
A product of SEGGER Microcontroller GmbH & Co. KG

emUSB-Host

Software version 1.10
Document: UM10001

Revision: 0
Date: August 9, 2012

User Guide

CPU independent
USB Host stack for

embedded applications

www.segger.com

2

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (the manufacturer) assumes no
responsibility for any errors or omissions. The manufacturer makes and you receive
no warranties or conditions, express, implied, statutory or in any communication with
you. The manufacturer specifically disclaims any implied warranty of merchantability
or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2010 - 2012 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany

Trademarks

Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0
Fax.+49 2103-2878-28
Email: support@segger.com
Internet: http://www.segger.com

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

3

Manual versions

This manual describes the latest software version. If any error occurs, please inform
us and we will try to assist you as soon as possible.

For further information on topics or routines not yet specified, please contact us.

Software versions

Refers to Release.html for information about the changes of the software versions.

SW version /
Manual
revision

Date By Explanation

1.10/00 120515 YR
Chapter "FT232" and chapter "CDC" added.
Chapter Host controller specifics:
* Added new drivers to the list.

1.08/02 111114 SR
Added new driver for Atmel AVR32.
Updated cross-references.
Updated Running emUSBH.

1.06/02 110905 SR Added new chapter "CDC device driver".
1.06/01 110825 SR Added new chapter "OnTheGo Add-On".

1.06/00 110615 SR

Added new chapter "Host controller specific"
Added pictures to chapter HID, MSD, Printer
Updated Configuration chapter
Added Sample app chapter
Added information that a RTOS is necessary
Updated Information in chapter Introduction
Update functions descriptions in chapter API.
Added new driver configuration in chapter Configuration

1.02/00 100806 MD

Added screenshots to chapter �Running emUSB-Host on target
hardware�.
Renamed function parameters to conform with our coding stan-
dards.
Changed the return values of HID API functions to USBH_STATUS.
Added detail descriptions to example applications.

1.01/00 100721 MD
Chapter �Printer� added.
Corrected various function prototypes.

1.00/00 090609 AS Initial version.

4

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

� The software tools used for building your application (assembler, linker, C com-
piler)

� The C programming language
� The target processor
� DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.

How to use this manual
This manual explains all the functions and macros that emUSB-Host offers. It
assumes you have a working knowledge of the C language. Knowledge of assembly
programming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for

Body Body text.

Keyword
Text that you enter at the command-prompt or that appears on
the display (that is system functions, file- or pathnames).

Parameter Parameters in API functions.

Sample Sample code in program examples.

Sample comment Comments in program examples.

Reference Reference to chapters, sections, tables and figures or other docu-
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions

6

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

EMBEDDED SOFTWARE
(Middleware)

emWin
Graphics software and GUI
emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS
Real Time Operating System
embOS is an RTOS designed to offer
the benefits of a complete multitasking
system for hard real time applications
with minimal resources.

embOS/IP
TCP/IP stack
embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emFile
File system
emFile is an embedded file system with
FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack
USB device/host stack
A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

SEGGER TOOLS

Flasher
Flash programmer
Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace
JTAG emulator with trace
USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER�s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

SEGGER�s intention is to cut software development time
for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for
debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

7

1 Introduction ..11

1.1 What is emUSB-Host..12
1.2 Features...12
1.3 Basic concepts ..13
1.4 Tasks and interrupt usage...14
1.5 Development environment (compiler)...15
1.6 Use of undocumented functions ...16

2 Background information ...17

2.1 USB...18
2.1.1 Short Overview ...18
2.1.2 Important USB Standard Versions..18
2.1.3 USB System Architecture..18
2.1.4 Transfer Types ..20
2.1.5 Setup phase / Enumeration...20
2.1.6 Product / vendor Ids ..20
2.2 Predefined device classes..21
2.3 References ...21

3 Running emUSB-Host on target hardware ..23

3.1 Step 1: Open an embOS start project...25
3.2 Step 2: Adding emUSB-Host to the start project ..26
3.3 Step 3: Build the project and test it ...28

4 Example applications ...29

4.1 Overview..30
4.2 Mouse and keyboard events (OS_USBH_HID.c) ..31
4.3 Mass storage handling (OS_USBH_MSD.c) ..32
4.4 Printer interaction (OS_USBH_Printer.c) ...33

5 USB Host Core ..35

5.1 API Functions..36
5.2 Data Structures...66
5.3 Enumerations..82
5.4 Function Types..90
5.5 Error Codes ..95

6 Human Interface Device HID class ..97

6.1 Introduction..98
6.1.1 Overview..98
6.1.2 Example code ...98
6.2 API Functions..99
6.3 Data Structures... 115
6.4 Function Types.. 120

7 Printer Class (Add-On)...125

7.1 Introduction.. 126
7.1.1 Overview.. 126
7.1.2 Features... 126

Table of Contents

8

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

7.1.3 Example code ..126
7.2 API Functions ..127

8 Mass Storage Device (MSD) class ..141

8.1 Introduction ..142
8.1.1 Overview ..142
8.1.2 Features ...143
8.1.3 Restrictions ...143
8.1.4 Requirements ..144
8.1.5 Example code ..144
8.1.6 Supported Protocols ...144
8.2 API Functions ..145
8.3 Data Structures ...152
8.4 Function Types ..154

9 CDC Device Driver (Add-On)...157

9.1 Introduction ..158
9.1.1 Overview ..158
9.1.2 Features ...158
9.1.3 Example code ..158
9.2 API Functions ..159
9.3 Data Structures ...182

10 FT232 Device Driver (Add-On) ..185

10.1 Introduction ..186
10.1.1 Overview ..186
10.1.2 Features ...186
10.1.3 Example code ..186
10.1.4 Compatibility ...186
10.1.5 Further reading..186
10.2 API Functions ..187

11 Configuring emUSB-Host...219

11.1 Runtime configuration...220
11.2 Configuration functions ...222
11.3 Compile-time configuration..235
11.3.1 Compile-time configuration switches ...235

12 Host controller specifics ...237

12.1 Introduction ..238
12.2 Host Controller Drivers..239
12.3 General Information ...241
12.4 OHCI Driver ..242
12.4.1 General information..242
12.4.2 Atmel ...242
12.4.3 NXP..243
12.4.4 Renesas (formerly NEC) ..244
12.4.5 Toshiba TMPA900...245
12.5 ST STM32 Driver ..246
12.6 ST STM32F2_FS Driver ...247
12.7 Renesas RX Driver..249
12.8 Atmel AVR32 Driver...250
12.9 Freescale Kinetis FullSpeed Driver ..251

13 USB On The Go (Add-On) ..253

13.1 Introduction ..254
13.1.1 Overview ..254
13.1.2 Features ...254
13.1.3 Example code ..254

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9

13.2 Driver .. 256
13.2.1 General information ... 256
13.2.2 Available drivers.. 256
13.3 API Functions.. 257

14 Debugging..265

14.1 Message output... 266
14.2 API functions .. 267
14.3 Message types .. 275

15 OS integration ..277

15.1 General information ... 278
15.2 OS layer API functions.. 279

16 Performance & resource usage ...281

16.1 Memory footprint... 282
16.1.1 ROM .. 282
16.1.2 RAM... 282
16.2 Performance ... 283

17 Related Documents ...285

18 Glossary...287

10

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

11

Chapter 1

Introduction

This chapter provides an introduction to using emUSB-Host. It explains the basic
concepts behind emUSB-Host.

12 CHAPTER 1 Introduction

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

1.1 What is emUSB-Host
emUSB-Host is a CPU-independent USB Host stack.

emUSB-Host is a high-performance library that has been optimized for speed, versa-
tility and small memory footprint.

1.2 Features
emUSB-Host is written in ANSI C and can be used on virtually any CPU. Here is a list
of emUSB-Host features:

� ISO/ANSI C source code.
� High performance.
� Small footprint.
� No configuration required.
� Runs �out-of-the-box�.
� Control, bulk and interrupt transfers.
� Very simple host controller driver structure.
� USB Mass Storage Device Class available.
� Works seamlessly with embOS and emFile (for MSD).
� Support for class drivers.
� Support for external USB hub devices.
� Support for devices with alternate settings.
� Support for multi-interface devices.
� Support for multi-configuration devices.
� Royalty-free.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

13

1.3 Basic concepts
emUSB Host consists of three layers: a driver for hardware access, the emUSB-Host
core and a USB class driver. For a functional emUSB-Host, the core component and at
least one of the hardware drivers is necessary. emUSB-Host handles all USB opera-
tions independently in a seperate task(s) beside the target application task. This
implicity means that an RTOS is required.
A recommendation is using embOS since it perfectly fits the requirements of emUSB
Host and works seamlessly with emUSB-Host, not requiring any integration work

14 CHAPTER 1 Introduction

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

...

Task

Routine / Action

Interrupt (ISR) emUSB-Host

Perform cyclic
task, enumer-

at ion, ...

Transfer
data

USBH_ProcessISR()

USBH_
ISRTask()USBH_Task()App.

task n
App.
task 1

Inter-
rupt

emUSB-Host

Driver

Application tasks

1.4 Tasks and interrupt usage
emUSB-Host uses two dedicated tasks. One of the tasks processes the interrupts
generated by the USB host controller. The function USBH_ISRTask() should run as
this task. The other task manages the internal software timers. Its routine should be
the USBH_Task() function. The priorities of both tasks have to be higher than the pri-
ority of any other application task which uses emUSB-Host.

Your application must properly configure these two tasks at startup. The examples in
the Application folder show how to do this.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

15

1.5 Development environment (compiler)
The CPU used is of no importance; only an ANSI-compliant C compiler complying with
at least one of the following international standard is required:

� ISO/IEC/ANSI 9899:1990 (C90) with support for C++ style comments (//)
� ISO/IEC 9899:1999 (C99)
� ISO/IEC 14882:1998 (C++)

If your compiler has some limitations, let us know and we will inform you if these will
be a problem when compiling the software. Any compiler for 16/32/64-bit CPUs or
DSPs that we know of can be used; most 8-bit compilers can be used as well.

A C++ compiler is not required, but can be used. The application program can there-
fore also be programmed in C++ if desired.

16 CHAPTER 1 Introduction

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

1.6 Use of undocumented functions
Functions, variables and data-types which are not explained in this manual are con-
sidered internal. They are in no way required to use the software. Your application
should not use and rely on any of the internal elements, as only the documented API
functions are guaranteed to remain unchanged in future versions of the software.

If you feel that it is necessary to use undocumented (internal) functions, please get
in touch with SEGGER support in order to find a solution.

User & reference manual for emUSB © 2012 SEGGER Microcontroller GmbH & Co. KG

17

Chapter 2

Background information

This is a short introduction to USB. The fundamentals of USB are explained and links
to additional resources are given.

18 CHAPTER 2 Background information

User & reference manual for emUSB © 2012 SEGGER Microcontroller GmbH & Co. KG

2.1 USB

2.1.1 Short Overview
The Universal Serial Bus (USB) is an external bus architecture for connecting periph-
erals to a host computer. It is an industry standard � maintained by the USB Imple-
menters Forum � and because of its many advantages it enjoys a huge industry-wide
acceptance. Over the years, a number of USB-capable peripherals appeared on the
market, for example printers, keyboards, mice, digital cameras etc. Among the top
benefits of USB are:

� Excellent plug-and-play capabilities allow devices to be added to the host system
without reboots (�hot-plug�). Plugged-in devices are identified by the host and
the appropriate drivers are loaded instantly.

� USB allows easy extensions of host systems without requiring host-internal
extension cards.

� Device bandwidths may range from a few Kbytes/second to hundreds of Mbytes/
second.

� A wide range of packet sizes and data transfer rates are supported.
� USB provides internal error handling. Together with the already mentioned hot-

plug capability this greatly improves robustness.
� The provisions for powering connected devices dispense the need for extra power

supplies for many low power devices.
� Several transfer modes are supported which ensures the wide applicability of

USB.

These benefits did not only lead to broad market acceptance, but it also added sev-
eral advantages, such as low costs of USB cables and connectors or a wide range of
USB stack implementations. Last but not least, the major operating systems such as
Microsoft Windows XP, Mac OS X, or Linux provide excellent USB support.

2.1.2 Important USB Standard Versions
USB 1.1 (September 1998)

This standard version supports isochronous and asynchronous data transfers. It has
dual speed data transfer of 1.5 Mbytes/second for low speed and 12 Mbytes/second
for full speed devices. The maximum cable length between host and device is five
meters. Up to 500 mA of electric current may be distributed to low power devices.

USB 2.0 (April 2000)

As all previous USB standards, USB 2.0 is fully forward and backward compatible.
Existing cables and connectors may be reused. A new high speed transfer speed of
480 Mbytes/second (40 times faster than USB 1.1 at full speed) was added.

2.1.3 USB System Architecture
A USB system is composed of three parts - a host side, a device side and a physical
bus. The physical bus is represented by the USB cable and connects the host and the
device.

The USB system architecture is asymmetric. Every single host can be connected to
multiple devices in a tree-like fashion using special hub devices. You can connect up
to 127 devices to a single host, but the count must include the hub devices as well.

USB Host

A USB host consists of a USB host controller hardware and a layered software stack.
This host stack contains:

� A host controller driver (HCD) which provides the functionality of the host con-
troller hardware.

� The USB Driver (USBD) Layer which implements the high level functions used by
USB device drivers in terms of the functionality provided by the HCD.

User & reference manual for emUSB © 2012 SEGGER Microcontroller GmbH & Co. KG

19

� The USB Device drivers which establish connections to USB devices. The driver
classes are also located here and provide generic access to certain types of
devices such as printers or mass storage devices.

USB Device

Two types of devices exist: hubs and functions. Hubs usually provide four additional
USB attachment points. Functions provide capabilities to the host and are able to
transmit or receive data or control information over the USB bus. Every peripheral
USB device represents at least one function but may implement more than one func-
tion. A USB printer for instance may provide file system like access in addition to
printing.

In this guide we treat the term USB device as synonymous with functions and will not
consider hubs.

Each USB device contains configuration information which describe its capabilities
and resource requirements. Before it can be used, USB devices must be configured
by the host. When a new device is connected for the first time, the host enumerates
it, requests the configuration from the device, and performs the actual configuration.
For example, if an embedded device uses emUSB-MSD, the embedded device will
appear as a USB mass storage device, and the host OS provides the driver out of the
box. In general, there is no need to develop a custom driver to communicate with
target devices that use one of the USB class protocols.

Descriptors

A device reports its attributes via descriptors. Descriptors are data structures with a
standard defined format. A USB device has one device descriptor which contains
information applicable to the device and all of its configurations. It also contains the
number of configurations the device supports. For each configuration, a configuration
descriptor contains configuration-specific information. The configuration descriptor
also contains the number of interfaces provided by the configuration. An interface
groups the endpoints into logical units. Each interface descriptor contains information
about the number of endpoints. Each endpoint has its own endpoint descriptor which
states the endpoint�s address, transfer types etc.

Device

descriptor

Conf igurat ion

descriptor

Interface

descriptor

Endpoint

descriptor

1...n conf igurat ion descriptors

1...m interface descriptors

1...o endpoint descriptors

20 CHAPTER 2 Background information

User & reference manual for emUSB © 2012 SEGGER Microcontroller GmbH & Co. KG

As can be seen, the descriptors form a tree. The root is the device descriptor with n
configuration descriptors as children, each of which has m interface descriptors which
in turn have o endpoint descriptors each.

2.1.4 Transfer Types
The USB standard defines 4 transfer types: control, isochronous, interrupt, and bulk.
Control transfers are used in the setup phase. The application can basically select
one of the other 3 transfer types. For most embedded applications, bulk is the best
choice because it allows the highest possible data rates.

Control transfers

Typically used for configuring a device when attached to the host. It may also be
used for other device-specific purposes, including control of other pipes on the
device.

Isochronous transfers

Typically used for applications which need guaranteed speed. Isochronous transfer is
fast but with possible data loss. A typical use is for audio data which requires a con-
stant data rate.

Interrupt transfers

Typically used by devices that need guaranteed quick responses (bounded latency).

Bulk transfers

Typically used by devices that generate or consume data in relatively large and
bursty quantities. Bulk transfer has wide dynamic latitude in transmission con-
straints. It can use all remaining available bandwidth, but with no guarantees on
bandwidth or latency. Because the USB bus is normally not very busy, there is typi-
cally 90% or more of the bandwidth available for USB transfers.

2.1.5 Setup phase / Enumeration
The host first needs to get information from the target, before the target can start
communicating with the host. This information is gathered in the initial setup phase.
The information is contained in the descriptors, which are in the configurable section
of the USB-MSD stack. The most important part of target device identification are the
product and vendor Ids. During the setup phase, the host also assigns an address to
the client. This part of the setup is called enumeration.

2.1.6 Product / vendor Ids
A vendor Id can be obtained from the USB Implementers Forum, Inc. (www.usb.org).
This is necessary only when development of the product is finished; during the devel-
opment phase, the supplied vendor and product Ids can be used as samples.

User & reference manual for emUSB © 2012 SEGGER Microcontroller GmbH & Co. KG

21

2.2 Predefined device classes
The USB Implementers Forum has defined device classes for different purposes. In
general, every device class defines a protocol for a particular type of application such
as a mass storage device (MSD), human interface device (HID), etc.

2.3 References
For additional information see the following documents:

� Universal Serial Bus Specification, Revision 2.0
� Universal Serial Bus Mass Storage Class Specification Overview, Rev 1.2
� UFI command specification: USB Mass Storage Class, UFI Command Specifica-

tion, Rev 1.0

22 CHAPTER 2 Background information

User & reference manual for emUSB © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

23

Chapter 3

Running emUSB-Host on target
hardware

This chapter explains how to integrate and run emUSB-Host on your target hardware.
It explains this process step-by-step.

24 CHAPTER 3 Running emUSB-Host on target hardware

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

Integrating emUSB-Host

The emUSB-Host default configuration is preconfigured with valid values, which
match the requirements of the most applications. emUSB-Host is designed to be used
with embOS, SEGGER�s real-time operating system. We recommend to start with an
embOS sample project and include emUSB-Host into this project.

We assume that you are familiar with the tools you have selected for your project
(compiler, project manager, linker, etc.). You should therefore be able to add files,
add directories to the include search path, and so on. In this document the IAR
Embedded Workbench IDE is used for all examples and screenshots, but every other
ANSI C toolchain can also be used. It is also possible to use make files; in this case,
when we say �add to the project�, this translates into �add to the make file�.

Procedure to follow

Integration of emUSB-Host is a relatively simple process, which consists of the fol-
lowing steps:

� Step 1: Open an emUSB-Host project and compile it.
� Step 2: Add emUSB-Host to the start project
� Step 3: Compile the project

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

25

3.1 Step 1: Open an embOS start project
We recommend that you use one of the supplied embOS start projects for your target
system. Compile the project and run it on your target hardware.

26 CHAPTER 3 Running emUSB-Host on target hardware

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

3.2 Step 2: Adding emUSB-Host to the start project
Add all source files in the following folders to your project:

• Config
• USBH

The Config folder includes all configuration files of emUSB-Host. The configuration
files are preconfigured with valid values, which match the requirements of most
applications. Add the hardware configuration USBH_Config_<TargetName>.c supplied
with the driver shipment.

If your hardware is currently not supported, use the example configuration file and
the driver template to write your own driver. The example configuration file and the
driver template is located in the Sample\Driver\Template folder.

The Util folder is an optional component of the emUSB-Host shipment. It contains
optimized MCU and/or compiler specific files, for example a special memcopy func-
tion.

Replace BSP.c and BSP.h of your emUSB-Host start project

Replace the BSP.c source file and the BSP.h header file used in your emUSB-Host
start project with the one which is supplied with the emUSB-Host shipment. If there
is no BSP.c is available for your device/target device, either check www.segger.com
whether there is an eval-package available, whereas the BSP.c can be used for your
target device, otherwise please contact SEGGER. Some drivers require a special func-
tion which initializes the USB Host interface. This function is called BSP_USBH_Init().
It is used to enable the ports which are connected to the hardware. All interface
driver packages include the BSP.c and BSP.h files irrespective if the
BSP_USBH_Init() function is implemented.

Configuring the include path

The include path is the path in which the compiler looks for include files. In cases
where the included files (typically header files, .h) do not reside in the same folder
as the C file to compile, an include path needs to be set. In order to build the project
with all added files, you will need to add the following directories to your include
path:

• Config
• Inc
• USBH

http://www.segger.com
http://www.segger.com
http://www.segger.com
mailto:info@segger.com
mailto:info@segger.com

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

27

Select the start application

For quick and easy testing of your emUSB-Host integration, start with the code found
in the Application folder. Add one of the applications to your project (for example
OS_USBH_HID.c).

28 CHAPTER 3 Running emUSB-Host on target hardware

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

3.3 Step 3: Build the project and test it
Build the project. It should compile without errors and warnings. If you encounter
any problem during the build process, check your include path and your project con-
figuration settings. To test the project, download the output into your target and
start the application.

The sample application listens for events generated by mice and keyboards. Simply
connect a mouse or a keyboard to host and watch in the terminal I/O of debugger the
events they generate. A mouse will generate events when it is moved or when its
buttons are pressed as you can see in the screenshot below. A keyboard will generate
events when the keys are pressed and released.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

29

Chapter 4

Example applications

In this chapter, you will find a description of each emUSB-Host example application.

30 CHAPTER 4 Example applications

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

4.1 Overview
Various example applications for emUSB-Host are supplied. These can be used for
testing the correct installation and proper function of the device running emUSB-
Host.

The following start application files are provided:

The example applications for the target-side are supplied in source code in the
Application folder of your shipment.

File Description

OS_USBH_HID.c
Demonstrates the handling of mouse and keyboard
events.

OS_USBH_MSD.c Demonstrates how to handle mass storage devices.

OS_USBH_Printer.c Shows how to interact with a printer.

Table 4.1: emUSB-Host example applications

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

31

4.2 Mouse and keyboard events (OS_USBH_HID.c)
This example application displays in the terminal I/O of the debugger the events gen-
erated by a mouse and a keyboard connected over USB.

A message in the form:

6:972 MainTask - Mouse: xRel: 0, yRel: 0, WheelRel: 0, ButtonState: 1

is generated each time the mouse generates an event. An event is generated when
the mouse is moved, a button is pressed or the scroll-wheel is rolled. The message
indicates the change in position over the vertical and horizontal axis, the scroll-wheel
displacement and the status of all buttons.

In case of a keyboard these two messages are generated when a key is pressed and
then released:

386:203 MainTask - Keyboard: Key e/E - pressed
386:287 MainTask - Keyboard: Key e/E - released

The keycode is displayed followed by its status.

32 CHAPTER 4 Example applications

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

4.3 Mass storage handling (OS_USBH_MSD.c)
This demonstrates the handling of mass storage devices. A small test is run as soon
as a mass storage device is connected to host. The results of the test are displayed in
the terminal I/O window of the debugger. If the medium is not formatted only the
message �Medium is not formatted.� is shown and the application waits for a new
device to be connected. In case the medium is formatted the file system is mounted
and the total disk space is displayed. The test goes on and creates a file named
TestFile.txt in the root directory of the disk followed by a listing of the files in the
root directory. The value returned by OS_GetTime() is stored in the created file. At
the end of test the file system is unmounted and information about the mass storage
device is displayed like vendor Id and name.

This is the information shown when a 16GB SanDisk Cruzer USB memory stick is con-
nected:

**** Device added

38:127 MainTask - Running sample on "msd:0:"

38:129 MainTask -
**** Volume information for msd:0:
 0015640000 KBytes total disk space
 0014668096 KBytes avai
38:130 MainTask -
Creating file msd:0:\TestFile.txt...
38:178 MainTask - Ok

38:179 MainTask - Contents of msd:0:

38:184 MainTask - TESTFILE.TXT Attributes: A--- Size: 20

38:188 MainTask - M (Dir) Attributes: ---- Size: 0

38:195 MainTask - A (Dir) Attributes: ---- Size: 0

38:211 MainTask -
**** Unmount ****

38:213 MainTask -
Test with following data was successful:

VendorId: 0x 781
ProductId: 0x5406
VendorName: SanDisk
ProductName: Cruzer
Revision: 8.02
NumSectors: 31301631
BytesPerSector: 512
TotalSize: 15283 MByte
101:593 USBH_Task -
**** Device removed

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

33

4.4 Printer interaction (OS_USBH_Printer.c)
This example shows how to communicate with a printer connected over USB. As soon
as a printer connects over USB the message �**** Device added� is displayed on
the terminal I/O window of the debugger followed by the device Id of the printer and
the port status. After that the ASCII text �Hello World� and a form feed is sent to
printer.

Terminal output:
**** Device added
Device Id = MFG:Hewlett-Packard;CMD:PJL,PML,POSTSCRIPT,PCLXL,PCL;MDL:HP
LaserJet P2015 Series;CLS:PRINTER;DES:Hewlett-Packard LaserJet P2015
Series;MEM:MEM=23MB;COMMENT:RES=1200x1;
PortStatus = 0x18 ->NoError=1, Select/OnLine=1, PaperEmpty=0
Printing Hello World to printer
Printing completed

**** Device removed

34 CHAPTER 4 Example applications

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

35

Chapter 5

USB Host Core

In this chapter, you will find a description of all API functions as well as all required
data and function types.

36 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1 API Functions
The table below lists the available API functions. The functions are listed in alphabet-
ical order.

Function Description

USBH_AssignMemory()
Configures a memory pool for
emUSB-Host internal handling.

USBH_AssignTransferMemory()
Configures a memory pool for the
data exchange with the host con-
troller.

USBH_CloseInterface()
Closes a previously opened inter-
face.

USBH_CreateInterfaceList()
Generates a list of available
interfaces.

USBH_DestroyInterfaceList()
Deletes a previously generated
interface list.

USBH_Exit() Is called to exit of library.

USBH_GetCurrentConfigurationDescriptor()
Retrieves the current configura-
tion descriptor.

USBH_GetDeviceDescriptor() Retrieves the device descriptor.
USBH_GetEndpointDescriptor() Retrieves an endpoint descriptor.

USBH_GetFrameNumber()
Retrieves the current frame num-
ber.

USBH_GetInterfaceDescriptor()
Retrieves the interface descrip-
tor.

USBH_GetInterfaceId()
Returns the interface Id for a
specified interface.

USBH_GetInterfaceIdByHandle()
Retrieves the current frame num-
ber.

USBH_GetInterfaceInfo()
Obtains information about a
specified interface.

USBH_GetSerialNumber() Retrieves the serial number.

USBH_GetSpeed()
Retrieves the operation speed of
the device.

USBH_GetStatusStr()
Return the status as a string con-
stants.

USBH_Init() Initializes the emUSB-Host stack.

USBH_ISRTask()
Processes the events triggered
from the interrupt handler.

USBH_OpenInterface() Opens the specified interface.

USBH_RegisterEnumErrorNotification()
Registers a port error enumera-
tion notification.

USBH_RegisterPnPNotification()
Registers a notification function
for PnP events.

USBH_RestartEnumError()
Restarts the enumerations of all
failed/not recognized devices .

USBH_SubmitUrb() Is used to submit an URB.

USBH_Task()
Manages the internal software
timers.

USBH_UnregisterEnumErrorNotification()
Unregisters an registered port
error enumeration notification.

USBH_UnregisterPnPNotification()
Unregisters a previously regis-
tered notification for PnP events.

Table 5.1: emUSB-Host API function overview

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

37

5.1.1 USBH_AssignMemory()
Description

Sets up storage for the memory allocator.

Prototype
void USBH_AssignMemory(U32 * pMem, U32 NumBytes);

Parameter

Additional information

emUSB-Host comes with its own dynamic memory allocator optimized for its needs.
You can use this function to setup the a memory area for the heap. The best place to
call it is in the USBH_X_Config() function.

In cases where the USB host controller has limited access to system memory, the
USBH_AssignTransferMemory() must be additionally called.

Parameter Description

pMem Pointer to a caller allocated memory area.
NumBytes Size of memory area in bytes.

Table 5.2: USBH_AssignMemory() parameter list

38 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.2 USBH_AssignTransferMemory()
Description

Sets up additional storage for the memory allocator. The USB host controller must
have read/write access to the configured memory area.

Prototype
void USBH_AssignTransferMemory(U32 * pMem, U32 NumBytes);

Parameter

Additional information

This function should be called from USBH_X_Config().

