JIDT

10BASE-T/100BASE-TX INTEGRATED PHYCEIVER WITH RMII INTERFACE ICS1894-32

Description

The ICS1894-32 is a low-power, physical-layer device (PHY) that supports the ISO/IEC 10Base-T and 100Base-TX Carrier-Sense Multiple Access/Collision Detection (CSMA/CD) Ethernet standards, ISO/IEC 8802.3. It is intended for RMII/MII Node applications and includes the Auto-MDIX feature that automatically corrects crossover errors in plant wiring.

The ICS1894-32 incorporates Digital-Signal Processing (DSP) control in its Physical-Medium Dependent (PMD) sub-layer. As a result, it can transmit and receive data on unshielded twisted-pair (UTP) category 5 cables with attenuation in excess of 24 dB at 100MHz.

The ICS1894-32 provides a Serial-Management Interface for exchanging command and status information with a Station-Management (STA) entity. The ICS1894-32 Media-Dependent Interface (MDI) can be configured to provide full-duplex operation at data rates of 10 Mb/s or 100Mb/s.

In addition, the ICS1894-32 includes a programmable LED and interrupt output function. The LED outputs can be configured through registers to indicate the occurance of certain events such as LINK, COLLISION, ACTIVITY, etc. The purpose of the programmable interrupt output is to notify the PHY controller device immediately when a certain event happens instead of having the PHY controller continuously poll the PHY. The events that could be used to generate interrupts are: receiver error, Jabber, page received, parallel detect fault, link partner acknowledge, link status change, auto-negotiation complete, remote fault, collision, etc.

The ICS1894-32 has deep power modes that can result in significant power savings when the link is broken.

Applications: NIC cards, PC motherboards, switches, routers, DSL and cable modems, game machines, printers, network connected appliances, and industrial equipment.

Features

- **•** Supports category 5 cables and above with attenuation in excess of 24dB at 100 MHz.
- **•** Single-chip, fully integrated PHY provides PCS, PMA, PMD, and AUTONEG sub layers functions of IEEE standard.
- **•** 10Base-T and 100Base-TX ISO/IEC 8802.3 compliant
- **•** MIIM (MDC/MDIO) management bus for PHY register configuration
- **•** RMII interface support with external 50 MHz system clock
- **•** Single 3.3V power supply
- **•** Highly configurable, supports:
	- Media Independent Interface (MII)
	- Auto-Negotiation with Parallel detection
	- Node applications, managed or unmanaged
	- 10M or 100M full duplex modes *
	- Loopback mode for Diagnostic Functions
- **•** Auto-MDI/MDIX crossover correction
- **•** Low-power CMOS (typically 300 mW)
- **•** Power-Down mode (typically 21mW)
- **•** Clock and crystal supported in MII mode
- **•** Programmable LEDs
- **•** Interrupt output pin
- **•** Fully integrated, DSP-based PMD includes:
	- Adaptive equalization and baseline-wander correction
	- Transmit wave shaping and stream cipher scrambler
	- MLT-3 encoder and NRZ/NRZI encoder
- **•** Core power supply (3.3 V)
- **•** 3.3 V/1.8 V VDDIO operation supported
- **•** Smart power control with deep power down feature
- **•** Available in 32-pin (5mm x 5mm) QFN package, Pb-free
- **•** Available in Industrial Temp and Lead Free
- ***** For full/half duplex **RMII** only interface support, please refer to ICS1894-33 datasheet.
- ***** For full/half duplex **MII** only interface support, please refer to ICS1894-34 datasheet.

Block Diagram

Pin Assignment

Pin Descriptions

Notes:

- 1. AIO: Analog input/output PAD.
	- IO: Digital input/output.

IN/Ipu: Digital input with internal 20k pull-up.

IN/Ipd: Digital input with internal 20k pull-down.

IO/Ipu: Digital input/output with internal 20k pull-up.

IO/Ipd: Digital input/output with internal 20k pull-down.

