AXL F RS UNI 1H

Axioline F communication module for serial data transmission, 1 interface can be parameterized as RS-485/RS-422 or RS-232

C E THE SECOND OF THE SECOND O

Data sheet 8533 en 02 C01

© PHOENIX CONTACT 2013-08-13

1 Description

The module is designed for use within an Axioline F station.

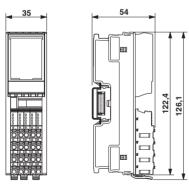
It is used to operate standard I/O devices with serial interfaces on a bus system.

Features

- A serial input and output channel in RS-232, RS-422 and RS-485 format
- Various protocols supported
- Transmission speed can be set up to 250000 baud
- Parameterization via the PDI channel
- Device type label stored
- Diagnostic and status indicators

This data sheet is only valid in association with the UM EN AXL SYS INST user manual.

Make sure you always use the latest documentation. It can be downloaded from the product at phoenixcontact.net/products.


Table of contents

3 Ordering data

Description	Туре	Order No.	Pcs. / Pkt.
Axioline F communication module for serial data transmission, 1 interface can be parameterized as RS-485/RS-422 or RS-232 (including bus base module and plugs)	AXL F RS UNI 1H	2688666	1
Accessories	Туре	Order No.	Pcs. / Pkt.
Axioline F bus base module for housing type H (Replacement item)	AXL F BS H	2700992	5
Axioline plug set (e.g., for AXL DI 16/1) (Replacement item)	AXL CNS 2L-O/D/UI/E1/E2	2700985	1
Zack marker strip for Axioline (device labeling), in 2 x 20.3 mm pitch, unprinted, 25-section, for individual labeling with B-STIFT 0.8, X-PEN, or CMS-P1-PLOTTER (Marking)	ZB 20,3 AXL UNPRINTED	0829579	25
Zack marker strip, flat, in 10 mm pitch, unprinted, 10-section, for individual labeling with M-PEN 0,8, X-PEN, or CMS-P1-PLOTTER (Marking)	ZBF 10/5,8 AXL UNPRINTED	0829580	50
Axioline shield connection set (contains 2 busbar holders and 2 SK 5 shield connection clamps)	AXL SHIELD SET	2700518	1
Insert label, Roll, white, Unlabeled, Can be labeled with: Thermomark R, Thermomark X, Thermomark S, Mounting type: Snapped into marker carrier, Lettering field: $35 \times 28 \text{ mm}$ (Marking)	EMT (35X28)R	0801602	1
Documentation	Туре	Order No.	Pcs. / Pkt.
User manual, English, Axioline: System and installation	UM EN AXL SYS INST	-	-

4 Technical data

Dimensions (nominal sizes in mm)

Width	35 mm
Height	126.1 mm
Depth	54 mm
Note on dimensions	The depth is valid when a TH 35-7 5 DIN rail is used (according to EN 60715)

General data	
Color	Military gray RAL 7042
Weight	135 g
Mounting type	DIN rail
Ambient temperature (operation)	-25 °C 60 °C
Ambient temperature (storage/transport)	-40 °C 85 °C
Permissible humidity (operation)	5 % 95 % (no condensation)

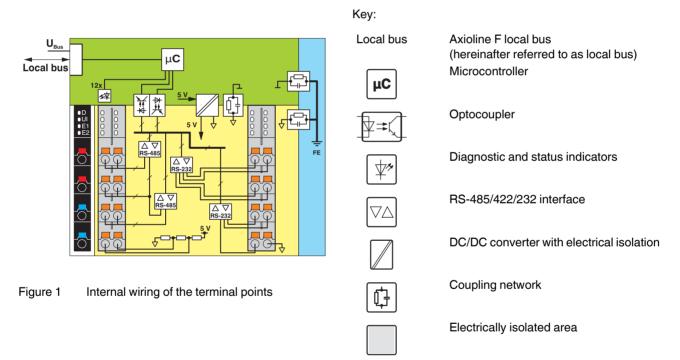
General data	
Permissible humidity (storage/transport)	5 % 95 % (no condensation)
Air pressure (operation)	70 kPa 106 kPa (up to 3000 m above sea level)
Air pressure (storage/transport)	70 kPa 106 kPa (up to 3000 m above sea level)
Degree of protection	IP20
Protection class	III, IEC 61140, EN 61140, VDE 0140-1
Connection data	
Name	Axioline plug
Connection method	Push-in technology
Conductor cross section solid / stranded	0.2 mm ² 1.5 mm ²
Conductor cross section [AWG]	24 16
Interface Axioline F local bus	
Connection method	Bus base module
Transmission speed	100 MBit/s
Interface RS-232, RS-485, RS-422	
Connection method	Push-in technology
Transmission speed	110 Bit/s 250 kBit/s (can be parameterized)
Transmission physics	Copper
Protocols supported	Transparent, end-to-end, XON/XOFF, Modbus RTU (master support)
Input buffer	4 kByte
Output buffer	1 kByte
Data bits	5 8
Stop bits	1 or 2
Communications power	
The I/O is also supplied from the communication	ns power Up
The I/O supply is electrically isolated from the Io	
Communications power U _{bus}	5 V DC (via bus base module)
Current consumption from U _{bus}	typ. 200 mA, max. 240 mA
PROFIBUS telegram data	
Required parameter data	14 Byte
Need for configuration data	7 Byte
Electrical isolation/isolation of the voltage are	eas
5 V supply (logic)/functional earth ground	500 V AC, 50 Hz, 1 min
5 V supply (logic)/5 V supply (I/O)	500 V AC, 50 Hz, 1 min
5 V supply (I/O)/functional earth ground	500 V AC, 50 Hz, 1 min
Mechanical tests	
Vibration resistance in acc. with IEC 60068-2-6	5 g
Shock test in acc. with IEC 60068-2-27	30g, 11 ms period, half-sine shock pulse
D	40