Parameter Description

pMem Pointer to a memory area.
NumBytes Size of memory area in bytes.

Table 5.3: USBH_AssignTransferMemory() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

39

5.1.3 USBH_CloseInterface()
Description

Closes the specified interface.

Prototype
void USBH_CloseInterface(USBH_INTERFACE_HANDLE hInterface);

Parameter

Additional information

Each handle must be closed one time. Calling this function with an invalid handle
leads to undefined behavior.

Parameter Description

hInterface
Contains the handle for an interface opened by a call to
USBH_OpenInterface(). It must not be NULL.

Table 5.4: USBH_CloseInterface() parameter list

40 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.4 USBH_CreateInterfaceList()
Description

Generates a list of available interfaces matching a given criteria.

Prototype
USBH_INTERFACE_LIST_HANDLE USBH_CreateInterfaceList(
 USBH_INTERFACE_MASK * pInterfaceMask,
 unsigned int * pInterfaceCount);

Parameters

Return value

On success it returns a handle to the interface list. In case of an error it returns
NULL.

Additional information

The generated interface list is stored in the emUSB-Host and must be deleted by a
call to USBH_DestroyInterfaceList(). The list contains a snapshot of interfaces
available at the point of time where the function is called. This enables the applica-
tion to have a fixed relation between the index and a USB interface in a list. The list
is not updated if a device is removed or connected. A new list must be created to
capture the current available interfaces.

Example

/***
*
* _ListJLinkDevices
*
* Function description
* Generates a list of JLink devices connected to host.
*/
static void _ListJLinkDevices(void) {
 USBH_INTERFACE_MASK IfaceMask;
 unsigned int IfaceCount;
 USBH_INTERFACE_LIST_HANDLE hIfaceList;

 memset(&IfaceMask, 0, sizeof(IfaceMask));
 //
 // We want a list of all SEGGER J-Link devices connected to our host.
 // The devices are selected by their vendor and product Id.
 // Other identification information is not taken into account.
 //
 IfaceMask.Mask = USBH_INFO_MASK_VID | USBH_INFO_MASK_PID;
 IfaceMask.VendorId = 0x1366;
 IfaceMask.ProductId = 0x0101;
 hIfaceList = USBH_CreateInterfaceList(&IfaceMask, &IfaceCount);
 if (hIfaceList == NULL) {
 USBH_Warnf_Application("Cannot create the interface list!");
 } else {
 if (IfaceCount == 0) {
 USBH_Logf_Application("No devices found.");
 } else {
 unsigned int i;
 USBH_INTERFACE_ID IfaceId;
 //
 // Traverse the list of devices and display information about each of them

Parameter Description

pInterfaceMask
Pointer to a caller provided structure.
IN: allows you to select interfaces to be included in the list.
OUT: ---

pInterfaceCount
Pointer to a caller provided counter.
IN: ---
OUT: Number of interfaces in the list.

Table 5.5: USBH_CreateInterfaceList() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

41

 //
 for (i = 0; i < IfaceCount; ++i) {
 //
 // An interface is address by its Id
 //
 IfaceId = USBH_GetInterfaceId(hIfaceList, i);
 if (IfaceId == 0) {
 USBH_Warnf_Application("Cannot find interface with index %d!", i);
 } else {
 _ShowIfaceInfo(IfaceId);
 }
 }
 }
 //
 // Ensure the list is properly cleaned up
 //
 USBH_DestroyInterfaceList(hIfaceList);
 }
}

42 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.5 USBH_DestroyInterfaceList()
Description

Deletes a previously generated interface list.

Prototype
void USBH_DestroyInterfaceList(
 USBH_INTERFACE_LIST_HANDLE hInterfaceList);

Parameter

Additional information

Deletes an interface list generated by a previous call to
USBH_CreateInterfaceList(). If an interface list is not deleted the library has a
memory leak.

Parameter Description

hInterfaceList
Contains the handle to the interface list to remove. It
must not be NULL.

USBH_DestroyInterfaceList() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

43

5.1.6 USBH_Exit()
Description

Is called to exit of library.

Prototype
void USBH_Exit();

Additional information

Has to be called on exit of the library. The library may free global resources within
this function. This includes also the removing and deleting of added host controllers.
After this function call, no other function of the library should be called.

44 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.7 USBH_GetCurrentConfigurationDescriptor()
Description

Retrieves the current configuration descriptor.

Prototype
USBH_STATUS USBH_GetCurrentConfigurationDescriptor(
 USBH_INTERFACE_HANDLE hInterface,
 U8 * pBuffer,
 unsigned int * pBufferSize);

Parameters

Return value

USBH_STATUS_SUCCESS OK
USBH_STATUS_DEVICE_REMOVED Device not connected

Additional information

Returns a copy of the current configuration descriptor. The descriptor is a copy that
was stored during the device enumeration.
Normally this function is initially called in order to get the first part of the configura-
tion descriptor (9 bytes) This first part contains the size of the whole configuration
descriptor.
In order to get from a multi-configuration device the other configuration descriptors ,
a URB must be submitted to the device with the function set to
USBH_FUNCTION_CONTROL_REQUEST.

Parameter Description

hInterface Specifies the interface by its interface handle.

pBuffer
Points to a caller provided buffer.
IN: ---
OUT: current configuration descriptor.

pBufferSize
Points to a caller provided variable.
IN: size of the buffer in bytes
OUT: length of the device configuration descriptor in bytes.

Table 5.6: USBH_GetCurrentConfigurationDescriptor() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

45

5.1.8 USBH_GetDeviceDescriptor()
Description

Retrieves the device descriptor.

Prototype
USBH_STATUS USBH_GetDeviceDescriptor(
 USBH_INTERFACE_HANDLE hInterface,
 U8 * pBuffer,
 unsigned int * pBufferSize);

Parameters

Return value

USBH_STATUS_SUCCESS OK
USBH_STATUS_DEVICE_REMOVED Device not connected

Additional information

Returns a copy of the device descriptor without accessing the deivce. If the buffer is
smaller than the device descriptor the function returns the first part of it.

Parameter Description

hInterface Specifies the interface by its interface handle.

pBuffer
Points to a caller provided buffer.
IN: ---
OUT: device descriptor.

pBufferSize
Points to a caller provided variable.
IN: size of buffer in bytes
OUT: length of the device descriptor in bytes.

Table 5.7: USBH_GetDeviceDescriptor() parameter list

46 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.9 USBH_GetEndpointDescriptor()
Description

Retrieves an endpoint descriptor.

Prototype
USBH_STATUS USBH_GetEndpointDescriptor(
 USBH_INTERFACE_HANDLE hInterface,
 U8 AlternateSetting,
 USBH_EP_MASK * pMask,
 U8 * pBuffer,
 unsigned int * pBufferSize);

Parameters

Return value

USBH_STATUS_SUCCESS OK
USBH_STATUS_DEVICE_REMOVED Device not connected
USBH_STATUS_INVALID_PARAM Invalid parameter passed to function.

Additional information

Returns a copy of the endpoint descriptor that was captured during the enumeration.
The endpoint descriptor is part of the configuration descriptor.

Parameter Description

hInterface Specifies the interface by its interface handle.

AlternateSetting
Specifies the alternate setting for the interface. The func-
tion returns endpoint descriptors that are inside the speci-
fied alternate setting.

pMask
Pointer to a caller allocated structure of type USBH_EP_MASK.
IN: specifies the endpoint selection pattern.
OUT: ---

pBuffer
Points to a caller provided buffer.
IN: ---
OUT: endpoint descriptor.

pBufferSize
Points to a caller provided variable.
IN: Size of buffer in bytes
OUT: length of the endpoint descriptor in bytes.

Table 5.8: USBH_GetEndpointDescriptor() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

47

5.1.10 USBH_GetFrameNumber()
Description

Retrieves the current frame number.

Prototype
USBH_STATUS USBH_GetFrameNumber(
 USBH_INTERFACE_HANDLE hInterface,
 U32 * pFrameNumber);

Parameters

Return value

USBH_STATUS_SUCCESS On success
USBH_STATUS_DEVICE_REMOVED Device was removed

Additional information

The frame number is transferred on the bus with 11 bits. This frame number is
returned as a 16 or 32 bit number related to the implementation of the host control-
ler. The last 11 bits are equal to the current frame. The frame number is increased
each ms. The same applies to high speed. The returned frame number is related to
the bus where the device is connected. The frame numbers between different host
controllers can be different.

Parameter Description

hInterface Specifies the interface by its interface handle.

pFrameNumber
Pointer to a caller allocated variable.
IN: ---
OUT: current frame number.

Table 5.9: USBH_GetFrameNumber() parameter list

48 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.11 USBH_GetInterfaceDescriptor()
Description

Retrieves the interface descriptor.

Prototype
USBH_STATUS USBH_GetInterfaceDescriptor(
 USBH_INTERFACE_HANDLE hInterface,
 U8 AlternateSetting,
 U8 * pBuffer,
 unsigned int * pBufferSize);

Parameters

Return value

USBH_STATUS_SUCCESS OK
USBH_STATUS_DEVICE_REMOVED Device not connected
USBH_STATUS_INVALID_PARAM Invalid parameter passed to function.

Additional information

Returns a copy of an interface descriptor. The interface descriptor belongs to the
interface that is identified by the USBH_INTERFACE_HANDLE. If the interface has differ-
ent alternate settings the interface descriptors of each alternate setting can be
requested. The function returns a copy of this descriptor that was requested during
the enumeration. The interface descriptor is a part of the configuration descriptor.

Parameter Description

hInterface Specifies the interface by its interface handle.
AlternateSetting Specifies the alternate setting for this interface.

pBuffer
Points to a caller provided buffer.
IN: ---
OUT: interface descriptor.

pBufferSize
Points to a caller provided variable.
IN: size of buffer in bytes
OUT: length of the interface descriptor in bytes.

Table 5.10: USBH_GetInterfaceDescriptor() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

49

5.1.12 USBH_GetInterfaceId()
Description

Returns the interface Id for a specified interface.

Prototype
USBH_INTERFACE_ID USBH_GetInterfaceId(
 USBH_INTERFACE_LIST_HANDLE hInterfaceList,
 unsigned int Index);

Parameters

Return value

On success the interface Id for the interface specified by Index is returned. If the
interface index does not exist the function returns 0.

Additional information

The interface Id identifies an USB interface as long as the device is connected to the
host. If the device is removed and re-connected a new interface Id is assigned. The
interface Id is even valid if the interface list is deleted. The function can return an
interface Id even if the device is removed between the call to the function
USBH_CreateInterfaceList() and the call to this function. If this is the case, the
function USBH_OpenInterface() fails.

Parameter Description

hInterfaceList
Contains the handle for the interface list generated by a
call to USBH_CreateInterfaceList().

Index Specifies the zero based index for an interface in the list.
USBH_GetInterfaceId() parameter list

50 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.13 USBH_GetInterfaceIdByHandle()
Description

Retrieves the interface Id for a given interface.

Prototype
USBH_STATUS USBH_GetInterfaceIdByHandle(
 USBH_INTERFACE_HANDLE hInterface,
 USBH_INTERFACE_ID * pInterfaceId);

Parameters

Return value

USBH_STATUS_SUCCESS On success
USBH_STATUS_DEVICE_REMOVED Device was removed

Additional information

Returns the interface Id if the handle to the interface is available. This may be useful
if a Plug and Play notification is received and the application checks if it is related to
a given handle. The application can avoid calls to this function if the interface Id is
stored in the device context of the application.

Parameter Description

hInterface Specifies the interface by its interface handle.

pInterfaceId
Pointer to a caller allocated handler.
IN: ---
OUT: interface Id.

Table 5.11: USBH_GetInterfaceIdByHandle() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

51

5.1.14 USBH_GetInterfaceInfo()
Description

Obtains information about a specified interface.

Prototype
USBH_STATUS USBH_GetInterfaceInfo(
 USBH_INTERFACE_ID InterfaceId,
 USBH_INTERFACE_INFO * pInterfaceInfo);

Parameters

Return value

Returns USBH_STATUS_SUCCESS on success. If the interface belongs to a device
which is no longer connected to the host USBH_STATUS_DEVICE_REMOVED is
returned and pInterfaceInfo is not filled.

Additional information

Can be used to identify an USB interface without having to open it. More detailed
information can be requested after the USB interface is opened.

Parameter Description

InterfaceId Id of the interface to query.

pInterfaceInfo
Pointer to a caller allocated structure.
IN: ---
OUT: information about interface.

USBH_GetInterfaceInfo() parameter list

52 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.15 USBH_GetSerialNumber()
Description

Retrieves the serial number.

Prototype
USBH_STATUS USBH_GetSerialNumber(
 USBH_INTERFACE_HANDLE hInterface,
 U8 * pBuffer,
 unsigned int * pBufferSize);

Parameters

Return value

USBH_STATUS_SUCCESS OK
USBH_STATUS_DEVICE_REMOVED Device not connected

Additional information

Returns the serial number as a UNICODE string in USB little endian format. Count
returns the number of valid bytes. The string is not zero terminated. The returned
data does not contain a USB descriptor header. The descriptor is requested with the
first language Id. This string is a copy of the serial number string that was requested
during the enumeration. To request other string descriptors use USBH_SubmitUrb().
If the device does not support a USB serial number string the function returns suc-
cess and a length of 0.

Parameter Description

hInterface Specifies the interface by its interface handle.

pBuffer
Is a pointer to a caller provided buffer.
IN: ---
OUT: serial number.

pBufferSize
Points to a caller provided counter.
IN: size of buffer in bytes
OUT: length of the serial number in bytes

Table 5.12: USBH_GetSerialNumber() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

53

5.1.16 USBH_GetSpeed()
Description

Retrieves the operation speed of the device.

Prototype
USBH_STATUS USBH_GetSpeed(
 USBH_INTERFACE_HANDLE hInterface,
 USBH_SPEED * pSpeed);

Parameters

Return value

USBH_STATUS_SUCCESS OK
USBH_STATUS_DEVICE_REMOVED Device was removed

Additional information

A high speed device can operate in full or high speed mode.

Parameter Description

hInterface Specifies the interface by its interface handle.

pSpeed
Pointer to a caller allocated variable.
IN: ---
OUT: operating speed of device.

Table 5.13: USBH_GetSpeed() parameter list

54 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.17 USBH_GetStatusStr()
Description

Converts the result status into a string.

Prototype
const char * USBH_GetStatusStr(USBH_STATUS Status);

Parameter

Return value

Pointer to a string the result status in text form.

Parameter Description

Status Result status to convert.
Table 5.14: USBH_GetStatusStr() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

55

5.1.18 USBH_Init()
Description

Basically initializes the emUSB-Host stack.

Prototype
void USBH_Init();

Additional information

Has to be called one time during startup before any other function. The library initial-
izes or allocates global resources within this function.

56 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.19 USBH_ISRTask()
Description

Processes the events triggered from the interrupt handler.

Prototype
void USBH_ISRTask();

Additional information

This function should run as a separate task. It waits for events from the interrupt
handler of the host controller and processes them.

Note: In order for the emUSB-Host to work reliably, the task should have the highest
priority.

Example

Example in which this function is used can be found in the Application folder of the
emUSB-Host shipment.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

57

5.1.20 USBH_OpenInterface()
Description

Opens the specified interface.

Prototype
USBH_STATUS USBH_OpenInterface(
 USBH_INTERFACE_ID InterfaceId,
 U8 Exclusive,
 USBH_INTERFACE_HANDLE * phInterface);

Parameters

Return value

Returns USBH_STATUS_SUCCESS on success. The function can fail if the device was
removed or the device is opened exclusive by a different application.

Additional information

The handle returned by this function via the phInterface parameter is used by the
functions that perform data transfer. The returned handle must be closed with
USBH_CloseInterface() if it is no longer required.

Parameter Description

InterfaceId
Specifies the interface to open by its interface Id. The inter-
face Id can be obtained by a call to USBH_GetInterfaceId().

Exclusive
Specifies if the interface should be opened exclusive or not. If
the value is unequal of zero the function succeeds only if no
other application has an open handle to this interface.

phInterface
Pointer to a caller allocated handle.
IN: ---
OUT: handle to the opened interface.

Table 5.15: USBH_OpenInterface() parameter list

58 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.21 USBH_RegisterEnumErrorNotification()
Description

Registers a notification for a port enumeration error.

Prototype
USBH_ENUM_ERROR_HANDLE USBH_RegisterEnumErrorNotification(
 void * pContext,
 USBH_ON_ENUM_ERROR_FUNC * pfOnEnumError);

Parameters

Return value

On success a valid handle to the added notification is returned. A NULL is returned in
case of an error.

Additional information

To remove the notification USBH_SubmitUrb() must be called. The pfOnEnumError
callback routine is called in the context of the process where the interrupt status of a
host controller is processed. It is forbidden to wait in that context.

Parameter Description

pContext
Is a user defined pointer that is passed unchanged to the
notification callback function.

pfOnEnumError
A pointer to a notification function of type
USBH_ON_ENUM_ERROR_FUNC the library calls if a port enu-
meration error occurs.

Table 5.16: USBH_RegisterEnumErrorNotification() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

59

5.1.22 USBH_RegisterPnPNotification()
Description

Registers a notification function for PnP events.

Prototype
USBH_NOTIFICATION_HANDLE USBH_RegisterPnPNotification(
 USBH_PNP_NOTIFICATION * pPnPNotification);

Parameter

Return value

On success a valid handle to the added notification is returned. A NULL is returned in
case of an error.

Additional information

If a valid handle is returned, the function USBH_UnregisterPnPNotification()
must be called to release the notification. An application can register any number of
notifications. The user notification routine is called in the context of a notify timer
that is global for all USB bus PnP notifications. If this function is called while the bus
driver has already enumerated devices that match the USBH_INTERFACE_MASK the
callback function passed in the USBH_PNP_NOTIFICATION structure is called for each
matching interface.

Parameter Description

pPnPNotification
Pointer to a caller provided structure.
IN: notification information.
OUT: ---

Table 5.17: USBH_RegisterPnPNotification() parameter list

60 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.23 USBH_RestartEnumError()
Description

Restarts the enumeration process for all devices that have failed to enumerate.

Prototype
void USBH_RestartEnumError();

Additional information

The bus driver retries each enumeration again until the default retry count is
reached.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

61

5.1.24 USBH_SubmitUrb()
Description

Submits an URB.

Prototype
USBH_STATUS USBH_SubmitUrb(
 USBH_INTERFACE_HANDLE hInterface,
 USBH_URB * pUrb);

Parameters

Return value

The request can fail on different reasons in this case the return value is defferent
from USBH_STATUS_PENDING or USBH_STATUS_SUCCESS. If the function returns
USBH_STATUS_PENDING the completion function is called later. In all other cases the
completion routine is not called. If the function returns USBH_STATUS_SUCCESS, the
request was processed immediately. On error the request cannot be processed.

Additional information

If the status USBH_STATUS_PENDING is returned the ownership of the URB is passed to
the bus driver. The storage of the URB must not be freed nor modified as long as the
ownership is assigned to the bus driver. The bus driver passes the URB back to the
application by calling the completion routine. An URB that transfers data can be
pending for a long time.

Example

In the following example the function is used to turn on the NUM LOCK, CAPS LOCK
and SCROLL LOCK LEDs on a keyboard. The HID report is sent over the control end-
point. The _OnCompletion callback function is called at the end of data transfer.

Parameter Description

hInterface Specifies the interface by its interface handle.

pUrb

Pointer to a caller allocated structure.
IN: contains the URB which should be submitted.
OUT: contains the submitted URB with the appropriate status and
the received data if any. The storage for the URB must be perma-
nent as long as the request is pending. The host controller can
define special alignment requirements for the URB or the data
transfer buffer.

Table 5.18: USBH_SubmitUrb() parameter list

62 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

/***
*
* _TurnOnKeyboardLEDs
*
* Function description
* Turns on NUM LOCK, CAPS LOCK and SCROLL LOCK LEDs on a keyboard.
*
* Parameters
* hInterface Handle to a HID device
*/
static void _TurnOnKeyboardLEDs(USBH_INTERFACE_HANDLE hInterface) {
 USBH_URB Urb;
 U8 LedState;

 LedState = 0x07;
 Urb.Header.pContext = NULL;
 Urb.Header.Function = USBH_FUNCTION_CONTROL_REQUEST;
 Urb.Header.pfOnCompletion = _OnCompletion;
 Urb.Request.ControlRequest.Setup.Type = 0x21;
 Urb.Request.ControlRequest.Setup.Request = 0x09;
 Urb.Request.ControlRequest.Setup.Value = 0x0200;
 Urb.Request.ControlRequest.Setup.Index = 0;
 Urb.Request.ControlRequest.Setup.Length = 1;
 Urb.Request.ControlRequest.pBuffer = &LedState;
 Urb.Request.ControlRequest.Length = 1;
 USBH_SubmitUrb(hInterface, &Urb);
}

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

63

5.1.25 USBH_Task()
Description

Manages the internal software timers.

Prototype
void USBH_Task();

Additional information

This function should run as a separate task. It iterates over the list of active timers
and invokes the registered callback functions in case the timer expired.

Example

Have a look at one of the emUSB-Host examples found in the Application folder of
your shipment.

64 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.1.26 USBH_UnregisterEnumErrorNotification()
Description

Removes a registered notification for a port enumeration error.

Prototype
void USBH_UnregisterEnumErrorNotification(
 USBH_ENUM_ERROR_HANDLE hEnumError);

Parameter

Additional information

Has to be called for a port enumeration error notification that was successfully regis-
tered by a call to USBH_RegisterEnumErrorNotification().

Parameter Description

hEnumError
Contains the valid handle for the notification previously returned
from USBH_RegisterEnumErrorNotification().

Table 5.19: USBH_UnregisterEnumErrorNotification() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

65

5.1.27 USBH_UnregisterPnPNotification()
Description

Removes a previously registered notification for PnP events.

Prototype
void USBH_UnregisterPnPNotification(
 USBH_NOTIFICATION_HANDLE hNotification);

Parameter

Additional information

Has to be called for a PnP notification that was successfully registered by a call to
USBH_RegisterEnumErrorNotification().

Parameter Description

hNotification
Contains the valid handle for a PnP notification previously regis-
tered by a call to USBH_RegisterEnumErrorNotification().

Table 5.20: USBH_UnregisterPnPNotification() parameter list

66 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.2 Data Structures
The table below lists the available data structures. The structures are listed in alpha-
betical order.

Structure Description

USBH_BULK_INT_REQUEST Is used to transfer data from or to a bulk endpoint.

USBH_CONTROL_REQUEST
Is used as an union member for the URB data struc-
ture.

USBH_ENDPOINT_REQUEST
Is used as an union member for the URB data struc-
ture.

USBH_ENUM_ERROR
Is used as a notification parameter for the enumera-
tion error notification function.

USBH_EP_MASK Input parameter to get an endpoint descriptor.
USBH_HEADER Defines the header of an URB.

USBH_INTERFACE_INFO
Contains information about a USB interface and the
related device.

USBH_INTERFACE_MASK
Input parameter to create an interface list or to regis-
ter a PnP notification.

USBH_ISO_FRAME Is used to define ISO transfer buffers.
USBH_ISO_REQUEST Is used to transfer data to an ISO endpoint.

USBH_PNP_NOTIFICATION
Is used as an input parameter for the plug-and-play
notification function.

USBH_SET_CONFIGURATION Is used as a union member for the URB data structure.
USBH_SET_INTERFACE Is used as a union member for the URB data structure.
USBH_SET_POWER_STATE Is used to set a power state.

USBH_URB
Basic structure for all asynchronous operations on the
bus driver.

Table 5.21: emUSB-Host data structure overview

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

67

5.2.1 USBH_BULK_INT_REQUEST
Definition
typedef struct USBH_BULK_INT_REQUEST {
 U8 Endpoint;
 void * Buffer;
 U32 Length;
} USBH_BULK_INT_REQUEST;

Description

The buffer size can be larger than the FIFO size but a host controller implementation
can define a maximum size for a buffer that can be handled with one URB. To get a
good performance the application should use two or more buffers.

Members

Member Description

Endpoint Specifies the endpoint address with direction bit.
Buffer Pointer to a caller provided buffer.

Length
Contains the size of the buffer and returns the number of bytes
transferred.

Table 5.22: USBH_BULK_INT_REQUEST() member list

68 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.2.2 USBH_CONTROL_REQUEST
Definition
typedef struct USBH_CONTROL_REQUEST {
 SETUP_PACKET Setup;
 U8 Endpoint;
 void * Buffer;
 U32 Length;
} USBH_CONTROL_REQUEST;

Description

Is used to submit a control request. A control request consists of a setup phase, an
optional data phase, and a handshake phase. The data phase is limited to a length of
4096 bytes. The Setup data structure must be filled in properly. The length field in
the Setup must contain the size of the Buffer. The caller must provide the storage for
the Buffer.

With this request each setup packet can be submitted. Some standard requests, like
SetAddress can be send but would destroy the multiplexing of the bus driver. It is not
allowed to set the following standard requests:

SetAddress
It is assigned by the bus driver during enumeration or USB reset.

Clear Feature Endpoint Halt
Use USBH_FUNCTION_RESET_ENDPOINT instead. The function
USBH_FUNCTION_RESET_ENDPOINT resets the data toggle bit in the host controller
structures.

SetConfiguration
Use USBH_SET_CONFIGURATION instead. The bus driver must take care on the inter-
faces and endpoints of a configuration. The function USBH_SET_CONFIGURATION
updates the internal structures of the driver.

Members

Member Description

Setup Specifies the setup packet.

Endpoint
Specifies the endpoint address with direction bit. Use 0 for
default endpoint.

Buffer

Pointer to a caller provided buffer, can be NULL. This buffer is
used in the data phase to transfer the data. The direction of the
data transfer depends from the Type field in the Setup. See the
USB specification for details.

Length Returns the number of bytes transferred in the data phase.
Table 5.23: USBH_CONTROL_REQUEST() member list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

69

5.2.3 USBH_ENDPOINT_REQUEST
Definition
typedef struct USBH_ENDPOINT_REQUEST {
 U8 Endpoint;
} USBH_ENDPOINT_REQUEST;

Description

Is used with the requests USBH_FUNCTION_RESET_ENDPOINT and
USBH_FUNCTION_ABORT_ENDPOINT.

Members

Member Description

Endpoint Specifies the endpoint address.
Table 5.24: USBH_ENDPOINT_REQUEST() member list

70 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.2.4 USBH_ENUM_ERROR
Definition
typedef struct USBH_ENUM_ERROR {
 int Flags;
 int PortNumber;
 USBH_STATUS Status;
 int ExtendedErrorInformation;
} USBH_ENUM_ERROR;

Description

Is used as a notification parameter for the USBH_ON_ENUM_ERROR_FUNC callback func-
tion. This data structure does not contain detailed information about the device that
fails the enumeration because this information is not available in all phases of the
enumeration.

Members

Member Description

Flags

Additional flags to determine the location and the
type of the error.

� USBH_ENUM_ERROR_EXTHUBPORT_FLAG
means the device is connected to an
external hub.

� USBH_ENUM_ERROR_RETRY_FLAG the bus
driver retries the enumeration of this
device automatically.

� USBH_ENUM_ERROR_STOP_ENUM_FLAG the
bus driver does not restart the enumera-
tion for this device because all retries have
failed. The application can force the bus
driver to restart the enumeration by call-
ing the function USBH_RestartEnumError.

� USBH_ENUM_ERROR_DISCONNECT_FLAG
means the device has been disconnected
during the enumeration. If the hub port
reports a disconnect state the device can-
not be re-enumerated by the bus driver
automatically. Also the function
USBH_RestartEnumError cannot re-enu-
merate the device.

� USBH_ENUM_ERROR_ROOT_PORT_RESET
means an error during the USB reset of a
root hub port occurs.

� USBH_ENUM_ERROR_HUB_PORT_RESET
means an error during a reset of an exter-
nal hub port occurs.

� UDB_ENUM_ERROR_INIT_DEVICE means an
error during the device initialization (e.g.
no answer to a descriptor request or it
failed other standard requests).

� UDB_ENUM_ERROR_INIT_HUB means the
enumeration of an external hub fails.

PortNumber
Port number of the parent port where the USB
device is connected. A flag in the PortFlags field
determines if this is an external hub port.

Status Status of the failed operation.
ExtendedErrorInformation Internal information used for debugging.