- 2. MII Rx Mode: The RXD[3..0] bits are synchronous with RXCLK. When RXDV is asserted, RXD[3..0] presents valid data to MAC on the MII interface. RXD[3..0] is invalid when RXDV is de-asserted.
- 3. RMII Rx Mode: The RXD[1:0] bits are synchronous with REFIN. For each clock period in which CRS_DV is asserted, two bits of recovered data are sent from the PHY to the MAC.
- 4. MII Tx Mode: The TXD[3..0] bits are synchronous with TXCLK. When TXEN is asserted, TXD[3..0] presents valid data from the MAC on the MII interface. TXD[3..0] has no effect when TXEN is de-asserted.
- 5. RMII Tx Mode: The TXD[1:0] bits are synchronous with REFIN. For each clock period in which TX_EN is asserted, two bits of data are received by the PHY from the MAC.

Strapping Options

1. IO/Ipu = Digital Input with internal 20k pull-up during power on reset/hardware reset; output pin otherwise.

2. IO/Ipd = Digital Input with internal 20k pull-down during power on reset/hardware reset; output pin otherwise.

3. If RXTRI/RXD1 pin is latched high during power on reset/hardware reset, P1/ISO/LED1 functions as RX real time isolation control input after latch and LED1 function will be disabled.

Functional Description

The ICS1894-32 is an ethernet PHYceiver. During data transmission, it accepts sequential nibbles/di-bits from the MAC (Media Access Control), converts them into a serial bit stream, encodes them, and transmits them over the medium through an external isolation transformer. When receiving data, the ICS1894-32 converts and decodes a serial bit stream (acquired from an isolation transformer that interfaces with the medium) into sequential nibbles/di-bits. It subsequently presents these nibbles/di-bits to the MAC Interface.

The ICS1894-32 implements the OSI model's physical layer, consisting of the following, as defined by the ISO/IEC 8802-3 standard:

- **•** Physical Coding sublayer (PCS)
- **•** Physical Medium Attachment sublayer (PMA)
- **•** Physical Medium Dependent sublayer (PMD)
- **•** Auto-Negotiation sublayer

The ICS1894-32 is transparent to the next layer of the OSI model, the link layer. The link layer has two sublayers: the Logical Link Control sublayer and the MAC sublayer. The ICS1894-32 can interface directly with the MAC via MII/RMII interface signals.

The ICS1894-32 transmits framed packets acquired from its MAC Interface and receives encapsulated packets from another PHY, which it translates and presents to its MAC Interface.

Note: As per the ISO/IEC standard, the ICS1894-32 does not affect, nor is it affected by, the underlying structure of the MAC frame it is conveying.

100Base-TX Operation

During 100Base-TX data transmission, the ICS1894-32 accepts packets from the MAC and inserts Start-of-Stream Delimiters (SSDs) and End-of-Stream Delimiters (ESDs) into the data stream. The ICS1894-32 encapsulates each MAC frame, including the preamble, with an SSD and an ESD. As per the ISO/IEC Standard, the ICS1894-32 replaces the first octet of each MAC preamble with an SSD and appends an ESD to the end of each MAC frame.

When receiving data from the medium, the ICS1894-32 removes each SSD and replaces it with the pre-defined preamble pattern before presenting the data on the MAC Interface. When the ICS1894-32 encounters an ESD in the received data stream, signifying the end of the frame, it ends the presentation of data on the MAC Interface. Therefore, the local MAC receives an unaltered copy of the transmitted frame sent by the remote MAC.

During periods when MAC frames are being neither transmitted nor received, the ICS1894-32 signals and detects the IDLE condition on the Link Segment. In the 100Base-TX mode, the ICS1894-32 transmit channel sends a continuous stream of scrambled ones to signify the IDLE condition. Similarly, the ICS1894-32 receive channel continually monitors its data stream and looks for a pattern of scrambled ones. The results of this signaling and monitoring provide the ICS1894-32 with the means to establish the integrity of the Link Segment between itself and its remote link partner and inform its Station Management Entity (SME) of the link status.

10Base-T Operation

During 10Base-T data transmission, the ICS1894-32 inserts only the IDL delimiter into the data stream. The ICS1894-32 appends the IDL delimiter to the end of each MAC frame. However, since the 10Base-T preamble already has a Start-of-Frame delimiter (SFD), it is not required that the ICS1894-32 insert an SSD-like delimiter.

When receiving data from the medium (such as a twisted-pair cable), the ICS1894-32 uses the preamble to synchronize its receive clock. When the ICS1894-32

receive clock establishes lock, it presents the preamble nibbles to the MAC Interface.