8533_en_02_C01 PHOENIX CONTACT 4

10 g

Bump endurance test according to EN 60068-2-27

Conformance with EMC Directive 2004/108/EC	
Noise immunity test in accordance with EN 61000-6-2	
Electrostatic discharge (ESD) EN 61000-4-2/IEC 61000-4-2	Criterion B; 6 kV contact discharge, 8 kV air discharge
Electromagnetic fields EN 61000-4-3/IEC 61000-4-3	Criterion A; Field intensity: 10 V/m
Fast transients (burst) EN 61000-4-4/IEC 61000-4-4	Criterion B, 2 kV
Transient surge voltage (surge) EN 61000-4-5/IEC 61000-4-5	Criterion B; DC supply lines: ±0.5 kV/±0.5 kV (symmetrical/asymmetrical)
Conducted interference EN 61000-4-6/IEC 61000-4-6	Criterion A; Test voltage 10 V
Noise emission test according to EN 61000-6-3	
Radio interference properties EN 55022	Class B


Error messages to the higher level control or computer system

I/O supply failure Yes

Approvals

For the latest approvals, please visit phoenixcontact.net/products.

5 Internal circuit diagram

6 Terminal point assignment

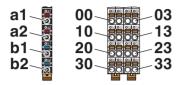


Figure 2 Terminal point assignment

Plug 1					
Terminal point	Color	Assignment			
a1, a2	Red	Not used (bridged internally)			
b1, b2	Blue	Not used (bridged internally)			

You can use plug 1 for potential routing of the 24 V supply voltage, however the voltage is not used by the module.

Plug 2			RS-485	RS-485 RS-422	
Terminal point	Color	Signal	Description	Description	
00	Orange	TxD+	Not used	Transmit data	positive
10	Orange	RxD+	Transmit/receive data	Receive data	positive
20	Orange	RxD+	Transmit/receive data	Receive data	Positive; for external bridge to 30
30	Orange	R+	Termination resistor	Termination resistor	Positive pole; for external bridge to 20
01	Orange	TxD-	Not used	Transmit data	negative
11	Orange	RxD-	Transmit/receive data	Receive data	negative
21	Orange	RxD-	Transmit/receive data	Receive data	Negative; for external bridge to 31
31	Orange	R-	Termination resistor	Termination resistor	Negative pole; for external bridge to 21

Plug 3: RS-232	Plug 3: RS-232				
Terminal point	Color	Signal	Description		
02	Orange	RxD	Serial data input		
12	Orange	RTS	Request to send	Request to send; handshake signal; output	
22	Orange	DTR	Data terminal ready	Startup request to the connected device; handshake signal; output	
32	Orange	DCD	Data carrier detect	Connected device ready to operate; handshake signal; input	
03	Orange	TxD	Serial data output		
13	Orange	CTS	Clear to send	Permission to send; connected device ready to receive; handshake signal; input	
23	Orange	DSR	Data set ready	Connected device ready to operate; handshake signal; input	
33	Orange	GND	Ground for the serial interface		

7 Connection notes

- Connect the shield to a busbar before the module
- Fit the receive signals of the RS-485 or RS-422 network with a termination resistor at the relevant end point.
- If you use the integrated termination resistor, the polarization of the data cable will also be active.

8 Connection examples

Operating mode	Special feature	Notes	Image
RS-485	Module as the network end point	Termination resistor required	Figure 3
RS-485	Module in the network center		Figure 4
RS-422	Module is last receiver	Termination resistor required	Figure 5
RS-232	Four-wire handshake		Figure 6
RS-232	Without handshake		Figure 7

8.1 RS-485: module as the network end point

8.2 RS-485: module in the network center

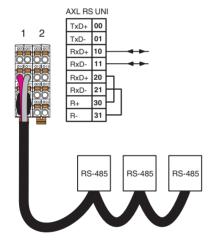
AXL RS UNI

TxD+

TxD- **01**

RxD+

RxD-


RxD+ **20** RxD- **21**

R+

RS-485

RS-485

RS-485

RS-485

Figure 3 RS-485 interface wiring:

Module as the network end point

Figure 4 RS-485 interface wiring: Module in the network center

8.3 RS-422

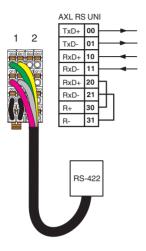


Figure 5 RS-422 or RS-485 interface wiring, full duplex

8.4 RS-232: With 4-wire handshake

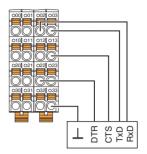


Figure 6 RS-232 interface wiring: four-wire handshake

8.5 RS-232: Without handshake

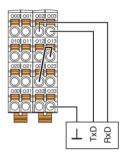


Figure 7 RS-232 interface wiring: without handshake

For wiring without handshake, insert a bridge between terminal points 22 (DTR) and 13 (CTS).

9 Local status and diagnostic indicators

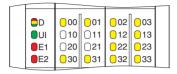


Figure 8 Local status and diagnostic indicators

Plug 1	Plug 1				
Designa- tion	Color	Meaning	State	Description	
D	Red/yel-	Diagnostics of lo	ocal bus communication		
	low/green	Power down	OFF	Device in (power) reset.	
	Not connected	Red flash- ing	Device operating, but there is no connection to previous device.		
	Reset	Red ON	Application reset Device operating, but there is still a connection to the previous device, the application is reset.		
	Ready	Yellow ON	Device operating, there is still a connection to the previous device, but the device has not yet detected a valid cycle after power on.		
	Connected	Yellow flashing	Valid data cycles have been detected, but the device is (not) yet part of the current configuration.		
		Device applica- tion not active	Green/yel- low alter- nating	Valid data cycles are being detected. The master application set the output data to valid, however, the slave application has not set the input data to valid as yet.	
		Active	Green flashing	Device operating, communications within the station is OK. The master application does not read the input data. (The connection to the controller has not yet been established, for example.)	
		Run	Green ON	Valid data cycles are being detected. All data is valid	
UI	Green	I/O voltage	ON	I/O supply voltage is present (generated from U_L)	
			OFF	I/O supply voltage is not present (generated from U _L)	
E1	Red	Peripheral fault	ON	I/O error present.	
			OFF	No I/O error.	
E2	Red	Channel error	ON	Channel error present.	
		OFF	Channel error not present.		