Table 5.25: USBH_ENUM_ERROR() member list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

71

5.2.5 USBH_EP_MASK
Definition
typedef struct USBH_EP_MASK {
 U32 Mask;
 U8 Index;
 U8 Address;
 U8 Type;
 U8 Direction;
} USBH_EP_MASK;

Description

Is used as an input parameter to get an endpoint descriptor. The comparison with the
mask is true if each member that is marked as valid by a flag in the mask member is
equal to the value stored in the endpoint. E.g. if the mask is 0 the first endpoint is
returned. If Mask is set to USBH_EP_MASK_INDEX the zero based index can be used to
address all endpoints.

Members

Member Description

Mask

This member contains the information which fields are valid. It is an
or�ed combination of the following flags:

� USBH_EP_MASK_INDEX The Index is used for comparison.
� USBH_EP_MASK_ADDRESS The Address field is used for com-

parison.
� USBH_EP_MASK_TYPE The Type field is used for comparison.
� USBH_EP_MASK_DIRECTION The Direction field is used for

comparison.

Index
If valid, this member contains the zero based index of the endpoint in
the interface.

Address If valid, this member contains an endpoint address with direction bit.

Type

If valid, this member specifies a direction. It is one of the following
values:

� USB_IN_DIRECTION From device to host
� USB_OUT_DIRECTION From host to device

Table 5.26: USBH_EP_MASK() member list

72 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.2.6 USBH_HEADER
Definition
typedef struct USBH_HEADER {
 USBH_FUNCTION Function;
 USBH_STATUS Status;
 USBH_ON_COMPLETION_FUNC * pfOnCompletion;
 void * pContext;
 DLIST ListEntry;
} USBH_HEADER;

Description

All the members of this structure not described here are for internal use only. Do not
use these members. A caller must fill in the members Function, Completion, and if
required Context.

Members

Member Description

Function Describes the function of the request.
Status After completion this member contains the status for the request.

pfOnCompletion

Caller provided pointer to the completion function. This comple-
tion function is called if the function USBH_SubmitUrb() returns
USBH_STATUS_PENDING. If a different status code is returned the
completion function is never called.

pContext
Can be used by the caller to store a context for the completion
routine. It is not changed by the library.

ListEntry
Can be used to link the URB in a list. The owner of the URB can
use this list entry. If the URB is passed to the library this member
is used by the library.

Table 5.27: USBH_HEADER member list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

73

5.2.7 USBH_INTERFACE_INFO
Definition
typedef struct USBH_INTERFACE_INFO {
 USBH_INTERFACE_ID InterfaceId;
 USB_DEVICE_ID DeviceId;
 U16 VendorId;
 U16 ProductId;
 U16 bcdDevice;
 U8 Interface;
 U8 Class;
 U8 SubClass;
 U8 Protocol;
 unsigned int OpenCount;
 U8 ExclusiveUsed;
 USB_SPEED Speed;
 U8 acSerialNumber[256];
 U8 SerialNumberSize;
} USBH_INTERFACE_INFO;

Description

Describes the information returned by the function USBH_GetInterfaceInfo().

Members

Member Description

InterfaceId

Contains the unique interface Id. This Id is assigned if the
USB device was successful enumerated. It is valid until the
device is removed for the host. If the device is reconnected
a different interface Id is assigned to each interface.

DeviceId

Contains the unique device Id. This Id is assigned if the USB
device was successful enumerated. It is valid until the
device is removed for the host. If the device is reconnected
a different device Id is assigned. The relation between the
device Id and the interface Id can be used by an application
to detect which USB interfaces belong to a device.

VendorId Contains the vendor Id.
ProductId Contains the product Id.
bcdDevice Contains the BCD coded device version.
Interface Contains the USB interface number.
Class Specifies the interface class.
Subclass Specifies the interface sub class.
Protocol Specifies the interface protocol.
OpenCount Specifies the number of open handles for this interface.
ExclusiveUsed Determines if this interface is used exclusive.
Speed Specifies the operation speed of this interface.
acSerialNumber Contains the serial number as a counted UNICODE string.
SerialNumberSize Contains the length of the serial number in bytes.

Table 5.28: USBH_INTERFACE_INFO member list

74 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.2.8 USBH_INTERFACE_MASK
Definition
typedef struct USBH_INTERFACE_MASK {
 U16 Mask;
 U16 VendorId;
 U16 ProductId;
 U16 bcdDevice;
 U8 Interface;
 U8 Class;
 U8 SubClass;
 U8 Protocol;
} USBH_INTERFACE_MASK;

Description

Input parameter to create an interface list or to register a PnP notification.

Members

Member Description

Mask

Contains an or�ed selection of the following flags. If the flag is set
the related member of this structure is compared to the proper-
ties of the USB interface.

� USBH_INFO_MASK_VID Compare the vendor Id (VID) of
the device.

� USBH_INFO_MASK_PID Compare the product Id (PID) of
the device.

� USBH_INFO_MASK_DEVICE Compare the bcdDevice value
of the device.

� USBH_INFO_MASK_INTERFACE Compare the interface
number.

� USBH_INFO_MASK_CLASS Compare the class of the inter-
face.

� USBH_INFO_MASK_SUBCLASS Compare the sub class of
the interface.

� USBH_INFO_MASK_PROTOCOL Compare the protocol of
the interface.

VendorId Vendor Id to compare with.
ProductId Product Id to compare with.
bcdDevice BCD coded device version to compare with.
Interface Interface number to compare with.
Class Class code to compare with.
Subclass Sub class code to compare with.
Protocol Protocol stored in the interface to compare with.

Table 5.29: USBH_INTERFACE_MASK member list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

75

5.2.9 USBH_ISO_FRAME
Definition
typedef struct USBH_ISO_FRAME {
 U32 Offset;
 U32 Length;
 USBH_STATUS Status;
} USBH_ISO_FRAME;

Description

Is part of USBH_ISO_REQUEST. It describes the amount of data that is transferred in
one frame.

Members

Member Description

Offset
Specifies the offset in bytes relative to the beginning of the
transfer buffer.

Length Contains the length that should be transferred in one frame.

Status
Contains the status of the operation in this frame. For an OUT
endpoint this status is always success. For an IN point a CRC or
Data Toggle error can be reported.

Table 5.30: USBH_ISO_FRAME() member list

76 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.2.10 USBH_ISO_REQUEST
Definition
typedef struct USBH_ISO_REQUEST{
 U8 Endpoint;
 void * Buffer;
 U32 Length;
 unsigned int Flags;
 unsigned int StartFrame;
 unsigned int Frames;
} USBH_ISO_REQUEST;

Description

Is not completely defined. That means the data structure consists of this data struc-
ture and an array of data structures USBH_ISO_FRAME. The size of the array is defined
by Frames. Use the macro USBH_GET_ISO_URB_SIZE to get the size for an isochro-
nous URB.

Members

Member Description

Endpoint Specifies the endpoint address with direction bit.
Buffer Is a pointer to a caller provided buffer.

Length
On input this member specifies the size of the user provided
buffer. On output it contains the number of bytes transferred.

Flags

This parameter contains 0 or the following flag:

USBH_ISO_ASAP
If this flag is set the transfer starts as soon as pos-
sible and the parameter StartFrame is ignored.

StartFrame

If the flag USBH_ISO_ASAP is not set this parameter StartFrame
defines the start frame of the transfer. The StartFrame must be in
the future. Use USBH_GetFrameNumber to get the current frame
number. Add a time to the current frame number.

Frames
Contains the number of frames that are described with this struc-
ture.

Table 5.31: USBH_ISO_REQUEST() member list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

77

5.2.11 USBH_PNP_NOTIFICATION
Definition
typedef struct USBH_PNP_NOTIFICATION {
 USBH_PnpNotification * pfPnpNotification;
 void * pContext;
 USBH_INTERFACE_MASK InterfaceMask;
} USBH_PNP_NOTIFICATION;

Description

Is used as an input parameter for the USBH_RegisterEnumErrorNotification()
function.

Members

Member Description

PnpNotification
Contains the notification function that is called from the
library if a PnP event occurs.

Context
Contains the notification context that is passed unchanged
to the notification function.

InterfaceMask
Contains a mask for the interfaces for which the PnP notifi-
cation should be called.

Table 5.32: USBH_PNP_NOTIFICATION member list

78 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.2.12 USBH_SET_CONFIGURATION
Definition
typedef struct USBH_SET_CONFIGURATION {
 U8 ConfigurationDescriptorIndex;
} USBH_SET_CONFIGURATION;

Description

Is used with the request USBH_FUNCTION_SET_CONFIGURATION.

Members

Member Description

ConfigurationDescriptorIndex
Specifies the index in the configuration
description.

Table 5.33: USBH_SET_CONFIGURATION() member list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

79

5.2.13 USBH_SET_INTERFACE
Definition
typedef struct USBH_SET_INTERFACE {
 U8 AlternateSetting;
} USBH_SET_INTERFACE;

Description

Is used with the request USBH_FUNCTION_SET_INTERFACE.

Members

Member Description

AlternateSetting Specifies the alternate setting.
Table 5.34: USBH_SET_INTERFACE() member list

80 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.2.14 USBH_SET_POWER_STATE
Definition
typedef struct USBH_SET_POWER_STATE {
 USBH_POWER_STATE PowerState;
} USBH_SET_POWER_STATE;

Description

If the device is switched to suspend, there must be no pending requests on the
device.

Members

Member Description

PowerState Specifies the power state
Table 5.35: USBH_SET_POWER_STATE() member list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

81

5.2.15 USBH_URB
Definition
typedef struct USBH_URB {
 USBH_HEADER Header;
 union {
 USBH_CONTROL_REQUEST ControlRequest;
 USBH_BULK_INT_REQUEST BulkIntRequest;
 USBH_ISO_REQUEST IsoRequest;
 USBH_ENDPOINT_REQUEST EndpointRequest;
 USBH_SET_CONFIGURATION SetConfiguration;
 USBH_SET_INTERFACE SetInterface;
 USBH_SET_POWER_STATE SetPowerState;
 } Request;
} USBH_URB;

Description

The URB is the basic structure for all asynchronous operations on the bus driver. All
requests that exchanges data with the device are using this data structure. The caller
has to provide the memory for this structure. The memory must be permanent until
the completion function is called. This data structure is used to submit an URB.

Members

Member Description

Header
Contains the URB header of type USBH_HEADER. The most impor-
tant parameters are the function code and the callback function.

Request
Is an union and contains information depending on the specific
request of the USBH_HEADER.

Table 5.36: USBH_URB member list

82 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.3 Enumerations
The table below lists the available enumerations. The enumerations are listed in
alphabetical order.

Structure Description

USBH_DEVICE_EVENT Enumerates the device events.

USBH_FUNCTION
Is used as a member for the USBH_HEADER data struc-
ture.

USBH_PNP_EVENT Is used as a parameter for the PnP notification.
USBH_POWER_STATE Enumerates the power states of a device.
USBH_SPEED Is used to get the operation speed of a device.

Table 5.37: emUSB-Host enumerations overview

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

83

5.3.1 USBH_DEVICE_EVENT
Definition
typedef enum USBH_DEVICE_EVENT {
 USBH_DEVICE_EVENT_ADD,
 USBH_DEVICE_EVENT_REMOVE
} USBH_DEVICE_EVENT;

Description

Enumerates the types of device events. It is used by the USBH_NOTIFICATION_FUNC
callback to indicate type of event occurred.

Members

Member Description

USBH_ADD_DEVICE
Indicates that a device was connected to the host and new
interface is available.

USBH_REMOVE_DEVICE Indicates that a device has been removed.
Table 5.38: USBH_DEVICE_EVENT member list

84 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.3.2 USBH_FUNCTION
Definition
typedef enum USBH_FUNCTION {
 USBH_FUNCTION_CONTROL_REQUEST,
 USBH_FUNCTION_BULK_REQUEST,
 USBH_FUNCTION_INT_REQUEST,
 USBH_FUNCTION_ISO_REQUEST,
 USBH_FUNCTION_RESET_DEVICE,
 USBH_FUNCTION_RESET_ENDPOINT,
 USBH_FUNCTION_ABORT_ENDPOINT,
 USBH_FUNCTION_SET_CONFIGURATION,
 USBH_FUNCTION_SET_INTERFACE,
 USBH_FUNCTION_SET_POWER_STATE
} USBH_FUNCTION;

Description

Is used as a member for the USBH_HEADER data structure. All function codes use the
API function USBH_SubmitUrb() and are handled asynchronously.

Entries

Entry Description

USBH_FUNCTION_CONTROL_REQUEST

Is used to send an URB with a control
request. It uses the data structure
USBH_CONTROL_REQUEST. A control request
includes standard, class and vendor defines
requests. The standard requests SetConfig-
uration, SetAddress and SetInterface can-
not be submitted by this request. These
requests require a special handling in the
driver. See
USBH_FUNCTION_SET_CONFIGURATION and
USBH_FUNCTION_SET_INTERFACE for details.

USBH_FUNCTION_BULK_REQUEST
Is used to transfer data to or from a bulk
endpoint. It uses the data structure
USBH_BULK_INT_REQUEST.

USBH_FUNCTION_INT_REQUEST

Is used to transfer data to or from an inter-
rupt endpoint. It uses the data structure
USBH_BULK_INT_REQUEST. The interval is
defined by the endpoint descriptor.

USBH_FUNCTION_ISO_REQUEST

Is used to transfer data to or from an ISO
endpoint. It uses the data structure
USBH_ISO_REQUEST. ISO transfer may not
be supported by all host controllers.

Table 5.39: USBH_FUNCTION member list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

85

USBH_FUNCTION_RESET_DEVICE

Sends an USB reset to the device. This trig-
gers a remove event for all interfaces of the
device. After the device is successfully enu-
merated an arrival event is indicated. All
interfaces get new interface Id�s. This
request uses only the URB header. If the
driver indicates a device arrival event the
device is in a defined state because it is
reseted and enumerated by the bus driver.
This request can be part of an error recov-
ery or part of special class protocols like
DFU. The application should abort all pend-
ing requests and close all handles to this
device. All handles become invalid.

USBH_FUNCTION_RESET_ENDPOINT

Clears an error condition on a special end-
point. If a data transfer error occurs that
cannot be handled in hardware the bus
driver stops the endpoint and does not
allow further data transfers before the end-
point is reseted with this function. On a bulk
or interrupt endpoint the host driver sends
a Clear Feature Endpoint Halt request. This
informs the device about the hardware
error. The driver resets the data toggle bit
for this endpoint. This request expects that
no pending URBs are scheduled on this end-
point. Pending URBs must be aborted with
the URB based function
USBH_FUNCTION_ABORT_ENDPOINT. This func-
tion uses the data structure
USBH_ENDPOINT_REQUEST.

USBH_FUNCTION_ABORT_ENDPOINT

Aborts all pending requests on an endpoint.
The host controller calls the completion
function with a status code
USBH_STATUS_CANCELED. The completion of
the URBs may be delayed. The application
should wait until all pending requests has
been returned by the driver before the han-
dle is closed or
USBH_FUNCTION_RESET_ENDPOINT is called.

Entry Description

Table 5.39: USBH_FUNCTION member list

86 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

USBH_FUNCTION_SET_CONFIGURATION

The driver selects the configuration defined
by the configuration descriptor with the
index 0 during the enumeration. If the
application uses this configuration there is
no need to call this function. If the applica-
tion wants to activate a different configura-
tion this function must be called.

USBH_FUNCTION_SET_INTERFACE

Selects a new alternate setting for the
interface. There must be no pending
requests on any endpoint to this interface.
The interface handle does not become
invalid during this operation. The number of
endpoints may be changed. This request
uses the data structure
USBH_SET_INTERFACE.

USBH_FUNCTION_SET_POWER_STATE

Is used to set the power state for a device.
There must be no pending requests for this
device if the device is set to the suspend
state. The request uses the data structure
USBH_SET_POWER_STATE. After the enumera-
tion the device is in normal power state.

Entry Description

Table 5.39: USBH_FUNCTION member list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

87

5.3.3 USBH_PNP_EVENT
Definition
typedef enum USBH_PNP_EVENT {
 USBH_ADD_DEVICE,
 USBH_REMOVE_DEVICE
} USBH_PNP_EVENT;

Description

Is used as a parameter for the PnP notification.

Members

Member Description

USBH_ADD_DEVICE
Indicates that a device was connected to the host and a new
interface is available.

USBH_REMOVE_DEVICE Indicates that a device has been removed.
Table 5.40: USBH_PNP_EVENT member list

88 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.3.4 USBH_POWER_STATE
Definition
typedef enum USBH_POWER_STATE {
 USBH_NORMAL_POWER,
 USBH_SUSPEND
} USBH_POWER_STATE;

Description

Is used as a member in the USBH_SET_POWER_STATE data structure.

Members

Member Description

USBH_NORMAL_POWER The device is switched to normal operation.
USBH_SUSPEND The device is switched to USB suspend mode.

Table 5.41: USBH_POWER_STATE member list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

89

5.3.5 USBH_SPEED
Definition
typedef enum USBH_SPEED {
 USBH_SPEED_UNKNOWN,
 USBH_LOW_SPEED,
 USBH_FULL_SPEED,
 USBH_HIGH_SPEED
} USBH_SPEED;

Description

Is used as a member in the USBH_INTERFACE_INFO data structure and to get the
operation speed of a device.

Members

Member Description

USBH_SPEED_UNKNOWN The speed is unknown.
USBH_LOW_SPEED The device operates at low speed.
USBH_FULL_SPEED The device operates at full speed.
USBH_HIGH_SPEED The device operates at high speed.

Table 5.42: USBH_SPEED member list

90 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.4 Function Types
The table below lists the available function types. The function types are listed in
alphabetical order.

Structure Description

USBH_NOTIFICATION_FUNC
Type of callback set in
USBH_PRINTER_RegisterNotification()
and USBH_HID_RegisterNotification().

USBH_ON_COMPLETION_FUNC
Is called by the library when an URB
request completes.

USBH_ON_ENUM_ERROR_FUNC
Is called by the library if an error occurs at
enumeration stage.

USBH_ON_PNP_EVENT_FUNC
Is called by the library if a PnP event occurs
and if a PnP notification was registered.

Table 5.43: emUSB-Host function type overview

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

91

5.4.1 USBH_NOTIFICATION_FUNC
Definition
typedef void USBH_NOTIFICATION_FUNC(
 void * pContext,
 U8 DevIndex,
 USBH_DEVICE_EVENT Event);

Description

This is the type of function called when a new device is added or removed.

Parameters

Parameter Description

pContext
Pointer to a context passed by the user in the call to
USBH_PRINTER_RegisterNotification() or
USBH_HID_RegisterNotification() functions.

DevIndex
Zero based index of the device that was added or removed. First
device has index 0, second one has index 1, etc.

Event Gives information about the event that occurred.
Table 5.44: USBH_NOTIFICATION_FUNC() parameter list

92 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.4.2 USBH_ON_COMPLETION_FUNC
Definition
typedef void USBH_ON_COMPLETION_FUNC(USBH_URB * pUrb);

Description

Is called in the context of the USBH_Task() or USBH_ISRTask() functions of a host
controller when an URB request finishes.

Parameter

Parameter Description

pUrb Contains the URB that was completed.
Table 5.45: USBH_ON_COMPLETION_FUNC parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

93

5.4.3 USBH_ON_ENUM_ERROR_FUNC
Definition
typedef void USBH_ON_ENUM_ERROR_FUNC(
 void * pContext,
 const USBH_ENUM_ERROR * pEnumError);

Description

Is called in the context of USBH_Task() function or of a ProcessInterrupt function of a
host controller. Before this function is called it must be registered with
USBH_RegisterEnumErrorNotification(). If a device is not successfully enumer-
ated the function USBH_RestartEnumError() can be called to re-start a new enumer-
ation in the context of this function. This callback mechanism is part of the enhanced
error recovery. In an embedded system with internal components connected via USB
a central application may turn off the power supply for some device to force a reboot
or to create an alert.

Parameters

Parameter Description

pContext
Is a user defined pointer that was passed to
USBH_RegisterEnumErrorNotification().

pEnumError
Specifies the enumeration error. This pointer is temporary and
must not be accessed after the functions returns.

Table 5.46: USBH_ON_ENUM_ERROR_FUNC parameter list

94 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

5.4.4 USBH_ON_PNP_EVENT_FUNC
Definition
typedef void USBH_ON_PNP_EVENT_FUNC(
 void * pContext,
 USBH_PNP_EVENT Event,
 USBH_INTERFACE_ID InterfaceId);

Description

Is called in the context of USBH_Task() function. In the context of this function all
other API functions of the bus driver can be called. The removed or added interface
can be identified by the interface Id. The client can use this information to find the
related USB Interface and close all handles if it was in use, to open it or to collect
information about the interface.

Parameters

Parameter Description

pContext
Is the user defined pointer that was passed to
USBH_RegisterEnumErrorNotification(). The library does not
dereferences this pointer.

Event Specifies the PnP event.
InterfaceId Contains the interface Id of the removed or added interface.

Table 5.47: USBH_ON_PNP_EVENT_FUNC parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

95

5.5 Error Codes
This chapter describes the error codes which are defined in the USBH.h header file.

Error Code Description

Common

USBH_STATUS_ERROR
The operation has been completed
with an error.

USBH_STATUS_INVALID_PARAM A parameter is incorrect.

USBH_STATUS_TIMEOUT
The timeout of the operation has
expired. This error code is used in all
layers.

MSD specific

USBH_STATUS_COMMAND_FAILED

This error is reported if the command
code was sent successfully but the
status returned from the device indi-
cates a command error.

USBH_STATUS_INTERFACE_PROTOCOL
The used interface protocol is not sup-
ported. The interface protocol is
defined by the interface descriptor.

USBH_STATUS_INTERFACE_SUB_CLASS
The used interface sub class is not
supported. The interface sub class is
defined by the interface descriptor.

USBH_STATUS_LENGTH The operation detected a length error.

USBH_STATUS_SENSE_STOP

This error indicates that the device has
not accepted the command. The exe-
cution result of the command is stored
in the sense element of the unit. The
library will not repeat the command.

USBH_STATUS_SENSE_REPEAT

This error indicates that the device has
not accepted the command. The exe-
cution result of the command is stored
in the sense element of the unit. The
library repeats the command after
detection of the sense code.

USBH_STATUS_WRITE_PROTECT

This error indicates that the medium is
write protected. It will be returned by
USBH_MSD_WriteSectors() if writing
to the medium is not allowed.

Table 5.48: emUSB-Host MSD error code overview

96 CHAPTER 5 USB Host Core

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

97

Chapter 6

Human Interface Device HID class

This chapter describes the emUSB-Host Human interface device class driver and its
usage.
The HID class is part of the Core package. The HID-class code is linked in only if reg-
istered by the application program.

98 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.1 Introduction
The emUSB-Host HID class software allows accessing USB Human Interface Devices.

It implements the USB Human interface Device class protocols specified by the USB
Implementers Forum. The entire API of this class driver is prefixed with the
�USBH_HID_� text.

This chapter describes the architecture, the features and the programming interface
of this software component.

6.1.1 Overview
Two types of HIDs are currently supported: Keyboard and Mouse. For both, the appli-
cation can set a callback routine which is invoked whenever a message from either
one is received.

Types of HIDs:

� �True� HIDS: Mouse & Keyboard
� HID for data transfer

6.1.2 Example code
Example code which is provided in the OS_USBH_HID.c file outputs mouse and key-
board events to the terminal I/O of debugger.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

99

6.2 API Functions
This chapter describes the emUSB-Host HID API functions. These functions are
defined in the header file USBH.h.

Function Description

USBH_HID_CancelIo()
Interrupts a pending report read/write
operation.

USBH_HID_Close() Closes a handle to opened HID device.

USBH_HID_Exit()
Releases all resources, closes all han-
dles to the USB bus driver and unreg-
isters all notification functions.

USBH_HID_GetDeviceInfo()
Returns information about an HID
device.

USBH_HID_GetNumDevices()
Returns the number of available HID
devices and information about them.

USBH_HID_GetReport() Reads report data from a HID device.

USBH_HID_GetReportDescriptor()
Returns the data of a report descriptor
in raw form.

USBH_HID_GetReportDescriptorParsed()
Interprets the report descriptors read
from a HID device.

USBH_HID_Init() Initializes the USBH HID library.

USBH_HID_Open()
Opens a handler to a HID device by its
name.

USBH_HID_OpenByIndex()
Opens a handler to a HID device by its
index.

USBH_HID_RegisterNotification()
Registers a callback for the device
attach/remove events.

USBH_HID_SetOnKeyboardStateChange()
Set function to be called in case of
keyboard events.

USBH_HID_SetOnMouseStateChange()
Set function to be called in case of
mouse events.

USBH_HID_SetReport() Writes report data to a HID device.
Table 6.1: emUSB-Host HID API function overview

100 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.2.1 USBH_HID_CancelIo()
Description

Cancels a pending read/write report operation.

Prototype
USBH_STATUS USBH_HID_CancelIo(USBH_HID_HANDLE hDevice);

Parameters

Return value

USBH_STATUS_SUCCESS Operation cancelled
Any other value means error.

Additional information

You can call this function to interrupt a pending report read/write operation started
by a call to USBH_HID_GetReport() or USBH_HID_SetReport() functions.

Parameter Description

hDevice Handle to the opened HID device.
Table 6.2: USBH_HID_CancelIo() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

101

6.2.2 USBH_HID_Close()
Description

Closes a handle to an opened HID device.

Prototype
USBH_STATUS USBH_HID_Close(USBH_HID_HANDLE hDevice);

Parameters

Return value

USBH_STATUS_SUCCESS Device handle closed
USBH_STATUS_ERROR An error occurred

Parameter Description

hDevice Handle to the opened HID device.
Table 6.3: USBH_HID_Close() parameter list

102 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.2.3 USBH_HID_Exit()
Description

Releases all resources, closes all handles to the USB bus driver and unregisters all
notification functions.

Prototype
void USBH_HID_Exit(void);

Additional information

Has to be called if the application is closed before the USB bus driver is closed.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

103

6.2.4 USBH_HID_GetDeviceInfo()
Description

Returns information about a connected HID device.

Prototype
USBH_STATUS USBH_HID_GetDeviceInfo(
 USBH_HID_HANDLE hDevice,
 USBH_HID_DEVICE_INFO * pDevInfo);

Parameters

Return value

USBH_STATUS_INVALID_DESCRIPTOR The report descriptor could not be parsed
USBH_STATUS_MEMORY Not enough memory
USBH_STATUS_INVALID_PARAM Invalid handle
USBH_STATUS_SUCCESS Device info read

Parameter Description

hDevice Handle to an opened device.

pDevInfo
Pointer to a caller allocated USBH_HID_DEVICE_INFO structure.
IN: ---
OUT: device information.

Table 6.4: USBH_HID_GetDeviceInfo() parameter list

104 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.2.5 USBH_HID_GetNumDevices()
Description

Returns the number of available HID devices. It also retrieves the information about
the connected devices.

Prototype
int USBH_HID_GetNumDevices(
 USBH_HID_DEVICE_INFO * pDevInfo,
 U32 NumItems);

Parameters

Return value

Number of devices available.

Parameter Description

pDevInfo

Pointer to a caller allocated array of USBH_HID_DEVICE_INFO struc-
tures.
IN: ---
OUT: device information.

NumItems Number of entries in the pDevInfo array.
Table 6.5: USBH_HID_GetNumDevices() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

105

6.2.6 USBH_HID_GetReport()
Description

Reads a report from a HID device.

Prototype
USBH_STATUS USBH_HID_GetReport(
 USBH_HID_HANDLE hDevice,
 U8 * pBuffer,
 U32 BufferSize,
 USBH_HID_USER_FUNC * pfFunc,
 void * pContext);

Parameters

Return value

USBH_STATUS_PENDING Request was submitted and application is informed
via callback

USBH_STATUS_INVALID_PARAM Invalid handle was passed
USBH_STATUS_SUCCESS Report read
Any other value means error

Additional information

This function behaves differently whether the pfFunc points to a callback function or
it is the NULL pointer.

The read operation is asynchronous if pfFunc != NULL. In other words the function
returns before the data is read from the device. The emUSB-Host invokes the pfFunc
callback function, in the context of the USBH_Task() routine, when the read opera-
tion ends. The read data is returned by emUSB-Host directly in the pReport array so
ensure the memory location pReport points to is valid until the callback is invoked.

