid command received by the core.

BC operation: When transmission of the command word begins, this register contains the command
being transmitted by the core. The value is updated with the execution of each command block. During
RT-to-RT transfers, this register will reflect the last valid command being received.

Register 03 – Interrupt Mask
The Core1553BRM architecture allows for the masking of all interrupts. An interrupt is masked if the
corresponding bit of this register (Figure 8-4) is set to LOW, allowing the host or subsystem to
temporarily disable the service of interrupts. While masked, interrupt notification does not occur. The
unmasking of an interrupt after the event occurs does not generate an interrupt for that event. (See
"Register 04 – Pending Interrupt" on page 69 for more details on interrupt definitions.)

Bit 15 – DMAF (DMA Fail Interrupt)
For all operating modes.

Bit 14 – WRAPF (Wrap Fail Interrupt)
For BC and RT operating modes only.

Figure 8-3 • Register 02 – Current Command

Register 02 – Current Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CC15

CC14

CC13

CC12

CC11

CC10
CC9

CC8
CC7

CC6
CC5

CC4
CC3

CC2
CC1

CC0

Figure 8-4 • Register 03 – Interrupt Mask

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 03 – Interrupt Mask

DM
AF

W
RAPF

TAPF
BIT

F
M

ERR

SUBAD

BDRCV

IX
EQ0

IL
LC

M
D

N/A EOL
ILL

CMD

IL
LO

P
RTF

CBA
M

BC

Core1553BRM Registers

69 Revision 4

Bit 13 – TAPF (Terminal Address Parity Fail Interrupt)
For RT operating mode only.

Bit 12 – BITF (BIT Fail Interrupt)
For all operating modes.

Bit 11 – MERR (Message Error Interrupt)
For all operating modes.

Bit 10 – SUBAD (Subaddress Accessed Interrupt)
For RT operating mode only.

Bit 9 – BDRCV (Broadcast Command Received Interrupt)
For RT operating mode only.

Bit 8 – IXEQ0 (Index Equal Zero Interrupt)
For RT operating mode only.

Bit 7 – ILLCMD (Illegal Command Interrupt)
For RT operating mode only.

Bit 6
Not used.

Bit 5 – EOL (End of List Interrupt)
For BC operating mode only.

Bit 4 – ILLCMD (Illogical Command Interrupt)
For BC operating mode only.

Bit 3 – ILLOP (Illogical Opcode Interrupt)
For BC operating mode only.

Bit 2 – RTF (Retry Fail Interrupt)
For BC operating mode only.

Bit 1 – CBA (Command Block Accessed Interrupt)
For BC operating mode only.

Bit 0 – MBC (Monitor Block Counter Interrupt)
For BM operating mode only.

Register 04 – Pending Interrupt
This register (Figure 8-5) identifies interrupt events. The Pending Interrupt register is cleared at the end
of a read of or write to any other core register. If a bit in the range 15:12 is set, the signal INTOUTH is
driven HIGH. If a bit in the range 11:0 is set, the signal INTOUTM is driven HIGH (see "Interrupts" on
page 79 for more details on interrupts).

Figure 8-5 • Register 04 – Pending Interrupt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 04 – Pending Interrupt

DM
AF

W
RAPF

TAPF
N/A

M
ERR

SUBAD

BDRCV

IX
EQ0

ILL
CMD

N/A EOL

ILL
CMD

IL
LO

P
RTF

CBA
M

BC

Core1553BRM v4.2 Handbook

Revision 4 70

Bit 15 – DMAF (DMA Fail Interrupt)
All operating modes: To allow the core to correctly transmit and receive on the 1553 bus, all memory
accesses must complete within a specified time. The core datasheet details the memory access
requirements. When the core accesses memory, an internal timer is started. If the memory access is not
completed by the time the counter decrements to 0, this interrupt is generated. If DMAF occurs, current
command processing ends, and the core will remain online.

During RT operation: The current cycle terminates, and the bus is released.

Bit 14 – WRAPF (Wrap Fail Interrupt)
BC and RT operating modes only: The core automatically compares the transmitted word (encoder word)
to the reflected decoder word via the continuous loopback feature. If the encoder word and reflected
word do not match, the WRAPF bit is set, both here and in Built-In Test (register 6, bit 14).

Bit 13 – TAPF (Terminal Address Parity Fail Interrupt)
RT operating mode only: This bit is set HIGH to indicate an RT address parity error. When a parity error
occurs, the core will not begin operation (STEX bit forced to LOW), and Bus A and B are not enabled.
The TAPF bit is also set in Built-In Test (register 6, bit 13).

Bit 12
Not used.

Bit 11 – MERR (Message Error Interrupt)
All operating modes: If the core detects errors in Manchester, sync field, word count (too many or too
few), MIL-STD-1553 word parity, bit count (too many or too few), or protocol, this bit is set.

During RT operation: This bit is always set when the core asserts bit 9 of the status word (e.g., illegal
commands, invalid data word, etc.).

Bit 10 – SUBAD (Subaddress Accessed Interrupt)
RT operating mode only: SUBAD is set when a preselected subaddress has transacted a message. To
preselect a subaddress, the IWA bit (bit 6) in the subaddress control word is set. The host must query the
interrupt log Interrupt Address Word (IAW) to determine which subaddress generated the interrupt.

Bit 9 – BDRCV (Broadcast Command Received Interrupt)
RT operating mode only: When the core receives a valid broadcast command, BDRCV is set and the
core suppresses status word transmission.

Bit 8 – IXEQ0 (Index Equal Zero Interrupt)
RT operating mode only: The core sets IXEQ0 to indicate the completion of a predefined number of
commands by the core. This interrupt is generated in indexed mode when the INDX value in the
subaddress control word decrements from 1 to 0 or when, in circular buffer mode, a buffer wraps back to
the start. When this interrupt occurs, the host or subsystem must update the subaddress descriptor block
to prevent potential loss of data.

Bit 7 – ILLCMD (Illegal Command Interrupt)
RT operating mode only: When the core receives an illegal command, ILLCMD is set and responds with
a status word only. Bit 9 of the status word is set. A command is determined legal or illegal by the
legalization registers (registers 16 to 31).

Bit 6
Not used.

Bit 5 – EOL (End Of List Interrupt)
BC operating mode only: EOL is set when the core reaches the End of List command.

Bit 4 – ILLCMD (Illogical Command Interrupt)
BC operating mode only: The core checks for RT–RT terminal address field match, RT–RT
transmit/receive bit mismatch and correct order, and broadcast transmit commands. When such an error
is detected, the core sets this bit and will halt execution.

Core1553BRM Registers

71 Revision 4

Bit 3 – ILLOP (Illogical Opcode Interrupt)
BC operating mode only: If a reserved opcode occurs in a command block, the core will set this bit and
halt operation.

Bit 2 – RTF (Retry Fail Interrupt)
BC operating mode only: The core sets this bit when all programmed retries have failed.

Bit 1 – CBA (Command Block Accessed Interrupt)
BC operating mode only: The core sets CBA when a command block is accessed (opcode 1010b).

Bit 0 – MBC (Monitor Block Counter Interrupt)
BM operating mode only: When the core's monitor block counter reaches 0, MBC is set.

Note: The core does not discriminate between messages with or without errors.

Register 05 – Interrupt Pointer
The Interrupt Pointer register (Figure 8-6) contains the starting base address and pointer location of the
Interrupt Log List within the 64 k words of system memory. The Interrupt Log List is a 32-word ring buffer
that contains information necessary to service interrupts. The most significant 11 bits designate the base
address of the ring buffer (which occurs on a 32-word boundary, i.e., the host must initialize the five least
significant bits to 00000b). The core controls the five least significant bits to indicate the pointer location.
The host or subsystem reads these five bits to determine the location and number of interrupts within the
Interrupt Log List.

Bits 15:0 – INTA[15:0] (Interrupt Pointer)
Interrupt Log List base address and location pointer.

Register 06 – Built-In Test Register
The BIT register (Figure 8-7) contains the status of the automatic health monitoring of Core1553BRM.
The core does not support the control register BIT function (register 0, bit 14). All of the bits may be set
and cleared by the CPU writing to the BIT register.

Bits 7:0 are readable and writable by the CPU; their value will be included in the BIT word when it is
transmitted by the RT, after power-up reset bits 7:0 are initialized with a version number. Version
numbers are provided in the core release notes.

Bit 15 – DMAF (DMA Fail Interrupt)
All operating modes: To allow the core to correctly transmit and receive on the 1553 bus, all memory
accesses must complete within a specified time. The core datasheet details the memory access

Figure 8-6 • Register 05 – Interrupt Pointer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 05 – Interrupt Pointer

IN
TA

15

IN
TA

14

IN
TA

13

IN
TA

12

IN
TA

11

IN
TA

10

IN
TA

9

IN
TA

8

IN
TA

7

IN
TA

6

IN
TA

5

IN
TA

4

IN
TA

3

IN
TA

2

IN
TA

1

IN
TA

0

Figure 8-7 • Register 06 – Built-In Test Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 06 – Built-In Test Register

DM
AF

W
RAPF

TAPF
N/A

CHAF

CHBF
N/A

Core1553BRM v4.2 Handbook

Revision 4 72

requirements. When the core accesses memory, an internal timer is started. If the memory access is not
completed by the time the counter decrements to 0, this interrupt is generated.

Bit 14 – WRAPF (Wrap Fail Interrupt)
BC and RT operating modes only: The core automatically compares the transmitted word (encoder word)
to the reflected decoder word via the continuous loopback feature. If the encoder word and reflected
word do not match, the WRAPF bit is set.

Bit 13 – TAPF (Terminal Address Parity Fail Interrupt)
RT operating mode only: This bit is set HIGH to indicate an RT address parity error. When a parity error
occurs, the core will not begin operation (STEX bit forced to LOW), and Bus A and B are not enabled.

Bit 12
Not used.

Bit 11 – CHAF (Channel A Failure)
CHAF is set when a transmitter timeout occurs on Bus A.

Bit 10 – CHBF (Channel B Failure)
CHBF is set when a transmitter timeout occurs on Bus B.

Register 32 – Enhanced Features Register
This register, shown in Figure 8-8, enables various additional features of Core1553BRM.

Bits 15:8 – VERSION
These bits indicate the version number of the core. The release notes provided with the core detail the
values currently in use.

Bits 7 – Reserved
This bit is reserved for controlling possible future enhancements to the core. It may be set LOW, but a
HIGH must not be written to ensure compatibility with future core releases. This bit is set LOW at reset.