In 10M operations, during periods when MAC frames are being neither transmitted nor received, the ICS1894-32 signals and detects Normal Link Pulses. This action allows the integrity of the Link Segment with the remote link partner to be established and then reported to the ICS1894-32's SME.

Auto-Negotiation

The ICS1894-32 conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3u specification. Autonegotiation is enabled by either hardware pin strapping (pin 20) or software (register 0h bit 12).

Auto-negotiation allows link partners to select the highest common mode of operation. Link partners advertise their capabilities to each other, and then compare their own capabilities with those they received from their link partners. The highest speed and duplex setting that is common to the two link partners is selected as the mode of operation.

The following list shows the speed and duplex operation mode from highest to lowest.

- **•** Priority 1: 100Base-TX, full-duplex
- **•** Priority 2: 100Base-TX, half-duplex
- **•** Priority 3: 10Base-T, full-duplex
- **•** Priority 4: 10Base-T, half-duplex

If auto-negotiation is not supported or the ICS1894-32 link partner is forced to bypass auto-negotiation, the ICS1894-32 sets its operating mode by observing the signal at its receiver. This is known as parallel detection, and allows the ICS1894-32 to establish link by listening for a fixed signal protocol in the absence of auto-negotiation advertisement protocol.

MII Management (MIIM) Interface

The ICS1894-32 supports the IEEE 802.3 MII Management Interface, also known as the Management Data Input / Output (MDIO) Interface. This interface allows upper-layer devices to monitor and control the state of the ICS1894-32. An external device with MIIM capability is used to read the PHY status and/or configure the PHY settings. Additional details on the MIIM interface can be found in Clause 22.2.4.5 of the IEEE 802.3u Specification.

The MIIM interface consists of the following:

- **•** A physical connection that incorporates the clock line (MDC) and the data line (MDIO).
- **•** A specific protocol that operates across the aforementioned physical connection that allows an external controller to communicate with one or more ICS1894-32 devices. Each ICS1894-32 device is assigned a PHY address between 1 and 7 by the P[4:0] strapping pins. P3 and P4 address bits are hardcoded to '0' in design.
- **•** An internal addressable set of thirty-one 8-bit MDIO registers. Register [0:6] are required, and their functions are defined by the IEEE 802.3u Specification. The additional registers are provided for expanded functionality.

The ICS1894-32 supports MIIM in both MII mode and RMII mode.

The following table shows the MII Management frame format for the ICS1894-32.

MII Management Frame Format

Interrupt (INT)

P2/INT (pin 11) is an optional interrupt signal that is used to inform the external controller that there has been a status update in the ICS1894-32 PHY register. Register 23 shows the status of the various interrupts while register 22 controls the enabling/disabling of the interrupts.

MII Data Interface

The Media Independent Interface (MII) is specified in Clause 22 of the IEEE 802.3u Specification. It provides a common interface between physical layer and MAC layer devices, and has the following key characteristics:

- **•** Supports 10Mbps and 100Mbps data rates.
- **•** Uses a 25MHz reference clock, sourced by the PHY.
- **•** Provides independent 4-bit wide (nibble) transmit and receive data paths.
- **•** Contains two distinct groups of signals: one for transmission and the other for reception.

The ICS1894-32 is configured for MII mode upon power-up or hardware reset with the following:

• A 25MHz crystal connected to REFIN, REFOUT (pins 30, 29), or an external 25MHz clock source (oscillator) connected to REFIN

MII Signal Definition

The following table describes the MII signals. Refer to Clause 22 of the IEEE 802.3u Specification for detailed information.

Transmit Clock (TXCLK)

TXCLK is sourced by the PHY. It is a continuous clock that provides the timing reference for TXEN and TXD[3:0]. TXCLK is 2.5MHz for 10Mbps operation and 25MHz for 100Mbps operation.

Transmit Enable (TXEN)

TXEN indicates the MAC is presenting nibbles on TXD[3:0] for transmission. It is asserted synchronously with the first nibble of the preamble and remains asserted while all nibbles to be transmitted are presented on the MII, and is negated prior to the first TXCLK following the final nibble of a frame. TXEN transitions synchronously with respect to TXCLK.