If the pfFunc is == NULL the read operation is synchronous. That means that the
function blocks until an answer is received from the device.

You can stop the read operation at any time by calling the USBH_HID_CancelIo()
function.

Parameter Description

hDevice Handle to an opened device.

pBuffer
Pointer to a user allocated buffer.
IN: ---
OUT: data of the report descriptor in raw form.

BufferSize Number of bytes to read.

pfFunc
Callback function of type USBH_HID_USER_FUNC invoked when the
read operation finishes. It can be the NULL pointer. For further
information see the �Additional information� section below.

pContext
Application specific pointer. The pointer is not dereferenced by
the emUSB-Host. It is passed to the pfFunc callback function.
Any value the application chooses is permitted, including NULL.

Table 6.6: USBH_HID_GetReport() parameter list

106 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.2.7 USBH_HID_GetReportDescriptor()
Description

Returns the data of a report descriptor in raw form.

Prototype
USBH_STATUS USBH_HID_GetReportDescriptor(
 USBH_HID_HANDLE hDevice,
 U8 * pBuffer,
 unsigned BufferSize);

Parameters

Return value

USBH_STATUS_SUCCESS Report descriptor read
USBH_STATUS_INVALID_PARAM Invalid handle

Parameter Description

hDevice Handle to an opened device.

pBuffer
Pointer to a caller allocated buffer.
IN: ---
OUT: data of the report descriptor in raw form.

BufferSize Size of buffer in bytes.
Table 6.7: USBH_HID_GetReportDescriptor() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

107

6.2.8 USBH_HID_GetReportDescriptorParsed()
Description

Interprets the report descriptors read from a HID device.

Prototype
USBH_STATUS USBH_HID_GetReportDescriptorParsed(
 USBH_HID_HANDLE hDevice,
 USBH_HID_REPORT_INFO * pReportInfo,
 unsigned * pNumEntries);

Parameters

Return value

USBH_STATUS_INVALID_DESCRIPTOR The report descriptor could not be parsed
USBH_STATUS_MEMORY Insufficient memory
USBH_STATUS_INVALID_PARAM Invalid handle was passed
USBH_STATUS_SUCCESS Report read

Additional information

This function temporarily uses memory from the pool configured by a call of
USBH_AssignMemory() function. The number of bytes allocated during the parsing
depends on the number of report descriptors the HID device uses. Upon function
return allocated memory is freed.

Parameter Description

hDevice Handle to the opened HID device.

pReportInfo

Pointer to a caller allocated array of USBH_HID_REPORT_INFO
structures.
IN: ---
OUT: parsed report data.

pNumEntries
Pointer to a caller allocated variable.
IN: number of entries in the pReportInfo array
OUT: number of reports available.

Table 6.8: USBH_HID_GetReportDescriptorParsed() parameter list

108 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.2.9 USBH_HID_Init()
Description

Initializes the USBH HID library.

Prototype
USBH_STATUS USBH_HID_Init();

Return value

USBH_STATUS_SUCCESS HID component initialized
USBH_STATUS_ERROR An error occurred

Additional information

Performs basic initialization of the library. Has to be called before any other function
of the HID component is called.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

109

6.2.10 USBH_HID_Open()
Description

Opens a handle to a HID device. The device is identified by its name.

Prototype
USBH_HID_HANDLE USBH_HID_Open(const char * sName);

Parameters

Return value

!= 0 Handle to an HID device
== 0 Device not available

Additional Information

It is recommended to use USBH_HID_OpenByIndex() function, since the function is
faster.

Parameter Description

sName
Name of the HID device to open. It has the form hidnnn
where nnn is 000 for the device with index 0, 001 for the
device with index 1 and so on.

Table 6.9: USBH_HID_Open() parameter list

110 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.2.11 USBH_HID_OpenByIndex()
Description

Opens a handle to a HID device. The device is identified by its index.

Prototype
USBH_HID_HANDLE USBH_HID_OpenByIndex(U16 Index);

Parameters

Return value

!= 0 Handle to an HID device
== 0 Device not available

Additional Information

The index of a printer is assigned automatically by the emUSB-Host. It remains the
same as long as the printer is connected. The smallest available index is assigned to
a printer at connection time.

Parameter Description

Index
Index of the HID device to open. The first device has the
index 0, the second index 1 and so on.

Table 6.10: USBH_HID_OpenByIndex() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

111

6.2.12 USBH_HID_RegisterNotification()
Description

Registers a function the emUSB-Host should call when a HID device is attached/
removed.

Prototype
void USBH_HID_RegisterNotification(
 USBH_NOTIFICATION_FUNC * pfFunc,
 void * pContext);

Parameters

Parameter Description

pfFunc
Pointer to a callback function of type USBH_NOTIFICATION_FUNC
the emUSB-Host calls when a HID device is attached/removed.

pContext
Application specific pointer. The pointer is not dereferenced by
the emUSB-Host. It is passed to the pfFunc callback function.
Any value the application chooses is permitted, including NULL.

Table 6.11: USBH_HID_RegisterNotification() parameter list

112 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.2.13 USBH_HID_SetOnKeyboardStateChange()
Description

Set function to be called in case of keyboard events.

Prototype
void USBH_HID_SetOnKeyboardStateChange(
 USBH_HID_ON_KEYBOARD_FUNC * pfOnChange);

Parameters

Example

/***
*
* _OnKeyboardChange
*/
static void _OnKeyboardChange(USBH_HID_KEYBOARD_DATA * pKeyData) {
 _KeyData = *pKeyData;
 _EventOccurred |= KEYBOARD_EVENT;
 OS_EVENT_Pulse(&_Event);
}

Parameter Description

pfOnChange
Pointer to a function the library should call when a keyboard event
occurs.

Table 6.12: USBH_HID_SetOnKeyboardStateChange() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

113

6.2.14 USBH_HID_SetOnMouseStateChange()
Description

Set function to be called in case of mouse events.

Prototype
void USBH_HID_SetOnMouseStateChange(USBH_HID_ON_MOUSE_FUNC * pfOnChange);

Parameters

Example

This example shows how to handle the mouse data in the callback function. This
function is called in the context of the USBH_ISRTask() and for this reason is not
allowed to block for long periods of time. To overcome this, we save the data deliv-
ered by mouse in a static variable and let another task process it.

/***
*
* _OnMouseChange
*/
static void _OnMouseChange(USBH_HID_MOUSE_DATA * pMouseData) {
 //
 // Copy into static buffer used by the task which handles Mouse input
 //
 _MouseData = *pMouseData;
 //
 // Tell task that Mouse data is present
 //
 _EventOccurred |= MOUSE_EVENT;
 //
 // Wake the Mouse task
 //
 OS_EVENT_Pulse(&_Event);
}

The next example demonstrates how to interpret the data delivered by a mouse. All
the work is done in the callback function. We use here a printf()-like function to
show the mouse information in a human-readable form over the terminal I/O of a
debugger. Note that the usage of this function in this context is discouraged. Please
note that this function may block for a long period of time which would negatively
affect the real-time responsiveness of emUSB-Host.

/***
*
* _OnMouseChange
*/
static void _OnMouseChange(USBH_HID_MOUSE_DATA * pMouseData) {
 USBH_Logf_Application("xRel: %d, yRel: %d, WheelRel: %d, ButtonState: %x",
 pMouseData->xChange,
 pMouseData->yChange,
 pMouseData->WheelChange,
 pMouseData->ButtonState);
}

Here is a sample of the output generated when the mouse is moved:

15:640 USBH_isr - xRel: 4, yRel: 0, WheelRel: 0, ButtonState: 0
15:649 USBH_isr - xRel: 3, yRel: -2, WheelRel: 0, ButtonState: 0
15:659 USBH_isr - xRel: 22, yRel: -5, WheelRel: 0, ButtonState: 0
15:662 USBH_isr - xRel: 20, yRel: -1, WheelRel: 0, ButtonState: 0
15:666 USBH_isr - xRel: 4, yRel: 0, WheelRel: 0, ButtonState: 0
15:679 USBH_isr - xRel: 0, yRel: -1, WheelRel: 0, ButtonState: 0
15:682 USBH_isr - xRel: -2, yRel: 0, WheelRel: 0, ButtonState: 0
15:685 USBH_isr - xRel: -12, yRel: 0, WheelRel: 0, ButtonState: 0

Parameter Description

pfOnChange
Pointer to a function the library should call when a mouse event
occurs.

Table 6.13: USBH_HID_SetOnMouseStateChange() parameter list

114 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.2.15 USBH_HID_SetReport()
Description

Sends a report to a HID device. This essentially means sending data to the device.

Prototype
USBH_STATUS USBH_HID_SetReport(
 USBH_HID_HANDLE hDevice,
 const U8 * pBuffer,
 U32 BufferSize,
 USBH_HID_USER_FUNC * pfFunc,
 void * pContext);

Parameters

Return value

USBH_STATUS_SUCCESS Read report sent
USBH_STATUS_INVALID_PARAM An invalid handle was passed to the function
USBH_STATUS_PENDING Request was submitted and application is informed

via callback.
Any other value means error

Additional information

This function behaves differently whether the pfFunc points to a callback function or
it is the NULL pointer.

The write operation is asynchronous if pfFunc is != NULL. The function does not
block until data is sent, instead it returns immediately. The emUSB-Host invokes the
pfFunc callback function, in the context of the USBH_Task() routine, when the write
operation ends. The written data is fetched by emUSB-Host directly from the pReport
array so ensure the memory location pReport points to is valid until the callback is
invoked.

If the pfFunc is == NULL the write operation is synchronous. This means that the
function blocks until all the data is sent to device.

You can stop the write operation at any time by calling the USBH_HID_CancelIo()
function.

Parameter Description

hDevice Handle to an opened device.

pBuffer
Pointer to a caller allocated buffer.
IN: data to write
OUT: ---

BufferSize Number of bytes to write.

pfFunc
Callback function of type USBH_HID_USER_FUNC invoked when the
send operation finishes. It can be the NULL pointer. For further
information see the �Additional information� section below.

pContext
Application specific pointer. The pointer is not dereferenced by
the emUSB-Host. It is passed to the pfFunc callback function.
Any value the application chooses is permitted, including NULL.

Table 6.14: USBH_HID_GetReport() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

115

6.3 Data Structures
This chapter describes the used structures defined in the header file USBH.h.

Structure Description

USBH_HID_DEVICE_INFO Describes an HID device.
USBH_HID_KEYBOARD_DATA Contains keyboard state information.
USBH_HID_MOUSE_DATA Contains mouse state information.
USBH_HID_REPORT_INFO Describes an HID report.

Table 6.15: emUSB-Host HID data structure overview

116 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.3.1 USBH_HID_DEVICE_INFO
Definition
typedef struct {
 U16 InputReportSize;
 U16 OutputReportSize;
 U16 ProductId;
 U16 VendorId;
 char acName[7];
} USBH_HID_DEVICE_INFO;

Description

Describes an HID device.

Parameters

Parameter Description

InputReportSize Size of the Input Report type in bytes.
OutputReportSize Size of the Output Report type in bytes.
ProductId USB product Id.
VendorId USB vendor Id.

Table 6.16: USBH_HID_DEVICE_INFO parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

117

6.3.2 USBH_HID_KEYBOARD_DATA
Definition
typedef struct {
 unsigned Code;
 int Value;
} USBH_HID_KEYBOARD_DATA;

Description

Contains keyboard state information.

Parameters

Parameter Description

Code Contains the keycode.
Value Keyboard state info. Refer to sample code for more information.

Table 6.17: USBH_HID_KEYBOARD_DATA parameter list

118 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.3.3 USBH_HID_MOUSE_DATA
Definition
typedef struct {
 int xChange;
 int yChange;
 int WheelChange;
 int ButtonState;
} USBH_HID_MOUSE_DATA;

Description

Contains mouse state information.

Parameters

Parameter Description

xChange Change of x-position since last event
yChange Change of y-position since last event
WheelChange Change of wheel-position since last event (if wheel is present)

ButtonState

Each bit corresponds to one button on the mouse. If the bit is
set, the corresponding button is pressed. Typically,
bit 0 corresponds to the left mouse button
bit 1 corresponds to the right mouse button
bit 2 corresponds to the middle mouse button

Table 6.18: USBH_HID_MOUSE_DATA parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

119

6.3.4 USBH_HID_REPORT_INFO
Definition
typedef struct {
 USBH_HID_REPORT_TYPE ReportType;
 U32 ReportId;
 U32 ReportSize;
} USBH_HID_REPORT_INFO;

Description

Describes an HID report.

Parameters

Parameter Description

ReportType

Type of report. It can be one of the following constants:
� USBH_HID_INPUT_REPORT
� USBH_HID_OUTPUT_REPORT
� USBH_HID_FEATURE_REPORT

ReportId Id of report.
ReportSize Size of report in bytes.

Table 6.19: USBH_HID_REPORT_INFO parameter list

120 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.4 Function Types
This chapter describes the used structures defined in the header file USBH.h.

Structure Description

USBH_HID_ON_KEYBOARD_FUNC
This callback function is called when a key
is pressed or released.

USBH_HID_ON_MOUSE_FUNC
This callback function is called when the
mouse is moved or a button is pressed or
released.

USBH_HID_USER_FUNC
Callback function invoked when a report
read/write operation finishes.

Table 6.20: emUSB-Host HID function type overview

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

121

6.4.1 USBH_HID_ON_KEYBOARD_FUNC
Definition
typedef void USBH_HID_ON_KEYBOARD_FUNC(USBH_HID_KEYBOARD_DATA * pKeyData);

Description

This callback function is called when a key is pressed or released.

Parameter

Parameter Description

pKeyData Points to the structure containing status information.
Table 6.21: USBH_HID_ON_KEYBOARD_FUNC() parameter list

122 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

6.4.2 USBH_HID_ON_MOUSE_FUNC
Definition
typedef void USBH_HID_ON_MOUSE_FUNC(USBH_HID_MOUSE_DATA * pMouseData);

Description

This callback function is called when the mouse is moved or a button is pressed or
released.

Parameter

Parameter Description

pMouseData Points to the structure containing status information.
Table 6.22: USBH_HID_ON_MOUSE_FUNC() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

123

6.4.3 USBH_HID_USER_FUNC
Definition
typedef void USBH_HID_USER_FUNC(void * pContext);

Description

This callback function is invoked when a report read/write operation finishes.

Parameter

Parameter Description

pContext
Pointer passed as pContext parameter of USBH_HID_GetReport()
and USBH_HID_SetReport() functions.

Table 6.23: USBH_HID_USER_FUNC() parameter list

124 CHAPTER 6 Human Interface Device HID class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

125

Chapter 7

Printer Class (Add-On)

This chapter describes the emUSB-Host printer class software component and how to
use it.

The printer class is an optional extenstion to emUSB-Host.

126 CHAPTER 7 Printer Class (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

7.1 Introduction
The printer class software component of emUSB-Host allows the communication to
USB printing devices. It implements the USB printer class protocol specified by the
USB Implementers Forum.

This chapter describes the architecture, the features and the programming interface
of this software component. To improve the readability of application code, all the
functions and data types of this API are prefixed with the �USBH_PRINTER_� text.

In the following text the word �printer� is used to refer to any USB device that pro-
duces a hard copy of data sent to it.

7.1.1 Overview
A printer connected to the emUSB-Host is automatically configured and added to an
internal list. The application receives a notification each time a printer is added or
removed over a callback. In order to communicate to a printer the application should
open a handle to it. The printers are identified by an index. The first connected
printer gets assigned the index 0, the second index 1, and so on. You can use this
index to identify a printer in a call to USBH_PRINTER_OpenByIndex() function.

7.1.2 Features
The following features are provided:

� Handling of multiple printers at the same time
� Notifications about printer connection status
� Ability to query the printer operating status and its device Id

7.1.3 Example code
An example application which uses the API is provided in the OS_USBH_Printer.c file
of your shipment. This example displays information about the printer and its con-
nection status in the I/O terminal of the debugger. In addition the text �Hello World�
is printed out at the top of the current page when the first printer connects.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

127

7.2 API Functions
This chapter describes the emUSB-Host printer API functions. These functions are
defined in the header file USBH.h.

Function Description

USBH_PRINTER_Close() Closes a printer handle.

USBH_PRINTER_ConfigureTimeout()
Sets the timeout for the read an write
operations.

USBH_PRINTER_ExecSoftReset() Flushes all send and receive buffers.

USBH_PRINTER_Exit()
Releases all resources, closes all driver
instances and unregisters all notification
functions.

USBH_PRINTER_GetDeviceId()
Asks the USB printer to send the
IEEE.1284 Id string.

USBH_PRINTER_GetNumDevices() Returns the number of available printers.
USBH_PRINTER_GetPortStatus() Returns the status of a printer.
USBH_PRINTER_Init() Initializes the printer class driver.

USBH_PRINTER_Open()
Opens a handle to a printer using its
name.

USBH_PRINTER_OpenByIndex()
Opens a handle to a printer using its
index.

USBH_PRINTER_Read() Receives data from a printer.

USBH_PRINTER_RegisterNotification()
Registers a notification for the printer
connect/disconnect events.

USBH_PRINTER_Write() Sends data to a printer.
Table 7.1: emUSB-Host printer class API function overview

128 CHAPTER 7 Printer Class (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

7.2.1 USBH_PRINTER_Close()
Description

Closes a handle to an opened printer.

Prototype
USBH_STATUS USBH_PRINTER_Close(USBH_PRINTER_HANDLE hDevice);

Parameters

Return Value

USBH_STATUS_SUCCESS Handle closed
USBH_STATUS_ERROR Invalid handle

Additional Information

The function does not need to be called after the printer device was removed, since
emUSB-Host cares about removing the handle and freeing all resources.

Parameter Description

hDevice Handle to the opened device.
Table 7.2: USBH_PRINTER_Close() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

129

7.2.2 USBH_PRINTER_ConfigureTimeout()
Description

Sets the timeout for the read and write operations.

Prototype
void USBH_PRINTER_ConfigureTimeout(U32 Timeout);

Parameter

Parameter Description

Timeout Operation timeout in milliseconds.
Table 7.3: USBH_PRINTER_ConfigureTimeout() parameter list

130 CHAPTER 7 Printer Class (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

7.2.3 USBH_PRINTER_ExecSoftReset()
Description

Flushes all send and receive buffers.

Prototype
USBH_STATUS USBH_PRINTER_ExecSoftReset(
 USBH_PRINTER_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Reset executed.
USBH_STATUS_ERROR An error occurred.

Parameter Description

hDevice Handle to the opened printer.
Table 7.4: USBH_PRINTER_ExecSoftReset() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

131

7.2.4 USBH_PRINTER_Exit()
Description

Releases all resources, closes all driver instances and unregisters all notification
functions.

Prototype
void USBH_PRINTER_Exit();

Additional information

Has to be called if the application is closed before the USB bus driver is closed.

132 CHAPTER 7 Printer Class (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

7.2.5 USBH_PRINTER_GetDeviceId()
Description

Asks the USB printer to send the IEEE.1284 Id string.

Prototype
USBH_STATUS USBH_PRINTER_GetDeviceId(
 USBH_PRINTER_HANDLE hDevice,
 U8 * pBuffer,
 unsigned BufferSize);

Parameter

Return Value

USBH_STATUS_SUCCESS Device Id read.
USBH_STATUS_ERROR An error occurred.

Parameter Description

hDevice Handle to the opened printer.

pBuffer
Pointer to a caller allocated buffer.
IN: ---
OUT: read device Id

BufferSize Number of bytes allocated for the read buffer.
Table 7.5: USBH_PRINTER_GetDeviceId() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

133

7.2.6 USBH_PRINTER_GetNumDevices()
Description

Returns the number of available printers.

Prototype
int USBH_PRINTER_GetNumDevices();

Return Value

Number of available printers.

134 CHAPTER 7 Printer Class (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

7.2.7 USBH_PRINTER_GetPortStatus()
Description

Returns the status of printer.

Prototype
USBH_STATUS USBH_PRINTER_GetPortStatus(
 USBH_PRINTER_HANDLE hDevice,
 U8 * pStatus);

Parameter

Return Value

USBH_STATUS_SUCCESS Port status read.
USBH_STATUS_ERROR An error occurred.

Parameter Description

hDevice Handle to the opened printer.

pStatus
Pointer to a caller allocated variable.
IN: ---
OUT: status of printer.

Table 7.6: USBH_PRINTER_GetPortStatus() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

135

7.2.8 USBH_PRINTER_Init()
Description

Initializes the USBH printer class library.

Prototype
USBH_STATUS USBH_PRINTER_Init();

Return value

USBH_STATUS_SUCCESS Printer component initialized
USBH_STATUS_ERROR An error occurred

Additional information

Performs basic initialization of the library. Has to be called before any other library
function is called. It can be called again to reinitialize the library. In this case all
internal states like added devices or handles are lost.

136 CHAPTER 7 Printer Class (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

7.2.9 USBH_PRINTER_Open()
Description

Opens a handle to a printer. The printer is identified by its name.

Prototype
USBH_PRINTER_HANDLE USBH_PRINTER_Open(const char * sName);

Parameters

Return Value

!= 0 Handle to a printer
== 0 Device not available

Additional Information

It is recommended to use USBH_PRINTER_OpenByIndex().

Parameter Description

sName
Name of the printer to open. It has the form prtnnn where nnn is
000 for the device with index 0, 001 for the device with index 1
and so on.

Table 7.7: USBH_PRINTER_Open() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

137

7.2.10 USBH_PRINTER_OpenByIndex()
Description

Opens a handle to a printer. The printer is identified by its index.

Prototype
USBH_PRINTER_HANDLE USBH_PRINTER_OpenByIndex(U16 Index);

Parameters

Return Value

!= 0 Handle to a printer
== 0 Device not available

Additional Information

emUSB-Host assigns the smallest available index to each connected printer. The
index remains the same as long as the printer is connected.

Parameter Description

Index
Index of the printer to open. The first printer has the index 0, the
second index 1 and so on.

Table 7.8: USBH_PRINTER_Open() parameter list

138 CHAPTER 7 Printer Class (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

7.2.11 USBH_PRINTER_Read()
Description

Receives data from a printer.

Prototype
USBH_STATUS USBH_PRINTER_Read(
 USBH_PRINTER_HANDLE hDevice,
 U8 * pBuffer,
 unsigned BufferSize);

Parameter

Return Value

USBH_STATUS_SUCCESS Data received.
USBH_STATUS_ERROR An error occurred.

Additional Information

Not all printers support read operation. For the normal usage of a printer, reading
from the printer is normally not required. Some printers do not even provide an IN-
Endpoint for read operations.

Typically a read can be used to feedback status information from the printer to the
host. This type of feedback requires usually a command to be sent to the printer
first. Which type of information can be read from the printer depends very much on
the model.

Parameter Description

hDevice Handle to the opened printer.

pBuffer
Pointer to a caller allocated buffer.
IN: ---
OUT: data received from printer

BufferSize Size of the receive buffer in bytes.
Table 7.9: USBH_PRINTER_Read() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

139

7.2.12 USBH_PRINTER_RegisterNotification()
Description

Registers a notification for the printer connect/disconnect events.

Prototype
void USBH_PRINTER_RegisterNotification(
 USBH_NOTIFICATION_FUNC * pfNotification,
 void * pContext);

Parameter

Additional Information

You can register only one notification function for all printers. To unregister, call this
function with the pfNotification parameter set to NULL.

Parameter Description

pfNotification
Pointer to a function the library should call when a printer is con-
nected or disconnected.

pContext
Pointer to a user context that should be passed to the callback
function.

Table 7.10: USBH_PRINTER_RegisterNotification() parameter list

140 CHAPTER 7 Printer Class (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

7.2.13 USBH_PRINTER_Write()
Description

Sends data to a printer.

Prototype
USBH_STATUS USBH_PRINTER_Write(
 USBH_PRINTER_HANDLE hDevice,
 const U8 * pBuffer,
 unsigned BufferSize);

Parameters

Return Value

USBH_STATUS_SUCCESS Data sent.
USBH_STATUS_ERROR An error occurred.

Additional Information

This functions does not alter the data it sends to printer. Data in ASCII form is typi-
cally printed out correctly by the majority of printers. For complex graphics the data
passed to this function must be properly formatted according to the protocol the
printer understands like Hewlett Packard PLC, IEEE 1284.1, Adbode Postscript or
Microsoft Windows Printing System (WPS).

Parameter Description

hDevice Handle to the opened printer.

pBuffer
Pointer to a caller allocated buffer.
IN: ---
OUT: data to send to printer.

BufferSize Number of bytes to send.
Table 7.11: USBH_PRINTER_Write() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

141

Chapter 8

Mass Storage Device (MSD) class

This chapter describes the emUSB-Host Mass storage device class driver and its
usage.
The MSD class is part of the Core package. The MSD class code is linked in only if
registered by the application program.

142 CHAPTER 8 Mass Storage Device (MSD) class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

8.1 Introduction
The emUSB-Host MSD class software allows accessing USB Mass Storage Devices.

It implements the USB Mass Storage Device class protocols specified by the USB
Implementers Forum. The entire API of this class driver is prefixed �USBH_MSD_�.

This chapter describes the architecture, the features and the programming interface
of the code.

8.1.1 Overview
A mass storage device connected to the emUSB-Host is added to the file system as
device. All operations on the device, such as formatting, reading / writing of files and
directories are performed through the API of the file system. With emFile, the device
name of the first MSD is �msd:0:�.

The structure of MSD component is shown in the following diagram:

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

143

8.1.2 Features
The following features are provided:

� The command block specification and protocol implementation used by the con-
nected device will be automatically detected.

� It is independent of the file system. An interface to emFile is provided.

8.1.3 Restrictions
The following restrictions relate to the emUSB-Host library:

� The library supports only USB flash drives. Therefore not all protocol commands

Main Program

File System

User File System Interface

Segger USB Host MSD Library

User Interface

Command Protocol Layer

Transport Protocol Layer

Driver Layer Interface

Adaption
Layer

User Host Controller Interface

USB Host Controller Driver

USB Host Controller

USB Mass Storage Device

File
System

USB
Mass
Storage

USB Host
Controller

Hardware

Device

Init ializat ion

Init ializat ion

Init ializat ion

144 CHAPTER 8 Mass Storage Device (MSD) class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

are implemented.

8.1.4 Requirements
To use the MSD class driver to perform file and directory operations, a file system
(typically emFile) is required

8.1.5 Example code
Example code which is provided in the file OS_USBH_MSD.c.

The example shows the capacity of the connected device, shows files in the root
directory and creates and writes to a file.

8.1.6 Supported Protocols
The following table contains an overview about the implemented command protocols.

The following table contains an overview about the implemented transport protocols.

Command block
specification Implementation Related documents

SCSI transparent com-
mand set

All necessary com-
mands for access-
ing flash devices.

Mass Storage Class Specification
Overview Revision 1.2., SCSI-2
Specification September 1993
Rev.10 (X3T9.2 Project 275D)

SFF-8070i
All necessary com-
mands for access-
ing flash devices.

SFF-8070i Specification for ATAPI
Removable Rewritable Media
Devices (SFF Committee: document
SFF-8070 Rev 1.3)

Protocol
implementation Implementation Related documents

Bulk-Only transport All commands
implemented.

Universal Serial Bus Mass Storage
Class Bulk-Only Transport Rev.1.0.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

145

8.2 API Functions
This chapter describes the emUSB-Host MSD API functions. These functions are
defined in the header file USBH.h.

Function Description

USBH_MSD_Exit()
Releases all resources, closes all handles to the USB
bus driver and unregisters all notification functions.

USBH_MSD_GetStatus() Checks the state of a device unit.

USBH_MSD_GetUnitInfo()
Returns basic information about the logical unit
(LUN).

USBH_MSD_Init() Initializes the USBH MSD library.
USBH_MSD_ReadSectors() Reads sectors from a USB Mass Storage device.
USBH_MSD_WriteSectors() Writes sectors to an USB Mass Storage device.

Table 8.1: emUSB-Host MSD API function overview

146 CHAPTER 8 Mass Storage Device (MSD) class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

8.2.1 USBH_MSD_Exit()
Description

Releases all resources, closes all handles to the USB bus driver and unregisters all
notification functions.

Prototype
void USBH_MSD_Exit(void);

Additional information

Has to be called if the application is closed before the USB bus driver is closed.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

147

8.2.2 USBH_MSD_GetStatus()
Description

Checks the state of a device unit.