Bit 6 – LOOPBACK (Loopback Enable)
When set, this bit will loop back the 1553 busses; the receive data input will be connected to the transmit
data output, and the external transmit data outputs will be held inactive. If the core is configured as a BC
and a broadcast transmit data message is transmitted, the core should transmit and verify its
transmissions and report no errors; if a normal transmit data command is used, the core should report a
no-response error condition. This bit is LOW at reset.

Bit 5 - ASYNCMSG (Enabled Asynchronous Message)
When set, this bit enables the asynchronous message option on the BC GOTO instruction (see "Bus
Controller GOTO Enhancements" on page 80). This bit is LOW at reset.

Bit 4 – FASTIMG (Fast Inter-Message Gap)
BC operation only: When set LOW, the core operates with a minimum inter-message gap of 28 µs. When
set HIGH, the minimum inter-message gap is reduced to 6 µs. The inter-message gap may be longer if
the backend logic delays asserting the MEMGNTn signal. This bit is set LOW at reset.

Figure 8-8 • Register 32 – Enhanced Features

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 32 – Enhanced Features

R
E

S
E

R
V

E
D

FA
S

TI
M

G

A
S

Y
N

C
M

S
G

LO
O

P
B

A
C

K

FO
R

C
E

O
R

U
N

U
S

E
TO

K
C

LK
FR

E
Q

1
C

LK
FR

E
Q

0

VERSION

Core1553BRM Registers

73 Revision 4

Bit 3 – FORCEORUN (Force Overrun)
When set, the core will transmit more than 32 data words (actually the message word count plus 32),
causing the internal transmission overrun timer to trigger. This bit is set LOW at reset and should not be
set HIGH in normal operation. It is intended to allow the transmission timers to be tested.

Bit 2 – USEXTOK (Use External Verification)
RT operation only: When set LOW, the core uses the internal register settings to verify command words.
When set HIGH, the core uses the external command word validation logic input CMDOK.

Bits 1:0 – CLKFREQ (Clock Frequency)
CLKFREQ sets the core operating frequency and can be selected to be 12, 16, 20, or 24 MHz
(Table 8-4). The reset value of the registers is set by the INITFREQ parameter. If the LOCKFREQ
parameter is set, these bits cannot be changed.

Bus Controller–Specific Registers
In addition to the seven common control registers, Core1553BRM, when implementing a BC, has three
registers used to control its functions. These are registers 7, 8, and 10.

Register 07 – Minor Frame Timer Register
This read-only register, shown in Figure 8-9, is loaded via the Minor Frame Timer (MFT) opcode (1110b).
For user-defined resolution, use TCLK. This register resets to zero any time operation halts.

Bits 15:0 – MFT[15:0] (Minor Frame Timer)
These bits contain the value of the Minor Frame Timer.

Table 8-4 • Clock Frequencies

CLKFREQ[1:0] Core Operating Frequency

00 12 MHz

01 16 MHz

10 20 MHz

11 24 MHz

Figure 8-9 • Register 07 – Minor Frame Timer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 07 – Minor Frame Timer Register

MFT
15

MFT
14

MFT
13

MFT
12

MFT
11

MFT
10

MFT
9

MFT
8

MFT
7

MFT
6

MFT
5

MFT
4

MFT
3

MFT
2

MFT
1

MFT
0

Core1553BRM v4.2 Handbook

Revision 4 74

Register 08 – Command Block Pointer
This register (Figure 8-10) contains the location at which to start the command blocks. After execution
begins, this register is automatically updated with the address of the next block.

Bits 15:0 – CBA[15:0] (Command Block Address)
These bits contain the starting address of the command block.

Register 10 – Not Implemented

Remote Terminal–Specific Registers
In addition to the seven common control registers, Core1553BRM, when implementing a remote
terminal, has three additional registers (7, 8, and 9) used for control and 16 registers (16:31) used for
command legalization.

Register 07 – Time Tag Register
This register (Figure 8-11) contains the current value for the 16-bit, free-running counter contained within
the core. The default resolution of this timer is 64 us/bit, or the user can alter this resolution via the input
signal TCLK. The timer begins counting on the rising edge of RSTINn or within 64 us after one of the
following events:

• Receipt of a valid Reset Remote Terminal mode code

• Receipt of a valid Synchronize with/without Data mode code

The timer is automatically reset when the core receives a valid Synchronize without Data mode code. If
the core receives a valid Synchronize with Data mode code, the Time Tag register is loaded with the
associated data. If the core should be halted (STEX = 0), the timer will continue to run. The Time Tag
value is captured at command word validation.

Bits 15:0 – TT[15:0] (Time Tag)
These bits contain the value of the Time Tag counter.

Figure 8-10 • Register 08 – Command Block Pointer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 08 – Command Block Pointer

CBA15

CBA14

CBA13

CBA12

CBA11

CBA10

CBA9

CBA8

CBA7

CBA6

CBA5

CBA4

CBA3

CBA2

CBA1

CBA0

Figure 8-11 • Register 07 – Time Tag Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 07 – Time Tag Register

TT15
TT14

TT13
TT12

TT11
TT10

TT9
TT8

TT7
TT6

TT5
TT4

TT3
TT2

TT1
TT0

Core1553BRM Registers

75 Revision 4

Register 08 – Descriptor Pointer
Each 1553B RT has a reserved location in memory for storing information on how to process various
subaddresses and mode codes. The memory space is referred to as the Descriptor Table. The
Descriptor Pointer register (Figure 8-12) contains the address that points to the top of this reserved
memory space.

The core uses the T/R bit, subaddress /mode code field, and mode code to select one block within the
Descriptor Table needed for message processing. The value of the Descriptor Pointer Register remains
static during message processing.

Bits 15:0 – DP[15:0] (Descriptor Pointer)
These bits contain the value of the Descriptor Pointer.

Register 09 – 1553A/B Status Word Register
For both MIL-STD-1553A and B applications, this register (Figure 8-13 and Figure 8-14) contains the
value for the status word. The host or subsystem accesses this register to control the outgoing MIL-STD-
1553 status word by setting the various status bits. If the Immediate Clear function is enabled (via
IMCLR, bit 15), the status bits are automatically cleared after status word transmission. The Immediate
Clear function does not alter the operation of the Transmit Status word and Transmit Last Command
Word mode codes.

Bit 15 – IMCLR (Immediate Clear Enable)
Setting this bit enables the Immediate Clear function, where the INS, BUSY, TF, SRQ, and/or SUBF bits
are cleared immediately after a message is completed.

Bits 14:10
Not used.

Bit 9 – INS (Instrumentation)
Setting this bit asserts status word bit 10 (Instrumentation bit).

Figure 8-12 • Register 08 – Descriptor Pointer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 08 – Descriptor Pointer

DP15
DP14

DP13
DP12

DP11
DP10

DP9
DP8

DP7
DP6

DP5
DP4

DP3
DP2

DP1
DP0

Figure 8-13 • Register 09 – Status Word Register (for MIL-STD-1553A)

Figure 8-14 • Register 09 – Status Word Register (for MIL-STD-1553B)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 09 – Status Word Register (for MIL-STD-1553A)

IM
CLR

SB10
SB11

SB12
SB13

SB14
SB15

SB16
SB17

SB18
SB19 N/A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 09 – Status Word Register (for MIL-STD-1553B)

IM
CLR

IN
S

SRQ
BUSY

SSYSF
N/A TFN/A N/A

Core1553BRM v4.2 Handbook

Revision 4 76

Bit 8 – SRQ (Service Request)
Setting this bit asserts status word bit 11 (Service Request bit).

Bits 7:4
Not used.

Bit 3 – BUSY (Busy)
Setting this bit asserts status word bit 16 (Busy bit). Setting this bit prevents memory access.

Bit 2 – SSYSF (Subsystem Flag)
Setting this bit asserts status word bit 17 (Subsystem Flag bit). This bit can also be set via the SSYSF
input pin.

Bit 1
Not used.

Bit 0 – TF (Terminal Flag)
Setting this bit asserts status word bit 19 (Terminal Flag bit). The Inhibit Terminal Flag mode code
prevents host or subsystem assertion.

Bit 15 – IMCLR (Immediate Clear Enable)
Setting this bit enables the Immediate Clear function, where status word bits 19:10 are cleared
immediately after a status word transmission.

Note: Exercise caution when using this bit, as once set, it will remain set (Immediate Clear function
enabled) until cleared.

Bits 14:10
Not used.

Bits 9:0 – SB(10:19)
Sets 1553A status word bits 10:19.

Register 16:31 – RT Legalization Registers
The core legalization registers are used by the RT to determine which valid, received commands are
legal. A command is determined to be illegal if it is supported neither by the standard nor by additional
system requirements. Table 8-5 lists the registers used to legalize each set of commands. It also shows
the value of the registers after reset. A '1' illegalizes a command and a '0' legalizes a command.

Table 8-5 • Command Illegalization Registers

Register Function
Reset Value

LEGREGS = 1

16 Receive Subaddress 15 to 0 0000

17 Receive Subaddress 31 to 16 0000

18 Transmit Subaddress 15 to 0 0000

19 Transmit Subaddress 31 to 16 0000

20 Broadcast Receive Subaddress 15 to 0 0000

21 Broadcast Receive Subaddress 31 to 16 0000

22 Broadcast Transmit Subaddress 15 to 0 FFFF

23 Broadcast Transmit Subaddress 31 to 16 FFFF

24 Receive Mode Code 15 to 0 FFFF

25 Receive Mode Code 31 to 16 FFFD

26 Transmit Mode Code 15 to 0 FE01

27 Transmit Mode Code 31 to 16 FFF2

Core1553BRM Registers

77 Revision 4

Depending on the core parameter settings used during the design phase, the RT command legalization
registers may be handled as follows:

• Implemented in FPGA registers

• Implemented in FPGA memory blocks

• Controlled through the legalization interface using combinatorial logic

When implemented in registers, the values are initialized at reset (external to software) to the values
shown in Table 8-5. When implemented using memory blocks, these registers are not initialized.

Each command is assigned a specific bit location. For example, the most significant bit of register 16
controls the illegalization of subaddress 15 (01111b), decrementing down to the least significant bit,
which controls illegalization of subaddress 0 (00000b). Each bit setting of each register determines
whether a specific command is found to be legal or illegal (0 = legal, 1 = illegal).

Bus Monitor–Specific Registers
When Core1553BRM implements bus monitor functions, there are five additional registers used for
control (registers 10 through 15). These are in addition to the seven common control registers.