Transmit Data (TXD[3:0])

TXD[3:0] transitions synchronously with respect to TXCLK. When TXEN is asserted, TXD[3:0] are accepted for transmission by the PHY. TXD[3:0] is "00" to indicate idle when TXEN is de-asserted. Values other than "00" on TXD[3:0] while TXEN is de-asserted are ignored by the PHY.

Receive Clock (RXCLK)

RXCLK provides the timing reference for RXDV, RXD[3:0], and RXER.

- **•** In 10Mbps mode, RXCLK is recovered from the line while carrier is active. RXCLK is derived from the PHY's reference clock when the line is idle, or link is down.
- **•** In 100Mbps mode, RXCLK is continuously recovered from the line. If link is down, RXCLK is derived from the PHY's reference clock.

RXCLK is 2.5MHz for 10Mbps operation and 25MHz for 100Mbps operation.

Receive Data Valid (RXDV)

RXDV is driven by the PHY to indicate that the PHY is presenting recovered and decoded nibbles on RXD[3:0].

- **•** In 10Mbps mode, RXDV is asserted with the first nibble of the SFD (Start of Frame Delimiter), and remains asserted until the end of the frame.
- **•** In 100Mbps mode, RXDV is asserted from the first nibble of the preamble to the last nibble of the frame.

RXDV transitions synchronously with respect to RXCLK.

Receive Data (RXD[3:0])

RXD[3:0] transitions synchronously with respect to RXC. For each clock period in which RXDV is asserted, RXD[3:0] transfers a nibble of recovered data from the PHY.

Receive Error (RXER)

RXER is asserted for one or more RXCLK periods to indicate that an error (e.g. a coding error or any error that a

PHY is capable of detecting, and that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame presently being transferred from the PHY. RXER transitions synchronously with respect to RXC. While RXDV is de-asserted, RXER has no effect on the MAC.

Reduced MII (RMII) Data Interface

The Reduced Media Independent Interface (RMII) specifies a low pin count Media Independent Interface (MII). It provides a common interface between physical layer and MAC layer devices, and has the following key characteristics:

- **•** Supports 10Mbps and 100Mbps data rates.
- **•** Uses a single 50MHz reference clock provided by the MAC or the system board.
- **•** Provides independent 2-bit wide (di-bit) transmit and receive data paths.
- **•** Contains two distinct groups of signals: one for transmission and the other for reception.

In RMII mode, a 50 MHz reference clock is connected to REFIN(pin 30).

RMII Signal Definition

The following table describes the RMII signals. Refer to RMII Specification for detailed information.

Reference Clock (REFIN)

REFIN is sourced by the MAC or system board. It is a continuous 50MHz clock that provides the timing reference for TX_EN, TXD[1:0], CRS_DV, RXD[1:0], and RX_ER.

Transmit Enable (TX_EN)

TX_EN indicates that the MAC is presenting di-bits on TXD[1:0] for transmission. It is asserted synchronously with the first nibble of the preamble and remains asserted while all di-bits to be transmitted are presented on the RMII, and is negated prior to the first REFIN following the final di-bit of a frame. TX_EN transitions synchronously with respect to REFIN.

Transmit Data [1:0] (TXD[1:0])

TXD[1:0] transitions synchronously with respect to REFIN. When TX_EN is asserted, TXD[1:0] are accepted for transmission by the PHY. TXD[1:0] is "00" to indicate idle when TX EN is de-asserted. Values other than "00" on TXD[1:0] while TX_EN is de-asserted are ignored by the PHY.

Carrier Sense/Data Valid (CRS_DV[RXDV])

CRS_DV, identified as RXDV (pin 18), shall be asserted by the PHY when the receive medium is non-idle. The specifics of the definition of idle for 10BASE-T and 100BASE-X are contained in IEEE 802.3 [1] and IEEE 802.3u [2]. CRS_DV is asserted asynchronously on detection of carrier due to the criteria relevant to the operating mode. That is, in 10BASE-T mode, when squelch is passed or in 100BASE-X mode when 2 non-contiguous zeroes in 10 bits are detected carrier is said to be detected.