Plug 2: RS-485/422				
Designa	ation	Color	State	Description
00	TxD	Yellow	ON	Module is transmitting data to the connected device
			OFF	Module is not transmitting data
10	-	-	-	Not used
20	-	-	-	Not used
30 RS-485	Yellow	ON	Module is parameterized for RS-485	
			OFF	Module is not parameterized for RS-485
01	RxD	D Yellow	ON	Module is receiving data from the connected device
			OFF	Module is not receiving data
11	-	-	-	Not used
21	-	-	-	Not used
31	31 RS-422	S-422 Yellow	ON	Module is parameterized for RS-422
		OFF	Module is not parameterized for RS-422	

Plug 3: RS-232					
Designa	ation	Color	State	Description	
02	RxD	Yellow	ON	Module is receiving data from the connected device	
			OFF	Module is not receiving data	
12	RTS	Yellow		Request to send	
			ON	Handshake signal is set by the module	
			OFF	Handshake signal is not set	
22	22 DTR Y	Yellow		Data terminal ready	
			ON	Handshake signal is set by the module	
		OFF	Handshake signal is not set		
32	32 DCD	Yellow		Data carrier detect	
			ON	Handshake signal is set by partner	
			OFF	Handshake signal is not set	
03	TxD	Yellow	ON	Module is transmitting data to the connected device	
			OFF	Module is not transmitting data	
13	CTS	Yellow		Clear to send	
			ON	Handshake signal is set by partner	
			OFF	Handshake signal is not set	
23	DSR	Yellow	ON	Data set ready	
			ON	Handshake signal is set by partner	
			OFF	Handshake signal is not set	
33	RS-232	Yellow	ON	Module is parameterized for RS-232	
		OFF	Module is not parameterized for RS-232		

Channel errors are errors that can be associated with a channel.

Periphery errors are errors that affect the entire module.

For more information on the meaning of local diagnostic and status indicators, please refer to the UM EN AXL SYS INST user manual.

10 Serial interfaces

10.1 RS-232

The RS-232 interface on the terminal represents some form of DTE (data termination equipment).

This means that plug 2 terminal point 2.1 (TxD) is always used to transmit and plug 2 terminal point 1.1 (RxD) is always used to receive.

According to the standard, some form of DCE (data communication equipment) should be connected to the RS-232 interface as a peer. DTE can also be connected.

Measuring the voltage between the connection points for the TxD and GND signals in idle state will determine whether the device to be connected to the RS-232 interface is a form of DTE or DCE. If the voltage measures approximately -5 V, the device is a form of DTE. If the voltage is approximately 0 V, the device is a form of DCE.

Example: when using a 25-pos. standard plug-in connector the voltage between pin 2 (TxD) and pin 7 (GND) must be measured.

In order to obtain the correct results, perform the measurement on the open cable end, i.e., if the modules are not connected together.

RS-232 module handshake signals

Any device with an RS-232 interface can be connected to the RS-232 interface on the module.

Both the module and the device connected to the RS-232 interface can act as a transmitter and a receiver for data exchange.

To avoid errors during data exchange, e.g., a buffer overrun, the handshake is used as a procedure for the mutual signaling of clear to receive and clear to send.

The module supports the RTS, CTS, DTR, DSR, and DCD handshake signals. Each uses one wire of the connecting cable.

The connecting signals are described from the point of view of the module, i.e., from the point of view of the DTE.

10.2 RS-485 (2-wire)

In RS-485 mode, you can create a network with several devices using an existing network consisting of two signal cables.

Use a twisted pair, common shielded data cable to connect the devices. Fit a termination resistor to the data cable at both end points of the RS-485 network. For this, you can use the integrated termination resistor in the module via connections R+ and R-.

If you use the integrated termination resistor, the data cable will also be polarized in order to generate a defined cable idle level.

This operating mode only supports half duplex transmission. Make sure that data is not sent simultaneously by several devices.

10.3 RS-422

In RS-422 mode, you can create a network with several devices using an existing network consisting of four signal cables.

The cable pairs create a data forward path and a data return path.

Specify a master for a structure with more than two devices. This master can send telegrams to all the other devices (slaves) and receive from them.

The slaves can send telegrams between each other.

Use a twisted pair, common shielded data cable to connect the devices. Fit the receive signals of the network with termination resistors at the relevant end point. Use the integrated termination resistor when connecting to the module.

This operating mode supports full duplex transmission.

11 Data storage and transmission

The module stores the received serial data in an intermediate buffer until it is requested from the serial interface by the bus controller board or the device. Serial data traffic can be managed using various protocols. The protocol used depends on the type of protocol supported by the peer.

11.1 Supported protocols

Protocol	Receive memory	Transmit memory	Special fea- tures when receiving
Transparent	4096 bytes	1023 bytes	
End-to-end	3 buffers each with 340 bytes (PD) or 245 bytes (PDI)	1023 bytes (including end charac- ters)	Two end characters are filtered out
XON/XOFF	4096 bytes	1023 bytes	Software handshake
Modbus RTU	3 buffers each with 340 bytes (PD) or 245 bytes (PDI)	3 buffers each with 340 bytes (PD) or 245 bytes (PDI)	

PD Data exchange via process data

PDI Data exchange via PDI

11.2 Transparent protocol

If the transparent protocol is used, serial data is transmitted in the same format it is received from the serial interface or from the bus side.