Prototype
USBH_STATUS USBH_MSD_GetStatus(U8 UnitId);

Parameter

Return Value

If the device is working, USBH_STATUS_SUCCESS is returned. If the device does not
work correctly or is disconnected the function returns USBH_STATUS_ERROR.

Parameter Description

UnitId

0-based Unit Id. The first unit in the system has UnitId of 0, the
second one a value of 1. If you are dealing with multiple devices
or devices with multiple LUNs, it is good practice to retrieve the
UnitIds at run time.

Table 8.2: USBH_MSD_GetStatus() parameter list

148 CHAPTER 8 Mass Storage Device (MSD) class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

8.2.3 USBH_MSD_GetUnitInfo()
Description

Returns basic information about the logical unit (LUN).

Prototype
USBH_STATUS USBH_MSD_GetUnitInfo(
 U8 UnitId,
 USBH_MSD_UNIT_INFO * pInfo);

Parameters

Return Value

Returns USBH_STATUS_SUCCESS in case of success. If the device is not a USB Mass
Storage device, USBH_STATUS_ERROR will be returned. USBH_STATUS_TIMEOUT is
returned if the function call timed out.

Parameter Description

UnitId

0-based Unit Id. The first unit in the system has UnitId of 0, the
second one a value of 1. If you are dealing with multiple devices
or devices with multiple LUNs, it is good practice to retrieve the
UnitIds at run time.

pInfo
Pointer to a caller provided storage buffer. It receives the infor-
mation about the LUN in case of success.

Table 8.3: USBH_MSD_GetUnitInfo() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

149

8.2.4 USBH_MSD_Init()
Description

Initializes the USBH MSD library.

Prototype
int USBH_MSD_Init(
 USBH_MSD_LUN_NOTIFICATION_FUNC * pfLunNotification,
 void * pContext);

Parameters

Return value

==1 On success
== 0 In case of an error

Additional information

Performs basic initialization of the library. Has to be called before any other library
function is called. It can be called again to reinitialize the library. In this case all
internal states like added devices or handles are lost.

Example:

/***
*
* _cbOnAddRemoveDevice
*
* Function description
* Callback, called when a device is added or removed.
* Call in the context of the USBH_Task.
* The functionality in this routine should not block
*/

static void _cbOnAddRemoveDevice(
 void * pContext,
 U8 DevIndex,
 USBH_MSD_EVENT Event) {
 switch (Event) {
 case USBH_MSD_EVENT_ADD:
 printf("\n**** Device added\n");
 break;
 case USBH_MSD_EVENT_REMOVE:
 printf("\n**** Device removed\n");
 break;
 default:; // Should never happen
 }
}

//
// Init MSD, after call to FS_Init(). See example code in OS_USBH_MSD.c
//
{
 USBH_MSD_Init(_cbOnAddRemoveDevice, NULL);
}

Parameter Description

pfLunNotification
Pointer to a function that shall be called when a new device
notification is received. This means when a device is
attached and ready or when it is removed.

pContext
Pointer to a context that should be passed when the
pfLunNotification is called.

Table 8.4: USBH_MSD_Init() parameter list

150 CHAPTER 8 Mass Storage Device (MSD) class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

8.2.5 USBH_MSD_ReadSectors()
Description

Reads sectors from a USB Mass Storage device.

Prototype
USBH_STATUS USBH_MSD_ReadSectors(
 U8 UnitId,
 U32 SectorIndex,
 U32 NumSectors,
 U8 * pBuffer);

Parameters

Return Value

Returns USBH_STATUS_SUCCESS if the sectors have been successfully read from the
device and copied to the Buffer. If reading from the specified device fails, the func-
tion returns USBH_STATUS_READ to indicate the error.

Parameter Description

UnitId

0-based Unit Id. The first unit in the system has UnitId of 0, the
second one a value of 1. If you are dealing with multiple devices
or devices with multiple LUNs, it is good practice to retrieve the
UnitIds at run time.

SectorIndex
0-based sector index: of the first sector to read. First sector has
index 0, second sector has index 1, and so on.

NumSectors Determines the number of sectors to read.

pBuffer
Pointer to a caller allocated buffer.
IN: ---
OUT: data of read sectors.

Table 8.5: USBH_MSD_ReadSectors() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

151

8.2.6 USBH_MSD_WriteSectors()
Description

Writes sectors to a USB Mass Storage device.

Prototype
USBH_STATUS USBH_MSD_WriteSectors(
 U8 UnitId,
 U32 SectorIndex,
 U32 NumSectors,
 const U8 * pBuffer);

Parameters

Return Value

Returns USBH_STATUS_SUCCESS if the sectors have been successfully copied from the
Buffer and written to the device. If writing to the specified device fails the function
returns USBH_STATUS_WRITE to indicate the error. The function returns
USBH_STATUS_WRITE_PROTECT if the medium is write protected.

Parameter Description

UnitId

0-based Unit Id. The first unit in the system has UnitId of 0, the
second one a value of 1. If you are dealing with multiple devices
or devices with multiple LUNs, it is good practice to retrieve the
UnitIds at run time.

SectorIndex
0-based sector index: of the first sector to read. First sector has
index 0, second sector has index 1, and so on.

NumSectors Determines the number of sectors to write.

pBuffer
Pointer to a caller allocated buffer.
IN: data to write
OUT: ---

Table 8.6: USBH_MSD_WriteSectors() parameter list

152 CHAPTER 8 Mass Storage Device (MSD) class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

8.3 Data Structures
This chapter describes the used structures defined in the header file USBH.h.

Structure Description

USBH_MSD_UNIT_INFO Contains logical unit information.
Table 8.7: emUSB-Host MSD data structure overview

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

153

8.3.1 USBH_MSD_UNIT_INFO
Definition
typedef struct USB_MSD_UNIT_INFO {
 U32 TotalSectors;
 U16 BytesPerSector;
 int WriteProtectFlag;
 U16 VendorId;
 U16 ProductId;
 char acVendorName[9];
 char acProductName[17];
 char acRevision[5];
} USBH_MSD_UNIT_INFO;

Description

Contains logical unit information.

Parameters

Parameter Description

TotalSectors Contains the number of total sectors available on the LUN.
BytesPerSector Contains the number of bytes per sector.
WriteProtectFlag Not zero if the device is write protected.
VendorId USB vendor Id.
ProductId USB product Id.
acVendorName Vendor identification string.
acProductName Product identification string.
acRevision Revision string.

Table 8.8: USBH_MSD_UNIT_INFO parameter list

154 CHAPTER 8 Mass Storage Device (MSD) class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

8.4 Function Types
This chapter describes the used structures defined in the header file USBH_MSD.h.

Structure Description

USBH_MSD_LUN_NOTIFICATION_FUNC Type of callback set in USBH_MSD_Init().
Table 8.9: emUSB-Host MSD function type overview

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

155

8.4.1 USBH_MSD_LUN_NOTIFICATION_FUNC
Definition
typedef void USB_MSD_LUN_NOTIFICATION_FUNC(
 void * pContext;
 U8 DevIndex;
 USBH_MSD_EVENT Event);

Description

This callback function is called when a logical unit is either added or removed. To get
detailed information USBH_MSD_GetStatus() has to be called. The LUN indexes must
be used to get access to a specified unit of the device.

Parameters

Parameter Description

pContext
Pointer to a context that was set by the user when the
USBH_MSD_Init() was called.

DevIndex
Zero based index of the device that was attached or removed.
First device has index 0, second one has index 1, etc.

Event

Gives information about the event that has occurred. The follow-
ing events are currently available:

� USBH_MSD_EVENT_ADD_LUN A device was attached.
� USBH_MSD_EVENT_REMOVE_LUN A device was removed.

Table 8.10: USBH_MSD_LUN_NOTIFICATION_FUNC() parameter list

156 CHAPTER 8 Mass Storage Device (MSD) class

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

157

Chapter 9

CDC Device Driver (Add-On)

This chapter describes the optional emUSB-Host add on "CDC device driver".
It allows communication with a CDC USB device.

158 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.1 Introduction
The CDC driver software component of emUSB-Host allows the communication with
CDC devices. The Communication Device Class (CDC) is an abstract USB class proto-
col defined by the USB Implementers Forum. The protocol allows emulation of
serial communication via USB.

This chapter provides an explanation of the functions available to application devel-
opers via the CDC driver software. All the functions and data types of this add-on are
prefixed with the �USBH_CDC_� text.

9.1.1 Overview
A CDC device connected to the emUSB-Host is automatically configured and added to
an internal list. If the CDC driver has been registered, it is notfied via a callback
when a CDC device has been added or removed. The driver then can notify the appli-
cation program, when a callback function has been registered via
USBH_CDC_RegisterNotification(). In order to communicate to a such a device,
the application has to call the USBH_CDC_Open(), passing the device index. The CDC
devices are identified by an index. The first connected device gets assigned the index
0, the second index 1, and so on.

9.1.2 Features
The following features are provided:

� Compatibility with different CDC devices
� Ability to send and receive data
� Ability to set various parameters, such as baudrate, number of stop bits, parity.
� Handling of multiple CDC devices at the same time.
� Notifications about CDC connection status.
� Ability to query the CDC line and modem status.

9.1.3 Example code
An example application which uses the API is provided in the OS_USBH_CDC.c file.
This example displays information about the CDC device in the I/O terminal of the
debugger. In addition the application then starts a simple echo server, sending back
the received data.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

159

9.2 API Functions
This chapter describes the emUSB-Host CDC driver API functions. These functions
are defined in the header file USBH_CDC.h.

Function Description

USBH_CDC_Init() Initializes the CDC device driver.
USBH_CDC_Exit() De-initialize the CDC device driver.

USBH_CDC_RegisterNotification()
Sets a callback in order to be notified
when a device is added or removed.

USBH_CDC_ConfigureDefaultTimeout()
Sets the default read and write timeout
that shall be used when a new device is
connected.

USBH_CDC_Open() Opens a device given by an index.
USBH_CDC_Close() Closes a handle to an opened device.

USBH_CDC_AllowShortRead
The configuration function allows to let
the read function to return as soon as
data are available.

USBH_CDC_GetDeviceInfo()
Retrieves the information about the CDC
device.

USBH_CDC_SetTimeouts()
Sets up the default timeouts the host
waits until the data transfer will be
aborted

USBH_CDC_Read() Reads data from the CDC device.
USBH_CDC_Write() Writes data to the CDC device.

USBH_CDC_SetCommParas()
Setups the serial communication with the
given characteristics.

USBH_CDC_SetDtr()
Sets the Data Terminal Ready (DTR) con-
trol signal.

USBH_CDC_ClrDtr()
Clears the Data Terminal Ready (DTR)
control signal.

USBH_CDC_SetRts()
Sets the Request To Send (RTS) control
signal.

USBH_CDC_ClrRts()
Clears the Request To Send (RTS) control
signal.

USBH_CDC_GetQueueStatus()
Gets the number of bytes in the receive
queue.

USBH_CDC_SetBreak()
Sets the BREAK condition for the device
for a specific amount of time.

USBH_CDC_SetBreakOn() Sets the BREAK condition for the device.

USBH_CDC_SetBreakOff()
Resets the BREAK condition for the
device.

USBH_CDC_GetSerialState()
Gets the modem status and line status
from the device.

Table 9.1: emUSB-Host CDC device driver API function overview

160 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.2.1 USBH_CDC_Init()
Description

Initializes and registers the CDC device driver to emUSB-Host.

Prototype
USBH_BOOL USBH_CDC_Init(void);

Return Value

==1 Success
==0 Could not register CDC device driver.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

161

9.2.2 USBH_CDC_Exit()
Description

Unregisters and deinitializes the CDC device driver from emUSB-Host.

Prototype
void USBH_CDC_Exit(void);

Additional information

This function will release ressources that were used by this device driver. It has to be
called if the application is closed. This has to be called before USBH_Exit() is called.
No more functions of this module may be called after calling USBH_CDC_Exit(). The
only exception is USBH_CDC_Init(), which would in turn re-init the module and
allows further calls.

162 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.2.3 USBH_CDC_RegisterNotification()
Description

Sets a callback in order to be notified when a device is added or removed.

Prototype
void USBH_CDC_RegisterNotification(
 USBH_NOTIFICATION_FUNC * pfNotification,
 void * pContext);

Parameter

Additional Information

Only one notification function can be set for all devices. To unregister, call this func-
tion with the pfNotification parameter set to NULL.

Example

/***
*
* _cbOnAddRemoveDevice
*
* Function description
* Callback, called when a device is added or removed.
* Call in the context of the USBH_Task.
* The functionality in this routine should not block
*/
static void _cbOnAddRemoveDevice(void * pContext, U8 DevIndex, USBH_DEVICE_EVENT
Event) {
 pContext = pContext; // avoid "never referenced" warning
 switch (Event) {
 case USBH_DEVICE_EVENT_ADD:
 printf("\n**** Device added\n");
 _DevIndex = DevIndex;
 _DevIsReady = 1;
 break;
 case USBH_DEVICE_EVENT_REMOVE:
 printf("\n**** Device removed\n");
 _DevIsReady = 0;
 _DevIndex = -1;
 _Removed = 1;
 break;
 default:; // Should never happen
 }
}

Parameter Description

pfNotification
[IN] - Pointer to a function the stack should call when a device is
connected or disconnected.

pContext
[IN] - Pointer to a user context that should be passed to the call-
back function.

Table 9.2: USBH_CDC_RegisterNotification() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

163

/***
*
* CDC_Task
*
* Function description
* This task shall handle CDC devices. It initialize the CDC driver
* and sets a notification callback in order to be informed about adding
* removing of CDC devices.
*/
void CDC_Task(void) {
 USBH_CDC_Init();
 USBH_CDC_RegisterNotification(_cbOnAddRemoveDevice, NULL);
 while (1) {
 BSP_ToggleLED(1);
 OS_Delay(100);
 if (_DevIsReady) {
 _OnDevReady();
 }
 }
}

164 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.2.4 USBH_CDC_ConfigureDefaultTimeout()
Description

Sets the default read and write timeout that shall be used when a new device is con-
nected.

Prototype
void USBH_CDC_ConfigureDefaultTimeout(U32 ReadTimeout,
 U32 WriteTimeout);

Parameter

Additional information

The function shall be called after USBH_CDC_Init() has been called, otherwise the
behavior is undefined.

Example

void CDC_Task(void) {
 USBH_CDC_Init();
 USBH_CDC_ConfigureDefaultTimeout(50, 50); // Configure default timeout for read and
 // write to 50ms.
[...]

Parameter Description

ReadTimeout [IN] - Default read timeout given in ms.
WriteTimeout [IN] - Default write timeout given in ms.

Table 9.3: USBH_CDC_ConfigureDefaultTimeout() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

165

9.2.5 USBH_CDC_Open()
Description

Opens a device given by an index.

Prototype
USBH_CDC_HANDLE USBH_CDC_Open(unsigned Index);

Parameter

Return Value

==0 Device could not be opened (Removed or not available).
!=0 Handle to the device.

Example
USBH_CDC_HANDLE hDevice;

hDevice = USBH_CDC_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

Index
[IN] - Index of the device that shall be opened.
In general this means: the first connected device is 0, second
device is 1 etc.

Table 9.4: USBH_CDC_Open() parameter list

166 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.2.6 USBH_CDC_Close()
Description

Closes a handle to an opened device.

Prototype
USBH_STATUS USBH_CDC_Close(USBH_CDC_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Example
USBH_CDC_HANDLE hDevice;
U32 NumBytesWritten;

hDevice = USBH_CDC_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 USBH_CDC_Write(hDevice, “Hello\n”, 6, &NumBytesWritten);
 USBH_CDC_Close(hDevice);
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the device which shall be closed.
Table 9.5: USBH_CDC_Close() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

167

9.2.7 USBH_CDC_AllowShortRead()
Description

The configuration function allows to let the read function to return as soon as data
are available.

Prototype
USBH_STATUS USBH_CDC_AllowShortRead(USBH_CDC_HANDLE hDevice,
 U8 AllowShortRead);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Additional information

USBH_CDC_AllowShortRead() sets the USBH_CDC_Read into a special mode - short
read mode. When this mode is enabled, the function returns as soon as data has
been read from the device. This allows the application to read data where the num-
ber of bytes to read is undefined.
To disable this mode, AllowShortRead shall be 0.

Example
USBH_CDC_HANDLE hDevice;
USBH_CDC_DEVICE_INFO DeviceInfo;
USBH_STATUS Status;
U32 NumBytesWritten;
U32 NumBytes2Write = 6;

hDevice = USBH_CDC_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 Status = USBH_CDC_Write(hDevice, “Hello\n”, NumBytes2Write, &NumBytesWritten);
 if (Status == USBH_STATUS_SUCCESS) {
 printf(“All bytes have been written!\n”);
 } else {
 printf(“Not all bytes (%d of %d) have been written, error code = 0x%x”,
 NumBytesWritten,
 NumBytes2Write,
 Status);
 }
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.

AllowShortRead
[IN] - Define whether short read mode shall be used or not.
1 - Enable short read mode
0 - Disable short read mode.

Table 9.6: USBH_CDC_AllowShortRead() parameter list

168 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.2.8 USBH_CDC_GetDeviceInfo()
Description

Retrieves the information about the CDC device.

Prototype
USBH_STATUS USBH_CDC_GetDeviceInfo(USBH_CDC_HANDLE hDevice,
 USBH_CDC_DEVICE_INFO * pDevInfo);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Example
USBH_CDC_HANDLE hDevice;
USBH_CDC_DEVICE_INFO DeviceInfo;

hDevice = USBH_CDC_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 USBH_CDC_GetDeviceInfo(hDevice, &DeviceInfo);
 printf("Vendor Id = 0x%4.4x\n"
 "Product Id = 0x%4.4x\n", DeviceInfo.VendorId,
 DeviceInfo.ProductId);
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.

pDevInfo
[OUT] - Pointer to a USBH_SCDC_DEVICE_INFO structure to
store information related to the device.

Table 9.7: USBH_CDC_GetDeviceInfo() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

169

9.2.9 USBH_CDC_SetTimeouts()
Description

Sets up the timeouts for a specific device, referenced by the CDC handle, the host
waits until the data transfer will be aborted.

Prototype
USBH_STATUS USBH_CDC_SetTimeouts(USBH_CDC_HANDLE hDevice,
 U32 ReadTimeout,
 U32 WriteTimeout);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Example
USBH_CDC_HANDLE hDevice;
USBH_CDC_DEVICE_INFO DeviceInfo;
USBH_STATUS Status;

hDevice = USBH_CDC_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 Status = USBH_CDC_SetTimeouts(hDevice, 30, 30); // Set timeout for both to 30ms.
 if (Status == USBH_STATUS_SUCCESS) {
 printf(“Setting the timeout was successful!\n”);
 } else {
 printf(“Failed to set timeout, Error code = 0x%x”, Status);
 }
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.
ReadTimeout [IN] - Read timeout given in ms.
WriteTimeout [IN] - Write timeout given in ms.

Table 9.8: USBH_CDC_SetTimeouts() parameter list

170 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.2.10 USBH_CDC_Read()
Description

Reads data from the CDC device.

Prototype
USBH_STATUS USBH_CDC_Read (USBH_CDC_HANDLE hDevice,
 U8 * pData,
 U32 NumBytes,
 U32 * pNumBytesRead);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Additional information

USBH_CDC_Read always returns the number of bytes read in pNumBytesRead.
This function does not return until NumBytes bytes have been read into the buffer
unless short read mode is enabled. This allows USBH_CDC_Read to return when
either data has been read from the queue or as soon as some data has been read
from the device.
The number of bytes in the receive queue can be determined by calling
USBH_CDC_GetQueueStatus, and passed to USBH_CDC_Read as NumBytes so that
the function reads the device and returns immediately.
When a read timeout value has been specified in a previous call to
USBH_CDC_SetTimeouts, USBH_CDC_Read returns when the timer expires or Num-
Bytes have been read, whichever occurs first. If the timeout occurred,
USBH_CDC_Read reads available data into the buffer and returns
USBH_STATUS_TIMEOUT.
An application should use the function return value and pNumBytesRead when pro-
cessing the buffer. If the return value is USBH_STATUS_SUCCESS, and pNumBytesRe-
turned is equal to NumBytes then USBH_CDC_Read has completed normally.
If the return value is USBH_STATUS_TIMEOUT, pNumBytesRead may be less or even
0, in any case, pData will filled with pNumBytesRead.
Any other return value suggests an error in the parameters of the function, or a fatal
error like a USB disconnect.

Parameter Description

hDevice [IN] - Handle to the opened device.

pData
[OUT] - Pointer to the buffer that receives the data from the
device.

NumBytes [IN] - Number of bytes to be read from the device.

pNumBytesRead
[OUT] - Pointer to a variable of type U32 which receives the
number of bytes read from the device.

Table 9.9: USBH_CDC_Read() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

171

9.2.11 USBH_CDC_Write()
Description

Writes data to the CDC device.

Prototype
USBH_STATUS USBH_CDC_Write(USBH_CDC_HANDLE hDevice,
 const U8 * pData,
 U32 NumBytes,
 U32 * pNumBytesWritten);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Example
USBH_CDC_HANDLE hDevice;
USBH_CDC_DEVICE_INFO DeviceInfo;
USBH_STATUS Status;

hDevice = USBH_CDC_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 Status = USBH_CDC_Write(hDevice, “SEGGER“, 7); // Write SEGGER\0 over CDC
 if (Status == USBH_STATUS_SUCCESS) {
 printf(“Write was successful!\n”);
 } else {
 printf(“Failed to write, Error code = 0x%x”, Status);
 }
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.

pData
[IN] - Pointer to the buffer that contains the data to be writ-
ten to the device.

NumBytes [IN] - Number of bytes to write to the device.

pNumBytesWritten
[OUT] - Pointer to a variable of type U32 which receives the
number of bytes written to the device.

Table 9.10: USBH_CDC_Write() parameter list

172 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.2.12 USBH_CDC_SetCommParas()
Description

Setups the serial communication with the given characteristics.

Prototype
USBH_STATUS USBH_CDC_SetCommParas(USBH_CDC_HANDLE hDevice,
 U32 Baudrate,
 U8 DataBits,
 U8 StopBits,
 U8 Parity);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Example
USBH_CDC_HANDLE hDevice;
USBH_CDC_DEVICE_INFO DeviceInfo;
USBH_STATUS Status;

hDevice = USBH_CDC_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 Status = USBH_CDC_SetCommParas(hDevice,
 115200,
 USBH_CDC_STOP_BITS_1,
 UBSH_CDC_PARITY_NONE);
 if (Status == USBH_STATUS_SUCCESS) {
 printf(“USBH_CDC_SetCommParas was successful!\n”);
 } else {
 printf(“Could not set baudrate, error code = 0x%x”, Status);
 }
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.
Baudrate [IN] - Baud rate to set.
DataBits [IN] - Number of data bits, can be 5, 6, 7, 8 or 16.

StopBits
[IN] - Number of stop bits. Must be USBH_CDC_STOP_BITS_1 or
USBH_CDC_STOP_BITS_2

Parity

[IN] - Parity - must be one of the following values:
UBSH_CDC_PARITY_NONE,
UBSH_CDC_PARITY_ODD,
UBSH_CDC_PARITY_EVEN,
UBSH_CDC_PARITY_MARK
UBSH_CDC_PARITY SPACE

Table 9.11: USBH_CDC_SetBaudRate() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

173

9.2.13 USBH_CDC_SetDtr()
Description

Sets the Data Terminal Ready (DTR) control signal.

Prototype
USBH_STATUS USBH_CDC_SetDtr(USBH_CDC_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 9.12: USBH_CDC_SetDtr() parameter list

174 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.2.14 USBH_CDC_ClrDtr()
Description

Clears the Data Terminal Ready (DTR) control signal.

Prototype
USBH_STATUS USBH_CDC_ClrDtr(USBH_CDC_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 9.13: USBH_CDC_ClrDtr() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

175

9.2.15 USBH_CDC_SetRts()
Description

Sets the Request To Send (RTS) control signal.

Prototype
USBH_STATUS USBH_CDC_SetRts(USBH_CDC_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 9.14: USBH_CDC_SetRts() parameter list

176 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.2.16 USBH_CDC_ClrRts()
Description

Clears the Request To Send (RTS) control signal.

Prototype
USBH_STATUS USBH_CDC_ClrRts(USBH_CDC_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 9.15: USBH_CDC_ClrRts() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

177

9.2.17 USBH_CDC_GetQueueStatus()
Description

Gets the number of bytes in the receive queue.

Prototype
USBH_STATUS USBH_CDC_GetQueueStatus(USBH_CDC_HANDLE hDevice,
 U32 * pRxBytes);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.

pRxBytes
[OUT] - Pointer to a variable of type U32 which receives the num-
ber of bytes in the receive queue.

Table 9.16: USBH_CDC_GetQueueStatus() parameter list

178 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.2.18 USBH_CDC_SetBreak()
Description

Sets the BREAK condition for the device.

Prototype
USBH_STATUS USBH_CDC_SetBreak(USBH_CDC_HANDLE hDevice,
 U16 Duration);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Duration [IN] - Duration of the BREAK condition in ms.

Table 9.17: USBH_CDC_SetBreakOn() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

179

9.2.19 USBH_CDC_SetBreakOn()
Description

Sets the BREAK condition for the device.

Prototype
USBH_STATUS USBH_CDC_SetBreakOn(USBH_CDC_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 9.18: USBH_CDC_SetBreakOn() parameter list

180 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.2.20 USBH_CDC_SetBreakOff()
Description

Resets the BREAK condition for the device.

Prototype
USBH_STATUS USBH_CDC_SetBreakOff(USBH_CDC_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 9.19: USBH_CDC_SetBreakOff() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

181

9.2.21 USBH_CDC_GetSerialState()
Description

Gets the modem status and line status from the device. The least significant byte of
the pSerialState value holds the modem status. The line status is held in the sec-
ond least significant byte of the pSerialState value.

Prototype
USBH_STATUS USBH_CDC_GetSerialState (USBH_CDC_HANDLE hDevice,
 USBH_CDC_SERIALSTATE * pSerialState);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other value An error occurred.

Additional information

The least significant byte of the pSerialState value holds the modem status.
The line status is held in the second least significant byte of the pSerialState value.

The status is bit-mapped as follows:

 Data Carrier Detect (DCD) = 0x01,

 Data Set Ready (DSR) = 0x02,

 Break Interrupt (BI) = 0x04,

 Ring Indicator (RI) = 0x08,

 Framing Error (FE) = 0x10,

 Parity Error (PE) = 0x20,

 Overrun Error (OE) = 0x40.

Parameter Description

hDevice [IN] - Handle to the opened device.

pSerialState
[OUT] - Pointer to a variable of type USBH_CDC_SERIALSTATE
which receives the serial status from the device.

Table 9.20: USBH_CDC_GetSerialState() parameter list

182 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.3 Data Structures
This chapter describes the used structures defined in the header file USBH_CDC.h.

Structure Description

USBH_CDC_DEVICE_INFO
Contains information about a CDC compatible
device.

USBH_CDC_SERIALSTATE
Contains information about the simulated serial
connection.

Table 9.21: emUSB-Host MSD data structure overview

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

183

9.3.1 USBH_CDC_DEVICE_INFO
Definition
typedef struct { U16 VendorId;
 U16 ProductId;
 U8 acSerialNo[255];
} USBH_CDC_DEVICE_INFO;

Description

Contains information about a CDC compatible device.

Parameters

Parameter Description

VendorId Vendor identification number.
ProductId Product identification number.
acSerialNo Serial number string.

Table 9.22: USBH_CDC_DEVICE_INFO parameter list

184 CHAPTER 9 CDC Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

9.3.2 USBH_CDC_SERIALSTATE
Definition
typedef struct { U8 bRxCarrier;
 U8 bTxCarrier;
 U8 bBreak;
 U8 bRingSignal;
 U8 bFraming;
 U8 bParity;
 U8 bOverRun;
} USBH_CDC_SERIALSTATE;

Description

Contains information about the simulated serial connection.

Parameters

Parameter Description

bRxCarrier
State of receiver carrier detection mechanism of device.
This signal corresponds to V.24 signal 109 and RS-232 sig-
nal DCD.

bTxCarrier
State of transmission carrier. This signal corresponds to
V.24 signal 106 and RS-232 signal DSR.

bBreak State of break detection mechanism of the device.
bRingSignal State of ring signal detection of the device.
bFraming A framing error has occurred.
bParity A parity error has occurred.

bOverRun
Received data has been discarded due to overrun in the
device.