Register 11 – Monitor Command Pointer
The Monitor Command Pointer register (Figure 8-15) contains the starting address for the monitor
blocks. This value should not be altered during monitor execution (when EX, register 1, bit 3 is HIGH).

Bits 15:0 – MCA[15:0] (Monitor Command Address)
These bits contain the value of the starting address for monitor commands.

Register 12 – Monitor Data Pointer
The Monitor Data Pointer register (Figure 8-16) contains the starting address for the monitor data. This
value should not be altered during monitor execution (when EX, register 1, bit 3 is HIGH).

28 Broadcast Receive Mode Code 15 to 0 FFFF

29 Broadcast Receive Mode Code 31 to 16 FFFD

30 Broadcast Transmit Mode Code 15 to 0 FE05

31 Broadcast Transmit Mode Code 31 to 16 FFFF

Table 8-5 • Command Illegalization Registers (continued)

Register Function
Reset Value

LEGREGS = 1

Figure 8-15 • Register 11 – Monitor Command Pointer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 11 – Monitor Comand Pointer

MCA15

MCA14

MCA13

MCA12

MCA11

MCA10

MCA9

MCA8

MCA7

MCA6

MCA5

MCA4

MCA3

MCA2

MCA1

MCA0

Figure 8-16 • Register 12 – Monitor Data Pointer

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 12 – Monitor Data Pointer

MDA15

MDA14

MDA13

MDA12

MDA11

MDA10

MDA9

MDA8

MDA7

MDA6

MDA5

MDA4

MDA3

MDA2

MDA1

MDA0

Core1553BRM v4.2 Handbook

Revision 4 78

Bits 15:0 – MDA[15:0] (Monitor Data Address)
These bits contain the value of the starting address for monitor data.

Register 13 – Monitor Block Count
This register (Figure 8-17) is used to set the number of monitor blocks to be logged. Once execution
begins, the value contained in the register will be decremented. Upon reaching 0, an interrupt is
generated (MBC—register 4, bit 0). The core will restart at the initial address specified in registers 11 and
12.

Bits 15:0 – MBC[15:0] (Monitor Block Counter)
These bits contain the value for the number of monitor blocks to be logged.

Register 14 – Monitor Filter A
This register (Figure 8-18) sets which RTs (from the range 31 to 16) will be monitored, indicated by
setting the appropriate bit HIGH. Initial value is 0000h.

Bits 15:0 – MRT[31:16] (Monitor RT)
These bits select the RTs that should be monitored by the core.

Register 15 – Monitor Filter B
This register (Figure 8-19) sets which RTs (from the range 15 to 0) will be monitored, indicated by setting
the appropriate bit HIGH. Initial value is 0000h.

Bits 15:0 – MRT[15:0] (Monitor RT)
These bits select which RTs should be monitored by the core.

Figure 8-17 • Register 13 – Monitor Block Count

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 13 – Monitor Block Count

MBC15

MBC14

MBC13

MBC12

MBC11

MBC10

MBC9

MBC8

MBC7

MBC6

MBC5

MBC4

MBC3

MBC2

MBC1

MBC0

Figure 8-18 • Register 14 – Monitor Filter A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 14 – Monitor Filter A

MRT3
1

MRT3
0

MRT2
9

MRT2
8

MRT2
7

MRT2
6

MR25
MR24

MR23
MR22

MRT2
1

MR20

MRT1
9

MRT1
8

MRT1
7

MRT1
6

Figure 8-19 • Register 15 – Monitor Filter B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Register 15 – Monitor Filter B

MRT1
5

MRT1
4

MRT1
3

MRT1
2

MRT1
1

MRT1
0

MRT9

MRT8

MRT7

MRT6

MRT5

MRT4

MRT3

MRT2

MRT1

MRT0

Core1553BRM Registers

79 Revision 4

Interrupts
Core1553BRM incorporates an interrupt system to allow the host or subsystem to correctly identify the
type of interrupt that has occurred and determine its cause. Interrupts are broken into two classes:
hardware and message interrupts. Hardware interrupts need to be serviced as soon as they occur,
whereas message interrupts are stored for later investigation.

All interrupts are stored in register 4, Pending Interrupt, depending on the settings of register 3, Interrupt
Mask. The most significant four bits are classed as hardware interrupts, the lower bits as message
interrupts.

When a hardware interrupt occurs, the core will set the appropriate bit in register 4 and alert the host or
subsystem via INTOUTH. When alerted, the host or subsystem should service the interrupt immediately,
as hardware interrupts are not stored by the core, and until the interrupt is cleared no further hardware
interrupts will be signaled.

When a message interrupt occurs, the core will set the appropriate bit in register 4 and alert the host or
subsystem via INTOUTM. If enabled, these interrupts are also stored in the Interrupt Log List, a 32-word
ring buffer. Each interrupt is stored using two words of information:

• Interrupt Information Word (IIW) – a 16-bit word with format identical to that of register 4 (with the
four most significant bits masked)

• Interrupt Address Word (IAW) – a 16-bit word that identifies the source of the interrupt (content
varies with core configuration)

With each message interrupt, the system will store the interrupt in the Interrupt Log List based on the
setting of register 5, Interrupt Pointer, with the first IIW stored at address offset 00000b, the first IAW
stored at address offset 00001b, and so on until the buffer wraps while storing the 17th message interrupt
(the core updates the value of the least-significant five bits of register 5 while storing each interrupt
word).

IAW format depends upon how the core is configured for operation. When operating as a BC, the IAW
contains the location of the command block being processed when the interrupt occurred. When the core
is configured as an RT, the IAW contains the subaddress descriptor or mode code descriptor that
generated the interrupt. During BM operation, the IAW contains the current command block being
processed. (This behavior is identical to the SuMMIT device.)

Note: When the core is configured to operate as a combined RT/BM, the host must determine which
operating mode generated the interrupt. Determination can be done by examining the IIW or by
decoding the IAW address to see whether the address matches an RT descriptor block or a monitor
command block.

Note: When CPU interface tries to read the register 4 (Pending Interrupt Register) and Core1553BRM
also updates the same register at the same point of time. In this case, priority is given to CPU read.
Hence, the user is suggested to read register 05 (Interrupt Pointer Register), which is the pointer for
interrupt log and then read the IIW to check the source of the interrupt.

Revision 4 80

9 – Enhanced Operation

Bus Controller GOTO Enhancements
The Call and GOTO instructions have been enhanced to support asynchronous message operation. This
feature is enabled when bit 5 of the Enhanced Features register (address 32) is set. When enabled, bits
11 and 10 in the bus controller control word affect the Call and GOTO instructions as shown in Table 9-1.

This allows the CPU to initially create a message frame that repeats and does not execute the
Call/GOTO instruction (bits 11:10 = '11'). While the frame is active, the CPU can then set the bits to '10'.
The next time the core executes the instruction, it will perform the Call/GOTO instruction and, on
completion, modify the two bits to '11' again, preventing the Call/GOTO from being repeated.

Remote Terminal Ping Pong Operation
In addition to setting bit 2 in the RT control word (refer to "Control Word" on page 51) to indicate which
buffer will be used next, Core1553BRM also sets bit 3 to indicate the last buffer used.

• Bit 2: A/B – Indicates the next buffer that is about to be used

• Bit 3: LA/B – Indicates the last buffer that was used

When ping pong is on, the A/B and LA/B bits are normally the inverse of each other. Should ping pong be
disabled when a message is received, the core will not ping pong, and the two bits will be the same,
indicating that the next received message was placed in the same buffer. This can occur if a second
message is received while the host has disabled ping pong to service the previous message. The
additional LA/B bit allows this case to be detected.

Table 9-2 gives the significance of these two bits as regards the buffers.

Table 9-1 • Effect of Bits 11 and 10 on Call and GOTO Instructions

Bit Name Function

11 ENABLE_ASYNC 0: The instruction will be executed as normal.

1: The instruction is only executed when bit 10 is set to 0.

10 DONE_ASYNC 0: Asynchronous message not yet done

1: Asynchronous message done

Table 9-2 • Significance of Bits 2 and 3 of RT Descriptor Word

LA/B A/B State of Buffers

0 0 Last data was placed in Buffer A; next data will go in A.

0 1 Last data was placed in Buffer A; next data will go in B.

1 0 Last data was placed in Buffer B; next data will go in A.

1 1 Last data was placed in Buffer B; next data will go in B.

Enhanced Operation

81 Revision 4

Memory Access Sequence
The protocol controller state machine within Core1553BRM accesses memory depending on its
operational mode and 1553 activity. The actual sequence of operations is very complex. Figure 9-1 and
Figure 9-2 on page 82 show the sequence of operations for a two-word RT–BC transfer followed by a
two-word BC–RT transfer, for the three possible core operating modes.

Figure 9-1 • Memory Access Sequence

Read OpCode
Read CW
Read DPTR

1553B
Activity

CW

DW 1

DW 2

SW

Bus Controller
Memory Activity

Remote Terminal
Memory Activity

Monitor Terminal
Memory Activity

Read DPTR0
Read DPTR1
Read DPTR2
Read DPTR3
Read Data 1

Read Data 2

Write MINFO

Write SW

Write Data 2

Write Data 1

Write DPTR

Write SW

Write Data 2

Write Data 1

Core1553BRM v4.2 Handbook

Revision 4 82

Note: *The Time Tag for both RT and MT mode is written at the end of message processing. The Time Tag written is
the value of the Time Tag at the end of the 1553B command word, not the value when it is actually written.

Figure 9-2 • Memory Access Sequence (continued)

Write OpCode Status
Write IIW
Write IAW
Read OpCode
Read CW

Read DPTR
Read Data 1

Read Data 2

Write SW
Write OpCode Status
Write IIW
Write IAW
Read OpCode

1553B
Activity

CW

DW 1

DW 2

SW

Bus Controller
Memory Activity

Remote Terminal
Memory Activity

Monitor Terminal
Memory Activity

Write Time Tag*
Write MIW
Write DPTR
Write IIW
Write IAW

Read DPTR0
Read DPTR1
Read DPTR2
Read DPTR3

Write Data 2

Write Data 1

Write MINFO
Write Time Tag
Write MIW
Write DPTR
Write IIW
Write IAW

Write Message Information
Write Command Word
Write Time Tag
Write IIW
Write IAW

Write SW
Write Message Information
Write Command Word
Write Time Tag
Write IIW
Write IAW

Write Data 2

Write Data 1

Write DPTR

Revision 4 83

10 – Testbench Operation and Modification

Testbenches Provided
Three testbenches are provided with Core1553BRM:

• Verification – A complex testbench that verifies core operation. This testbench exercises all the
features of the core. Microsemi recommends that this testbench not be modified. The full 1553
verification environment is provided in VHDL only. Users can use the VHDL verification
environment to verify the Verilog core, but must have simultaneous Verilog and VHDL licenses for
OEM ModelSim, or must use the production version of ModelSim (not the OEM version shipped
with Libero IDE/SoC) to perform mixed language simulation with an appropriate license from
Mentor Graphics.