Loss of carrier shall result in the deassertion of CRS_DV synchronous to the cycle of REFIN which presents the first di-bit of a nibble onto RXD[1:0] (i.e. CRS_DV is deasserted only on nibble boundaries). If the PHY has additional bits to be presented on RXD[1:0] following the initial deassertion of CRS_DV, then the PHY shall assert CRS_DV on cycles of REFIN which present the second di-bit of each nibble and deassert CRS_DV on cycles of REFIN which present the first di-bit of a nibble. The result is: Starting on nibble boundaries CRS_DV toggles at 25 MHz in 100Mb/s mode and 2.5 MHz in 10Mb/s mode when the Carrier event ends before the RX_DV signal internal to the PHY is deasserted (i.e. the FIFO still has bits to transfer when the carrier event ends.) Therefore, the MAC can accurately recover RX_DV and the Carrier event end time. During a false carrier event, CRS_DV shall remain asserted for the duration of carrier activity.

The data on RXD[1:0] is considered valid once CRS_DV is asserted. However, since the assertion of CRS_DV is asynchronous relative to REFIN, the data on RXD[1:0] shall be "00" until proper receive signal decoding takes place (see definition of RXD[1:0] behavior).

***Note:** CRS_DV is asserted asynchronously in order to minimize latency of control signals through the PHY.

Receive Data [1:0] (RXD[1:0])

RXD[1:0] transitions synchronously to REFIN. For each clock period in which CRS_DV is asserted, RXD[1:0] transfers two bits of recovered data from the PHY. RXD[1:0] is "00" to indicate idle when CRS_DV is de-asserted. Values other than "00" on RXD[1:0] while CRS_DV is de-asserted

are ignored by the MAC.

Receive Error (RX_ER)

RX ER is asserted for one or more REFIN periods to indicate that an error (e.g. a coding error or any error that a PHY is capable of detecting, and that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame presently being transferred from the PHY. RX_ER transitions synchronously with respect to REFIN. While CRS DV is de-asserted, RX ER has no effect on the MAC.

Auto-MDI/MDIX Crossover

The ICS1894-32 includes the auto-MDI/MDIX crossover feature. In a typical CAT 5 Ethernet installation the transmit twisted pair signal pins of the RJ45 connector are crossed over in the CAT 5 wiring to the partners receive twisted pair signal pins and receive twisted pair to the partners transmit twisted pair. This is usually accomplished in the wiring plant. Hubs generally wire the RJ45 connector crossed to accomplish the crossover. Two types of CAT 5 cables (straight and crossed) are available to achieve the correct connection. The Auto-MDI/MDIX feature automatically corrects for miss-wired installations by automatically swapping transmit and receive signal pairs at the PHY when no link results. Auto-MDI/MDIX is automatic, but may be disabled for test purposes by writing MDIO register 19 Bits 9:8 in the MDIO register. The Auto-MDI/MDIX function is independent of Auto-Negotiation and preceeds Auto-Negotiation when enabled.

Auto MDI/MDIX Table

Definitions:

straight transmit = TP_AP & TP_AN receive = TP_BP & TP_BN

cross transmit = TP_BP & TP_BN $receive = TP$ AP & TP AN AMDIX_EN (Pin 14) AMDIX enable pin with 20 kOhm pull-up resistor AMDIX_EN [19:9] MDIO register 19h bit 9 MDI_MODE [19:8] MDIO register 19h bit 8

Power Management

The ICS1894-32 supports a Deep Power Mode (DPD) that is enabled under the following conditions:

1. The Phy is not Receiving any signal from the partner (Link Down)

2. The MAC is not transmitting data to the Phy (TXEN Low)

Once the above conditions are met, the Phy goes into DPD mode after 32s (typical).

The logic internal to the device can be selectively shut down in DPD mode depending on Register 24 Bits 8-4.

Block Diagram of the Different Sections of the PHY as Affected by Register 24 bits

Clock Reference Interface

The REFIN pin provides the ICS1894-32 Clock Reference Interface. The ICS1894-32 requires a single clock reference with a frequency of 25 MHz \pm 50 parts per million. This accuracy is necessary to meet the interface requirements of the ISO/IEEE 8802-3 standard, specifically clauses 22.2.2.1 and 24.2.3.4. The ICS1894-32 supports two clock source configurations: a CMOS oscillator or a CMOS driver. The input to REFIN is CMOS (10% to 90% VDD), not TTL. Alternately, a 25MHz crystal may be used.