Table 9.23: USBH_CDC_SERIALSTATE parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

185

Chapter 10

FT232 Device Driver (Add-On)

This chapter describes the optional emUSB-Host add on "FT232 device driver".
It allows communication with an FTDI FT232 USB device, typically serving as
USB to RS232 converter.

186 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.1 Introduction
The FT232 driver software component of emUSB-Host allows the communication with
FTDI FT232 devices. It implements the FT232 protocol specified by FTDI which is a
vendor specific protocol. The protocol allows emulation of serial communication via
USB.

This chapter provides an explanation of the functions available to application devel-
opers via the FT232 driver software. All the functions and data types of this add-on
are prefixed with the �USBH_FT232_� text.

10.1.1 Overview
A FT232 device connected to the emUSB-Host is automatically configured and added
to an internal list. If the FT232 driver has been registered, it is notfied via callback
when a FT232 device has been added or removed. The driver then can notify the
application program, when a callback function has been registered via
USBH_FT232_RegisterNotification(). In order to communicate to a such a device,
the application has to call the USBH_FT232_Open(), passing the device index. The
FT232 devices are identified by an index. The first connected device gets assigned
the index 0, the second index 1, and so on.

10.1.2 Features
The following features are provided:

� Compatibility with different FT232 devices
� Ability to send and receive data
� Ability to set various parameters, such as baudrate, number of stop bits, parity.
� Handling of multiple FT232 devices at the same time.
� Notifications about FT232 connection status.
� Ability to query the FT232 line and modem status.

10.1.3 Example code
An example application which uses the API is provided in the OS_USBH_FT232.c file.
This example displays information about the FT232 device in the I/O terminal of the
debugger. In addition the application then starts a simple echo server, sending back
the received data.

10.1.4 Compatibility
The following devices work with the current FT232 driver:

� FT8U232AM
� FT232B
� FT232R
� FT2232D

10.1.5 Further reading
For more information about the FTDI FT232 devices, please take a look at the hard-
ware manual and D2XX Programmer's Guide manual (Document Reference No.:
FT_000071) available from www.ftdichip.com.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

187

10.2 API Functions
This chapter describes the emUSB-Host FT232 driver API functions. These functions
are defined in the header file USBH_FT232.h.

Function Description

USBH_FT232_Init() Initializes the FT232 device driver.
USBH_FT232_Exit() De-initialize the FT232 device driver.

USBH_FT232_RegisterNotification()
Sets a callback in order to be notified
when a device is added or removed.

USBH_FT232_ConfigureDefaultTimeout()
Sets the default read and write timeout
that shall be used when a new device is
connected.

USBH_FT232_Open() Opens a device given by an index.
USBH_FT232_Close() Closes a handle to an opened device.

USBH_FT232_GetDeviceInfo()
Retrieves the information about the
FT232 device.

USBH_FT232_ResetDevice() Resets the FT232 device.

USBH_FT232_SetTimeouts()
Sets up the default timeouts the host
waits until the data transfer will be
aborted

USBH_FT232_Read() Reads data from the FT232 device.
USBH_FT232_Write() Writes data to the FT232 device.

USBH_FT232_AllowShortRead()
The configuration function allows to let
the read function to return as soon as
data are available.

USBH_FT232_SetBaudRate()
Sets the baud rate for the opened
device.

USBH_FT232_SetDataCharacteristics()
Setups the serial communication with
the given characteristics.

USBH_FT232_SetFlowControl() Sets the flow control for the device.

USBH_FT232_SetDtr()
Sets the Data Terminal Ready (DTR)
control signal.

USBH_FT232_ClrDtr()
Clears the Data Terminal Ready (DTR)
control signal.

USBH_FT232_SetRts()
Sets the Request To Send (RTS) control
signal.

USBH_FT232_ClrRts()
Clears the Request To Send (RTS) con-
trol signal.

USBH_FT232_GetModemStatus()
Gets the modem status and line status
from the device.

USBH_FT232_SetChars()
Sets the special characters for the
device.

USBH_FT232_Purge()
Purges receive and transmit buffers in
the device.

USBH_FT232_GetQueueStatus()
Gets the number of bytes in the receive
queue.

USBH_FT232_SetBreakOn()
Sets the BREAK condition for the
device.

USBH_FT232_SetBreakOff()
Resets the BREAK condition for the
device.

USBH_FT232_SetLatencyTimer() Set the latency timer value.
Table 10.1: emUSB-Host FT232 device driver API function overview

188 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

USBH_FT232_GetLatencyTimer()
Get the current value of the latency
timer.

USBH_FT232_SetBitMode() Enables different chip modes.

USBH_FT232_GetBitMode()
Gets the instantaneous value of the
data bus.

Function Description

Table 10.1: emUSB-Host FT232 device driver API function overview (Continued)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

189

10.2.1 USBH_FT232_Init()
Description

Initializes and registers the FT232 device driver to emUSB-Host.

Prototype
USBH_BOOL USBH_FT232_Init(void);

Return Value

==1 Success
==0 Could not register FT232 device driver.

190 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.2 USBH_FT232_Exit()
Description

Unregisters and deinitializes the FT232 device driver from emUSB-Host.

Prototype
void USBH_FT232_Exit(void);

Additional information

This function will release ressources that were used by this device driver. It has to be
called if the application is closed. This has to be called before USBH_Exit() is called.
No more functions of this module may be called after calling USBH_FT232_Exit().
The only exception is USBH_FT232_Init(), which would in turn re-init the module
and allows further calls.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

191

10.2.3 USBH_FT232_RegisterNotification()
Description

Sets a callback in order to be notified when a device is added or removed.

Prototype
void USBH_FT232_RegisterNotification(
 USBH_NOTIFICATION_FUNC * pfNotification,
 void * pContext);

Parameter

Additional Information

Only one notification function can be set for all devices. To unregister, call this func-
tion with the pfNotification parameter set to NULL.

Example

/***
*
* _cbOnAddRemoveDevice
*
* Function description
* Callback, called when a device is added or removed.
* Call in the context of the USBH_Task.
* The functionality in this routine should not block
*/
static void _cbOnAddRemoveDevice(void * pContext, U8 DevIndex, USBH_DEVICE_EVENT
Event) {
 pContext = pContext;
 switch (Event) {
 case USBH_DEVICE_EVENT_ADD:
 printf("\n**** Device added\n");
 _DevIndex = DevIndex;
 _DevIsReady = 1;
 break;
 case USBH_DEVICE_EVENT_REMOVE:
 printf("\n**** Device removed\n");
 _DevIsReady = 0;
 _DevIndex = -1;
 _Removed = 1;
 break;
 default:; // Should never happen
 }
}

Parameter Description

pfNotification
[IN] - Pointer to a function the stack should call when a device is
connected or disconnected.

pContext
[IN] - Pointer to a user context that should be passed to the call-
back function.

Table 10.2: USBH_FT232_RegisterNotification() parameter list

192 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

/***
*
* FT232_Task
*
* Function description
* This task shall handle FT232 devices. It initialize the FT232 driver
* and sets a notification callback in order to be informed about adding
* removing of FT232 devices.
*/
void FT232_Task(void) {
 USBH_FT232_Init();
 USBH_FT232_RegisterNotification(_cbOnAddRemoveDevice, NULL);
 while (1) {
 BSP_ToggleLED(1);
 OS_Delay(100);
 if (_DevIsReady) {
 _OnDevReady();
 }
 }
}

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

193

10.2.4 USBH_FT232_ConfigureDefaultTimeout()
Description

Sets the default read and write timeout that shall be used when a new device is con-
nected.

Prototype
void USBH_FT232_ConfigureDefaultTimeout(U32 ReadTimeout,
 U32 WriteTimeout);

Parameter

Additional information

The function shall be called after USBH_FT232_Init() has been called, otherwise the
behavior is undefined.

Example

void FT232_Task(void) {
 USBH_FT232_Init();
 USBH_FT232_ConfigureDefaultTimeout(50, 50); // Configure default timeout for read
 //and write to 50ms.
[...]

Parameter Description

ReadTimeout [IN] - Default read timeout given in ms.
WriteTimeout [IN] - Default write timeout given in ms.

Table 10.3: USBH_FT232_ConfigureDefaultTimeout() parameter list

194 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.5 USBH_FT232_Open()
Description

Opens a device given by an index.

Prototype
USBH_FT232_HANDLE USBH_FT232_Open(unsigned Index);

Parameter

Return Value

==0 Device could not be opened (Removed or not available).
!=0 Handle to the device.

Example
USBH_FT232_HANDLE hDevice;

hDevice = USBH_FT232_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

Index
[IN] - Index of the device that shall be opened.
In general this means: the first connected device is 0, second
device is 1 etc.

Table 10.4: USBH_FT232_Open() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

195

10.2.6 USBH_FT232_Close()
Description

Closes a handle to an opened device.

Prototype
USBH_STATUS USBH_FT232_Close(USBH_FT232_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Example
USBH_FT232_HANDLE hDevice;
U32 NumBytesWritten;

hDevice = USBH_FT232_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 USBH_FT232_Write(hDevice, “Hello\n”, 6, &NumBytesWritten);
 USBH_FT232_Close(hDevice);
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the device which shall be closed.
Table 10.5: USBH_FT232_Close() parameter list

196 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.7 USBH_FT232_GetDeviceInfo()
Description

Retrieves the information about the FT232 device.

Prototype
USBH_STATUS USBH_FT232_GetDeviceInfo(USBH_FT232_HANDLE hDevice,
 USBH_FT232_DEVICE_INFO * pDevInfo);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Example
USBH_FT232_HANDLE hDevice;
USBH_FT232_DEVICE_INFO DeviceInfo;

hDevice = USBH_FT232_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 USBH_FT232_GetDeviceInfo(hDevice, &DeviceInfo);
 printf("Vendor Id = 0x%4.4x\n"
 "Product Id = 0x%4.4x\n"
 "bcdDevice = 0x%4.4x\n", DeviceInfo.VendorId,
 DeviceInfo.ProductId,
 DeviceInfo.bcdDevice);
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.

pDevInfo
[OUT] - Pointer to a USBH_SFT232_DEVICE_INFO structure to
store information related to the device.

Table 10.6: USBH_FT232_GetDeviceInfo() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

197

10.2.8 USBH_FT232_ResetDevice()
Description

Resets the FT232 device.

Prototype
USBH_STATUS USBH_FT232_ResetDevice(USBH_FT232_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Example
USBH_FT232_HANDLE hDevice;
USBH_FT232_DEVICE_INFO DeviceInfo;
USBH_STATUS Status;

hDevice = USBH_FT232_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 Status = USBH_FT232_ResetDevice(hDevice); // Do the reset
 if (Status == USBH_STATUS_SUCCESS) {
 printf(“Resetting the device was successful!\n”);
 } else {
 printf(“Failed to reset the device, Error code = 0x%x”, Status);
 }
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 10.7: USBH_FT232_ResetDevice() parameter list

198 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.9 USBH_FT232_SetTimeouts()
Description

Sets up the timeouts the host waits until the data transfer will be aborted.

Prototype
USBH_STATUS USBH_FT232_SetTimeouts(USBH_FT232_HANDLE hDevice,
 U32 ReadTimeout,
 U32 WriteTimeout);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Example
USBH_FT232_HANDLE hDevice;
USBH_FT232_DEVICE_INFO DeviceInfo;
USBH_STATUS Status;

hDevice = USBH_FT232_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 Status = USBH_FT232_SetTimeouts(hDevice, 30, 30); // Set timeout for both to 30ms.
 if (Status == USBH_STATUS_SUCCESS) {
 printf(“Setting the timeout was successful!\n”);
 } else {
 printf(“Failed to set timeout, Error code = 0x%x”, Status);
 }
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.
ReadTimeout [IN] - Read timeout given in ms.
WriteTimeout [IN] - Write timeout given in ms.

Table 10.8: USBH_FT232_SetTimeouts() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

199

10.2.10 USBH_FT232_Read()
Description

Reads data from the FT232 device.

Prototype
USBH_STATUS USBH_FT232_Read(USBH_FT232_HANDLE hDevice,
 U8 * pData,
 U32 NumBytes,
 U32 * pNumBytesRead);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Additional information

USBH_FT232_Read always returns the number of bytes read in pNumBytesRead.
This function does not return until NumBytes bytes have been read into the buffer
unless short read mode is enabled. This allows USBH_FT232_Read to return when
either data have been read from the queue or as soon as some data have been read
from the device.
The number of bytes in the receive queue can be determined by calling
USBH_FT232_GetQueueStatus, and passed to USBH_FT232_Read as NumBytes so
that the function reads the device and returns immediately.
When a read timeout value has been specified in a previous call to
USBH_FT232_SetTimeouts, USBH_FT232_Read returns when the timer expires or
NumBytes have been read, whichever occurs first. If the timeout occurred,
USBH_FT232_Read reads available data into the buffer and returns
USBH_STATUS_TIMEOUT.
An application should use the function return value and pNumBytesRead when pro-
cessing the buffer. If the return value is USBH_STATUS_SUCCESS, and pNumBytes-
Read is equal to NumBytes then USBH_FT232_Read has completed normally.
If the return value is USBH_STATUS_TIMEOUT, pNumBytesRead may be less or even
0, in any case, pData will be filled with pNumBytesRead.
Any other return value suggests an error in the parameters of the function, or a fatal
error like a USB disconnect

Parameter Description

hDevice [IN] - Handle to the opened device.

pData
[OUT] - Pointer to the buffer that receives the data from the
device.

NumBytes [IN] - Number of bytes to be read from the device.

pNumBytesRead
[OUT] - Pointer to a variable of type U32 which receives the num-
ber of bytes read from the device.

Table 10.9: USBH_FT232_Read() parameter list

200 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.11 USBH_FT232_Write()
Description

Writes data to the FT232 device.

Prototype
USBH_STATUS USBH_FT232_Write(USBH_FT232_HANDLE hDevice,
 const U8 * pData,
 U32 NumBytes,
 U32 * pNumBytesWritten);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Example
USBH_FT232_HANDLE hDevice;
USBH_FT232_DEVICE_INFO DeviceInfo;
USBH_STATUS Status;

hDevice = USBH_FT232_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 Status = USBH_FT232_Write(hDevice, “SEGGER“, 7); // Write SEGGER\0 over FT232
 if (Status == USBH_STATUS_SUCCESS) {
 printf(“Write was successful!\n”);
 } else {
 printf(“Failed to write, Error code = 0x%x”, Status);
 }
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.

pData
[IN] - Pointer to the buffer that contains the data to be writ-
ten to the device.

NumBytes [IN] - Number of bytes to write to the device.

pNumBytesWritten
[OUT] - Pointer to a variable of type U32 which receives the
number of bytes written to the device.

Table 10.10: USBH_FT232_Write() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

201

10.2.12 USBH_FT232_AllowShortRead()
Description

The configuration function allows to let the read function to return as soon as data
are available.

Prototype
USBH_STATUS USBH_FT232_AllowShortRead(USBH_FT232_HANDLE hDevice,
 U8 AllowShortRead);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Additional information

USBH_FT232_AllowShortRead sets the USBH_FT232_Read into a special mode -
short read mode. When this mode is enabled, the function returns as soon as data
has been read from the device. This allows the application to read data where the
number of bytes to read is undefined.
To disable this mode, AllowShortRead shall be 0.

Example
USBH_FT232_HANDLE hDevice;
USBH_FT232_DEVICE_INFO DeviceInfo;
USBH_STATUS Status;
U32 NumBytesWritten;
U32 NumBytes2Write = 6;

hDevice = USBH_FT232_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 Status = USBH_FT232_Write(hDevice, “Hello\n”, NumBytes2Write, &NumBytesWritten);
 if (Status == USBH_STATUS_SUCCESS) {
 printf(“All bytes have been written!\n”);
 } else {
 printf(“Not all bytes (%d of %d) have been written, error code = 0x%x”,
NumBytesWritten, NumBytes2Write, Status);
 }
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.

AllowShortRead
[IN] - Define whether short read mode shall be used or not.
1 - Enable short read mode
0 - Disable short read mode.

Table 10.11: USBH_FT232_AllowShortRead() parameter list

202 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.13 USBH_FT232_SetBaudRate()
Description

Sets the baud rate for the opened device.

Prototype
USBH_STATUS USBH_FT232_SetBaudRate(USBH_FT232_HANDLE hDevice,
 U32 Baudrate);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Example
USBH_FT232_HANDLE hDevice;
USBH_FT232_DEVICE_INFO DeviceInfo;
USBH_STATUS Status;

hDevice = USBH_FT232_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 Status = USBH_FT232_SetbaudRate(hDevice, 115200);
 if (Status == USBH_STATUS_SUCCESS) {
 printf(“SetBaudrate was successful!\n”);
 } else {
 printf(“Could not set baudrate, error code = 0x%x”, Status);
 }
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.
Baudrate [IN] - Baud rate to set.

Table 10.12: USBH_FT232_SetBaudRate() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

203

10.2.14 USBH_FT232_SetDataCharacteristics()
Description

Setups the serial communication with the given characteristics.

Prototype
USBH_STATUS USBH_FT232_SetDataCharacteristics(USBH_FT232_HANDLE hDevice,
 U8 Length,
 U8 StopBits,
 U8 Parity);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Example
USBH_FT232_HANDLE hDevice;
USBH_FT232_DEVICE_INFO DeviceInfo;
USBH_STATUS Status;

hDevice = USBH_FT232_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 Status = USBH_FT232_SetDataCharacteristics(hDevice,
 USBH_FT232_BITS_8,
 USBH_FT232_STOP_BITS_1,
 USBH_FT232_PARITY_NONE);
 if (Status == USBH_STATUS_SUCCESS) {,
 printf(“Commnication options have been set successfully!\n”);
 } else {
 printf(“Could not set communication options, error code = 0x%x”, Status);
 }
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.

Length
[IN] - Number of bits per word: - must be
USBH_FT232_BITS_8 or USBH_FT232_BITS_7

StopBits
[IN] - Number of stop bits - must be
USBH_FT232_STOP_BITS_1 or USBH_FT232_STOP_BITS_2.

Parity

[IN] - Parity - must be one of the following values:
USBH_FT232_PARITY_NONE
USBH_FT232_PARITY_ODD
USBH_FT232_PARITY_EVEN
USBH_FT232_PARITY_MARK
USBH_FT232_PARITY SPACE.

Table 10.13: USBH_FT232_SetDataCharacteristics() parameter list

204 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.15 USBH_FT232_SetFlowControl()
Description

Sets the flow control for the device.

Prototype
USBH_STATUS USBH_FT232_SetFlowControl(USBH_FT232_HANDLE hDevice,
 U16 FlowControl,
 U8 XonChar,
 U8 XoffChar);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Example
USBH_FT232_HANDLE hDevice;
USBH_FT232_DEVICE_INFO DeviceInfo;
USBH_STATUS Status;

hDevice = USBH_FT232_Open(0); // Open device with index 0.
if (hDevice) {
 // Got a valid device handle
 Status = USBH_FT232_SetFlowControl(hDevice,
 USBH_FT232_FLOW_NONE,
 0,
 0);
 if (Status == USBH_STATUS_SUCCESS) {,
 printf(“FlowControl have been set successfully!\n”);
 } else {
 printf(“Could not set flow control, error code = 0x%x”, Status);
 }
} else {
 // Failed to open device, the device may be unavailable or was previously removed.
 printf(“Failed to open device\n“);
}

Parameter Description

hDevice [IN] - Handle to the opened device.

FlowControl

[IN] - Must be one of the following values:
USBH_FT232_FLOW_NONE
USBH_FT232_FLOW_RTS_CTS
USBH_FT232_FLOW_DTR_DSR
USBH_FT232_FLOW_XON_XOFF

XonChar
[IN] - Character that shall be used to signal Xon. Only used if
flow control is USBH_FT232_FLOW_XON_XOFF.

XoffChar
[IN] - Character that shall be used to signal Xoff. Only used if flow
control is USBH_FT232_FLOW_XON_XOFF.

Table 10.14: USBH_FT232_SetFlowControl() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

205

10.2.16 USBH_FT232_SetDtr()
Description

Sets the Data Terminal Ready (DTR) control signal.

Prototype
USBH_STATUS USBH_FT232_SetDtr(USBH_FT232_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 10.15: USBH_FT232_SetDtr() parameter list

206 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.17 USBH_FT232_ClrDtr()
Description

Clears the Data Terminal Ready (DTR) control signal.

Prototype
USBH_STATUS USBH_FT232_ClrDtr(USBH_FT232_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 10.16: USBH_FT232_ClrDtr() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

207

10.2.18 USBH_FT232_SetRts()
Description

Sets the Request To Send (RTS) control signal.

Prototype
USBH_STATUS USBH_FT232_SetRts(USBH_FT232_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 10.17: USBH_FT232_SetRts() parameter list

208 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.19 USBH_FT232_ClrRts()
Description

Clears the Request To Send (RTS) control signal.

Prototype
USBH_STATUS USBH_FT232_ClrRts(USBH_FT232_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 10.18: USBH_FT232_ClrRts() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

209

10.2.20 USBH_FT232_GetModemStatus()
Description

Gets the modem status and line status from the device.

Prototype
USBH_STATUS USBH_FT232_GetModemStatus(USBH_FT232_HANDLE hDevice,
 U32 * pModemStatus);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Additional information

The least significant byte of the pModemStatus value holds the modem status.
The line status is held in the second least significant byte of the pModemStatus value.

The modem status is bit-mapped as follows:
Clear To Send (CTS) = 0x10,
Data Set Ready (DSR) = 0x20,
Ring Indicator (RI) = 0x40,
Data Carrier Detect (DCD) = 0x80.

The line status is bit-mapped as follows:
Overrun Error (OE) = 0x02,
Parity Error (PE) = 0x04,
Framing Error (FE) = 0x08,
Break Interrupt (BI) = 0x10.
TxHolding register empty = 0x20
TxEmpty = 0x40

Parameter Description

hDevice [IN] - Handle to the opened device.

pModemStatus
[IN] - Pointer to a variable of type U32 which receives the
modem status and line status from the device.

Table 10.19: USBH_FT232_GetModemStatus() parameter list

210 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.21 USBH_FT232_SetChars()
Description

Sets the special characters for the device.

Prototype
USBH_STATUS USBH_FT232_SetChars(USBH_FT232_HANDLE hDevice,
 U8 EventChar,
 U8 EventCharEnabled,
 U8 ErrorChar,
 U8 ErrorCharEnabled);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Additional information

This function allows for inserting specified characters in the data stream to represent
events firing or errors occurring.

Parameter Description

hDevice [IN] - Handle to the opened device.
EvenChar [IN] - Event character
EventCharEnable [IN] - 0 if event character disabled, non-zero otherwise.
ErrorChar [IN] - Error character
ErrorCharEnabled [IN] - 0 if error character disabled, non-zero otherwise.

Table 10.20: USBH_FT232_SetChars() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

211

10.2.22 USBH_FT232_Purge()
Description

Purges receive and transmit buffers in the device.

Prototype
USBH_STATUS USBH_FT232_Purge(USBH_FT232_HANDLE hDevice,
 U32 Mask);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.

Mask
[IN] - Combination of USBH_FT232_PURGE_RX and
USBH_FT232_FT_PURGE_TX.

Table 10.21: USBH_FT232_Purge() parameter list

212 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.23 USBH_FT232_GetQueueStatus()
Description

Gets the number of bytes in the receive queue.

Prototype
USBH_STATUS USBH_FT232_GetQueueStatus(USBH_FT232_HANDLE hDevice,
 U32 * pRxBytes);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.

pRxBytes
[OUT] - Pointer to a variable of type U32 which receives the num-
ber of bytes in the receive queue.

Table 10.22: USBH_FT232_GetQueueStatus() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

213

10.2.24 USBH_FT232_SetBreakOn()
Description

Sets the BREAK condition for the device.

Prototype
USBH_STATUS USBH_FT232_SetBreakOn(USBH_FT232_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 10.23: USBH_FT232_SetBreakOn() parameter list

214 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.25 USBH_FT232_SetBreakOff()
Description

Resets the BREAK condition for the device.

Prototype
USBH_STATUS USBH_FT232_SetBreakOff(USBH_FT232_HANDLE hDevice);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 10.24: USBH_FT232_SetBreakOff() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

215

10.2.26 USBH_FT232_SetLatencyTimer()
Description

Set the latency timer value.

Prototype
USBH_STATUS USBH_FT232_SetLatencyTimer(USBH_FT232_HANDLE hDevice,
 U8 Latency);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Additional information

In the FT8U232AM and FT8U245AM devices, the receive buffer timeout that is used
to flush remaining data from the receive buffer was fixed at 16 ms. Therefore this
function cannot be used with these devices.
In all other FTDI devices, this timeout is programmable and can be set at 1 ms inter-
vals between 2ms and 255 ms.
This allows the device to be better optimized for protocols requiring faster response
times from short data packets.

Parameter Description

hDevice [IN] - Handle to the opened device.

Latency
[IN] - Required value, in milliseconds, of latency timer. Valid
range is 2 � 255.

Table 10.25: USBH_FT232_SetLatencyTimer() parameter list

216 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.27 USBH_FT232_GetLatencyTimer()
Description

Get the current value of the latency timer.

Prototype
USBH_STATUS USBH_FT232_GetLatencyTimer(USBH_FT232_HANDLE hDevice,
 U8 * pLatency);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Additional information

Please refer to USBH_FT232_SetLatencyTimer() for more information about latency
timer.

Parameter Description

hDevice [IN] - Handle to the opened device.
Table 10.26: USBH_FT232_GetLatencyTimer() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

217

10.2.28 USBH_FT232_SetBitMode()
Description

Enables different chip modes.

Prototype
USBH_STATUS USBH_FT232_SetBitMode(USBH_FT232_HANDLE hDevice,
 U8 Mask,
 U8 Enable);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Additional information

For further information please refer to the HW-reference manuals and application
note on the FTDI website.

Parameter Description

hDevice [IN] - Handle to the opened device.

Mask

[IN] - Required value for bit mode mask. This sets up which bits
are inputs and outputs.
A bit value of 0 sets the corresponding pin to an input.
A bit value of 1 sets the corresponding pin to an output.
In the case of CBUS Bit Bang, the upper nibble of this value controls which
pins are inputs and outputs, while the lower nibble controls which of the out-
puts are high and low.

ucMode

[IN] - Mode value. Can be one of the following value:
0x00 = Reset

0x01 = Asynchronous Bit Bang

0x02 = MPSSE (FT2232, FT2232H, FT4232H and FT232H devices
only)

0x04 = Synchronous Bit Bang (FT232R, FT245R, FT2232,
FT2232H, FT4232H and FT232H devices only)

0x08 = MCU Host Bus Emulation Mode (FT2232, FT2232H,
FT4232H and FT232H devices only)

0x10 = Fast Opto-Isolated Serial Mode (FT2232, FT2232H,
FT4232H and FT232H devices only)

0x20 = CBUS Bit Bang Mode (FT232R and FT232H devices only)

0x40 = Single Channel Synchronous 245 FIFO Mode (FT2232H
and FT232H devices only)

Table 10.27: USBH_FT232_SetBitMode() parameter list

218 CHAPTER 10 FT232 Device Driver (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

10.2.29 USBH_FT232_GetBitMode()
Description

Gets the instantaneous value of the data bus.

Prototype
USBH_STATUS USBH_FT232_GetBitMode(USBH_FT232_HANDLE hDevice,
 U8 * pMode);

Parameter

Return Value

USBH_STATUS_SUCCESS Success.
Any other USBH_STATUS_xxx An error occurred.

Additional information

For further information please refer to the HW-reference manuals and application
note on the FTDI website.

Parameter Description

hDevice [IN] - Handle to the opened device.
pMode [OUT] - Pointer to U8 to store the instantaneous data bus value.

Table 10.28: USBH_FT232_GetBitMode() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

219

Chapter 11

Configuring emUSB-Host

emUSB-Host can be used without changing any of the compile-time flags. All com-
pile-time configuration flags are preconfigured with valid values, which match the
requirements of most applications. Network interface drivers can be added at runt-
ime.

The default configuration of emUSB-Host can be changed via compile-time flags
which can be added to USBH_Conf.h. USBH_Conf.h is the main configuration file for
the emUSB-Host stack.