• VHDL User – A simple-to-use testbench written in VHDL and intended for customer modification

• Verilog User – A simple-to-use testbench written in Verilog and intended for customer
modification
ModelSim simulations contain a basic command word/data word template implemented with
ModelSim cursors, to assist in reading waveforms.

Verification Testbench
Microsemi has developed a 1553 verification testbench that you can use to verify the core performance
per the 1553 specification. The testbench is coded in VHDL and includes several Core1553BRM cores
connected to a 1553 bus and backend interfaces. A procedural testbench controls the various blocks and
implements the tests (Figure 10-1). The source code is not made available with Obfuscated core
licenses.

The testbench contains the following blocks:

• BRM – 3 Core1553BRM devices, allowing one to be used as a bus controller, one as a remote
terminal, and the other as a monitor

• TRANSCEIVER – Models the 1553B transceivers

• CPU – Models the CPU interface to the core

Figure 10-1 • Verification Testbench

Backend
Memory

Transceiver

RT
Array

Bus
Monitor

CPU
Model

Procedural Testbench and Command Interpreter

1553B Busses

Core1553BRM
BR, RT, MT

×3

Core1553BRM v4.2 Handbook

Revision 4 84

• BACKEND – Provides the backend memory connected to the bus controller. This can operate in
both asynchronous and synchronous modes, with programmable access times.

• RT ARRAY – 2 test RTs (16 and 17). These RTs have the ability to create error conditions.

• BUS MONITOR – A bus monitor that monitors 1553 activity and detects error conditions

• INTERPRETER – Processes user input or command files and runs the simulations

The Core1553BRM verification testbench uses a command interpreter to apply high-level stimuli to the
BRM core. This allows the user to directly set the BRM memory and registers.

When started, the simulation will initialize and wait for user input. A simple command file is shown below.

Example Script

UNIT 0 ! Access BRM unit 0

REG 0 #0416 ! ETCE BCAST int log enabled, PPONG

REG 1 #0000 ! BC mode

REG 3 #FFFF ! Enable all interrupts

REG 5 #F000 ! Set tnterrupt log at F000

INTINIT #F000 ! Point testbench interrupt handler to log

MEM #0000 #4200 1.0.1.4 0.0.0.0 #0100 0 0 0 0 ! BC to RT

MEM #0008 #4200 1.1.1.3 0.0.0.0 #0200 0 0 0 0 ! RT to BC

MEM #0010 #0000 0 0 0 0 0 0 0 ! EOL

Data Tables

FILLMEM #0100 #1000 32 1

FILLMEM #0200 #0000 32 0

Now start the Bus Controller

START #0000 ! Start the BRM at address 0000

INTWAIT 1

INTCMP 1 #0020 #0010 ! Vector pointer, expected IIW=0020 IAW=0010

STATS ! Display bus statistics

This command file sets up a message list that processes two messages, a BC-to-RT message and an
RT-to-BC message. Having programmed the memory, the BRM is started by writing to the control
register. The testbench then waits for the interrupt to be generated by the EOL instruction and verifies the
interrupt IAW and IIW values.

Supported Commands
The command interrupter supports the commands below. More detailed information can be found by
using the HELP command when the simulation is running.

: Comment; will be echoed to the simulation log

#* : Comment; will NOT be echoed to the log

. : Repeat the last command

BC SUM PARA : Set up core controls

CLRCNT : Clear the bus word counters

CMPCNT BUSA BUSB : Check the bus word counters

CPULOG 0|1 : Enable or disable the CPU log file

Testbench Operation and Modification

85 Revision 4

Data for the commands can be entered in several forms:

The HELP command provides additional information on the command operations.

DEMO : Run demo.txt

DISPLAY ADDR [N] : Display memory

DISPRT RT ADDR [N] : Display test RT memory

DO filename : Run commands from file

DOALL : Run the complete verification simulation

DOLOG filename : Run commands from file and create CPU log file

ECHO [0|1] : Turn command echo on or off

FILLCMP ADDR DATA [N] [INC] : Verify memory

FILLMEM ADDR DATA [N] [INC] : Fill core memory

HELP : Display help information

INTCMP IMH [#ADDR] [#REAS] : Check interrupt value

INTINIT #ADDR : Initialize interrupt handler

INTWAIT IMH [MIN TIME MAX TIME] : Wait for interrupt us

JUMP LABEL : Ignore commands until LABEL matches

LABEL LABEL : Label for JUMP instruction

MEM ADDR DATA [DATA] : Set memory

MEMBYTE UL ADDR DATA : Do a memory byte write UL = 10/01

MEMCMP ADDR DATA [MASK] : Verify memory

MEMTEST ADDR SIZE LOOP [FAIL] : Memory test

MONITORS CPU [BUS] [BRMn BRM] [RT] : Turn monitors on/off

PARAMS [1 2 3 4 5 6 7] : Set the $parameters for future use

PAUSE : Pause simulation

QUIT : Quit

REG [ADDR DATA] : Display or set registers

REGBIT ADDR BIT VALUE : Set or clear register bit

REGBYTE UL ADDR DATA : Do a register byte write UL = 10/01

REGCMP ADDR DATA [MASK] : Compare register

RESET : Reset the core

RT RTn SUM PARA : Set up the test RT

RTINIT MODE : Initialize memory for RT operations

RUNBC UNIT ADDR [WAIT] : Start a bus controller at address

START [ADDR] : Start the core, set the block pointer

STARTU [UNIT] : Start the core

STATS : Display simulation statistics

STOPU [UNIT] : Stop the core

UNIT [N] : Set unit number

VERSION : Display version information

WAIT [X] : Run simulation for X us, default 20 us

1234 : Decimal

#1234 : Hexadecimal

A123 : Automatically switches to hexadecimal

1.0.23.12 : 1553B Command Word, RT = 1, TX = 0, SA = 23, WC =
12

#1F.#1.#1F.#01 : 1553B Command Word with hexadecimal values

$[1 2 3 4 5 6 7] : Use one of the values set with the PARAMS command

Core1553BRM v4.2 Handbook

Revision 4 86

Command Files
Microsemi supplies a set of command files1 that are used to verify the core (Table 10-1). These
command files provide 100% code coverage for the Core1553BRM RTL source code. A detailed list of
the tests each of these command files performs is provided in "Verification Tests Carried Out" on
page 97.

Alternatively, command files can be created by the user and invoked using the include command.

1. The command files are scrambled in the Evaluation release of the core. They are provided as plain text with the
Obfuscated and RTL versions of the core.

Table 10-1 • Command Files

File Function

doall Runs all of the command files below

demo Simple demo of 1553 operation

bcbasic BC basic message transfers

bcopcodes BC operation codes and flags

bcopcodes2 BC extended operation codes and flags

bcrterrors BC operation with RTs inserting errors

bcretries BC retry operation

bcregs BC register operation

bctimers BC timers

rtindex RT operation in indexed mode

rtppong RT operation in ping pong mode

rtcirc1 RT operation in circular buffer mode 1

rtcirc2 RT operation in circular buffer mode 2

rtmcodes RT mode codes

rtmcodesbc RT broadcast mode codes

rterrors RT error conditions

rtstatus RT status word settings

rtmisc Miscellaneous RT tests

rtlegal RT legalization logic

rtstatus RT status bits

mtbasic MT operation

mttests MT operation

mtandrt Combined RT and MT operation

mterrors MT error conditions

mtrtrt MT RT-to-RT messages

bc1553ab 1553A and 1553B operational differences

memory Memory interface and timeouts

misc Miscellaneous tests

Testbench Operation and Modification

87 Revision 4

VHDL User Testbench
Microsemi provides an example testbench that you can use as the starting point for design verification of
the core in your design. A block diagram of the testbench is shown in Figure 10-2; the blocks are
described in Table 10-2.

The main process in the testbench writes to the Core1553BRM CPU interface and can program the
Core1553BRM registers as well as the memory. To simplify the testbench, the following procedure calls
are provided:

procedure cpu_write_reg(address: integer ; data : integer);

procedure cpu_write_mem(address, data : integer);

procedure cpu_read_reg(address: integer ; data : out integer);

procedure cpu_read_mem(address : integer; data : out integer);

procedure cpu_write_mblk(address,data0,data1,data2,data3,data4,data5,data6,data7 :

integer);

The first four procedures provide simple read and write functions to Core1553BRM registers or the
memory. The fifth procedure allows MSGBLK to be programmed with a single call. The eight data values
set the MSGBLK parameters (MSGTYPE, CW1, CW2, DATAPTR, SW1, SW2, BRANCH, TIMER).

Figure 10-2 • User VHDL Testbench

Table 10-2 • User VHDL Functional Blocks

Block Description

Core1553BRM Three Core1553BRM cores are instantiated in the testbench. This allows one of the
cores to be configured as the bus controller, and the other two as combined monitors
and remote terminals. This allows all three functions to be demonstrated and RT-to-RT
messages to be carried out.

QBUSTRANSCEIVER This block implements a single-channel 1553 transceiver. It connects directly to the
transceiver interface on Core1553BRM and the 1553 bus.

QBUSMON This block monitors the 1553 bus and displays the bus traffic. It connects directly to the
1553 busses.

SSRAM This block is synchronous memory that can be connected directly to the
Core1553BRM backend interface. It implements a 64k×16 memory.

Bus A
Monitor

QBUSMON

User Testbench

1553B Busses

Core1553BRM
(BC, RT, MT)

Unit 0

Bus B
Monitor

QBUSMON

Memory
SSRAM

Transceiver
QBusTransceiver

Memory
SSRAM

Transceiver
QBusTransceiver

Memory
SSRAM

Transceiver
QBusTransceiver

Core1553BRM
(BC, RT, MT)

Unit 1

Core1553BRM
(BC, RT, MT)

Unit 2

Core1553BRM v4.2 Handbook

Revision 4 88

Study of the Usertbench.vhd file provided in the source directory is recommended to fully understand
how this testbench operates.

Verilog User Testbench
Microsemi provides an example testbench that you can use as the starting point for design verification of
the core in your design. A block diagram of the testbench is shown in Figure 10-3; the blocks are
described in Figure 10-3.