The transmit FIFO (first-in, first-out memory) can store 1023 bytes (1 kbyte) and the receive FIFO can store 4096 bytes (4 kbytes). If the module receives another character after the 4095th character, the error pattern is stored in the receive FIFO. All other subsequent characters are ignored.

This protocol supports a CTS hardware handshake.

If the available space in the receive memory is less than 15 bytes, DTR is set to logic 0. As soon as more memory space becomes available again, DTR is set to logic 1.

11.3 End-to-end protocol

The serial data is conditioned for the end-to-end protocol.

If serial data is sent from the bus side, two additional characters, the first and second delimiters, are attached for transmission to the serial interface.

A block of serial data sent from the serial interface is only valid if the module has received the first and second delimiters. It is only then that the data can be read via the bus side. The delimiters are not forwarded to the higher-level bus with the user data, they are filtered out.

Unlike in the transparent protocol, the receive memory is not organized as a FIFO but as a buffer.

Three buffers are available.

The size of the buffer depends on the parameterized data way:

Data exchange via process data 340 bytes per buf-

fer

Data exchange via PDI 245 bytes per buf-

fer

If the maximum buffer size is exceeded without the two delimiters being detected, the previous characters will be ignored and the buffer will be written again.

The transmit FIFO can store 1023 bytes (1 kbyte). The delimiters are attached to, and stored with, the data to be sent.

11.4 XON/XOFF protocol

This protocol operates in the same way as the transparent protocol, but uses a software handshake.

Data transmission with this protocol is controlled by the XON and XOFF characters. XON is preset to $11_{\rm hex}$ and XOFF to $13_{\rm hex}$.

If the module receives an XOFF, no more serial data will be sent until an XON is received.

The module itself will transmit an XOFF if the available space in the receive memory is less than 15 bytes. As soon as more memory becomes available, the module will transmit a single XON.

Transmission does not depend on the CTS input.

Serial data is not filtered when it is transmitted. Any characters with the code defined for XON or XOFF are therefore transmitted and may trigger undesirable events at the receiver. When serial data is received, the XON and XOFF characters are filtered and are not available to the higher-lever system as data. Any characters with the XON or XOFF code are lost. Ensure that characters with these codes do not appear in the regular data stream.

11.5 Modbus RTU (master support)

Telegram structure

Address	Function	Data	CRC
1 byte	1 byte	0 244 bytes	2 bytes
	Data		Automatic genera- tion and check

In the Modbus environment, two time values play an important role: 1.5 characters, also referred to as t1.5 and 3.5 characters, also referred to as t3.5. The times for baud rates above 19,200 baud are set to t1.5 = 1.0 ms and t3.5 = 2.0 ms.

If a break between two characters is greater than t1.5 and less than t3.5, this is identified as a transmission error. The message is considered incomplete and is indicated with a receive error.

If the break after a character is greater than t3.5, this is identified as the telegram end.

Three transmit and three receive buffers are available.

The size of the buffer depends on the parameterized data way:

Data exchange via process data 340 bytes per buffer
Data exchange via PDI 245 bytes per buffer

Modbus RTU mode offers Modbus RTU master support. However, the module does not have programmable logic.

Modbus RTU slave support is not implemented.

Data transfer sequence

The two checksum bytes are automatically generated and sent for the user data supplied via the bus (via process data or PDI). Once sent this has been sent, a response is expected.

If the response is not received within 2.5 seconds, a transmit error is generated by setting error bit Tx in the status word.

If the response is received in time, the checksum is checked. If the checksum is invalid, time t1.5 has elapsed on receipt or a parity error has occurred, a receive error is then generated by setting error bit Rx in the status word.

On error-free receipt, the "Rx buffer not empty" bit is set in the status word.

The checksum bytes are not included when reading the receive data.

12 Process data

The module is parameterized via the PDI channel, data exchange with the higher-level controller depends on the parameter data way and is either via process data or via PDI.

The module has ten words of process data. These are made up of 3 bytes of control data and a maximum of 17 bytes of user data.

Assignment of the ten process data words

Word	()	1		2	2	 ,	9
Byte in the Motorola format	0	1	2	3	4	5	 18	19
Byte in the Intel format	1	0	3	2	5	4	 19	18
OUT	K/P	S	L	D	D	D	 D	D
IN	K/P	S	L	D	D	D	 D	D

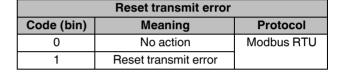
- K/P Command/parameter
- S Control bits (OUT) or status bits (IN)
- L Length: Number of characters to be written (OUT) or to be read (IN)
- D Data

The byte representation in the Motorola format, also called Big Endian (high order byte at starting address) corresponds to the INTER-BUS standard representation. All byte representations in the data sheet have this format.

The byte representation in the Intel format is also called Little Endian (low order byte at starting address).

The command is used to determine the function. The actually transmitted data depends on the command.

13 Process data word 0


13.1 Control word

I	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0		omman			OUT parameter						Contr	ol bits			

Control bits

7	6	5	4	3	2	1	0
DTR	0	0	0	0	Reset trans-	Reset receive	0
					mit error	error	

DTR (if DTR control enabled)							
Code (bin)	Protocol						
0	DTR = logic 0	All					
1	DTR = logic 1						

The DTR signal can only be controlled via the bit if you have parameterized interface type RS-232 and DTR control via process data in the parameter table.

	Reset receive error	
Code (bin)	Protocol	
0	No action	Modbus RTU
1	Reset receive error	

Commands

Code (bin)	Code (hex)	Command
000	0	Read number of characters received (in the transparent and XON/XOFF proto- col) and fill level of the receive buffer
001	1	Transmit characters
010	2	Store characters temporarily
011	3	OUT parameter = 0_{hex} : Read characters
		OUT parameter = C _{hex} : Read firmware version
		OUT parameter = E _{hex} : Read counters
100	4	Reserved
101	5	Toggling command 1: Transmit characters
110	6	Toggling command 2: Store characters temporarily
111	7	Toggling command 3: Read characters

Command toggling

Command toggling is used to execute a command on a terminal again. In this way, a second command code is available for the same function.