220 CHAPTER 11 Configuring emUSB-Host

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

11.1 Runtime configuration
Every driver folder includes a configuration file with implementations of runtime con-
figuration function explained in this chapter. This function can be customized.
Function that can be called within this fucntion are described later in this chapter.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

221

11.1.1 USBH_X_Config()
Description

Helper function to prepare and configure the emUSB-Host stack.

Prototype
void USBH_X_Config(void);

Additional information

This function is called by the startup code of the emUSB-Host stack from
USBH_Init(). This is the place where you can add and configure the hardware driver.

Example

/***
*
* USBH_X_Config
*
* Function description
* Configures the emUSB-Host for an AT91SAM9G45 target.
*/

void USBH_X_Config(void) {
 //
 // Assigning memory should be the first thing
 //
 USBH_AssignMemory((void *)((ALLOC_BASE + 0xff) & ~0xffUL), ALLOC_SIZE);
 //
 // Define log and warn filter
 // Note: The terminal I/O emulation affects the timing
 // of your communication, since the debugger stops the target
 // for every terminal I/O output unless you use DCC!
 //
 USBH_SetWarnFilter(0xFFFFFFFF); // 0xFFFFFFFF: Do not filter: Output all warnings.
 USBH_SetLogFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_APPLICATION
 | USBH_MTYPE_HID
);
 BSP_USBH_Init();
 USBH_OHC_Add((void*)OHCI_BASE_ADDRESS);
 BSP_USBH_InstallISR(_ISR);
}

222 CHAPTER 11 Configuring emUSB-Host

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

11.2 Configuration functions
This function shall only be called within the USBH_X_Config() function.
These functions configures and adds a specific USB host driver to emUSB Host stack.
.

Function Description

USBH_AssignMemory()
Configures a memory pool for emUSB-Host
internal handling.

USBH_AssignTransferMemory()
Configures a memory pool for the data
exchange with the host controller.

USBH_ConfigTransferBufferSize
Configures the size of copy buffer that are
used if the USB controller has limited
access to the system memory.

USBH_ConfigRootHub()
Configures some features of the controller�s
root hub.

USBH_ConfigMaxUSBDevices()
Configures the number of devices that shall
be used.

USBH_ConfigMaxNumEndpoints()
Configures the number of endpoints that
shall be used.

USBH_ConfigSupportExternalHubs()
Specifies whether USB hub shall be sup-
ported or not.

USBH_OHCI_Add()
Adds an OHCI compliant host controller to
emUSB Host

USBH_STM32_Add()
Adds an ST STM32 10x,20x,21x compliant
full-speed host controller to emUSB Host

USBH_RX62_Add()
Adds an Renesas RX62x compliant full-
speed host controller to emUSB Host.

USBH_AVR32_Add()
Adds an Atmel AVR32 full-speed compliant
host controller to emUSB Host.

USBH_AVR32_ConfigureEPRAM()
Tells the Atmel AVR32 emUSB-Host driver
the location of the EP-RAM.

Table 11.1: emUSB-Host Configuration API function overview

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

223

11.2.1 USBH_AssignMemory()
Description

Sets up storage for the memory allocator.

Prototype
void USBH_AssignMemory(U32 * pMem, U32 NumBytes);

Parameter

Additional information

emUSB-Host comes with its own dynamic memory allocator optimized for its needs.
You can use this function to setup the a memory area for the heap. The best place to
call it is in the USBH_X_Config() function.

In cases where the USB host controller has limited access to system memory, the
USBH_AssignTransferMemory() must be additionally called.

Parameter Description

pMem Pointer to a caller allocated memory area.
NumBytes Size of memory area in bytes.

Table 11.2: USBH_AssignMemory() parameter list

224 CHAPTER 11 Configuring emUSB-Host

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

11.2.2 USBH_AssignTransferMemory()
Description

Assign memory used for DMA transfers of the USB-Host controller.
In order to use this memory, the following requirements must be fulfilled:

� Physical address = virtual address (no addres translation by an MMU if present)
� Not cachable/bufferable
� �fast� access to avoid timeouts
� USB-Host controller muss have full read/write access

Prototype
void USBH_AssignTransferMemory(U32 * pMem, U32 NumBytes);

Parameter

Additional information

Use of this function is required only in systems in which "normal", default memory
does not fulfill all of these criterias.
In simple microcontroller systems without cache, MMU and external RAM, use of this
function is not required. If no transfer memory is assigned, memory assigned with
USBH_AssignMemory() is used instead.
This function is normally used with an OHCI controller.

Parameter Description

pMem Pointer to a memory area.
NumBytes Size of memory area in bytes.

Table 11.3: USBH_AssignTransferMemory() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

225

11.2.3 USBH_ConfigTransferBufferSize()
Description
Configures the size of copy buffer that are used if the USB controller has limited
access to the system memory

Prototype
void USBH_ConfigTransferBufferSize(U32 Size);

Parameter

Additional information

This function is normally used with an OHCI controller.

Parameter Description

Size Size of copy transfer buffer given in bytes.
Table 11.4: USBH_ConfigTransferBufferSize() parameter list

226 CHAPTER 11 Configuring emUSB-Host

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

11.2.4 USBH_ConfigRootHub()
Description

Sets up additional storage for the memory allocator. The USB host controller must
have read/write access to the configured memory area.

Prototype
void USBH_ConfigRootHub(U8 SupportOvercurrent,
 U8 PortsAlwaysPowered,
 U8 PerPortPowered);

Parameter

Additional information

Currently this function can only used with the OHCI USB host controller.

Parameter Description

SupportOvercurrent
If overcurrent is supported by the host controller, Sup-
portOvercurrent needs to be set to 1.

PortsAlwaysPowered Specifies whether the USB port is always powered.

PerPortPowered
Specifies that the power of each port can individually be
set.

Table 11.5: USBH_ConfigRootHub() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

227

11.2.5 USBH_ConfigMaxUSBDevices()
Description

Configures the number of devices that shall be used.

Prototype
void USBH_ConfigMaxUSBDevices(U8 NumDevices);

Parameter

Additional information

Depending how many devices shall be connected to the USB device, this configura-
tion function may help to reduce the RAM consumption.
In order to know how many devices shall be connected to the host, please note that
a USB hub is also a USB device which need to be managed.

Parameter Description

NumDevices Sets the number of devices that shall be handled.
Table 11.6: USBH_AssignTransferMemory() parameter list

228 CHAPTER 11 Configuring emUSB-Host

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

11.2.6 USBH_ConfigMaxNumEndpoints()
Description

Configures the number of devices that shall be used.

Prototype
void USBH_ConfigMaxUSBDevices(U8 MaxNumBulkEndpoints,
 U8 MaxNumIntEndpoints,
 U8 MaxNumIsoEndpoints);

Parameter

Additional information

The value depends on the device and classes that shall be used with emUSB Host.
The following table shows some classes whereas the endpoint information is fixed or
recommended:

Parameter Description

MaxNumBulkEndpoints Sets the number of bulk endpoints that shall be handled.

MaxNumIntEndpoints
Sets the number of interrupt endpoints that shall be han-
dled.

MaxNumIsoEndpoints
Sets the number of isochrounous endpoints that shall be
handled.

Table 11.7: USBH_AssignTransferMemory() parameter list

Device class Number of endpoints

MSD 2 Bulk endpoints
HID 1 or 2 interrupt endpoints
Printer 2 bulk endpoints

CDC
2 bulk endpoints and 1 interrupt end-
point

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

229

11.2.7 USBH_ConfigSupportExternalHubs()
Description

Specifies whether USB hub shall be supported or not.

Prototype
void USBH_ConfigSupportExternalHubs (U8 OnOff);

Parameter

Additional information

Parameter Description

OnOff
1 - Enable support for USB hubs.
0 - Disable support for USB hubs.

Table 11.8: USBH_AssignMemory() parameter list

230 CHAPTER 11 Configuring emUSB-Host

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

11.2.8 USBH_OHCI_Add()
Description

Adds an OHCI compliant host controller to emUSB Host.

Prototype
void USBH_OHCI_Add(void * pBase);

Parameter

Additional information

This functions checks and adds the USB host controller to the stack. Please make
sure that an add-function is only called once.

Parameter Description

pBase Base address of the OHCI controller
Table 11.9: USBH_AssignTransferMemory() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

231

11.2.9 USBH_STM32_Add()
Description

Adds a STM32 full-speed compliant host controller to emUSB Host.

Prototype
void USBH_STM32_Add(void * pBase);

Parameter

Additional information

This functions checks and adds the USB host controller to the stack. Please make
sure that an add-function is only called once.

Parameter Description

pBase Base address of the USB controller.
Table 11.10: USBH_AssignTransferMemory() parameter list

232 CHAPTER 11 Configuring emUSB-Host

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

11.2.10 USBH_RX62_Add()
Description

Adds a Renesas RX62 full-speed compliant host controller to emUSB Host.

Prototype
void USBH_RX62_Add(void * pBase);

Parameter

Additional information

This functions checks and adds the USB host controller to the stack. Please make
sure that an add-function is only called once.

Parameter Description

pBase Base address of the USB controller.
Table 11.11: USBH_AssignTransferMemory() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

233

11.2.11 USBH_AVR32_Add()
Description

Adds an Atmel AVR32 full-speed compliant host controller to emUSB Host.

Prototype
void USBH_AVR32_Add(void * pBase);

Parameter

Additional information

This functions checks and adds the USB host controller to the stack. Please make
sure that an add-function is only called once.

Parameter Description

pBase Base address of the USB controller.
Table 11.12: USBH_AssignTransferMemory() parameter list

234 CHAPTER 11 Configuring emUSB-Host

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

11.2.12 USBH_AVR32_ConfigureEPRAM()
Description

Tells the Atmel AVR32 emUSB-Host driver the location of the EP-RAM.

Prototype
void USBH_AVR32_ConfigureEPRAM(U32 RamBase);

Parameter

Additional information

After USBH_AVR32_Add has been called, this is the next function that shall be called.
This function will then tell the AVR32 driver where the pipe (EP) RAM is located, oth-
erwise there will be no communition between Host and Device.

Parameter Description

RamBase Base address of the EP-RAM.
Table 11.13: USBH_AVR32_ConfigureEPRAM() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

235

11.3 Compile-time configuration
The following types of configuration macros exist:

Numerical values “N”

Numerical values are used somewhere in the code in place of a numerical constant. A
typical example is the configuration of the sector size of a storage medium.

Function replacements “F”

Macros can basically be treated like regular functions although certain limitations
apply, as a macro is still put into the code as simple text replacement. Function
replacements are mainly used to add specific functionality to a module which is
highly hardware-dependent. This type of macro is always declared using brackets
(and optional parameters).

11.3.1 Compile-time configuration switches

Type
Symbolic

name
Default Description

Debug macros

N USBH_DEBUG 0

emUSB-Host can be configured to display debug
information at higher debug levels to locate a
problem (Error) or potential problem. To display
information, emUSB-Host uses the logging rou-
tines. These routines can be blank, they are not
required for the functionality of emUSB-Host. In a
target system, they are typically not required in a
release (production) build, since a production
build typically uses a lower debug level. The fol-
lowing table lists the values USBH_DEBUG define
can take:
0 - Used for release builds. Includes no debug
options.
1 - Used in debug builds to include support for
�panic� checks.
2 - Used in debug builds to include warning, log
messages and �panic� checks.

Optimization macros

F USBH_MEMCPY

memcpy
(routine
in stan-
dard C-
library)

Macro to define an optimized memcpy routine to
speed up the stack. An optimized memcpy routine
is typically implemented in assembly language.
Optimized version for the IAR compiler is sup-
plied.

F USBH_MEMSET

memset
(routine
in stan-
dard C-
library)

Macro to define an optimized memset routine to
speed up the stack. An optimized memset routine
is typically implemented in assembly language.

F USBH_MEMCMP

memcmp
(routine
in stan-
dard C-
library)

Macro to define an optimized memcmp routine to
speed up the stack. An optimized memcmp rou-
tine is typically implemented in assembly lan-
guage.

236 CHAPTER 11 Configuring emUSB-Host

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

237

Chapter 12

Host controller specifics

This chapter describes some specific information about the host controller and its
configuration with emUSB-Host.

238 CHAPTER 12 Host controller specifics

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

12.1 Introduction
For emUSB-Host different USB host controller driver can be delivered. In normal
cases the drivers are ready and do not need to be configured at all. Some controllers
may need to be configured in a special manner, due to some limitation of the control-
ler.

This chapters shows the limitation of the controller and how to configure those con-
trollers.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

239

12.2 Host Controller Drivers
The following drivers are available for emUSB-Host:

Driver Description

OHCI Driver

This driver can be used for all OHCI compliant devices:
Currently this driver has been tested with the following devices:
Atmel AT91SAM9260
Atmel AT91SAM9261
Atmel AT91SAM9263
Atmel AT91SAM92G10
Atmel AT91SAM92G20
Atmel AT91SAM9XE
Atmel AT91SAM92G45/M10
NXP LPC1754
NXP LPC1756
NXP LPC1758
NXP LPC1759
NXP LPC1765
NXP LPC1766
NXP LPC1768
NXP LPC1776
NXP LPC1777
NXP LPC1778
NXP LPC1785
NXP LPC1786
NXP LPC1787
NXP LPC1788
NXP LPC2387
NXP LPC2388
NXP LPC2420
NXP LPC2458
NXP LPC2460
NXP LPC2468
NXP LPC2470
NXP LPC2478
NXP LPC3180
NXP LPC3220
NXP LPC3230
NXP LPC3240
NXP LPC3250
NXP LH7A400
NXP LH7A404
Renesas V850ES Jx(G/H)3-U
Toshiba TMPA900

ST STM32 Driver
Currently the following devices are supported by this driver:
ST STM32F105
ST STM32F107

ST STM32F2_FS
Driver

Currently the following devices are supported by this driver:
ST STM32F207
ST STM32F217
ST STM32F407
ST STM32F417

240 CHAPTER 12 Host controller specifics

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

Renesas RX
Driver

This driver supports all Renesas RX62 MCU with integrated USB
OTG controller. In some MCU two USB OTG controller are avail-
able, both controller can be used.
It has been tested with the following MCUs:
Renesas RX62N
Renesas RX621
Renesas RX63N
Renesas RX631.

Atmel AVR32
Driver

This driver supports all Atmel AVR32 UC3A/UC3B MCU with inte-
grated USB OTG controller.
It has been tested with the following MCUs:
Atmel AT32UC3A0512-U.

Freescale
Kinetis Full-
Speed Driver

This driver supports all Freescale Kinetis Kxx/KLxx with inte-
grated USB OTG controller.
It has been tested with the following MCUs:
Freescale K.

Driver Description

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

241

12.3 General Information
In general many devices need to configure GPIO pins in order to use them with the
USB host controller. In the most cases the following pins are necessary:

� USB D+
� USB D-
� USB VBUS
� USB GND
� USB PowerOn
� USB OverCurrent

Please note that the those pins need to be initialized within the USBH_X_Config()
function. This has to be done before the USBH_Hostcontroller driver Add-function is
called.
Another step that needs to be done before calling the USBH_Hostcontroller driver
Add-function is initializing the clock for USB.

242 CHAPTER 12 Host controller specifics

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

12.4 OHCI Driver
This driver can handles all USB transfers - this means it can handle Control, Inter-
rupt, Bulk and Isochronous transfers. It handles up to 127 devices and has an auto-
matic error detection.
Some OHCI implementation do not implement all features of OHCI. The individual
limitations and configuration are described here for each tested implementation.

12.4.1 General information
For MCUs with internal data cache controller such as ARM9/ARM11/Cortex A8 etc the
following needs to take care of:
In order to avoid cache inconsistency. The allocation pool for emUSB-Host should be
in a non-cached,non-buffered RAM region.

12.4.2 Atmel
Currently all tested Atmel OHCI implementation work flawlessly with the OHCI driver.

Configuration example:

#define ALLOC_SIZE 0x10000 // Size of memory dedicated to the stack in bytes
#define OHCI_BASE_ADDRESS 0x00500000

#define ALLOC_BASE (((U32)&_aPool[0]) + 0x4000000)// Use the non cached SDRAM area
static U32 _aPool[((ALLOC_SIZE + 256) / 4)]; // Memory area used by the stack.

void USBH_X_Config(void) {
 USBH_AssignMemory((void *)((ALLOC_BASE + 0xff) & ~0xff), ALLOC_SIZE); //
Assigning memory should be the first thing
 //
 // Define log and warn filter
 // Note: The terminal I/O emulation affects the timing
 // of your communication, since the debugger stops the target
 // for every terminal I/O output unless you use DCC!
 //
 USBH_SetWarnFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_HID
 | USBH_MTYPE_MSD
 | USBH_MTYPE_APPLICATION
);
 USBH_SetLogFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_APPLICATION
);
 BSP_USBH_Init();
 USBH_OHC_Add((void*)OHCI_BASE_ADDRESS);
 BSP_USBH_InstallISR(_ISR);
}

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

243

12.4.3 NXP
All above listed NXP MCUs have a full-integrated OHCI-compliant host controller.
It supports all kind of USB transfer-types, but has a limited access to memory. The
OHCI controller has only access to the so called USB-RAM. This means that a trans-
fer-memory has to be specified. Within this transfer memory all relevant transfer
descriptors and transfer memories are built. Typically 16kBytes are available for USB
RAM, this limits the maximum connected devices to approx. 3-4.
How many root-hub ports are configured is automatically detected.

Configuration example:

#define ALLOC_SIZE 0x5800 // Size of memory dedicated to the stack in bytes
#define OHCI_BASE_ADDRESS 0x5000C000
#define TRANSFER_MEMORY_BASE 0x20080000 // Startaddress of the internal 16k USB SRAM
 // - AHB SRAM bank 1 is used
 // AHB SRAM bank 0 is used for Ethernet
#define TRANSFER_MEMORY_SIZE 0x00004000 // Size of the internal 16k USB SRAM

static U32 _aPool[ALLOC_SIZE / 4]; // Memory area used by the stack.

void USBH_X_Config(void) {
 //
 // Assigning memory should be the first thing
 //
 USBH_AssignMemory(_aPool, sizeof(_aPool));
 USBH_AssignTransferMemory((void *)TRANSFER_MEMORY_BASE, TRANSFER_MEMORY_SIZE);
 //
 // Define log and warn filter
 // Note: The terminal I/O emulation affects the timing
 // of your communication, since the debugger stops the target
 // for every terminal I/O output unless you use DCC!
 //
 USBH_SetWarnFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_HID
 | USBH_MTYPE_MSD
 | USBH_MTYPE_APPLICATION
);
 USBH_SetLogFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_APPLICATION
);
 BSP_USBH_Init();
 USBH_OHC_Add((void *)OHCI_BASE_ADDRESS);
 BSP_USBH_InstallISR(_ISR);
}

244 CHAPTER 12 Host controller specifics

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

12.4.4 Renesas (formerly NEC)
For accessing the OHCI controller it is neccessary to enable access to the OHCI con-
troller via the PCI controller. The initialization can be found in the BSP.c that comes
with the eval-package. Otherwise the file can be obtained by asking SEGGER.
Additionally the controller is not capable of handling low-speed devices such as
mouse and keyboards. In order to use such device, a USB hub is necessary.

Configuration example:

#define ALLOC_SIZE 0x8000 // Size of memory dedicated to the stack in bytes
#define OHCI_BASE_ADDRESS 0x002E0000
#define TRANSFER_MEMORY_BASE 0x20080000 // Startaddress of the internal 8k USB SRAM
#define TRANSFER_MEMORY_SIZE 0x00002000 // Size of the internal 8k USB SRAM

static U32 _aPool[ALLOC_SIZE / 4]; // Memory area used by the stack.

void USBH_X_Config(void) {
 //
 // Assigning memory should be the first thing
 //
 USBH_AssignMemory(_aPool, sizeof(_aPool));
 USBH_AssignTransferMemory((void *)TRANSFER_MEMORY_BASE, TRANSFER_MEMORY_SIZE);
 //
 // Define log and warn filter
 // Note: The terminal I/O emulation affects the timing
 // of your communication, since the debugger stops the target.
 //
 USBH_SetWarnFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_HID
 | USBH_MTYPE_MSD
 | USBH_MTYPE_APPLICATION
);
 USBH_SetLogFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_APPLICATION
);
 BSP_USBH_Init();
 USBH_OHC_Add((void *)OHCI_BASE_ADDRESS);
 BSP_USBH_InstallISR(_ISR);

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

245

12.4.5 Toshiba TMPA900
The Toshiba TMPA900 has a full-integrated OHCI-compliant host controller.
It supports all kind of USB transfer-types, but has a limited access to memory.
The OHCI controller has only access to the so called USB-RAM. This means that a
transfer-memory has to be specified. Within this transfer memory all relevant trans-
fer descriptors and transfer memories are built. Typically 8kBytes are available for
USB RAM, this limits the maximum connected devices to approx. 1-2.
As it states in the reference manual of the TMPA900 the controller is not capable of
handling low-speed devices directly connected to the USB port.
After port pins and clocks are initialized the TMPA900 contains a non-conform Regis-
ter (HcBCR0) that holds the OHCI controller in suspend state, this needs to be dis-
abled.

Configuration example:

#define ALLOC_SIZE 0x10000 // Size of mem dedicated to the stack in bytes
#define OHCI_BASE_ADDRESS 0xF4500000
#define TRANSFER_MEMORY_BASE 0xF8008000
#define TRANSFER_MEMORY_SIZE 0x2000

#define ALLOC_BASE (((U32)&_aPool[0]) + 0x4000000) // Use the non cached SDRAM area
static U32 _aPool[((ALLOC_SIZE + 256) / 4)]; // Memory area shall 256 byte aligned

void USBH_X_Config(void) {
 //
 // Assigning memory should be the first thing
 //
 USBH_AssignMemory((U32 *)((ALLOC_BASE + 0xff) & ~0xff), ALLOC_SIZE);
 USBH_AssignTransferMemory((U32 *)TRANSFER_MEMORY_BASE, TRANSFER_MEMORY_SIZE);
 //
 // Configure the root hub
 //
 USBH_ConfigRootHub(0, 1, 0);
 //
 // Configure the number of devices and endpoints
 //
 USBH_ConfigMaxUSBDevices(2);
 USBH_ConfigTransferBufferSize(128);
 USBH_ConfigMaxNumEndpoints(4, 1, 0);
 //
 // External hub support
 //
 USBH_ConfigSupportExternalHubs(0);
 //
 // Define log and warn filter
 // Note: The terminal I/O emulation affects the timing
 // of your communication, since the debugger stops the target
 // for every terminal I/O output unless you use DCC!
 //
 USBH_SetWarnFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_HID
 | USBH_MTYPE_MSD
 | USBH_MTYPE_APPLICATION
);
 USBH_SetLogFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_APPLICATION
);
 BSP_USBH_Init();
 USBH_OHC_Add((void*)OHCI_BASE_ADDRESS);
 BSP_USBH_InstallISR(_ISR);
}

246 CHAPTER 12 Host controller specifics

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

12.5 ST STM32 Driver
The USB host driver ST STM32 105/107 series works flawlessly with USB full-speed
devices and can handle up to 127 devices. It currently supports Control, Bulk and
Interrupt transfers.
Overcurrent support is not implemented by the controller since the overcurrent pin is
not handled by the controller.

Configuration example:

#define ALLOC_SIZE 0xA000 // Size of mem dedicated to the stack in bytes
#define STM32_OTG_BASE_ADDRESS 0x50000000UL

static U32 _aPool[((ALLOC_SIZE + 256) / 4)]; // Memory area used by the stack.
 // add additional 256 bytes in
 // order to have a 256 byte aligned
 // address

void USBH_X_Config(void) {
 //
 // Assigning memory should be the first thing
 //
 USBH_AssignMemory((void *)(((U32)(&_aPool[0]) + 0xff) & ~0xffuL), ALLOC_SIZE);
 //
 // Define log and warn filter
 // Note: The terminal I/O emulation affects the timing
 // of your communication, since the debugger stops the target
 // for every terminal I/O output unless you use DCC!
 //
 USBH_SetWarnFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_HID
 | USBH_MTYPE_MSD
 | USBH_MTYPE_APPLICATION
);
 USBH_SetLogFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_APPLICATION
 | USBH_MTYPE_HID
 | USBH_MTYPE_MSD
);
 BSP_USBH_Init();
 USBH_STM32_Add((void*)STM32_OTG_BASE_ADDRESS);
 BSP_USBH_InstallISR(_ISR);
}

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

247

12.6 ST STM32F2_FS Driver
The USB host driver ST STM32 207/407 series works flawlessly with USB full-speed
devices and can handle up to 127 devices. It currently supports Control, Bulk and
Interrupt transfers.
Overcurrent support is not implemented by the controller since the overcurrent pin is
not handled by the controller.

Configuration example:

#define ALLOC_SIZE 0xA000 // Size of mem dedicated to the stack in bytes
#define STM32_OTG_BASE_ADDRESS 0x50000000UL

static U32 _aPool[((ALLOC_SIZE + 256) / 4)]; // Memory shall be 256 byte aligned

static void _InitUSBHw(void) {
 U32 v;

 RCC_AHB1ENR |= 0
 | (1 << 2) // GPIOCEN: IO port C clock enable
 | (1 << 0) // GPIOAEN: IO port A clock enable
 | (1 << 7) // GPIOHEN: IO port H clock enable
 ;
 RCC_AHB2ENR |= 0
 | (1 << 7) // OTGFSEN: Enable USB OTG FS clock enable
 ;
 //
 // Set PA10 (OTG_FS_ID) as alternate function
 //
 v = GPIOA_MODER;
 v &= ~(0x3uL << (2 * 10));
 v |= (0x2uL << (2 * 10));
 GPIOA_MODER = v;
 v = GPIOA_AFRH;
 v &= ~(0xFuL << (4 * 2));
 v |= (0xAuL << (4 * 2));
 GPIOA_AFRH = v;
 //
 // Set PA11 (OTG_FS_DM) as alternate function
 //
 v = GPIOA_MODER;
 v &= ~(0x3uL << (2 * 11));
 v |= (0x2uL << (2 * 11));
 GPIOA_MODER = v;
 v = GPIOA_AFRH;
 v &= ~(0xFuL << (4 * 3));
 v |= (0xAuL << (4 * 3));
 GPIOA_AFRH = v;
 //
 // Set PA12 (OTG_FS_DP) as alternate function
 //
 v = GPIOA_MODER;
 v &= ~(0x3uL << (2 * 12));
 v |= (0x2uL << (2 * 12));
 GPIOA_MODER = v;
 v = GPIOA_AFRH;
 v &= ~(0xFuL << (4 * 4));
 v |= (0xAuL << (4 * 4));
 GPIOA_AFRH = v;
 v = GPIOH_MODER;
 v &= ~(0x3uL << (2 * 5));
 v |= (0x1uL << (2 * 5));
 //
 // Set PA12 (OTG_FS_DP) as alternate function
 //
 GPIOH_MODER = v;
 GPIOH_BSRR = (0x10000uL << 5); // Initially clear LEDs

}

248 CHAPTER 12 Host controller specifics

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

void USBH_X_Config(void) {
 //
 // Assigning memory should be the first thing
 //
 USBH_AssignMemory((void *)(((U32)(&_aPool[0]) + 0xff) & ~0xff), ALLOC_SIZE);
 //
 // Define log and warn filter
 // Note: The terminal I/O emulation affects the timing
 // of your communication, since the debugger stops the target
 // for every terminal I/O output unless you use DCC!
 //
 USBH_SetWarnFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_HID
 | USBH_MTYPE_MSD
 | USBH_MTYPE_APPLICATION
);
 USBH_SetLogFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_APPLICATION
 | USBH_MTYPE_HID
 | USBH_MTYPE_MSD
);
 BSP_USBH_Init();
 USBH_STM32F2_FS_Add((void*)STM32_OTG_BASE_ADDRESS);
 BSP_USBH_InstallISR(_ISR);
}

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

249

12.7 Renesas RX Driver
The RX62 host driver fully support all kind devices connected to the USB host con-
troller�s port, which means low-speed, full-speed and high-speed (which operate at
full-speed) devices work flawlessly. Any kind of transfer-type (Control,Bulk,Interrupt
and Isochronous) is supported.
The limitation of the controller is that 5 devices can simultaneously be connected.