The main process in the testbench writes to the Core1553BRM CPU interface and can program the
Core1553BRM registers as well as the memory. To simplify the testbench, the following tasks are
provided:

task cpu_write_reg;

input [15:0] address;

input [15:0] data;

task cpu_write_mem;

input [15:0] address;

input [15:0] data;

Figure 10-3 • User Verilog Testbench

Table 10-3 • User Verilog Functional Blocks

Block Description

Core1553BRM Three Core1553BRM cores are instantiated in the testbench. This allows one core to be
configured as the bus controller and the other two to be configured as combined monitors
and remote terminals. This allows all three functions to be demonstrated, and RT-to-RT
messages can be carried out.

QBUSTRANSCEIVER This block implements a 1553 transceiver. It connects directly to the transceiver interface
on Core1553BRM and the 1553B bus.

QBUSMON This block monitors the 1553 bus and displays the bus traffic. It connects directly to the
1553 busses.

SSRAM This block is a synchronous memory that can be connected directly to the Core1553BRM
backend interface. It provides a 64k×16 memory.

Memory
SSRAM

Transceiver
QBusTransceiver

Bus A
Monitor

QBUSMON

User Testbench

1553B Busses

Core1553BRM
(BC, RT, MT)

Unit 0

Bus B
Monitor

QBUSMON

Memory
SSRAM

Transceiver
QBusTransceiver

Core1553BRM
(BC, RT, MT)

Unit 1

Memory
SSRAM

Transceiver
QBusTransceiver

Core1553BRM
(BC, RT, MT)

Unit 2

Testbench Operation and Modification

89 Revision 4

task cpu_read_reg;

input [15:0] address;

output [15:0] data;

task cpu_read_mem;

input [15:0] address;

output [15:0] data;

task cpu_write_mblk;

input [15:0] address;

input [15:0] data0;

input [15:0] data1;

input [15:0] data2;

input [15:0] data3;

input [15:0] data4;

input [15:0] data5;

input [15:0] data6;

input [15:0] data7;

The first four tasks above provide simple read and write functions to Core1553BRM registers or the
memory. The fifth procedure allows MSGBLK to be programmed with a single call; the eight data values
set the MSGBLK parameters (MSGTYPE, CW1, CW2, DATAPTR, SW1, SW2, BRANCH, TIMER).

Study of the usertbench.v file provided in the source directory is recommended to fully understand how
this testbench operates.

Revision 4 90

11 – Implementation Hints

Clock and Reset Networks
The core requires that a clock buffer be inserted to drive the CLK input. This should be done
automatically by the synthesis tool.

The core gates the external RSTINn input to generate the internal interrupt. The core instantiates a
global buffer internally to drive this reset network. It is not required to use a global network buffer to bring
in the RSTINn signal.

RT Legalization Registers
The core requires sixteen 16-bit registers to implement the RT legalization registers. These registers can
be implemented using logic resources or memory within the FPGA, or via external hardware using a
direct decode of the 1553 command words, removing the need for the logic resources and memory. The
implementation is controlled by the LEGREGS parameter in the source code (Table 11-1 and
Table 11-2).

Microsemi recommends that Registers (1) be used to implement the legalization registers if logic
resources are available, as this provides full software compatibility with legacy devices. Otherwise,
memory blocks should be used to implement this function.

Table 11-1 • LEGREGS Parameter

LEGREGS Description

0 The legalization registers are not implemented. The user must use the external RT legalization
interface.

1 The legalization logic is implemented in the registers within the FPGA.

2 The legalization logic is implemented in the memory blocks.

Table 11-2 • RT Legalization Registers Implementations

Advantages Disadvantages

External Hardware (0) Requires minimal logic resources.

Does not require initialization.

Can implement legalization down to the
word count level, e.g., a subaddress can be
set to accept only 12-word messages.

Not software compatible with legacy
devices.

Cannot be modified in-system.

Subaddress legality needs to be defined in
hardware, not software.

Registers (1) Registers are auto-initialized so that only the
supported mode codes are legalized.

Legacy devices auto-initialize, so this
implementation allows for legacy
compatibility.

Registers can be read when the RT is
operational.

Uses a large amount of logic resources to
implement this function, up to 512 logic
cells.

Memory (2) Reduces required logic resources. Registers are NOT auto-initialized.

The CPU must initialize these registers
before the core is started.

Registers cannot be read when the RT is
operational.

Implementation Hints

91 Revision 4

Shared versus Own Memory
Core1553BRM requires connection to a memory block to function. Core1553BRM allows the memory to
be connected to the core in two modes—shared memory and own memory.

Shared Memory
In this mode (Figure 11-1), the core shares the CPU memory. This is compatible with the SuMMIT
device. Core1553BRM will assert its MEMREQ output and, when granted by the bus arbiter, assume
control of the memory and complete its memory access cycle.

Shared memory implementations can reduce overall cost, as no special memory block needs to be
implemented for Core1553BRM, but the core requires direct access to the CPU memory bus, and bus
arbitration logic is required.

In shared memory systems, the CPUMEMEN input should be tied LOW.

Figure 11-1 • Core1553BRM with Shared Memory

Memory

CPU

Bus
Arbritator

Pulse
Transformer

Microsemi FPGA

Transceiver

Pulse
Transformer

B
ac

ke
nd

In
te

rf
ac

e

Core1553BRM

C
P

U
In

te
rf

ac
e

1553B
Encoders

and
Decoders

Protocol
Controller

Core1553BRM v4.2 Handbook

Revision 4 92

Own Memory
In this mode (Figure 11-2), the core has its own memory block. The CPU accesses the memory though
the CPU interface of the core. The core provides the arbitration function, allowing both the 1553 logic and
the CPU interface to access the memory block.

This implementation is recommended for FPGA devices that have on-chip RAM, where the core backend
interface can be directly connected to the FPGA synchronous memory block.

When Core1553BRM has its own memory, the CPUMEMEN input should be tied HIGH.

Transceivers
Core1553BRM needs a 1553B transceiver to drive the 1553B bus. It is designed to interface directly to
common MIL-STD-1553 transceivers, such as Aeroflex ACT4453. When using ProASIC3-based
families, ProASICPLUS, or Axcelerator devices, level translators are required to connect the 5 V outputs
of the 1553B transceivers to the 3.3 V inputs of the FPGA.

In addition to the transceiver, a pulse transformer is required for interfacing to the 1553B bus. Figure 11-1
on page 91 and Figure 11-2 show the connections required from Core1553BRM to the transceivers and
then to the bus via the pulse transformers. Here, the 1553 interface signal bus is connected to the
transceiver, which, in turn, is connected to the pulse transformer.

Figure 11-2 • Core1553BRM with Its Own Memory

Pulse
Transformer

Microsemi FPGA

Transceiver
Memory

Master
CPU

Pulse
Transformer

B
ac

ke
nd

In
te

rf
ac

e

Core1553BRM

C
P

U
In

te
rf

ac
e

1553B
Encoders

and
Decoders

Protocol
Controller

Revision 4 93

12 – Legacy Mode Operation

Core Operation
Core1553BRM is designed to be software-compatible with existing 1553B solutions.

It supports the following features:

• Interrupt logs

• Programmable message timeouts

• Circular buffer operation

It does not support the following features:

• Buffer mode operation

• Built-in test functions, although the BIT register and the transmit BIT mode code are supported

• Auto-initialization of internal registers and memory

Legacy Mode
Core1553BRM is software-compatible with the UTMC 69151 (SuMMIT) device. The hardware interface
of the core is designed to simplify integration within an FPGA device and provides separate control
(CPU) and memory busses. Using separate busses can simplify integration within the FPGA, especially
when FPGA memory is used.

A VHDL wrapper file provided when the user testbench is exported from SmartDesign, summit.vhd,
creates a top-level design with a single CPU/memory data bus and renames the interface signals to
match the SuMMIT device (Figure 12-1 on page 94). This wrapper layer includes a small amount of
control logic to multiplex the CPU and memory busses. The wrapper does not use bidirectional address
and data busses; instead, separate inputs, outputs, and enables are provided. This allows internal FPGA
memory to be used if required. When bidirectional ports are used, they must be directly connected to

Core1553BRM v4.2 Handbook

Revision 4 94

FPGA I/O pins and can easily be added by the user if required (comments in the wrapper file provide
instructions on how to use bidirectional ports).

Table 12-1 gives the mapping between the legacy mode wrapper file and the Core1553BRM signals.
Throughout this document, the legacy signal names are used to assist designers who are familiar with
the legacy device.

As stated earlier, Core1553BRM is designed to be software-compatible with the actual behavior of
SuMMIT 1553 devices. Table 12-2 on page 96 details known differences, either with the SuMMIT
datasheet or the SuMMIT device.

Figure 12-1 • Legacy Mode Wrapper

Legacy Wrapper

B
ac

ke
nd

In
te

rf
ac

e

Core1553BRM

C
P

U
In

te
rf

ac
e

M
U
X

BUSAINEN
BUSAINP
BUSAINN
BUSAOUTIN
BUSAOUTP
BUSAOUTN
BUSBINEN
BUSBINP
BUSBINN
BUSAOUTIN
BUSBOUTP
BUSBOUTN

LOCKn
ABSTD
RTA
RTPTY
MSEL[1:0]

1553B
Encoders

and
Decoders

Protocol
Controller

ADDRIN[15:0]
ADDROUT[15:0]

ADDREN
DATAIN[15:0]

DATAOUT[15:0]
DATAEN

CSn
RDWRn
DMARn
DMAGn

DMACKn
DTACKn

RRDn
RWRn
RCSn

CLK
TCLK
RSTn

TERACTn
YFINTn

MSGINTn

Table 12-1 • Legacy Mode Wrapper Signal Assignment

Legacy Signal Name Core1553BRM Signal Assignment

CLK CLK

TCLK TCLK

RSTn RSTINn

RSTOUTn RSTOUTn

BUSAINEN BUSAINEN

BUSAINP BUSAINP

BUSAINN BUSAINN

BUSBINEN BUSBINEN

BUSBINP BUSBINP

BUSBINN BUSBINN

BUSAOUTIN BUSAOUTIN

Legacy Mode Operation

95 Revision 4

BUSAOUTP BUSAOUTP

BUSAOUTN BUSAOUTN

BUSBOUTIN BUSBOUTIN

BUSBOUTP BUSBOUTP

BUSBOUTN BUSBOUTN

ADDRIN CPUADDR

ADDROUT ADDROUT

ADDREN ADDREN

DATAIN MEMDIN MUXed with CPUDIN

DATAOUT DATAOUT

DATAEN MEMDEN or CPUDEN

CSn CPUWRn <= not (not CSn and not RDWRn)

RDWRn CPUWn <= not (not CSn and not RDWRn)

DMARn MEMREQn

DMAGn MEMGNTn

DMACKn MEMACCn

DTACKn MEMWAITn

RRDn MEMRDn

RWRn MEMWRn[0]

RCSn MEMCSn

ROMENn 1

YFINTn not INTOUTH

MSGINTn not INTOUTM

AUTOENn Not used

LOCKn LOCKn

ABSTD ABSTDIN

MSEL MSELIN

RTA RTADDRIN

RTPTY RTADDRPIN

RTADDERR RTADERR

TERACTn not BUSY

READYn READYn

SSYFn SSYSFn

Table 12-1 • Legacy Mode Wrapper Signal Assignment (continued)

Legacy Signal Name Core1553BRM Signal Assignment

Core1553BRM v4.2 Handbook

Revision 4 96

Table 12-2 • Core1553BRM Behavior vs. SuMMIT Operation

Symptom Core1553BRM Behavior

RT legalization initialization Core1553BRM initializes the RT legalization registers only when the LEGREGS
parameter is set to 0.