This applies for the following commands:

- Transmit characters
- Store characters temporarily
- Read characters
- Read counters

Here, bit 14 is used for toggling. If, for example, you wish to transmit character strings in sequence, use command code $001_{\rm bin}$ for the first transmission and then use $101_{\rm bin}$ and $001_{\rm bin}$ alternately.

13.2 Status word

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
St		omman			IN parameter						Statu	ıs bits			

Reasons for an error bit set:

St Error bit

- Invalid parameter for the specified command
- Failure of the I/O voltage

Status bits

7	6	5	4	3	2	1	0
DSR	Transmit buf-	Transmit buf-	Receive buf-	DCD	Transmit	Receive error	Receive buf-
	fer not empty	fer full	fer full		error		fer not empty

	DSR	
Code (bin)	Meaning	Protocol
0	DSR = logic 0	All
1	DSR = logic 1	

The DSR signal state is displayed, if you have parameterized interface type RS-232.

Transmit buffer not empty								
Code (bin)	Protocol							
0	Empty	All						
1	Not empty, transmission							
	in progress							

Transmit buffer full						
Code (bin) Meaning Protocol						
0	Not full	All				
1	Full					

Protocol	Meaning: transmit buffer full
Modbus RTU	No more buffer space
	Space remaining in the transmit buffer ≤ 30 characters

Receive buffer full						
Code (bin)	Code (bin) Meaning					
0	Not full	All				
1	Full					

Protocol	Meaning: receive buffer full
Transparent	Space remaining ≤ 15 characters
XON/XOFF	Space remaining ≤ 15 characters
Modbus RTU	No more buffer space
End-to-end	No more buffer space

DCD					
Code (bin)	Meaning	Protocol			
0	DCD = logic 0	All			
1	DCD = logic 1				

The DCD signal state is displayed, if you have parameterized interface type RS-232.

Transmit error						
Code (bin)	Protocol					
0	No error	Modbus RTU				
1	Transmit error; 2.5 s					
	timeout has elapsed with					
	no response received					

Receive error						
Code (bin)	Meaning	Protocol				
0	No error	Modbus RTU				
1	Receive error; telegram received with invalid checksum					

Receive buffer not empty						
Code (bin) Meaning Protocol						
0	Empty	All				
1	Not empty; characters to be read are available					

14 Commands

14.1 "Read number of characters received and fill level of the receive buffer" command

For the transparent and XON/XOFF protocol, the command result is the number of characters that have been received but not yet read.

The number is a 16-bit value and is mapped to word 1.

This command can be used to first reach a minimum number of characters before transmitting the "Read characters" command.

For all protocols, the fill level of the receive buffer is specified in byte 4 as the command result.

Process data assignment for the "Read number of characters received and fill level of the receive buffer" command

Word		0 1 2		1		 9		
Byte	0	1	2	3	4	5	 18	19
OUT	00 _{hex}	XX	XX	XX	XX	XX	 XX	XX
IN	00 _{hex}	Status bits	Number of characters		Fill level	XX	 XX	XX
			rece	received				

Fill level							
Byte 4	Protocol						
	Transparent, XON/XOFF	End-to-end, Modbus RTU					
	Number of kbytes free	Number of buffers free					
00 _{hex}	4	3					
01 _{hex}	< 3	2					
02 _{hex}	< 2	1					
03 _{hex}	<1	0					

14.2 "Transmit characters" command

The transmit data located in the process data is stored in the transmit memory. From there the data is transmitted directly via the interface.

A maximum of 17 characters can be transmitted.

Specify the number of characters to be transmitted in the third byte.

If there are characters in the intermediate buffer, these are transmitted first via the selected RS interface.

After the command has been executed successfully, the intermediate buffer is cleared.

Process data assignment for the "Transmit characters" command with 17 characters (C1 - C17)

Word		0	1		2			9	
Byte	0	1	2	3	4	5		18	19
OUT	10 _{hex}	XX	17 _{dez}	Z1	C2	C3	•••	C16	C17
IN	10 _{hex}	Status bits	XX	XX	XX	XX	•••	XX	XX

Reasons for an error bit set:

- Byte 2 (number of characters to be transmitted)
 0 or > maximum user data length (17 characters)
- Interface type "Deactivated"
- Data way: data exchange via PDI

14.3 "Store characters temporarily" command

If more than 17 characters are to be transmitted, the transmit data located in the process data is stored in an intermediate buffer which can store up to 340 characters. No characters are transmitted. The "Transmit characters" command is used to transmit temporarily stored data. In this way, blocks of up to 340 characters can be transmitted without a break. They are divided over 20 telegrams with 17 characters each, for example.

Reasons for an error bit set:

- Byte 2 (number of characters to be transmitted)
 0 or > maximum user data length (17 characters)
- Not enough space in the intermediate buffer

14.4 "Read characters" command

A maximum of 17 characters can be read.

For block-oriented protocols (end-to-end, Modbus RTU), the received telegram may be longer than the user data length. In order to indicate that there is more data to be retrieved from the telegram after reading, bit 7 is set in the third receive byte (byte 2).

Process data assignment for the "Read characters" command with 17 characters (C1 - C17)

Word		0	1		2		 9	
Byte	0	1	2	3	4	5	 18	19
OUT	30 _{hex}	XX	XX	XX	XX	XX	 XX	XX
IN	30 _{hex}	Status bits	11 _{hex}	Z1	C2	C3	 C16	C17

Bit 7 in the third input byte (byte 2)

Byte 2, bit 7	Effect	Protocol
0	The characters read are the last ones in the block received.	E.g., end-to- end
1	There are still more characters to be read from the block received.	E.g., end-to- end

Reasons for an error bit set:

- Interface type "Deactivated"
- Data way: data exchange via PDI

14.5 "Read counters" command

This command can be used to read several counters. The counters are used for interface diagnostics.