Crystal or Oscillator Connection

If a crystal is used as the clocking source, connect it to both the REFIN (pin 30) and REFOUT (pin 29) pins of the ICS1894-32. A pair of bypass capacitors on either side of the crystal are connected to ground. The crystal is used in the parallel resonance or anti-resonance mode. The value of the load caps serve to adjust the final frequency of the crystal oscillation. Typical applications would use 25 pF load caps. The exact value will be affected by the board routing capacitance on REFIN and REFOUT pins. Smaller load capacitors raise the frequency of oscillation.

Once the exact value of load capacitance is established it will be the same for all boards using the same specification crystal. The best way to measure the crystal frequency is to measure the frequency of TXCLK (pin 22) using a frequency counter with a 1 second gate time. Using the buffered output TXCLK prevents the crystal frequency from being affected by the measurement. The crystal specification is shown in the *25MHz Crystal Specification* table.

25 MHz Crystal Specification Table

25 MHz Oscillator Specification table

50 MHz Oscillator Specification table

Status Interface

The ICS1894-32 has two multi-function configuration pins that report the PHY status by providing signals that are intended for driving LEDs. Configuration is set by Bank0 Register 20.

Pins for Monitoring the Data Link table

Note:

1. During either power-on reset or hardware reset, each multi-function configuration pin is an input that is sampled when the ICS1894-32 exits the reset state. After sampling is complete, these pins are output pins that can drive status LEDs.

2. A software reset does not affect the state of a multi-function configuration pin. During a software reset, all multi-function configuration pins are outputs.

3. Each multi-function configuration pin must be pulled either up or down with a resistor to establish the address of the ICS1894-32. LEDs may be placed in series with these

resistors to provide a designated status indicator as described in the *Pins for Monitoring the Data Link* table. Use 1KΩ resistors.

Caution: Pins listed in the *Pins for Monitoring the Data Link* table must not float.

4. As outputs, the asserted state of a multi-function configuration pin is the inverse of the sense sampled during reset. This inversion provides a signal that can illuminate an LED during an asserted state. For example, if a multi-function configuration pin is pulled down to ground through an LED and a current-limiting resistor, then the sampled sense of the input is low. To illuminate this LED for the asserted state, the output is driven high.

5. Adding 10KΩ resistors across the LEDs ensures the PHY address is fully defined during slow VDD power-ramp conditions.

6. PHY address 00 tri-states the MII interface. (Do not select PHY address 00 unless you want the MII tri-stated.)

The following figure shows typical biasing and LED connections for the ICS1894-32.

The above circuit decodes the PHY address = 1

Register Map

Register Description

Register 26 - 31 - Extended Control Register (Reserved)

Note 1: Ignored if Auto negotiation is enabled.

Note 2: CW = Command Override Write $LH =$ Latching High $LL =$ Latching Low LMX = Latching Maximum RO = Read Only RW = Read/Write RW/0 = Read/Write Zero RW/1 = Read/Write One SC = Self-clearing

SF = Special Functions

Note 3: $L =$ Latched on power-up/hardware reset

‡ Whenever the PHY address is equal to 00000 (binary), the Isolate bit 0.10 is logic one, whenever the PHY address Is not equal to 00000, the Isolate bit 0.10 is logic zero.

† As per the IEEE Std 802.3u, during any write operation to any bit in this register, the STA must write the default value to all Reserved bits.

DC and AC Operating Conditions

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS1894-32. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Recommended Operating Conditions

Recommended Component Values

ICS1894-32 TCSR

Note:

- 1. The bias resistor network sets the 10baseT and 100baseTX output amplitude levels.
- 2. Amplitude is directly related to current sourced out of the TCSR pin.
- 3. Resistor values shown above are typical. User should check amplitudes and adjust for transformer effects.
- 4. The 18.2K resistor provides negative feedback to compensate for VDD changes. Reducing the value of this resistor will lower the 100baseT amplitude. Reducing the value of the resistor to ground on the other hand will increase the output signal amplitude.

DC Operating Characteristics for Supply Current

The table below lists the DC operating characteristics for the supply current to the ICS1894-32 under various conditions.