RT information words Core1553BRM sets bit 5 in the transmit and receive information words when a
broadcast message is transmitted or received.

Reset RT mode code When a Reset RT mode code is received, Core1553BRM will do the following:

Reset the 1553B decoder

Reset the Time Tag register (register 7)

Enable both channels, overriding the Transmitter Shutdown mode code

Enable the Terminal Flag bit, overriding the Inhibit Terminal Flag mode code

The core will continue to operate in RT mode, i.e., the STEX bit will stay active.

Monitor operation When programmed to capture N messages, Core1553BRM will capture N
messages and then generate the Monitor Block Count interrupt. At this point, the
monitor descriptor pointer is NOT reset. The following message will be captured to
the next descriptor address. After this message has been captured, the monitor
descriptor pointer is reset to the initial value. For example, if Core1553BRM is
programmed to capture four messages with the initial monitor descriptor set to 2000
hex, the core will do the following:

Capture message 1 to 2000 hex

Capture message 2 to 2008 hex

Capture message 3 to 2010 hex

Capture message 4 to 2018 hex

Generate an interrupt

Capture message 5 to 2020 hex

Reset the monitor descriptor pointer

Capture message 6 to 2000 hex

Capture message 7 to 2008 hex

Core1553BRM sets the Interrupt Address Word (IAW) to point to the last monitor
descriptor processed. In the example shown above, the IAW would be 2018 hex.

BIT operations Core1553BRM has automatic health monitoring but does not include the control
register BIT function. It will set the BIT word (register 6) bits as below:

15: DMAF – Set when a memory access fails

14: WRAPF – Set when a 1553B loop back failure is detected

13: TAPF – Set when a terminal address parity error occurs

12: BITF – Core1553BRM does not set this bit.

11: CHAF – Set when a transmitter time-out occurs on Bus A

10: CHAF – Set when a transmitter time-out occurs on Bus B

9:0: UDB – Core1553BRM does not set these bits.

All of the bits (including 12 and 9:0) can be set and cleared by the CPU writing to
the BIT register. Bits 9:0 of the BIT register at reset indicate the version of the core.
The settings are provided in the core release notes or datasheet.

Buffer mode Core1553BRM does not support buffer mode (control register bit 6). The core
writes/reads data as required directly to/from memory.

Auto-initialization Core1553BRM does not support auto-initialization. It is assumed that the local CPU
will initialize the core.

Revision 4 97

13 – Verification Tests Carried Out

The provided command files perform the tests given in Table 13-1.

Table 13-1 • Files and Tests Performed

File Tests Performed

doall Runs all of the command files

bcsetuprts Sets up the RTs so the BC can be tested

bcbasic BC basic message transfers

bcopcodes BC opcodes

All opcodes

bcopcodes2 BC opcodes and flags

Flag operation

bcrterrors BC operation with RTs inserting errors

Parity error in DW

Manchester error in SW

Manchester error in DW

Inverted SYNC on SW

Inverted SYNC on DW

Word counts none, +1, –1, 33

Mode code, extra data

Mode code, no data

No response

SW incorrect RT field

RTRT no response TX RT

RTRT no response RX RT

RTRT SWs wrong

Message error settings

Message error settings RTRT

Transmitter loopback tests

bcretries BC retry operations

bcregs BC register operation

Read/write of control register

STOP and RESET instructions

Broadcast enable

Interrupts

rtindex RT operation in indexed mode

rtppong RT operation in ping pong mode

rtcirc1 RT operation in circular buffer mode 1

rtcirc2 RT operation in circular buffer mode 2

rtstatus RT status word settings in MIL1553A and MIL1553B mode

Core1553BRM v4.2 Handbook

Revision 4 98

The doall script invokes all the tests listed above.

rtmode RT mode codes

rtmodebc RT broadcast mode codes

rtlegal RT legalization logic

mtbasic MT operation

mtandrt Combined RT and MT operation

mterrors MT error conditions

mtrbrt RT-to-RT monitor operations

Normal and error condition

bc1553ab 1553A and 1553B operational differences

memory Memory interface and timeouts

misc Word count errors

Transmit timer overrun

RT address error logic

Enhanced modes

Table 13-1 • Files and Tests Performed (continued)

File Tests Performed

Revision 4 99

14 – SuMMIT Differences

Table 14-1 lists the known differences between Core1553BRM and the Aeroflex SuMMIT device.

Table 14-1 • Core1553BRM Behavior vs. SuMMIT Operation

Symptom Core1553BRM Behavior

RT legalization initialization Core1553BRM initializes the RT legalization registers as configured by the
LEGREGS parameter.

RT information words Core1553BRM sets bit 5 in the transmit and receive information words when a
broadcast message is transmitted or received.

Reset RT mode code When a Reset RT mode code is received, Core1553BRM will do the following:

Reset the 1553B decoder

Reset the Time Tag register (register 7)

Enable both channels, overriding the Transmitter Shutdown mode code

Enable the Terminal Flag bit, overriding the Inhibit Terminal Flag mode code

The core will continue to operate in RT mode, i.e., the STEX bit will stay active.

Monitor operation When programmed to capture N messages, Core1553BRM will capture N
messages and then generate the Monitor Block Count interrupt. At this point, the
monitor descriptor pointer is NOT reset. The following message will be captured to
the next descriptor address. After this message has been captured, the monitor
descriptor pointer is reset to the initial value. For example, if Core1553BRM is
programmed to capture four messages with the initial monitor descriptor set to
2000 hex, then the core will:

• Capture message 1 to 2000 hex

• Capture message 2 to 2008 hex

• Capture message 3 to 2010 hex

• Capture message 4 to 2018 hex

• Generate an interrupt

• Capture message 5 to 2020 hex

• Reset the monitor descriptor pointer

• Capture message 6 to 2000 hex

• Capture message 7 to 2008 hex

Core1553BRM sets the IAW to point to the last monitor descriptor processed. In
the example shown above, the IAW would be 2018 hex.

Core1553BRM v4.2 Handbook

Revision 4 100

BIT operations Core1553BRM has automatic health monitoring but does not include the control
register BIT function. It will set the BIT word (register 6) bits as below:

• 15: DMAF – Set when a memory access fails

• 14: WRAPF – Set when a 1553B loopback failure is detected

• 13: TAPF – Set when a terminal address parity error occurs

• 12: BITF – Core1553BRM does not set this bit.

• 11: CHAF – Set when a transmitter timeout occurs on Bus A

• 10: CHAF – Set when a transmitter timeout occurs on Bus B

• 9:0 UDB – Core1553BRM does not set these bits.

All of the bits (including 12 and 9:0) can be set and cleared by the CPU writing to
the BIT register. Bits 9:0 of the BIT register at reset indicate the version of the core.
The settings are provided in the core release notes or datasheet.

Buffer mode Core1553BRM does not support buffer mode (Control register bit 6). The core
writes/reads data as required directly to/from memory.

Auto-initialization Core1553BRM does not support auto-initialization. It is assumed that the local
CPU will initialize the core.

Table 14-2 • Legacy Mode Wrapper Signal Assignment

Legacy Signal Name Core1553BRM Signal Assignment

CLK CLK

TCLK TCLK

RSTn RSTINn

RSTOUTn RSTOUTn

BUSAINEN BUSAINEN

BUSAINP BUSAINP

BUSAINN BUSAINN

BUSBINEN BUSBINEN

BUSBINP BUSBINP

BUSBINN BUSBINN

BUSAOUTIN BUSAOUTIN

BUSAOUTP BUSAOUTP

BUSAOUTN BUSAOUTN

BUSBOUTIN BUSBOUTIN

BUSBOUTP BUSBOUTP

BUSBOUTN BUSBOUTN

ADDRIN CPUADDR

ADDROUT ADDROUT

ADDREN ADDREN

DATAIN MEMDIN MUXed with CPUDIN

DATAOUT DATAOUT

Table 14-1 • Core1553BRM Behavior vs. SuMMIT Operation (continued)

Symptom Core1553BRM Behavior

SuMMIT Differences

101 Revision 4

DATAEN MEMDEN or CPUDEN

CSn CPUWRn <= not (not CSn and not RDWRn)

RDWRn CPUWn <= not (not CSn and not RDWRn)

DMARn MEMREQn

DMAGn MEMGNTn

DMACKn MEMACCn

DTACKn MEMWAITn

RRDn MEMRDn

RWRn MEMWRn[0]

RCSn MEMCSn

ROMENn 1

YFINTn not INTOUTH

MSGINTn not INTOUTM

AUTOENn Not used

LOCKn LOCKn

ABSTD ABSTDIN

MSEL MSELIN

RTA RTADDRIN

RTPTY RTADDRPIN

RTADDERR RTADERR

TERACTn not BUSY

READYn READYn

SSYFn SSYSFn

Table 14-2 • Legacy Mode Wrapper Signal Assignment (continued)

Legacy Signal Name Core1553BRM Signal Assignment

Revision 4 102

15 – ACKVAL and WAITVAL Settings

Figure 15-1 to Table 15-8 on page 108 give the possible ACKVAL and WAITVAL settings for different
clock speeds and the CPUMEM input setting.