Configuration example:

#define ALLOC_SIZE 0x3000 // Size of mem dedicated to the stack in bytes
#define USB0_BASE_ADDRESS 0x000A0000UL

static U32 _aPool[((ALLOC_SIZE + 256) / 4)]; // Memory shall be 256 byte aligned

void USBH_X_Config(void) {
 //
 // Assigning memory should be the first thing
 //
 USBH_AssignMemory((void *)(((U32)(&_aPool[0]) + 0xff) & ~0xff), ALLOC_SIZE);
 //
 // Define log and warn filter
 // Note: The terminal I/O emulation affects the timing
 // of your communication, since the debugger stops the target
 // for every terminal I/O output unless you use DCC!
 USBH_RX62_Add((void*)USB0_BASE_ADDRESS);
 USBH_SetWarnFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_HID
 | USBH_MTYPE_MSD
 | USBH_MTYPE_APPLICATION
);
 USBH_SetLogFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_APPLICATION
);
 BSP_USBH_Init();
 USBH_RX62_Add((void*)STM32_OTG_BASE_ADDRESS);
 BSP_USBH_InstallISR(_ISR);
}

250 CHAPTER 12 Host controller specifics

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

12.8 Atmel AVR32 Driver
The AVR32 host driver fully support all kind devices connected to the USB host con-
troller�s port, which means low-speed, full-speed and high-speed (which operate at
full-speed) devices work flawlessly. Any kind of transfer-type (Control,Bulk,Interrupt
and Isochronous) is supported.
The limitation of the controller is that pipes have to be reserved for a specific device
after the device has been successfully enumerated.

For the Atmel AVR32 driver the EP_RAM location needs to be configured. This can be
done by using the USBH_AVR32_ConfigureEPRAM() function.

Configuration example:
#define ALLOC_SIZE 0x2000 // Size of memory dedicated to the stack in
bytes
#define USBB_BASE_ADDRESS 0xFFFE0000UL
#define USBB_RAM_BASE_ADDRESS 0xE0000000UL

static U32 _aPool[((ALLOC_SIZE + 256) / 4)]; // Memory area used by the stack.
 // add additional 256 bytes in order
 // to have a 256 byte aligned address

void USBH_X_Config(void) {
 //
 // Assigning memory should be the first thing
 //
 USBH_AssignMemory((void *)(((U32)(&_aPool[0]) + 0xff) & ~0xffUL), ALLOC_SIZE);
 //
 // Define log and warn filter
 // Note: The terminal I/O emulation affects the timing
 // of your communication, since the debugger stops the target
 // for every terminal I/O output unless you use DCC!
 //
 USBH_SetWarnFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_HID
 | USBH_MTYPE_MSD
 | USBH_MTYPE_APPLICATION
);
 USBH_SetLogFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_APPLICATION
);
 BSP_USBH_Init();
 USBH_AVR32_Add((void*)USBB_BASE_ADDRESS);
 USBH_AVR32_ConfigureEPRAM(USBB_RAM_BASE_ADDRESS);
 BSP_USBH_InstallISR(_ISR);
}

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

251

12.9 Freescale Kinetis FullSpeed Driver
The Freescale Kinetis host driver fully support all kind devices connected to the USB
host controller�s port, which means low-speed, full-speed and high-speed (which
operate at full-speed) devices work flawlessly. Any kind of transfer-type (Con-
trol,Bulk,Interrupt and Isochronous) is supported.
The limitation of the controller is that only one device can be connected.

Configuration example:
#define ALLOC_SIZE 0xC000 // Size of memory dedicated to the stack in bytes
#define USB_OTG_BASE_ADDR 0x40072000

static U32 _aPool[((ALLOC_SIZE + 256) / 4)]; // Memory area used by the stack.
 // add additional 256 bytes in order
 // to have a 256 byte aligned address

void USBH_X_Config(void) {
 //
 // Assigning memory should be the first thing
 //
 USBH_AssignMemory((void *)(((U32)(&_aPool[0]) + 0xff) & ~0xffuL), ALLOC_SIZE);
 //
 // Define log and warn filter
 // Note: The terminal I/O emulation affects the timing
 // of your communication, since the debugger stops the target
 // for every terminal I/O output unless you use DCC!
 //
 USBH_SetWarnFilter(0xFFFFFFFF); // 0xFFFFFFFF: Do not filter: Output
all warnings.
 USBH_SetLogFilter(0
 | USBH_MTYPE_INIT
 | USBH_MTYPE_APPLICATION
 | USBH_MTYPE_HID
);
 _InitUSBHw();
 USBH_KINETIS_FS_Add((void*)(USB_OTG_BASE_ADDR));
 BSP_USB_InstallISR_Ex(USB_ISR_ID, _ISR, USB_ISR_PRIO);
}

252 CHAPTER 12 Host controller specifics

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

253

Chapter 13

USB On The Go (Add-On)

This chapter describes the emUSB-Host add-on emUSB OTG and how to use it.

The emUSB OTG is an optional extenstion to emUSB-Host.

254 CHAPTER 13 USB On The Go (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

13.1 Introduction

13.1.1 Overview
USB On-The-Go (OTG) allows two USB devices to ?talk? to each other.
OTG introduces the dual-role device, meaning a device capable of functioning as
either host or peripheral.
USB OTG retains the standard USB host/peripheral model, in which a single host talks
to USB peripherals.
emUSB OTG offers a simple interface in order to detect the role of the USB OTG con-
troller.

13.1.2 Features
The following features are provided:

� Detection of the USB role of the device.
� Virtually any USB OTG transceiver can be used.
� Simple interface to OTG-hardware.
� Seamless integration with emUSB Host and emUSB Device.

13.1.3 Example code
An example application which uses the API is provided in the USB_OTG_Start.c file of
your shipment. This example starts the OTG stack and waits until a valid session is
detected. As soon as a valid session is detected, the ID-pin state is checked to detect
whether emUSB Device or emUSB Host shall then be initialized. For emUSB Device a
simple mouse sample is used. On emUSB host side an MSD-sample is used that
detects USB memory stick and shows information about the detected stick.

Excerpt from the example code:

/***
*
* OTGTask
*
* Function description
* USB OTG handling task.
* It implements a basic function how to check which USB stack shall be called.
* It first checks whether the OTG chip has detected a valid session.
* If so, the next step will be to check the state of the ID-pin of the cable.
* If pin is 0 (grounded) -> a USB host cable is connected.
* If pin is 1 (floating) -> a USB device is plugged in.
*
*/
void OTGTask(void);
void OTGTask(void) {
 int State;
 while (1) {
 //
 // Initialize OTG stack
 //
 USB_OTG_Init();
 //
 // Wait for a valid session
 //

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

255

 while (1) {
 if (USB_OTG_IsSessionValid()) {
 break;
 }
 USB_OTG_OS_Delay(50);
 BSP_ToggleLED(0);
 }
 //
 // Determine whether Device or Host stack shall be initialized and started.
 //
 State = USB_OTG_GetIdState();
 USB_OTG_DeInit();
 USB_OS_Delay(10);
 if (State == USB_OTG_ID_PIN_STATE_IS_HOST) {
 _ExecUSBHost();
 } else if (State == USB_OTG_ID_PIN_STATE_IS_DEVICE) {
 _ExecUSBDevice();
 }
 }
}

256 CHAPTER 13 USB On The Go (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

13.2 Driver

13.2.1 General information
To use emUSB OTG, a driver matching the target hardware is required. The code
size of a driver depends on the hardware and is typically between 1 and 3 Kbytes.
The driver handles both the OTG controller as well as the OTG transceiver.

The driver interface has been designed to allow support of internal and exter-
nal OTG controller. It also allows to take full advantage of hardware features such
session detection and session request protocol.

13.2.2 Available drivers
emUSB OTG drivers are optional components to emUSB OTG. The following drivers
are available:

To add a driver to emUSB OTG, USB_OTG_AddDriver() should be called with the
proper identifier before the starts any session detection. Refer to
USB_OTG_AddDriver() on page 263 for detailed information.

13.2.2.1 Renesas RX62
This driver supports all Renesas RX62 MCU with integrated USB OTG controller. The
currentUSB OTG transceiver that is supported with this driver is:
Analogic TECH AAT3125

Configuring the driver:

To add the driver, use USB_OTG_AddDriver() with the driver identifier
USB_OTG_DRIVER_Renesas_RX62N. This function has to be called from
USB_OTG_X_Config(). Refer to USB_OTG_AddDriver() on page 263. and
IP_X_Configure() on page 174 for more information.

Example

void USB_OTG_X_Config(void) {
 USB_OTG_AddDriver(&USB_OTG_Driver_Renesas_RX62N); // Add a driver to USB OTG.
}

Device Identifier

Renesas RX62 USB_OTG_Driver_Renesas_RX62N

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

257

13.3 API Functions
This chapter describes the emUSB OTG API functions. These functions are defined in
the header file USB_OTG.h.

Function Description

USB_OTG_Init() Initilializes the emUSB OTG stack.
USB_OTG_DeInit() De-initialize emUSB OTG stack.
USB_OTG_GetIdState() Returns the state of the ID-pin.
USB_OTG_GetVBUSState() Returns the VBus voltage.

USB_OTG_IsSessionValid()
Returns whether the detected OTG-state
is valid.

USB_OTG_AddDriver() Adds a OTG-driver to the stack.

USB_OTG_X_Config()
User-provided function that helps config-
uring emUSB OTG stack.

Table 13.1: emUSB OTG API function overview

258 CHAPTER 13 USB On The Go (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

13.3.1 USB_OTG_Init()
Description

Initialize the USB OTG core.

Prototype
void USB_OTG_Init(void) ;

Parameters

None.

Return Value

None.

Additional Information

The function will initally calls the OS-Layer initialization, calls then the user-provided
USB_OTG_X_Config and will then call the initialization routine of the driver.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

259

13.3.2 USB_OTG_DeInit()
Description

De-initialize emUSB OTG stack.

Prototype
void USB_OTG_DeInit(void);

Parameters

None.

Return Value

None.

Additional Information

It will deinitialize the complete OTG module. It removes/releases all OS-layer rele-
vant resources and calls the driver deinitialization callback.

260 CHAPTER 13 USB On The Go (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

13.3.3 USB_OTG_GetIdState()
Description

Returns the current state of the ID-pin.

Prototype
int USB_OTG_GetIdState(void);

Parameters

None.

Return Value

USB_OTG_ID_PIN_STATE_IS_HOST - OTG DEVICE shall be used as host.

USB_OTG_ID_PIN_STATE_IS_DEVICE - OTG DEVICE shall be used as device.

Additional information

In order to select the correct session (Host or device), a OTG transceiver should
detect a valid session. The ID-State are defined as follows:

� ID-pin is 0 (grounded) - a USB host cable is connected.
� ID-pin is 1 (floating) - a USB device is plugged in.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

261

13.3.4 USB_OTG_GetVBUSState()
Description

Returns the current state of the VBUS via an OTG transceiver.

Prototype
int USB_OTG_GetVBUSState(void);

Parameters

None.

Return Value

Returns the voltage given in mVolt.

Additional information

This function can be used to check the voltage that is measured on the VBUS-line of
the USB-Bus.

262 CHAPTER 13 USB On The Go (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

13.3.5 USB_OTG_IsSessionValid()
Description

Returns whether the OTG transceiver has marked the session as valid.

Prototype
int USB_OTG_IsSessionValid(void);

Parameters

None.

Return Value

0 - Session is not valid.
1 - Session is valid.

Additional information

Before any decision can be made by emUSB OTG. The USB OTG controller or the
OTG-transceiver must detect a valid session. If this is not the case, it is most likely
that there is no cable conntected to the USB OTG-port.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

263

13.3.6 USB_OTG_AddDriver()
Description

Adds a OTG-driver to the stack.

Prototype
void USB_OTG_AddDriver(const USB_OTG_HW_DRIVER * pDriver);

Parameter

Return Value

none.

Additional information

Adds a OTG driver to the OTG stack. This function is generally called in the
USB_OTG_X_AddDriver.
Refer to Available rivers on page 149 for a list of available OTG drivers.

Parameter Description

pDriver [IN] - Pointer to the driver structure.
Table 13.2: USBH_PRINTER_GetPortStatus() parameter list

264 CHAPTER 13 USB On The Go (Add-On)

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

13.3.7 USB_OTG_X_Config()
Description

Helper function to prepare and configure the USB OTG stack.

Prototype
void USB_OTG_X_Config(void);

Parameters

None.

Return Value

None.

Additional information

This function is called by the startup code of the USB OTG stack from
USB_OTG_Init(). Refer to USB_OTG_Init() on page 258 for more information.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

265

Chapter 14

Debugging

emUSB-Host comes with various debugging options. These includes optional warning
and log outputs, as well as other run-time options which perform checks at run time
as well as options to drop incoming or outgoing packets to test stability of the imple-
mentation on the target system.

266 CHAPTER 14 Debugging

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

14.1 Message output
The debug builds of emUSB-Host include a fine grained debug system which helps to
analyze the correct implementation of the stack in your application. All modules of
the emUSB-Host stack can output logging and warning messages via terminal I/O, if
the specific message type identifier is added to the log and/or warn filter mask. This
approach provides the opportunity to get and interpret only the logging and warning
messages which are relevant for the part of the stack that you want to debug.

By default, all warning messages are activated in all emUSB-Host sample configura-
tion files. All logging messages are disabled except for the messages from the initial-
ization phase.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

267

14.2 API functions

Function Description

USBH_AddLogFilter()
Adds an additional filter condition to the mask which
specifies the logging messages that should be dis-
played.

USBH_AddWarnFilter()
Adds an additional filter condition to the mask which
specifies the warning messages that should be dis-
played.

USBH_Log() Called if emUSB-Host encounters a critical situation.
USBH_Panic() Called if emUSB-Host generates a warning message.

USBH_SetLogFilter()
Sets the mask that defines which logging message
should be displayed.

USBH_SetWarnFilter()
Sets the mask that defines which warning message
should be displayed.

USBH_Warn() Called if emUSB-Host wants to log a message.
Table 14.1: emUSB-Host debugging API function overview

268 CHAPTER 14 Debugging

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

14.2.1 USBH_AddLogFilter()
Description

Adds an additional filter condition to the mask which specifies the logging messages
that should be displayed.

Prototype
void USBH_AddLogFilter(U32 FilterMask);

Parameter

Additional information

This function can also be used to remove a filter condition which was set before. It
adds/removes the specified filter to/from the filter mask via a disjunction.

Parameter Description

FilterMask
Specifies which logging messages should be added to the filter
mask.

Table 14.2: USBH_AddLogFilter() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

269

14.2.2 USBH_AddWarnFilter()
Description

Adds an additional filter condition to the mask which specifies the warning messages
that should be displayed.

Prototype
void USBH_AddWarnFilter(U32 FilterMask);

Parameter

Additional information

This function can also be used to remove a filter condition which was set before. It
adds/removes the specified filter to/from the filter mask via a disjunction.

Parameter Description

FilterMask
Specifies which warning messages should be added to the filter
mask.

Table 14.3: USBH_AddWarnFilter() parameter list

270 CHAPTER 14 Debugging

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

14.2.3 USBH_Log()
Description

Called by emUSB-Host in debug builds to log a message.

Prototype
void USBH_Log(const char * s);

Parameter

Additional information

In a release build this function is not linked in.

Example

See the implementation found in the USBH_ConfigIO.c file of your shipment.

Parameter Description

s Pointer to the string to log.
Table 14.4: USBH_Log() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

271

14.2.4 USBH_Panic()
Description

Called by emUSB-Host in debug builds if a critical situation is encountered.

Prototype
void USBH_Panic(const char * sError);

Parameter

Additional information

In a release build this function is not linked in. The default implementation of this
function disables all interrupts to avoid further task switches, outputs sError via ter-
minal I/O and loops forever. When using an emulator, you should set a break-point at
the beginning of this routine or simply stop the program after a failure.

Example

See the implementation found in the USBH_ConfigIO.c file of your shipment.

Parameter Description

sError Pointer to the error string.
Table 14.5: USBH_Log() parameter list

272 CHAPTER 14 Debugging

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

14.2.5 USBH_SetLogFilter()
Description

Sets a mask that defines which logging message should be logged. Logging messages
are only available in debug builds of emUSB-Host.

Prototype
void USBH_SetLogFilter(U32 FilterMask);

Parameter

Additional information

Should be called from USBH_X_Config(). By default, the filter condition
USBH_MTYPE_INIT is set.

Parameter Description

FilterMask Specifies which logging messages should be displayed.
Table 14.6: USBH_SetLogFilter() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

273

14.2.6 USBH_SetWarnFilter()
Description

Sets a mask that defines which warning messages should be logged. Warning mes-
sages are only available in debug builds of emUSB-Host.

Prototype
void USBH_SetWarnFilter(U32 FilterMask);

Parameter

Additional information

Should be called from USBH_X_Config(). By default, all filter conditions are set.

Parameter Description

FilterMask Specifies which warning messages should be displayed.
Table 14.7: USBH_SetWarnFilter() parameter list

274 CHAPTER 14 Debugging

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

14.2.7 USBH_Warn()
Description

Called by emUSB-Host in debug builds to log an error message.

Prototype
void USBH_Warn(const char * s);

Parameter

Additional information

In a release build this function is not linked in.

Example

See the implementation found in the USBH_ConfigIO.c file of your shipment.

Parameter Description

s Pointer to the string to log.
Table 14.8: USBH_Warn() parameter list

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

275

14.3 Message types
The same message types are used for log and warning messages. Separate filters
can be used for both log and warnings.

Symbolic name Description

USBH_MTYPE_ALLOC
Activates the output of messages from the memory
allocator module.

USBH_MTYPE_APPLICATION Activates the output of messages from the application.

USBH_MTYPE_CORE
Activates the output of messages from the core of the
stack.

USBH_MTYPE_DEVICE
Activates the output of messages from the device han-
dling logic.

USBH_MTYPE_DRIVER
Activates the output of messages from the hardware
driver.

USBH_MTYPE_HID
Activates the output of messages from HID compo-
nent.

USBH_MTYPE_HUB
Activates the output of messages from the hub han-
dling logic.

USBH_MTYPE_INIT
Activates the output of messages from the initializa-
tion of the stack.

USBH_MTYPE_MEM
Activates the output of messages from the memory
management module.

USBH_MTYPE_MSD
Activates the output of messages from the MSD com-
ponent.

USBH_MTYPE_OHCI
Activates the output of messages from the Open Host
Controller Interface.

USBH_MTYPE_PNP
Activates the output of messages from the enumera-
tion process.

USBH_MTYPE_UBD
Activates the output of messages from the USB bus
driver.

Table 14.9: emUSB-Host message types

276 CHAPTER 14 Debugging

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

277

Chapter 15

OS integration

emUSB-Host is designed to be used in a multitasking environment. The interface to
the operating system is encapsulated in a single file, the USB-Host/OS interface. For
emUSB-Host, all functions required for this USB-Host/OS interface are implemented
in a single file which comes with emUSB-Host.

This chapter provides descriptions of the functions required to fully support emUSB-
Host in multitasking environments.

278 CHAPTER 15 OS integration

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

15.1 General information
All OS interface functions for emUSB-Host are implemented in USBH_OS_embOS.c
which is located in the USBH folder of your shipment.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

279

15.2 OS layer API functions

Function Description

General macros
USBH_OS_Delay() Blocks the calling task for a given time.
USBH_OS_DisableInterrupt() Disables interrupts.
USBH_OS_EnableInterrupt() Enables interrupts.

USBH_OS_GetTime32()

Returns the current system time in ticks with a res-
olution of one ms. On 32-bit systems, the value will
wrap around after approximately 49.7 days. This is
taken into account by the stack.

USBH_OS_Init()

Creates and initializes all objects required for task
synchronization. These are 2 events (for
USBH_Task() and USBH_ISRTask()) and one sema-
phore for protection of critical code which may not
be executed from multiple task at the same time.

USBH_OS_Lock()

The stack requires a single lock, typically a resource
semaphore or mutex. This function locks this
object, guarding sections of the stack code against
other tasks. If the entire stack executes from a sin-
gle task, no functionality is required here.

USBH_OS_Unlock()
Unlocks the single lock used locked by a previous
call to USBH_OS_Lock().

USBH_Task synchronization

USBH_OS_SignalNetEvent()
Wakes the USBH_Task() if it is waiting for a NET-
event or timeout in the function
USBH_OS_WaitNetEvent().

USBH_OS_WaitNetEvent()

Called from USBH_Task() only. Blocks until the tim-
eout expires or a NET-event occurs, meaning
USBH_OS_SignalNetEvent() is called from an other
task or ISR.

USBH_ISRTask synchronization

USBH_OS_SignalRxEvent()
Wakes the USBH_ISRTask() if it is waiting for a NET-
event or timeout in the function
USBH_OS_WaitRxEvent().

USBH_OS_WaitRxEvent()

Optional. Called from USBH_ISRTask(), if it is used
to receive data. Blocks until the timeout expires or
a NET-event occurs, meaning
USBH_OS_SignalRxEvent() is called from the ISR.

Application task synchronization

USBH_OS_WaitItem()
Suspend a task which needs to wait for a object.
This object is identified by a pointer to it and can be
of any type, for example a socket.

USBH_OS_WaitItemTimed()

Suspend a task which needs to wait for a object.
This object is identified by a pointer to it and can be
of any type, for example a socket. The second
parameter defines the maximum time in timer ticks
until the event has to be signaled.

USBH_OS_SignalItem()
Sets an event object to signaled state, or resumes
tasks which are waiting at the event object. Func-
tion is called from a task, not an ISR.

Table 15.1: Target OS interface function list

280 CHAPTER 15 OS integration

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

281

Chapter 16

Performance & resource usage

This chapter covers the performance and resource usage of emUSB-Host. It contains
information about the memory requirements in typical systems which can be used to
obtain sufficient estimates for most target systems.

282 CHAPTER 16 Performance & resource usage

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

16.1 Memory footprint
emUSB-Host is designed to fit many kinds of embedded design requirements. Several
features can be excluded from a build to get a minimal system. Note that the values
are only valid for the given configuration.

The tests were run on a 32-bit CPU running at 72MHz. The test program was com-
piled for size optimization.

16.1.1 ROM
The following table shows the ROM requirement of emUSB-Host:

* ROM size of emFile File system is app. 10KBytes

The memory requirements of an interface driver is about 1.5 Kbytes.

16.1.2 RAM
The following table shows the RAM requirement of emUSB-Host:

The memory requirements of an interface driver is about 1.5 Kbytes.

Description ROM

emUSB-Host core incl. driver app. 20 KBytes
HID class support app. 5 KBytes
MSD class support app. 8 KBytes + sizeof(Filesystem)*

Description RAM

emUSB-Host core incl. driver app. 20 Kbytes

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

283

16.2 Performance
The tests were run on a 32-bit CPU running at 72MHz with a full speed host controller
(OHCI). The device used for testing was a J-Link.

The following table shows the send and receive speed of emUSB-Host:

Description Speed

Bulk

Send speed 800 KByte/sec
Receive speed 760 KByte/sec

284 CHAPTER 16 Performance & resource usage

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

285

Chapter 17

Related Documents

� Universal Serial Bus Specification 1.1, http://www.usb.org
� Universal Serial Bus Specification 2.0, http://www.usb.org
� USB device class specifications (Audio, HID, Printer, etc.), http://www.usb.org
� USB 2.0, Hrsg. H. Kelm, Franzi�s Verlag, 2001, ISBN 3-7723-7965-6

286 CHAPTER 17 Related Documents

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

287

Chapter 18

Glossary

288 CHAPTER 18 Glossary

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

CPU Central Processing Unit. The �brain� of a microcontroller; the
part of a processor that carries out instructions.

EOT End Of Transmission.

FIFO First-In, First-Out.

ISR
Interrupt Service Routine. The routine is called automatically
by the processor when an interrupt is acknowledged. ISRs
must preserve the entire context of a task (all registers).

RTOS Real-time Operating System.

Scheduler The program section of an RTOS that selects the active task,
based on which tasks are ready to run, their relative priorities,
and the scheduling system being used.

Stack An area of memory with LIFO storage of parameters, auto-
matic variables, return addresses, and other information that
needs to be maintained across function calls. In multitasking
systems, each task normally has its own stack.

Superloop A program that runs in an infinite loop and uses no real-time
kernel. ISRs are used for real-time parts of the software.

Task A program running on a processor. A multitasking system
allows multiple tasks to execute independently from one
another.

Tick The OS timer interrupt. Usually equals 1 ms.

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

289

Index

C
Core data structures

USBH_BULK_INT_REQUEST67
USBH_CONTROL_REQUEST68
USBH_ENDPOINT_REQUEST69
USBH_ENUM_ERROR70
USBH_EP_MASK71
USBH_FUNCTION84
USBH_HEADER72
USBH_INTERFACE_INFO73
USBH_INTERFACE_MASK73
USBH_ISO_FRAME75
USBH_ISO_REQUEST76
USBH_PNP_EVENT 83, 87
USBH_PNP_NOTIFICATION77
USBH_POWER_STATE88
USBH_SET_CONFIGURATION78
USBH_SET_INTERFACE79
USBH_SET_POWER_STATE80
USBH_SPEED89
USBH_URB81

Core function types
USBH_ON_COMPLETION_FUNC92
USBH_ON_ENUM_ERROR_FUNC93
USBH_ON_PNP_EVENT_FUNC94

Core functions
USBH_CloseInterface() .. 37�39, 223�224
USBH_CreateInterfaceList()40
USBH_DestroyInterfaceList()42
USBH_Exit()43
USBH_GetCurrentConfigurationDescriptor()

...44
USBH_GetDeviceDescriptor()45
USBH_GetEndpointDescriptor()46
USBH_GetFrameNumber()47
USBH_GetInterfaceDescriptor()48
USBH_GetInterfaceID()49
USBH_GetInterfaceIDByHandle()50
USBH_GetInterfaceInfo()51
USBH_GetSerialNumber52
USBH_GetSpeed()53
USBH_GetStatusStr()54
USBH_Init() 37�39, 223�224

USBH_OpenInterface() 57
USBH_RegisterEnumErrorNotification() 58
USBH_RegisterPnPNotification() 58
USBH_RestartEnumError() 60
USBH_SubmitUrb() 61
USBH_UnregisterEnumErrorNotification() .

61
USBH_UnregisterPnPNotification() 65

E
emUSB-Host

Features .. 12
Integrating into your system 24

M
MSD functions

USBH_MSD_GetLuns() 102, 131, 146
USBH_MSD_GetStatus() ...129�130, 132�

134, 137, 139, 147
USBH_MSD_GetUnitInfo() 140, 148
USBH_MSD_Init() 100�101, 107, 111�112,

...149
USBH_MSD_ReadSectors() 136�137, 150
USBH_MSD_UNIT_INFO 117, 153, 155
USBH_MSD_WriteSectors() 128, 151

O
OS integration

API functions279

S
Syntax, conventions used 5

U
USBH_ConfigTransferBufferSize226

290 Index

UM10001 - emUSB Host User Guide © 2012 SEGGER Microcontroller GmbH & Co. KG

 Tел: +7 (812) 336 43 04 (многоканальный)
 Email: org@lifeelectronics.ru

 www.lifeelectronics.ru

ООО “ЛайфЭлектроникс” “LifeElectronics” LLC
ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и
отечественного производства от производителей и со складов крупных дистрибьюторов Европы,
Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению
коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные,
электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

 Конкурентоспособные цены и скидки постоянным клиентам.

 Специальные условия для постоянных клиентов.

 Подбор аналогов.

 Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.

 Приемлемые сроки поставки, возможна ускоренная поставка.

 Доставку товара в любую точку России и стран СНГ.

 Комплексную поставку.

 Работу по проектам и поставку образцов.

 Формирование склада под заказчика.

 Сертификаты соответствия на поставляемую продукцию (по желанию клиента).

 Тестирование поставляемой продукции.

 Поставку компонентов, требующих военную и космическую приемку.

 Входной контроль качества.

 Наличие сертификата ISO.

 В составе нашей компании организован Конструкторский отдел, призванный помогать
разработчикам, и инженерам.

 Конструкторский отдел помогает осуществить:

 Регистрацию проекта у производителя компонентов.

 Техническую поддержку проекта.

 Защиту от снятия компонента с производства.

 Оценку стоимости проекта по компонентам.

 Изготовление тестовой платы монтаж и пусконаладочные работы.

mailto:org@lifeelectronics.ru
http://lifeelectronics.ru/