Deep Power Down Current Consumption Table

DC Operating Characteristics for Inputs and Outputs

Unless otherwise specified, the table below lists the 3.3V/1.8 V DC operating characteristics of the ICS1894-32 inputs and outputs.

For 3.3 V Signals

For 1.8 V Signals

DC Operating Characteristics for REFIN

The table below lists the 3.3V DC characteristics for the REFIN pin.

DC Operating Characteristics for MII Pins

The table below lists DC operating characteristics for the Media Independent Interface (MII) for the ICS1894-32.

Timing Diagrams

Timing for Clock Reference (REFIN) Pin

The table below lists the significant time periods for signals on the clock reference (REFIN) pin. The *REFIN Timing Diagram* figure shows the timing diagram for the time periods.

REFIN Timing Diagram

Timing for Transmit Clock (TXCLK) Pin

The table below lists the significant time periods for signals on the Transmit Clock (TXCLK) pin. The *Transmit Clock Timing Diagram* figure shows the timing diagram for the time periods.

Transmit Clock Timing Diagram

Timing for Receive Clock (RXCLK) Pin

The table below lists the significant time periods for signals on the Receive Clock (RXCLK) pin. The *Receive Clock Timing Diagram* figure shows the timing diagram for the time periods.

Receive Clock Timing Diagram

100M MII: Synchronous Transmit Timing

The table below lists the significant time periods for the 100M MII Interface synchronous transmit timing. The time periods consist of timings of signals on the following pins:

- **•** TXCLK
- **•** TXD[3:0]
- **•** TXEN
- **•** TXER

The *100M MII/100M Stream Interface Synchronous Transmit Timing Diagram* figure shows the timing diagram for the time periods.

100M MII/100M Stream Interface Synchronous Transmit Timing Diagram

10M MII: Synchronous Transmit Timing

The table below lists the significant time periods for the 10M MII synchronous transmit timing. The time periods consist of timings of signals on the following pins:

- **•** TXCLK
- **•** TXD[3:0]
- **•** TXEN
- **•** TXER

The *10M MII Synchronous Transmit Timing Diagram* figure shows the timing diagram for the time periods.

10M MII Synchronous Transmit Timing Diagram

100M/MII Media Independent Interface: Synchronous Receive Timing

The table below lists the significant time periods for the MII/100M Stream Interface synchronous receive timing. The time periods consist of timings of signals on the following pins:

- **•** RXCLK
- **•** RXD[3:0]
- **•** RXDV
- **•** RXER

The *MII Interface: Synchronous Receive Timing* figure shows the timing diagram for the time periods.

MII Interface: Synchronous Receive Timing

MII Management Interface Timing

The table below lists the significant time periods for the MII Management Interface timing (which consists of timings of signals on the MDC and MDIO pins). The *MII Management Interface Timing Diagram* figure shows the timing diagram for the time periods.

MII Management Interface Timing Diagram

10M Media Independent Interface: Receive Latency

The table below lists the significant time periods for the 10M MII timing. The time periods consist of timings of signals on the following pins:

- **•** TP_RX (that is, the MII TP_RXP and TP_RXN pins)
- **•** RXCLK
- **•** RXD

The *10M MII Receive Latency Timing Diagram* shows the timing diagram for the time periods.

10M MII Receive Latency Timing Diagram

† Manchester encoding is not shown.

10M Media Independent Interface: Transmit Latency

The table below lists the significant time periods for the 10M MII transmit latency. The time periods consist of timings of signals on the following pins:

- **•** TXEN
- **•** TXCLK
- **•** TXD (that is, TXD[3:0])
- **•** TP_TX (that is, TP_TXP and TP_TXN)

The *10M MII Transmit Latency Timing Diagram* shows the timing diagram for the time periods.

10M MII Transmit Latency Timing Diagram

† Manchester encoding is not shown.

100M / MII Media Independent Interface: Transmit Latency

The table below lists the significant time periods for the MII/100 Stream Interface transmit latency. The time periods consist of timings of signals on the following pins:

- **•** TXEN
- **•** TXCLK
- **•** TXD (that is, TXD[3:0])
- **•** TP_TX (that is, TP_TXP and TP_TXN)

The *MII/100M Stream Interface Transmit Latency Timing Diagram* shows the timing diagram for the time periods.

† The IEEE maximum is 18 bit times.