For instance, if the system is operating at 24 MHz with CPUMEM = 0 (Table 15-4 on page 105) and it is
known that the maximum number of inserted wait states will be four, then by setting ACKVAL = 167 and
WAITVAL = 4, the allowed MEMREQn-to-MEMGNTn delay will be 6.958 µs. Alternatively, if the
MEMREQn-to-MEMGNTn delay is less than 0.083 µs (e.g., MEMGNTn is tied LOW), ACKVAL can be
set to 2 and WAITVAL to 34, allowing a read/write pulse width of up to 1,458 ns.

Table 15-1 • Backend Timing, CPUMEM = 0, CLOCK = 12 MHz

MEMREQn to
MEMGNTn
Maximum Delay
in µs

Maximum
Number of
Wait States

Maximum
Read/Write
Pulse Width

Clocks

Maximum
Read/Write
Pulse Width

in ns ACKVAL WAITVAL

6.250 0 1 83.33 75 0

5.833 1 2 166.66 70 1

5.333 2 3 250.00 64 2

4.916 3 4 333.33 59 3

4.416 4 5 416.66 53 4

4.000 5 6 500.00 48 5

3.500 6 7 583.33 42 6

3.000 7 8 666.66 36 7

2.583 8 9 750.00 31 8

2.166 9 10 833.33 26 9

1.666 10 11 916.66 20 10

1.250 11 12 1000.00 15 11

0.750 12 13 1083.33 9 12

0.333 13 14 1166.66 4 13

ACKVAL and WAITVAL Settings

103 Revision 4

Table 15-2 • Backend Timing, CPUMEM = 0, CLOCK = 16 MHz

MEMREQn to
MEMGNTn
Maximum Delay
in µs

Maximum
Number of
Wait States

Maximum
Read/Write
Pulse Width

Clocks

Maximum
Read/Write
Pulse Width

in ns ACKVAL WAITVAL

7.062 0 1 62.50 113 0

6.750 1 2 125.00 108 1

6.375 2 3 187.50 102 2

6.062 3 4 250.00 97 3

5.687 4 5 312.50 91 4

5.375 5 6 375.00 86 5

5.000 6 7 437.50 80 6

4.687 7 8 500.00 75 7

4.312 8 9 562.50 69 8

4.000 9 10 625.00 64 9

3.625 10 11 687.50 58 10

3.312 11 12 750.00 53 11

2.937 12 13 812.50 47 12

2.625 13 14 875.00 42 13

2.250 14 15 937.50 36 14

1.937 15 16 1000.00 31 15

1.562 16 17 1062.50 25 16

1.250 17 18 1125.00 20 17

0.875 18 19 1187.50 14 18

0.562 19 20 1250.00 9 19

0.187 20 21 1312.50 3 20

Core1553BRM v4.2 Handbook

Revision 4 104

Table 15-3 • Backend Timing, CPUMEM = 0, CLOCK = 20 MHz

MEMREQn to
MEMGNTn
Maximum Delay
in µs

Maximum
Number of
Wait States

Maximum
Read/Write
Pulse Width

Clocks

Maximum
Read/Write
Pulse Width

in ns ACKVAL WAITVAL

7.550 0 1 50.00 151 0

7.300 1 2 100.00 146 1

7.000 2 3 150.00 140 2

6.750 3 4 200.00 135 3

6.450 4 5 250.00 129 4

6.200 5 6 300.00 124 5

5.900 6 7 350.00 118 6

5.650 7 8 400.00 113 7

5.350 8 9 450.00 107 8

5.100 9 10 500.00 102 9

4.800 10 11 550.00 96 10

4.550 11 12 600.00 91 11

4.250 12 13 650.00 85 12

4.000 13 14 700.00 80 13

3.700 14 15 750.00 74 14

3.450 15 16 800.00 69 15

3.150 16 17 850.00 63 16

2.900 17 18 900.00 58 17

2.600 18 19 950.00 52 18

2.350 19 20 1000.00 47 19

2.050 20 21 1050.00 41 20

1.800 21 22 1100.00 36 21

1.500 22 23 1150.00 30 22

1.250 23 24 1200.00 25 23

0.950 24 25 1250.00 19 24

0.700 25 26 1300.00 14 25

0.400 26 27 1350.00 8 26

0.150 27 28 1400.00 3 27

ACKVAL and WAITVAL Settings

105 Revision 4

Table 15-4 • Backend Timing, CPUMEM = 0, CLOCK = 24 MHz

MEMREQn to
MEMGNTn
Maximum Delay
in µs

Maximum
Number of
Wait States

Maximum
Read/Write
Pulse Width

Clocks

Maximum
Read/Write
Pulse Width

in ns ACKVAL WAITVAL

7.875 0 1 41.66 189 0

7.625 1 2 83.33 183 1

7.416 2 3 125.00 178 2

7.208 3 4 166.66 173 3

6.958 4 5 208.33 167 4

6.750 5 6 250.00 162 5

6.500 6 7 291.66 156 6

6.250 7 8 333.33 150 7

6.041 8 9 375.00 145 8

5.833 9 10 416.66 140 9

5.583 10 11 458.33 134 10

5.375 11 12 500.00 129 11

5.125 12 13 541.66 123 12

4.916 13 14 583.33 118 13

4.666 14 15 625.00 112 14

4.458 15 16 666.66 107 15

4.208 16 17 708.33 101 16

4.000 17 18 750.00 96 17

3.750 18 19 791.66 90 18

3.541 19 20 833.33 85 19

3.291 20 21 875.00 79 20

3.041 21 22 916.66 73 21

2.833 22 23 958.33 68 22

2.625 23 24 1000.00 63 23

2.375 24 25 1041.66 57 24

2.166 25 26 1083.33 52 25

1.916 26 27 1125.00 46 26

1.708 27 28 1166.66 41 27

1.458 28 29 1208.33 35 28

1.250 29 30 1250.00 30 29

1.000 30 31 1291.66 24 30

0.791 31 32 1333.33 19 31

0.541 32 33 1375.00 13 32

0.333 33 34 1416.66 8 33

0.083 34 35 1458.33 2 34

Core1553BRM v4.2 Handbook

Revision 4 106

Table 15-5 • Backend Timing, CPUMEM = 1, CLOCK = 12 MHz

MEMREQn to
MEMGNTn
Maximum Delay
in µs

Maximum
Number of
Wait States

Maximum
Read/Write
Pulse Width

Clocks

Maximum
Read/Write
Pulse Width

in ns ACKVAL WAITVAL

3.833 0 1 83.33 46 0

3.500 1 2 166.66 42 1

3.166 2 3 250.00 38 2

2.833 3 4 333.33 34 3

2.416 4 5 416.66 29 4

2.083 5 6 500.00 25 5

1.750 6 7 583.33 21 6

1.333 7 8 666.66 16 7

1.000 8 9 750.00 12 8

0.666 9 10 833.33 8 9

0.250 10 11 916.66 3 10

Table 15-6 • Backend Timing, CPUMEM = 1, CLOCK = 16 MHz

MEMREQn to
MEMGNTn
Maximum Delay
in µs

Maximum
Number of
Wait States

Maximum
Read/Write
Pulse Width

Clocks

Maximum
Read/Write
Pulse Width

in ns ACKVAL WAITVAL

4.500 0 1 62.50 72 0

4.250 1 2 125.00 68 1

3.937 2 3 187.50 63 2

3.687 3 4 250.00 59 3

3.437 4 5 312.50 55 4

3.125 5 6 375.00 50 5

2.875 6 7 437.50 46 6

2.625 7 8 500.00 42 7

2.312 8 9 562.50 37 8

2.062 9 10 625.00 33 9

1.812 10 11 687.50 29 10

1.500 11 12 750.00 24 11

1.250 12 13 812.50 20 12

1.000 13 14 875.00 16 13

0.687 14 15 937.50 11 14

0.437 15 16 1000.00 7 15

0.187 16 17 1062.50 3 16

ACKVAL and WAITVAL Settings

107 Revision 4

Table 15-7 • Backend Timing, CPUMEM = 1, CLOCK = 20 MHz

MEMREQn to
MEMGNTn
Maximum Delay
in µs

Maximum
Number of
Wait States

Maximum
Read/Write
Pulse Width

Clocks

Maximum
Read/Write
Pulse Width

in ns ACKVAL WAITVAL

4.850 0 1 50.00 97 0

4.650 1 2 100.00 93 1

4.450 2 3 150.00 89 2

4.200 3 4 200.00 84 3

4.000 4 5 250.00 80 4

3.800 5 6 300.00 76 5

3.550 6 7 350.00 71 6

3.350 7 8 400.00 67 7

3.150 8 9 450.00 63 8

2.900 9 10 500.00 58 9

2.700 10 11 550.00 54 10

2.500 11 12 600.00 50 11

2.250 12 13 650.00 45 12

2.050 13 14 700.00 41 13

1.850 14 15 750.00 37 14

1.600 15 16 800.00 32 15

1.400 16 17 850.00 28 16

1.200 17 18 900.00 24 17

0.950 18 19 950.00 19 18

0.750 19 20 1000.00 15 19

0.550 20 21 1050.00 11 20

0.300 21 22 1100.00 6 21

0.100 22 23 1150.00 2 22

Core1553BRM v4.2 Handbook

Revision 4 108

Table 15-8 • Backend Timing, CPUMEM = 1, CLOCK = 24 MHz

MEMREQn to
MEMGNTn
Maximum Delay
in µs

Maximum
Number of
Wait States

Maximum
Read/Write
Pulse Width

Clocks

Maximum
Read/Write
Pulse Width

in ns ACKVAL WAITVAL

5.083 0 1 41.66 122 0

4.916 1 2 83.33 118 1

4.750 2 3 125.00 114 2

4.583 3 4 166.66 110 3

4.375 4 5 208.33 105 4

4.208 5 6 250.00 101 5

4.041 6 7 291.66 97 6

3.833 7 8 333.33 92 7

3.666 8 9 375.00 88 8

3.500 9 10 416.66 84 9

3.291 10 11 458.33 79 10

3.125 11 12 500.00 75 11

2.916 12 13 541.66 70 12

2.750 13 14 583.33 66 13

2.583 14 15 625.00 62 14

2.375 15 16 666.66 57 15

2.208 16 17 708.33 53 16

2.041 17 18 750.00 49 17

1.833 18 19 791.66 44 18

1.666 19 20 833.33 40 19

1.500 20 21 875.00 36 20

1.291 21 22 916.66 31 21

1.125 22 23 958.33 27 22

0.958 23 24 1000.00 23 23

0.750 24 25 1041.66 18 24

0.583 25 26 1083.33 14 25

0.416 26 27 1125.00 10 26

0.208 27 28 1166.66 5 27

0.041 28 29 1208.33 1 28

Revision 4 102

16 – Ordering Information

Ordering Codes
Core1553BRM can be ordered through your local Microsemi sales representative. Use the following

number convention when ordering: Core1553BRM-XX. XX is listed in Table 16-1.