Process data assignment for the "Read characters" command

Word		0	1		1	2	3		4		į	5 6		3
Byte	0	1	2	3	4	5	6	7	8	9	10	11	12	13
OUT	3E _{hex}	00 _{hex}	XX	XX	XX	XX	xx	xx	XX	XX	XX	XX	XX	XX
IN	3E _{hex}	Status bits		r of valid s received	character (parity, o	of invalid s received everrun or g errors)	Number of char- acters transmitted				Rese	erved		

15 Parameter, diagnostics and information (PDI)

Parameter and diagnostic data as well as other information is transmitted via the PDI channel.

For information on PDI, please refer to the UM EN AXL SYS INST user manual.

The standard and application objects stored in the module are described in the following section.

Please refer to the basic profile for comprehensive information.

The following applies to all tables below:

Please refer to the UM DE AXL SYS PRO or the basic profile for an explanation of the object codes and data types.

Abbreviation	Meaning
Α	Number of elements
L	Length of the elements
R	Read
W	Write

Every visible string is terminated with a zero terminator (00_{hex}) . The length of a visible string element is therefore one byte larger than the amount of user data.

16 Standard objects

16.1 Objects for identification (device rating plate)

Index	Object name	Object	Data type	Α	L	Rights	Meaning	Contents
(hex)		type						
	acturer							
0001	VendorName	Var	Visible String	1	16	R	Manufacturer name	Phoenix Contact
0002	VendorID	Var	Visible String	1	7	R	Manufacturer identification	00A045
0003	VendorText	Var	Visible String	1	49	R	Comment on the manufacturer	Components and systems for industrial automation
0012	VendorURL	Var	Visible String	1	30	R	URL of the manufac- turer	http://www.phoenix- contact.com
Module	e - general							
0004	DeviceFamily	Var	Visible String	1	15	R	Device family	I/O function module
0006	ProductFamily	Var	Visible String	1	33	R	Product family	Axioline - High speed I/O system
000E	CommProfile	Var	Visible String	1	4	R	Communication pro- file	633
000F	DeviceProfile	Var	Visible String	1	5	R	Device profile	0010
0011	ProfileVersion	Record	Visible String	2	11; 20	R	Device profile version	2011-12-07; Basic Profile V2.0
003A	VersionCount	Array	Unsigned 16	4	4 * 2	R	Version counter	0007 0000 0001 0001 _{hex}
Module	e - special							
0005	Capabilities	Var	Visible String	1	8	R	Properties	Energ_0
0007	ProductName	Var	Visible String	1	19	R	Product designation	AXL F RS UNI 1H ME
8000	SerialNo	Var	Visible String	1	11	R	Serial number	xxxxxxxxxx (e. g., 1234512345)
0009	ProductText	Var	Visible String	1	24	R	Product text	1 communication channel
000A	OrderNumber	Var	Visible String	1	8	R	Order No.	2688679
000B	HardwareVersion	Record	Visible String	2	11; 3	R	Hardware version	e. g., 2011-02-04; 00
000C	FirmwareVersion	Record	Visible String	2	11; 6	R	Firmware version	0000-00-00; V1.00
000D	PChVersion	Record	Visible String	2	11; 6	R	Parameter channel version	0000-00-00; PDI-API V0.30
0037	DeviceType	Var	Octet string	1	8	R	Module identification	00 00 08 14 00 00 00 C0 _{hex}
Use of	the device		•		•		•	
0014	Location	Var	Visible String	1	59	R/W	Installation location	Can be filled out by the user.
0015	EquipmentIdent	Var	Visible String	1	59	R/W	Equipment identifier	Can be filled out by the user.
0016	ApplDeviceAddr	Var	Unsigned 16	1	2	R/W	User-defined device number	Can be filled out by the user.

16.2 Object for multilingual capacity

Index (hex)	Object name	Object type	Data type	A	L	Rights	Meaning	Contents
0017	Language	Record	Visible String	2	6; 8	R	Language	en-us; English

16.3 Diagnostics objects

Index (hex)	Object name	Object type	Data type	A	L	Rights	Assignment/content
0018	DiagState	Record		6	2; 1; 1; 2; 1; 14	R	Diagnostics state; see below
0019	ResetDiag	Var	Unsigned 8	1	1	W	Reset diagnostics

Diagnostics state (0018_{hex}: DiagState)

This object is used for a structured message of an error.

0018 _{hex} : DiagState (Read)								
Subindex	Data type	Length in bytes	Meaning	Contents				
0	Record	21	Diagnostic state	Complet	e diagnostics information			
1	Unsigned 16	2	Error number	0 6553	35 _{dec}			
2	Unsigned 8	1	Priority	00 _{hex}	No error			
				01 _{hex}	Error			
				02 _{hex}	Warning			
				81 _{hex}	Error removed			
				82 _{hex}	Warning eliminated			
3	Unsigned 8	1	Group	00 _{hex}	No error			
				01 _{hex}	Channel 1			
			FF _{hex}	Entire device				
4	Unsigned 16	2	Error code	See table	e below			
5	Unsigned 8	1	More information follows	00 _{hex} (no	ot supported)			
6	Visible String	14	Text (14 characters)	- INDX (IFF)				

The message with the priority 81_{hex} or 82_{hex} is a one-time internal message to the bus coupler that is implemented onto the error mechanisms of the higher-level system by the bus coupler.

After all errors have been eliminated, it is automatically reset.