MII/100M Stream Interface Transmit Latency Timing Diagram

10M MII: Carrier Assertion/De-Assertion (Half-Duplex Transmission)

The table below lists the significant time periods for the 10M MII carrier assertion/de-assertion during half-duplex transmission. The time periods consist of timings of signals on the following pins:

- **•** TXEN
- **•** TXCLK
- **•** CRS

The *10M MII Carrier Assertion/De-Assertion Timing Diagram (Half-Duplex Transmission Only)* shows the timing diagram for the time periods.

10M MII Carrier Assertion/De-Assertion Timing Diagram (Half-Duplex Transmission Only)

• TP_RX (that is, TP_RXP and TP_RXN)

• RXCLK

The *100M MII/100M Stream Interface: Receive Latency Timing Diagram* shows the timing diagram for the time periods.

The table below lists the significant time periods for the 100M MII/100M Stream Interface receive latency. The time

100M MII/100M Stream Interface: Receive Latency Timing Diagram

Reset: Power-On Reset

The table below lists the significant time periods for the power-on reset. The time periods consist of timings of signals on the following pins:

- **•** VDD
- **•** TXCLK

The *Power-On Reset Timing Diagram* shows the timing diagram for the time periods.

100M MII Media Independent Interface: Receive Latency

periods consist of timings of signals on the following pins:

Power-On Reset Timing Diagram

Reset: Hardware Reset and Power-Down

The table below lists the significant time periods for the hardware reset and power-down reset. The time periods consist of timings of signals on the following pins:

• REFIN

ICS1894-32

- **•** RESETn
- **•** TXCLK

The *Hardware Reset and Power-Down Timing Diagram* shows the timing diagram for the time periods.

Hardware Reset and Power-Down Timing Diagram

10Base-T: Normal Link Pulse Timing

The table below lists the significant time periods for the 10Base-T Normal Link Pulse (which consists of timings of signals on the TP_TXP pins). The *10Base-T Normal Link Pulse Timing Diagram* shows the timing diagram for the time periods.

10Base-T Normal Link Pulse Timing Diagram

Auto-Negotiation Fast Link Pulse Timing

The table below lists the significant time periods for the ICS1894-32 Auto-Negotiation Fast Link Pulse. The time periods consist of timings of signals on the following pins:

- **•** TP_TXP
- **•** TP_TXN

The *Auto-Negotiation Fast Link Pulse Timing Diagram* shows the timing diagram for one pair of these differential signals, for example TP_TXP minus TP_TXN.

Auto-Negotiation Fast Link Pulse Timing Diagram

RMII Timing

Marking Diagrams

Notes:

- 1. 'L' designates Pb (lead) free, RoHS compliant.
- 2. "I" designates industrial temperature.
- 3. 'YYWW' designates date code.
- 4. 'ORIGIN' designates counrty of origin.
- 5. '######' designates the lot number.

Package Outline and Package Dimensions (32-pin 5mm x 5mm QFN)

Package dimensions are kept current with JEDEC Publication No. 95

Ordering Information

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

www.idt.com/go/clockhelp

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, ICS, and the IDT logo are trademarks of Integrated
Device Technology, Inc. Accelerated Thinking i

ООО "ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

- *Конкурентоспособные цены и скидки постоянным клиентам.*
- *Специальные условия для постоянных клиентов.*
- *Подбор аналогов.*
- *Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.*
- *Приемлемые сроки поставки, возможна ускоренная поставка.*
- *Доставку товара в любую точку России и стран СНГ.*
- *Комплексную поставку.*
- *Работу по проектам и поставку образцов.*
- *Формирование склада под заказчика.*
- *Сертификаты соответствия на поставляемую продукцию (по желанию клиента).*
- *Тестирование поставляемой продукции.*
- *Поставку компонентов, требующих военную и космическую приемку.*
- *Входной контроль качества.*
- *Наличие сертификата ISO.*

 В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- *Регистрацию проекта у производителя компонентов.*
- *Техническую поддержку проекта.*
- *Защиту от снятия компонента с производства.*
- *Оценку стоимости проекта по компонентам.*
- *Изготовление тестовой платы монтаж и пусконаладочные работы.*

 Tел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru

www[.lifeelectronics.ru](http://lifeelectronics.ru/)