Table 16-1 • Ordering Codes

XX Description

OM RTL for Obfuscated RTL – multiple-use license

RM RTL for RTL source – multiple-use license

Revision 4 109

A – List of Changes

The following table lists critical changes that were made in each revision of the document.

Date Changes Page

Revision 4
(March 2017)

Added in Interrupt section, chapter 8. 79

Revision 3
(February 2015)

Added RTG4 Support. NA

Revision 2
(January 2014)

Utilization metrics added for SmartFusion2/IGLOO2. 6

Revision 1
(September 2010)

The "CoreConsole" section was replaced with the "SmartDesign" section. All
occurrences of "CoreConsole" in the handbook were replaced with SmartDesign.
Figure 2-1 • Core1553BRM Configuration within SmartDesign replaced the similar
figure for CoreConsole.

21, 22

The "Simulation Flows" section was revised to state that in the full 1553 verification
environment (VHDL only), the user can use a VHDL verification environment to verify
the Verilog core.

23

The description for RSTOUTn was revised in Table 3-5 • Control and Status Signals. 26

The description for CPUMEM was revised in Table 3-6 • CPU Interface Signals to
change the register number from CPUADDR[2:0] to CPUADDR[5:0].

27

The "Bit 14 – SBIT (Start BIT)" section was revised to state that the SBIT (Start BIT)
must be Low to initiate core operation.

65

The buffer operation was revised for 01 and 10 in Table 8-2 • Buffer Modes. 66

The "Testbenches Provided" section was revised to explain licensing requirements
when using the VHDL verification environment to verify the Verilog core.

83

Revision 4 110

B – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/designsupport/
fpga-soc-support

Website
You can browse a variety of technical and non-technical information on the SoC home page, at
www.microsemi.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.

The technical support email address is soc_tech@microsemi.com.

http://www.microsemi.com/products/fpga-soc/designsupport/fpga-soc-support
http://www.microsemi.com/products/fpga-soc/designsupport/fpga-soc-support
http://www.microsemi.com
mailto:soc_tech@microsemi.com

Core1553BRM v4.2 Handbook

Revision 4 111

My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms
Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select
Yes in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR
web page.

http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/index.php?option=com_content&id=135&lang=en&view=article
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/

Revision 4 112

C – Index

Numerics
1553

bus signals 25
command words 39
events 60
functions 5
messages 44, 59
status word 62

A
ACKVAL settings 102
antifuse FPGAs 5
automatic retry 39

B
backend 29

memory interface timing 30
timing settings 102

block diagram 17
broadcast commands 46
broadcast data pointer 52
buffers

circular 46, 56
data 52
ping pong 46, 55

bulk data transfer 46
bus controller (BC) 5, 39

control and message processing 39
GOTO enhancements 80
MIL-STD-1553A operation 45
registers 40, 73

bus monitor (BM) 5, 59
functions 77
MIL-STD-1553A operation 63
registers 60, 77

C
circular buffers 46, 56
clocks

frequency 65
networks 90
requirements 38

combined storage 56
command blocks 39, 40, 41

architecture 41
status 40

command files
testbenches 86

command frame 40
command illegalization registers 64

command legality interface 17
command legalization interface 26
command words 44, 62
commands

chaining 39
compatibility 18, 20
components

external 14
contacting Microsemi SoC Products Group

customer service 110
email 110
web-based technical support 110

control logic 93
control words 40, 41, 51
core reset 48
core versions

Evaluation 5, 21
Obfuscated 5, 21
RTL 5, 21

CPU 14, 20
interface 17, 27
interface timing 32
memory 20

current address pointer 57
customer service 110

D
data buffers 52, 55

structure 52
data memory space 41
data pointers 40, 41, 44, 52, 62, 77

broadcast 52
decoders 17
delays

transceiver loopback 37
descriptor blocks 50
descriptor table 49
digital PLL 17
DMA burst 40
dual-buffer mode 55

E
encoders 17
enhanced operation 80
Evaluation 5
external components 14
external memory 60

F
features 18

Core1553BRM v4.2 Handbook

Revision 4 113

bus controller 39
bus monitor 59
remote terminal 46

Flash FPGAs 5
formats

words 15
FPGA 5, 93
functional description 17

G
GOTO enhancements 80

H
hints 90

I
I/O

miscellaneous 30
signals 25

implementation hints 90
indexed mode 55
interfaces 25

1553B bus 25
backend 29
command legality 17
command legalization 26
CPU 17, 27
CPU, timing 32
memory 18, 29
memory, timing 34
timing 32

Interrupt Address Word (IAW) 79
Interrupt Information Word (IIW) 79
interrupts 79

address word 79
hardware 79
history 46
information word 79
log 40, 60
log list 41
message 79

L
legacy mode 93

wrapper 93, 94
wrapper, signals 100

legalization 76
registers 90

Libero Integrated Design Environment (IDE) 5, 23
licenses

Evaluation 21
Obfuscated 21
RTL 21
types 21

location offset 50
loopback 19, 47

delays 37

M
Manchester encoding 17, 47
memory 14

access sequence, enhanced operation 81
CPU 20
external 39, 40, 59
interface 18
limit 20
map, remote terminal 49
own 19, 92
requirements 19
shared 20, 91
shared vs. own 91
structure 39, 40, 49, 60
timing 34

Message Information Buffer (MIB) 56
Message Information Word (MIW) 46, 52, 53, 56, 59,

61
messages

information buffer 56
information word 46, 59
processing 39, 46, 59
scheduling 39
types 16

Microsemi SoC Products Group
email 110
web-based technical support 110
website 110

MIL-STD-1553 bus 14
MIL-STD-1553A 45, 58, 63

bus controller operation 45
bus monitor operation 63
remote terminal operation 58

MIL-STD-1553B 5, 45, 58, 63
minor frame 40
mode codes 54
ModelSim 5
monitor blocks 61
MT (bus monitor terminal) 5
multiple message processing 39

N
networks 90

O
Obfuscated 5
opcodes 39, 40, 41, 43
operation

bus controller 39
bus monitor 59
comparison to SuMMIT 96, 99
enhanced 80
legacy mode 93
MIL-STD-1553A bus controller 45
MIL-STD-1553A bus monitor 63

Index

114 Revision 4

MIL-STD-1553A remote terminal 58
ping pong buffers 55
ping pong, enhanced 80
remote terminal 46
testbenches 83

P
parameters 24
parity 17
ping pong

buffers 46, 55
enable 66
enhanced operation 80

place-and-route in Libero IDE 23
polling 39
product support

customer service 110
email 110
My Cases 111
outside the U.S. 111
technical support 110
website 110

protocol controller 17

R
radiation-tolerant FPGAs 5
registers 18, 39, 64, 76

Built-In Test 71
bus controller 40, 73
bus monitor 60, 77
Command Block Pointer 74
command illegalization 64
Control 65
control, common 65
Current Command 68
Descriptor Pointer 75
Enhanced Features 72
Interrupt Mask 68
Interrupt Pointer 71
legalization 90
Minor Frame Timer 73
Monitor Block Count 78
Monitor Command Pointer 77
Monitor Data Pointer 77
Monitor Filter 78
Operation and Status 67
Pending Interrupt 69
remote terminal 48, 74
Status Word 75
Time Tag 74

remote terminal (RT) 5, 46, 74
control and message processing 46
legalization registers 90
memory map 49
MIL-STD-1553A operation 58
registers 48, 74

requirements

clocks 38
memory 19
system 19

reset networks 90
RT response times 37
RTL 5
RT-to-RT transfer 44

S
segregated storage 57
shared vs. own memory 91
signals

1553B bus 25
backend 29
control and status 26
core setup 25
CPU interface 27
I/O 25
legacy mode wrapper 94, 100
miscellaneous I/O 30

SmartDesign 21
source code 5
status words 44, 62, 75

storage 44
storage

combined 56
segregated 57

SuMMIT devices 5, 93
comparison 96, 99

supported commands, testbenches 84
synthesis in Libero IDE 23
system

integration 5
requirements 19

T
tech support

ITAR 111
My Cases 111
outside the U.S. 111

technical support 110
terminal address 47
testbenches 5, 83

command files 86
operation and modification 83
supported commands 84
user, Verilog 88
user, VHDL 87
verification 83
verification, tests 97

time tag 52, 54, 62, 74
timing

backend memory interface 30
backend settings 102
CPU interface 32
interface 32
memory 34

Core1553BRM v4.2 Handbook

Revision 4 115

RT response 37
transceiver loopback delays 37

tool flows 21
transceivers 14, 19, 92

loopback delays 37
typical system implementation 5

U
user testbenches

Verilog 88
VHDL 87

V
verification testbench 83

tests 97
Verilog

user testbench 88
VHDL

user testbench 87
wrapper 93
wrapper file 93

W
WAITVAL settings 102
web-based technical support 110
word formats 15
wrapper 93

50200091-4/03-17

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world’s standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

© 2017 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

 Tел: +7 (812) 336 43 04 (многоканальный)
 Email: org@lifeelectronics.ru

 www.lifeelectronics.ru

ООО “ЛайфЭлектроникс” “LifeElectronics” LLC
ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и
отечественного производства от производителей и со складов крупных дистрибьюторов Европы,
Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению
коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные,
электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

 Конкурентоспособные цены и скидки постоянным клиентам.

 Специальные условия для постоянных клиентов.

 Подбор аналогов.

 Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.

 Приемлемые сроки поставки, возможна ускоренная поставка.

 Доставку товара в любую точку России и стран СНГ.

 Комплексную поставку.

 Работу по проектам и поставку образцов.

 Формирование склада под заказчика.

 Сертификаты соответствия на поставляемую продукцию (по желанию клиента).

 Тестирование поставляемой продукции.

 Поставку компонентов, требующих военную и космическую приемку.

 Входной контроль качества.

 Наличие сертификата ISO.

 В составе нашей компании организован Конструкторский отдел, призванный помогать
разработчикам, и инженерам.

 Конструкторский отдел помогает осуществить:

 Регистрацию проекта у производителя компонентов.

 Техническую поддержку проекта.

 Защиту от снятия компонента с производства.

 Оценку стоимости проекта по компонентам.

 Изготовление тестовой платы монтаж и пусконаладочные работы.

mailto:org@lifeelectronics.ru
http://lifeelectronics.ru/