Error code and status of the local status and diagnostics indicators

Error	Error	Text	Priority	Group	D LED	UI LED	E1 LED	E2 LED
	code							
No error	0000 _{hex}	Status OK	00 _{hex}	00 _{hex}	Green ON	ON	OFF	OFF
Receive buffer full	7610 _{hex}	Rx-Buf full	02 _{hex}	01 _{hex}	Green ON	ON	OFF	ON
Transmit buffer full	7611 _{hex}	Tx-Buf full	02 _{hex}	01 _{hex}	Green ON	ON	OFF	ON
Faulty supply voltage	5160 _{hex}	Supply fail	01 _{hex}	FF _{hex}	Flashing green/yel- low	OFF	ON	ON
Device error	6301 _{hex}	CS FLASH	01 _{hex}	FF _{hex}	Flashing green/yel- low	ON	OFF	ON

Reset diagnostics (0019_{hex}: ResetDiag)

You can delete the diagnostics memory and acknowledge the diagnostic messages with this object.

0019 _{hex} : Re	setDiag (Write)				
Subindex	Data type	Length in bytes	Meaning	Content	s
0	Unsigned 8	1	Reset diagnostics	00 _{hex}	All diagnostic messages approved
				02 _{hex}	Deletes and acknowledges all pending diagnostic messages that have not been read out
				06 _{hex}	Deletes and acknowledges all the diagnostic messages and allows no further diagnostic messages
				Other	Reserved

16.4 Objects for process data management

Index (hex)	Object name	Object type	Data type	Α	L	Rights	Assignment
0025	PDIN	Var	Octet string	1	20	R	Input process data
0026	PDOUT	Var	Octet string	1	20	R	Output process data
003B	PDIN_Descr	Array of Records		6	24	R	Description of the IN process data
003C	PDOUT_Descr	Array of Records		6	24	R	Description of the output process data

The objects $003B_{\mbox{\scriptsize hex}}$ and $003C_{\mbox{\scriptsize hex}}$ are only applicable to tools.

IN process data (0025_{hex}: PDIN)

You can read the IN process data of the module with this object.

The structure corresponds to the representation in the "Process data" section.

0025 _{hex} : PDIN (Read)							
Subindex	Data type	Length in bytes	Meaning				
0	Octet string	20	Input process data				

OUT process data (0026_{hex}: PDOUT)

You can read the OUT process data of the module with this object.

The structure corresponds to the representation in the "Process data" section.

0026 _{hex} : PDOUT (Read)							
Subindex	Data type	Length in bytes	Meaning				
0	Octet string	20	Output process data				

17 Application objects

Index (hex)	Object name	Object type	Data type	A	L	Rights	Assignment
0800	ParaTable	Array	Octet string	1	16	R/W	Parameter table
0081	SerialData	Var	Octet string	1	0 245	R/W	Serial data
0095	EventCounter	Var	Octet string	1	12	R	Event counter

17.1 Parameter table (0080_{hex}: ParaTable)

Parameterize the module using this object.

In the case of valid parameters, the parameterization is stored in the module permanently.

After resetting, the module works with the last permanently stored data. Upon delivery, the module works with the default data (default settings).

0080 _{hex} : ParaTable (read, write)				
Subindex	Data type	Length in bytes		
0	Octet string	16		

Byte	Meaning	Default value
0	Type, protocol	30 _{hex}
1	Baud rate, data width	72 _{hex}
2	1st delimiter	0D _{hex}
3	2nd delimiter	0A _{hex}
4	Error pattern	24 _{hex}
5 7	Uni1 Uni3	00 00 00 _{hex}
8	Reserved	00 _{hex}
9	Data way	00 _{hex}
10	Tv	00 _{hex}
11	Tn	00 _{hex}
12 15	Reserved	00 00 00 00 _{hex}

Word	()		1	2	2	(3		4	į	5	(3		
Byte	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	T/P	B/DB	1st del	2nd del	ErrP	Uni1	Uni2	Uni3	res.	Data way	Tv	Tn	res.	res.	res.	res.

Element value range

The options in bold are default settings.

Byte 0 (T/P: interface type/protocol)

7	6	5	4	3	2	1	0	
res.	DTR	Interface		Protocol				
		type						

DTR: DTR control				
Code (bin)	Meaning			
0	Automatic			
1	Can be controlled via process data			

DTR control is only significant for interface type RS-232. For automatic control, the following applies in the transparent protocol and in the XON/XOFF protocol:

DTR = logic 0	There are a maximum of 15 char-
---------------	---------------------------------

acters free in the receive buffer.

DTR = logic 1 There are more than 15 characters free in the receive buffer.

For control via process data, the DTR signal can be controlled directly with bit 7 (DTR).

Interface type					
Code (bin) Meaning					
00	RS-232				
01	RS-485				
10	RS-422				
11	Deactivated				

Select an RS-xxx interface type. With the "Deactivated" default setting, no data is transmitted or received. When using the default setting, an error message is generated and the error bit is set.

Protocol				
Code (hex)	Meaning			
0	Transparent			
1	End-to-end			
2	XON/XOFF			
3	Modbus RTU			
Other	Reserved			

Byte 1 (D/DB: baud rate/data width)

	Baud rate					
Code (hex)	Wert (baud)					
0	110					
1	300					
2	600					
3	1200					
4	1800					
5	2400					
6	4800					
7	9600					
8	15625					
9	19200					
Α	38400					
В	57600					
С	115200					
D	230400					
E	250000					
F	Direct (Uni1 3)					

The specified baud rates of 110 baud to 250000 baud are adequate for most applications. However, you can freely choose the baud rate by direct programming. For this, use the $0F_{\text{hex}}$ baud rate code.

Data width						
Code		Meaning				
(hex)	Data bits	Parity	Stop bits			
0	7	Even	1			
1	7	Odd	1			
2	8	Even	1			
3	8	Odd	1			
4	8	Without	1			
5	7	Without	1			
6	7	Even	2			
7	7	Odd	2			
8	8	Even	2			
9	8	Odd	2			
Α	8	Without	2			
В	7	Without	2			
С	8	Constantly at 0	1			
D	8	Constantly at 1	1			
Е	6	Without	1			
F	Directly (Uni1)					

The specified combinations of data width, parity and stop bits are adequate for most applications. However, you can freely choose the combination by direct programming. For this, use the 0F_{hex} data width code.

Byte 2 and 3 (1st del, 2nd del: 1st and 2nd delimiters)

The 1st delimiter and 2nd delimiter contain the end characters for the end-to-end and dual buffer protocols.

When selecting the end-to-end protocol, the two delimiters can be adjusted.

Default settings:

Delimiter	Default value	ASCII character
1st del	0D _{hex}	CR = carriage return
2nd del	0A _{hex}	LF = line feed

Byte 4 (ErrP: error pattern)

The error pattern contains the character that is written to the FIFO if a character was received with errors (e.g., in the event of a parity error).

The error pattern is used for the following protocols:

- Transparent
- End-to-end
- XON/XOFF

	Error pattern				
Code (hex)	Meaning				
24	\$				
XX	Any character				
00	If a character is received with an error, no error pattern is stored.				
FF	The invalid character is stored instead of the error pattern.				

Byte 5 ... 7 (Uni1 ... Uni3: universal byte 1 ... 3)

These bytes can be used as universal bytes for direct specification of the baud rate or the data width.

Byte 5				Byte 6				Byte 7					
7	6	5	4	3	2	1	0	7 0			7		0
Data width						Bauc	d rat	e					

Direct specification of the data width

If the provided combinations of data width, parity and stop bits are inadequate, they can be directly specified. Use the Uni1 byte. Bit 1 and bit 0 are reserved.

7 6	5	4	3	2	1	0
Parity	Enable par- itv	Stop	Data	Data bits		res.

Parity					
Code (bin) Meaning					
00	Odd				
01	Even				
10	Constantly at 1				
11	Constantly at 0				

Enable parity					
Code (bin) Meaning					
0	Disable				
1 Enable					

Stop bits					
Code (bin) Meaning					
0 1 stop bit					
1 2 stop bits					

Data bits					
Code (bin) Meaning					
00	5 bits				
01	6 bits				
10	7 bits				
11	8 bits				

Direct specification of baud rate

If the provided baud rates do not correspond to the desired baud rate, the baud rate can be directly specified. For this, write the desired baud rate on the Uni1 to Uni3 fields in the form of a numeric value. Transfer is right-aligned. However, only the 2 lower bits of Uni1 are permitted.

The maximum value is 18 bits. The maximum value = 3FFFF_{hex} which corresponds to 262143 baud.

Example for direct specification of the baud rate:

Baud rate: 100000 baud
 100000_{dez} = 01 86 A0_{hex}

Word	()	-	1	2	2	;	3	4	4	į	5	6	3
Byte	1	1	2	3	4	5	6	7	8	9	10	11	12	13
OUT	40 _{hex}	xx _{hex}	T/P	B/DB	res.	res.	ErrP	Uni1	Uni2	Uni3	res.	res.	Tv	Tn
OUT	40 _{hex}	xx _{hex}	xx	Fx _{hex}	00	00	xx	01	86	A0	00	00	XX	XX

Byte 9 (data way)

Here you can control the way used to exchange data with the selected interface.

Data way	
Code (hex)	Meaning
00 _{hex}	Data exchange via process data
01 _{hex}	Data exchange via PDI

Data exchange	340 bytes per buffer
via process data	A maximum of 17 characters can be transmitted together using the "Transmit characters" command. If you want to transmit more characters, use the "Store characters temporarily" command.
Data exchange via PDI	245 bytes per buffer

Byte 10 and 11 (Tv, Tn: lead time, lag time)

These two times are used for the RS-232 protocol

Tv Lead time Tn Lag time

The times are specified with a resolution of 1 ms. This allows for waiting times of 1 ms ... 255 ms.

When transmitting data via RS-232 the RTS signal is set. If Tv does not equal 0, transmission only starts after this time has elapsed. After all the data is sent and Tn does not equal 0, the RTS signal is only set to LOW after this time has elapsed.

17.2 Serial data (0081_{hex}: SerialData)

If you have parameterized data exchange via PDI in the "Data way" parameter in the parameter table, this object can be used to read and write the serial data.

0081 _{hex} : SerialData (read, write)					
Subindex	Data type	Length in bytes	Contents		
0	Var	0 245	Serial data		

On write access, the user data of this service is transmitted directly via the interface.

On read access, the user data corresponds to the received characters.

The maximum user data length is 245 bytes.

In the case of the Modbus RTU protocol, on write access after transmitting the user data, two bytes are appended for a checksum determined by the module.

On read access, the checksum is no longer present when the user data is received.

Errors	Error class (hex)	Error code (hex)	Additional code (hex)
"Data way" parameter = 00 _{hex} (data exchange via process data)	8	0	0022
"Interface" parameter = 3 _{hex} (deactivated)	8	0	0122
On write access, there is not enough space in the transmit memory	8	0	0222
On read/write access, the previous read/write access has not yet been completed	8	0	0322
On write access, the length is equal to 0 or greater than 245	6	5	0000

17.3 Event counter (0095_{hex}: EventCounter)

You can read multiple counters which are used for interface diagnostics with this object.

0095 _{hex} : EventCounter (read)		
Subindex		Length in bytes
0	Octet string	12

Word	Meaning
1	Number of valid characters received
2	Number of invalid characters received (parity, overrun or framing errors)
3	Number of characters transmitted
4 6	Reserved

18 Device descriptions

The device is described in the device description files. The device descriptions for controllers from Phoenix Contact are included in PC Worx and the corresponding service packs.

The device description files for other systems are available for download at phoenixcontact.net/download in the download area of the bus coupler used.

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru