Hardware Monitor with I²C Serial Interface

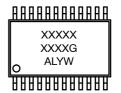
The NCT80 is a two-wire serially programmable hardware monitor. It can monitor its on chip temperature via its local sensor, 7 analog inputs and measure the speed of two fans. Each of the measured values are compared with programmable limits and if any channel is outside the programmed limit an interrupt is generated via the $\overline{\text{INT}}$ output pin. It also has a chassis intrusion detection input pin which is latched on an intrusion event.

Communication with the NCT80 is accomplished via the I²C interface which is compatible with industry standard protocols. Through this interface the NCT80s internal registers may be accessed. These registers allow the user to read the current temperature, fan speed and voltages, change the configuration settings and adjust each channels limits.

The NCT80 is available in a 24–lead TSSOP package and operates over a wide supply range of 2.8 to 5.75 V. This makes the NCT80 ideal for a wide variety of applications ranging from computers to servers and test equipment.

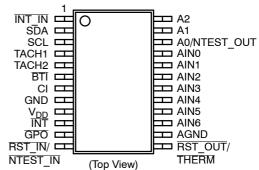
Features

- On-chipTemperature Sensor
- 2 Fan Speed Monitoring Inputs
- 7 Analog Inputs for Voltage Monitoring
- Chassis Intrusion Detection
- Overtemperature Output
- Limit Comparison of Monitored Channels
- 3 Address Selection Pins
- Power Saving Shutdown Mode
- I²C Compliant Interface
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant



ON Semiconductor®

http://onsemi.com


TSSOP-24 DB SUFFIX CASE 948H

XXXX = Specific Device Code A = Assembly Location

L = Wafer Lot
 Y = Year
 W = Work Week
 G = Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
NCT80DBR2G	TSSOP-24 (Pb-Free)	Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

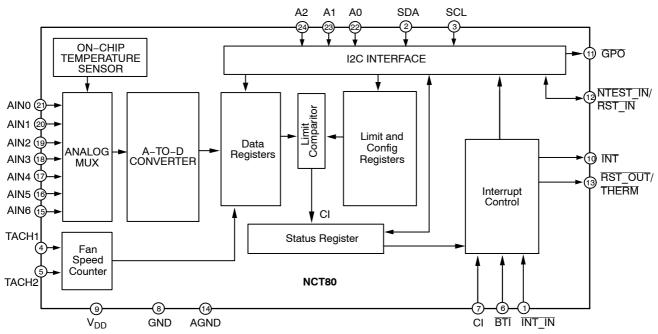


Figure 1. Functional Block Diagram of NCT80

Table 1. PIN FUNCTION DESCRIPTION

Pin No.	Pin Name	Description
1	ĪNT_ĪN	Active low digital input. This signal is propagated to the INT output pin of the NCT80.
2	SDA	I ² C Serial Bi-directional Data Input/Output. Open-drain pin; needs a pull-up resistor.
3	SCL	Serial Clock Input. Open-drain pin; needs a pull-up resistor.
4	TACH1	Digital Input. Fan tachometer input to measure speed of Fan.
5	TACH2	Digital Input. Fan tachometer input to measure speed of Fan.
6	BTI	Digital Input. Board Temperature Interrupt driven by O.S. outputs of additional temperature sensors such as the NCT75.
7	CI (Chassis Intrusion)	Digital I/O. An active high input from an external latch which captures a Chassis Intrusion event. This line can go high without any clamping action, regardless of the powered state of the NCT80
8	GND	Power Supply Ground.
9	V_{DD}	Positive Supply Voltage. Bypass to ground with a 0.1 μF bypass capacitor.
10	ĪNT	Digital Output. Open drain Interrupt Request pin.
11	GPO	Digital Output. An active low open drain output intended to drive an external P-channel power MOSFET in order to offer software power control.
12	NTEST_IN/RST_IN	Dual function pin. Active low input that enables NAND Tree Test functionality. Once enabled the part is reset to its power on default.
13	RST_OUT/THERM	Dual function pin. RST_OUT: Active low reset output pin. THERM: Overtemperature shutdown output pin.
14	AGND	Analog Ground.
15	AIN6	Analog Input. 0 V to 2.56 V.
16	AIN5	Analog Input. 0 V to 2.56 V.
17	AIN4	Analog Input. 0 V to 2.56 V.
18	AIN3	Analog Input. 0 V to 2.56 V.
19	AIN2	Analog Input. 0 V to 2.56 V.
20	AIN1	Analog Input. 0 V to 2.56 V.
21	AIN0	Analog Input. 0 V to 2.56 V.
22	A0/NTEST_OUT	Dual function pin. Functions as an I ² C address selection bit. This is the LSB of the address. Pin also functions as an output when performing a NAND test.
23	A1	Functions as an I ² C address selection bit.
24	A2	Functions as an I ² C address selection bit.

Table 2. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage (V _{DD})	V_{DD}	-0.3 to +6.5	V
Voltage on any input or output pin		-0.3 to V _{DD} + 0.3	V
Input Current at any pin	I _{IN}	±5	mA
Maximum Junction Temperature	T _{J(max)}	150.7	°C
Storage Temperature Range	T _{STG}	-65 to 160	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2500	V
ESD Capability, Machine Model (Note 2)	ESD _{CDM}	1000	V

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.
- 2. This device series incorporates ESD protection and is tested by the following methods:
 - ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114)
 - ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)

Table 3. OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Operating Supply Voltage	V_{DD}	2.8	5.75	V
Operating Ambient Temperature Range	T _A	-40	125	°C

^{3.} Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

Table 4. ELECTRICAL CHARACTERISTICS

 $(T_A = T_{MIN} \text{ to } T_{MAX}, V_{DD} = 2.8 \text{ V to } 5.75 \text{ V}. \text{ All specifications for } -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted.})$

Parameter	Test Conditions	Min	Тур	Max	Unit
POWER SUPPLY CHARACTERISTICS					
Supply Voltage		2.8		5.75	V
Supply Current	Interface inactive			0.580	mA
Shutdown Current	Shutdown mode enabled		200		μΑ
TEMPERATURE TO DIGITAL CONVERTER C	HARACTERISTICS				
Local Sensor Accuracy	$T_A = 0$ °C to $+100$ °C			±2	°C
V _{DD} = 2.8 V to 5.75 V	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±3	°C
Resolution				0.0625	°C
ANALOG-to-DIGITAL CONVERTER CHARAC	CTERISTICS				
ADC Resolution (bits)			10		Bits
Resolution (10 bits with full-scale at 2.56 V)			2.5		mV
Total Unadjusted Error (TUE)				±1	%
Differential Nonlinearity (DNL)				±1	LSB
Round Robin Cycle Time		662	728	810	ms
MULTIPLEXER/ADC INPUT CHARACTERIST	ics				
On resistance			11.5	13	kΩ
Input current (on channel leakage current)			±0.005		μΑ
Off channel leakage current			±0.005		μΑ
FAN RPM-to-DIGITAL CONVERTER					
Fan RPM Error	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±10	%
Full scale count				255	(max)
TACH1 & TACH2 Nominal Input RPM	Divisor = 1, Fan count = 153		8800		rpm

Table 4. ELECTRICAL CHARACTERISTICS

 $(T_A = T_{MIN} \text{ to } T_{MAX}, V_{DD} = 2.8 \text{ V to } 5.75 \text{ V}. \text{ All specifications for } -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ unless otherwise noted.})$

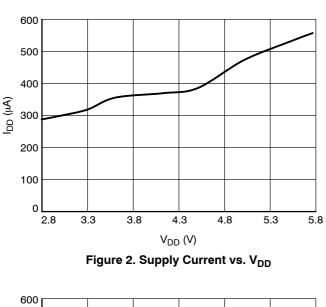
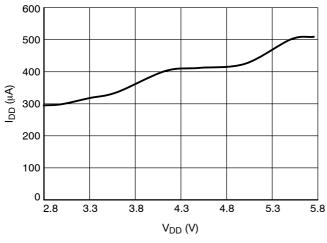

Parameter	Test Conditions	Min	Тур	Max	Unit
FAN RPM-to-DIGITAL CONVERTER	•				
TACH1 & TACH2 Nominal Input RPM	Divisor = 2, Fan count = 153		4400		rpm
	Divisor = 3, Fan count = 153		2200		rpm
	Divisor = 4, Fan count = 153		1100		rpm
Internal Clock Frequency		20.2	22.5	24.8	kHz
DIGITAL OUTPUTS (A0/ NTEST_OUT, INT)			•	
Output high voltage, logical "1"	I_{OUT} = +5.0 mA, V_{DD} = 2.8 V - 5.75 V	2.4			V
Output low voltage, logical "0"	$I_{OUT} = -5.0 \text{ mA}, V_{DD} = 2.8 \text{ V} - 5.75 \text{ V}$			0.4	V
OPEN DRAIN OUTPUTS (GPO, RST_OUT	/OS, CI, SDA)				
Output low voltage, logical "0"	I _{OUT} = +5.0 mA, V _{DD} = 3.6 V			0.4	V
High level output current	V _{OUT} = V _{DD}		0.1	1	μΑ
RST_OUT/OS, CI pulse width		10	22.5		ms
DIGITAL INPUTS (Except for BTI)					
Input high voltage, logical "1"		0.7 x V _{DD}			V
Input low voltage, logical "0"				0.3 x V _{DD}	V
ALL DIGITAL INPUTS (Except for BTI)					
Input current (Logical "1")	$V_{IN} = V_{DD}$	-1	-0.005		μΑ
Input current (Logical "0")	V _{IN} = 0 V		0.005	1	μΑ
Input capacitance			20		pF
BTI DIGITAL INPUT					
Input current (Logical "1")	$V_{IN} = V_{DD}$	-10			μΑ
Input current (Logical "0")	V _{IN} = 0 V			2000	μΑ
Input capacitance			20		pF

Table 5. I²C TIMING

Parameter (Note 4)	Symbol	Min	Тур	Max	Unit
Clock Frequency	f _{SCLK}	10		400	kHz
Clock Period	t ₁	2.5		100	μs
Data Setup Time (Note 5)	t ₂	100			ns
Data Out Stable	t ₃	0		0.9	μs
Start Hold Time (Note 6)	t ₄	100			ns
Stop Setup Time	t ₅	100			ns
SCL High Time	t ₆	0.6			μs
SCL Low Time	t ₇	1.3			μs
Start Setup Time	t ₈	0.6			μs
SCL, SDA Rise Time	t ₉			300	ns
SCL, SDA Fall Time	t ₁₀			300	ns
Bus Free Time	t ₁₁	1.3			μs
Glitch Immunity	t ₁₂	0		50	ns
Timeout	t _{Timeout}	25		35	ms


- 4. Guaranteed by design, but not production tested.
- Time for 10% or 90% of SDA to 10% of SCL.
 Time from 10% of SDA to 90% of SCL.

TYPICAL CHARACTERISTICS

600 500 400 200 100 0 2.8 3.3 3.8 4.3 4.8 5.3 5.8 V_{DD} (V)

Figure 3. Supply Current vs. V_{DD} (Voltage Conversion)

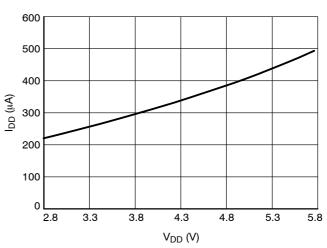
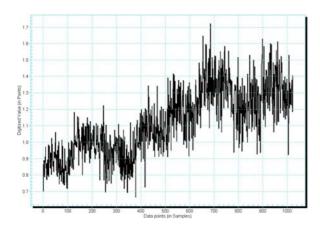



Figure 4. Supply Current vs. V_{DD} (Temperature Conversion)

Figure 5. Shutdown Current vs. V_{DD}

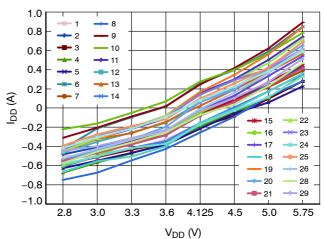


Figure 6. TUE vs. Code

Figure 7. Local Temp Error vs. V_{DD}

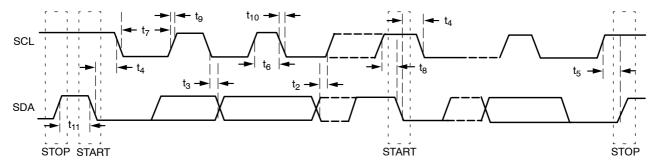


Figure 8. Serial Interface Timing

Theory of Operation

The NCT80 contains an on chip local temperature sensor, an 8 channel multiplexer, a 10 bit sigma-delta analog to digital converter and different internal registers in a single package. It has the capability to monitor 7 analog inputs AIN0-AIN6. The effective use of these analog inputs can be accomplished by connecting them to monitor different power supplies level present in any communication system. It also has two fan speed measurement inputs that can be configured either as fan failure signal or the tachometer signal. The fan inputs are digital signals with transition levels according to the fan tach pulse inputs in the electrical characteristics table. The signal conditioning circuitry is present on the chip to accommodate slow rise and fall times. The nominal fan speeds are programmable from 1100 to 8800 RPM (based on count of 153). Full scale fan counts are 255 (8bit counter) which represents a very slow or stopped fan.

The communication interface with the device is accomplished by an I²C interface that is compatible to both Standard Mode and Fast Mode operations. The standard and fast modes correspond to 100 kHz and 400 kHz. NCT80 also has a three address selection pins A0-A2 that facilitate the use of eight devices on a single bus.

Internal Registers

In this section the overview of important internal registers is presented. NCT80 contains 41 internal registers the details of whom can be seen in the register map section.

Configuration Register: This register can be accessed for control and configuration.

Interrupt Status Registers: There are two registers that provide the status of each interrupt alarm. Continuous reading of the status register can make the bits in the register toggle intermittently and momentarily clears the INT pin also.

Interrupt Mask Registers: These registers can be accessed for masking of individual interrupt sources, as well as separate masking for both hardware interrupt outputs.

Fan Divisor Output pin Configuration: This register can be accessed to configure fan reading modes and also the \overline{OS} and RST OUT pin configuration. Bits 0 to 5 of this register contain the divisor bits for the TACH1 and TACH2 inputs. Bits 6 and 7 control the function of the RST OUT/OS output.

OS Configuration/Temperature Resolution Register:

This register can be accessed to configure the \overline{OS} output pin

and the temperature sensor resolution. The resolution can be configured either 9 bit or 12 bit. Bit 3 enables 12-bit temperature conversions. In 12-bit mode, bits 4 to 7 represent the four LSBs of the temperature measurement. In 9-bit mode, bit 4 represents the LSB of the temperature measurement.

Conversion Rate Register: This register can be accessed to control the conversion rate of the ADC.

Channel Add/Remove Register: This register can be accessed by the user to manually add or remove measurement channels from the ADC.

RAM Registers: The results for monitoring fan counts, temperature, voltages etc are all contained in it. It consists of 31 bytes with the first 10 bytes are the results and the next 20 bytes are the interrupt alarm limit registers. Limit values for analog measurements are stored in the appropriate limit registers. In the case of voltage measurements, high and low limits can be stored so that an interrupt request will be generated if the measured value goes above or below acceptable values. In the case of temperature, a Hot Temperature (high limit), and a Hot Temperature Hysteresis (low limit) can be programmed. The hysteresis value is usually a few degrees lower than the high limit. These limits allow the system to be shut down when the hot limit is exceeded and restarted automatically when the temperature has dropped below the hysteresis limit.

The last byte is the upper locations for manufacturer ID.

Application Details

Power-ON RESET

When NCT80 is turned ON by applying power to V_{DD} pin it undergoes to a reset mode where most of the internal registers are reset. The Interrupt and RAM registers do not reset on power ON and their values are determined immediately after the reset process. The configuration register bit 7 has the same function as the power ON reset. This bit can be set to 1 to initiate the reset process which clears automatically afterwards.

Initiating Inputs Monitoring

The monitoring cycle of the NCT80 begins when a one is written to the Start bit (bit 0) and a zero to the INT Clear bit (bit 3) of the Configuration Register. When the NCT80 monitoring sequence is started, it cycles sequentially

through the measurement of the 7 analog inputs. Each input is multiplexed separately into the NCT80's 10 bit ADC and stored in the appropriate value register. The on-chip temperature sensor is monitored through a 12 bit sigma delta ADC giving the temperature a resolution of 0.0625°C. At the same time the fan speed inputs are independently monitored. Once each conversion is completed the data is compared with programmed limits stored in the limit registers of RAM. It can then be read back over the serial bus.

The sequence of items that are monitored except for the temperature reading corresponds to locations in the RAM registers as follows:

- 1. Temperature
- 2. AINO
- 3. AIN1
- 4. AIN2
- 5. AIN3
- 6. AIN4
- 7. AIN5
- 8. AIN6
- 9. TACH 1 10. TACH 2

Reading Results

The conversion results are stored in the value registers at addresses from 20h to 29h. These conversion results can be read at any time and correspond to the result of the last conversion. A typical sequence of events after NCT80 power—on is as follows:

- 1. Set alarm limits
- 2. Set interrupt masks
- 3. Start the NCT80 monitoring process

Analog Inputs

NCT80 has a 10-bit ADC which has an LSB value of 2.5 mV. The input has a full scale input range of 0 to 2.56 V. The analog inputs are often connected to power supplies whose values can be 2.5, 3.3, 5 or 12 V. This poses a requirement to attenuate the voltage inputs within the acceptable input range of the ADC.

Voltage divider can be used to attenuate the analog input voltages with in the desired range. For any applications a voltage divider with an output signal of 1.9 V to the analog inputs will be an appropriate selection. This selection will give a tolerance for upward excursion in the power supply of 25%.

Figure 9. Resistor Divider to Attenuate the Power Supply Voltage within Required Range

The selection of resistors value can be simplified by first selecting the value of R_2 . The value of R_2 should be high enough to protect both inputs under overdrive conditions and must be low enough to avoid leakage current errors. A typical value for R_2 with in $10 \text{ k}\Omega - 100 \text{ k}\Omega$ range will serve this purpose. The value of R_1 then can be selected to provide 1.9 V at the AINx pins as follows:

$$R_1 = \frac{\text{Supply} - 1.9}{1.9} \times R_2$$

It is necessary to limit input currents to avoid the Absolute maximum rating value. Extra external resistors must be used to achieve this at any pin.

Temperature Measurement

Temperature data can be read from the Temperature Reading Register at 27h. Temperature limits can be read from and written to the Hot Temperature, Hot Temperature Hysteresis, OS Temperature, and OS Temperature Hysteresis Limit Registers. These registers have addresses from 38h to 3Bh respectively. The temperature data limit is represented by 8 bit, 9 bit and 12 bit two's complement word with an LSB equal to 1°C.

Table 6. 8 BIT TEMPERATURE DATA REPRESENTATION

Temperature	Binary Output	HEX Output
+125°C	0111 1101	7Dh
+25°C	0001 1001	19h
+1°C	0000 0001	01h
+0°C	0000 0000	00h
-1°C	1111 1111	FFh
−25°C	1110 0111	E7h
−55°C	1100 1001	C9h

Table 7. 9 BIT TEMPERATURE DATA REPRESENTATION

Temperature	Binary Output	HEX Output
+125°C	0 1111 1010	0 FAh
+25°C	0 0011 0010	0 32h
+1.5°C	0 0000 0011	0 03h
+0°C	0 0000 0000	0 00h
–0.5°C	1 1111 1111	1 FFh
−25°C	1 1100 1110	1 CEh
−55°C	1 1001 0010	1 92h

Table 8. 12 BIT TEMPERATURE DATA REPRESENTATION

Temperature	Binary Output	HEX Output
+125°C	0111 1101 0000	7 D0h
+25°C	0001 1001 0000	1 90h
+1°C	0000 0001 0000	0 10h
+0.0625°C	0000 0000 0001	0 01h
+0°C	0000 0000 0000	0 00h
−0.0625°C	1111 1111 1111	F FFh
−1.0°C	1111 1111 0000	F F0h
−25°C	1110 0111 0000	E 70h
–55°C	1100 1001 0000	C 90h

When using a single-byte read, the eight MSBs of the temperature reading can be found in the Value RAM Register at 27h. The remainder of the temperature reading can be found in the OS_CONFIG_TEMP_RESOLUTION Register at address 06h, bits 4 to 7. In 9-bit format, bit 7 is the only valid bit. In addition, all nine or 12 bits can be read using a double-byte read at register address 27h.

Temperature Interrupts

There are four Value RAM Register limits for the temperature reading that affect the INT and OS outputs of the NCT80. These are the HOT_TEMP_HIGH_LIMIT (HTHL), HOT_TEMP_HYSTERESIS_LIMIT (HTHT_HYST), OS_TEMP_HIGH_LIMIT (TOS) and OS_TEMP_HYSTERESIS_LIMIT (TOS_HYST) having address from 38h–3Bh.

There are three interrupt modes of operation: Default Interrupt, One–Time Interrupt, and Comparator. The OS output of the NCT80 can be programmed for One–Time Interrupt mode and Comparator mode. INT can be programmed for Default Interrupt mode and One–Time Interrupt mode. These modes are explained in the following subsections.

Default Interrupt Mode

In Default Interrupt mode, exceeding HTHL causes an interrupt that remains active indefinitely until reset by reading Interrupt Status Register 1 at address 01h or cleared by the INT_Clear bit in the Configuration Register at address 00h, bit 3. When an interrupt event has occurred by exceeding HTHL, and is then reset, another interrupt occurs again when the next temperature conversion has completed. The interrupts continue to occur in this manner until the temperature falls below HTHL_HYST, at which time the interrupt output automatically clears.

One-Time Interrupt Mode

In One-Time Interrupt mode, exceeding HTHL causes an interrupt that remains active indefinitely until reset by reading Interrupt Status Register 1 or cleared by the INT_Clear bit in the Configuration Register. When an interrupt event has occurred by exceeding HTHL, and is then reset, an interrupt does not occur again until the temperature falls below HTHL_HYST.

Comparator Mode

In Comparator mode, exceeding T_{OS} causes the OS output to go low (default) and remain low until the temperature falls below T_{OS} HYST. When the temperature falls below T_{OS} HYST, OS goes high.

Chassis Intrusion

A chassis intrusion input (pin 7) is provided to detect unauthorised tampering with the equipment.

RESET

A RESET input (pin 12) and RESET output (pin 13) is also provided. Pulling the input pin low will reset all the NCT80 internal registers to their default values. This pin must be pulled high in order for the user to be able to configure the device.

The RESET output is at least 10 ms.

ADC Converter

The analog inputs (AIN0–AIN6) are multiplexed into the on–chip successive approximation, analog–digital converter. This has a resolution of 10 bits. The basic input range is zero to 2.56 V.

When the ADC is running, it samples and converts an input every 728 ms, except for the internal temperature. This is converted using a sigma delta ADC.

Fan Monitoring Cycle Time

When a monitoring cycle is started, monitoring of the fan speed inputs begins at the same time as monitoring of the analog inputs. However, the two monitoring cycles are not synchronized in any way. The monitoring cycle time for the fan inputs is dependent on fan speed and is much slower than for the analog inputs. The monitoring cycle time depends on the fan speed and number of tach output pulses per revolution. Two complete periods of the fan tach output (three rising edges) are required for each fan measurement. Therefore, if the start of a fan measurement just misses a rising edge, the measurement can take almost three tach periods. In order to read a valid result from the fan value registers, the total monitoring time allowed after starting the monitoring cycle should, therefore, be three tach periods of TACH1 plus three tach periods of TACH2 at the lowest normal fan speed.

Fan Inputs

Pins 4 and 5 are fan speed inputs. Signal conditioning in the NCT80 accommodates the slow rise and fall times typical of fan tachometer outputs. The maximum input signal range is 0 to VCC. In the event that these inputs are supplied from fan outputs that exceed 0 V to 6.5 V, either resistive attenuation of the fan signal or diode clamping must be included to keep inputs within an acceptable range. Figure 10 to Figure 13 show circuits for most common fan tach outputs. If the fan tach output has a resistive pull—up to VCC it can be directly connected to the fan input, as shown in Figure 10.

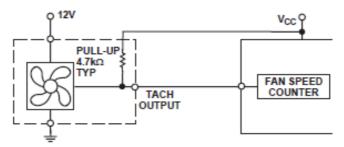
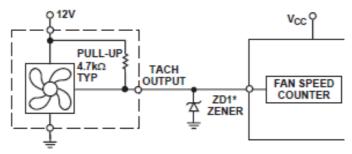



Figure 10. Fan with Tach. Pull-Up to +VCC

If the fan output has a resistive pull-up to 12 V (or other voltage greater than 6.5 V), the fan output can be clamped with a zener diode, as shown in Figure 11. The zener voltage should be chosen so it is greater than VIH but less than 6.5 V, allowing for the voltage tolerance of the zener. A value of between 3 V and 5 V is suitable.

*CHOOSE ZD1 VOLTAGE APPROXIMATELY 0.8

VCC

Figure 11. Fan with Tach. Pull-Up to Voltage >6.5 V

If the fan has a strong pull-up (less than $1 \text{ k}\Omega$) to 12 V, or a totem-pole output, then a series resistor can be added to limit the zener current, as shown in Figure 12. Alternatively, a resistive attenuator may be used, as shown in Figure 13. R1 and R2 should be chosen such that:

$$2 \ V < V_{pull-up} \times \frac{R_2}{\left(R_{pull-up} + R_1 + R_2\right)} < 5 \ V$$

The fan inputs have an input resistance of nominally $160~k\Omega$ to ground, so this should be taken into account when calculating resistor values. With a pull-up voltage of 12~V and pull-up resistor less than $1~k\Omega$, suitable values for R1 and R2 would be $100~k\Omega$

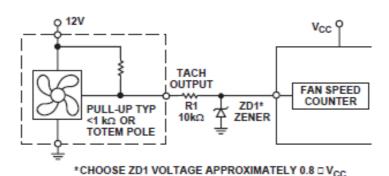


Figure 12. Fan with Strong Tach. Pull-Up to >VCC or Totem-Pole Output, Clamped with Zener and Resistor

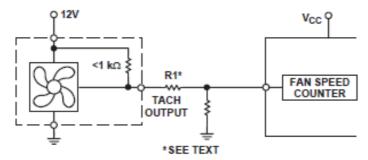


Figure 13. Fan with Strong Tach. Pull-Up to >VCC or Totem-Pole Output, Attenuated with R1/R2

Fan Speed Measurement

The fan counter does not count the fan tach output pulses directly, because the fan speed may be less than 1000 rpm and it would take several seconds to accumulate a reasonably large and accurate count. Instead, the period of

the fan revolution is measured by gating an on-chip 22.5 kHz oscillator into the input of an 8-bit counter for two periods of the fan tach output, as shown in Figure 14; the accumulated count is actually proportional to the fan tach period and inversely proportional to the fan speed.

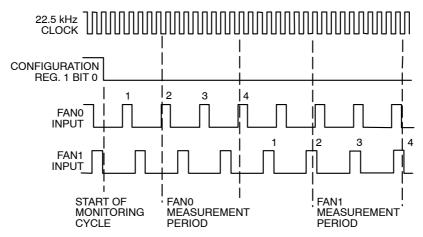


Figure 14. Fan Speed Measurement

The measurement begins on the rising edge of a fan tach pulse, and ends on the next-but-one rising edge. The fans are monitored sequentially, so if only one fan is monitored the monitoring time is the time taken after the Start Bit for it to produce two complete tach cycles or for the counter to reach full scale, whichever occurs sooner. If more than one fan is monitored, the monitoring time depends on the speed of the fans and the timing relationship of their tach pulses. This is illustrated in Figure 14. Once the fan speeds have been measured, they will be stored in the Fan Speed Value Registers and the most recent value can be read at any time. The measurements will be updated as long as the monitoring cycle continues. To accommodate fans of different speed and/or different numbers of output pulses per revolution, a prescaler (divisor) of 1, 2, 4, or 8 may be added before the counter. The default value is 2, which gives a count of 153 for a fan running at 4400 rpm producing two output pulses per revolution. The count (stored in the TACH registers) is calculated by the equation:

$$Count = \frac{(22.5 \times 10^3 \times 60)}{(rpm \times Divisor)}$$

 22.5×10^3 = oscillator frequency

Divisor = number of poles in the fan

Fan Limit Values

Fans in general will not over speed if run from the correct voltage, so the failure condition of interest is under speed due to electrical or mechanical failure. For this reason only, low–speed limits are programmed into the limit registers for the fans. It should be noted that, since fan period rather than speed is being measured, a fan failure interrupt will occur when the measurement *exceeds* the limit value.

Table 9. REGISTER MAP

Register Name	Туре	Reset Value	Address Offset
CONFIGURATIONREGISTER	RW	0x08	0x00
STATUSREGISTER1	RO	0x00	0x01
STATUSREGISTER2	RO	0x00	0x02
MASKREGISTER1	RW	0x00	0x03
MASKREGISTER2	RW	0x00	0x04
FAN_DIVISOR_OUTPUT_PIN_CONFIG	RW	0x14	0x05
OS_CONFIG_TEMP_RESOLUTION	RW	0x01	0x06
CONVERSION_RATE	RW	0x00	0x07
CHANNEL_SELECT_REGISTER	RW	0x00	0x08
CONVERSION_RATE	RW	0x00	0x09
IN0_READING	RO	0x0000	0x20
IN1_READING	RO	0x0000	0x21
IN2_READING	RO	0x0000	0x22
IN3_READING	RO	0x0000	0x23
IN4_READING	RO	0x0000	0x24
IN5_READING	RO	0x0000	0x25
IN6_READING	RO	0x0000	0x26
TEMP_READING	RO	0x0000	0x27
TACH1_READING	RO	0x00	0x28
TACH2_READING	RO	0x00	0x29
INO_HIGH_LIMIT	RW	0x00	0x2A
IN0_LOW_LIMIT	RW	0x00	0x2B
IN1_HIGH_LIMIT	RW	0x00	0x2C
IN1_LOW_LIMIT	RW	0x00	0x2D
IN2_HIGH_LIMIT	RW	0x00	0x2E
IN2_LOW_LIMIT	RW	0x00	0x2F
IN3_HIGH_LIMIT	RW	0x00	0x30
IN3_LOW_LIMIT	RW	0x00	0x31
IN4_HIGH_LIMIT	RW	0x00	0x32
IN4_LOW_LIMIT	RW	0x00	0x33
IN5_HIGH_LIMIT	RW	0x00	0x34
IN5_LOW_LIMIT	RW	0x00	0x35
IN6_HIGH_LIMIT	RW	0x00	0x36
IN6_LOW_LIMIT	RW	0x00	0x37
HOT_TEMP_HIGH_LIMIT	RW	0x00	0x38
HOT_TEMP_HYSTERESIS_LIMIT	RW	0x00	0x39
OS_TEMP_HIGH_LIMIT	RW	0x00	0x3A
OS_TEMP_HYSTERESIS_LIMIT	RW	0x00	0x3B
TACH1_COUNT_LIMIT	RW	0x00	0x3C
TACH2_COUNT_LIMIT	RW	0x00	0x3D
MANUFACTURERID	RO	0x1A	0x3E

CONFIGURATIONREGISTER

		Register Information		
Descripti	Description Allows the user to configure many features of the NCT80 device.			
Offset	Offset 0x00			
		Bitfield Details		
Field	Field Name Description		Access	Default
7	INITIALIZATION	Setting this bit to 1 resets the main user writeable registers to their power on default values.	RW	0
6	GPO	Setting this bit to 1 drives the GPO pin low.	RW	0
5	Chassis_clear	Setting this bit to 1 clears the GPI (chassis intrusion pin). After 10 ms this bit self clears.	RW	0
4	RESET	Setting this bit to 1 outputs at least a 10 ms RESET (active low) pulse on RST_OUT. If bits 7 and 6 of register 0x05 are set to 1 and 0 respectively then this RESET bit is cleared once the pulse is inactive.	RW	0
3	INT_clear	Setting this bit to 1 disables the INT output. This does not affect the Interrupt Status Registers/ The device will stop monitoring temperature and voltage. Monitoring will resume upon the clearing of this bit.	RW	1
2	INT_polarity_select	Setting this bit to 1 selects an active high output while setting it to 0 selects active low output.	RW	0
1	INT_en	Setting this bit to 1 enables the INT output.	RW	0
0	Start	Setting this bit to 1 enables the monitoring of temperature, voltage and fan readings. Setting this bit to 0 disables these monitoring operations and effectively puts the device in shutdown mode.	RW	0

STATUSREGISTER1

Register Information							
Description		Register to indicate if a high or low limit has been exceeded.					
Offset		0x01					
Bitfield Details							
Field Name Description				Default			
7	INT_IN	The NCT80 sets this bit to 1 if a low has been detected on the INT_IN pin.	RO	0			
6	IN6	The NCT80 sets this bit to 1 if the high or low limit has been exceeded.	RO	0			
5	IN5	The NCT80 sets this bit to 1 if the high or low limit has been exceeded.	RO	0			
4	IN4	The NCT80 sets this bit to 1 if the high or low limit has been exceeded.	RO	0			
3	IN3	The NCT80 sets this bit to 1 if the high or low limit has been exceeded.	RO	0			
2	IN2	The NCT80 sets this bit to 1 if the high or low limit has been exceeded.	RO	0			
1	IN1	The NCT80 sets this bit to 1 if the high or low limit has been exceeded.	RO	0			
0	IN0	The NCT80 sets this bit to 1 if the high or low limit has been exceeded.	RO	0			

STATUSREGISTER2

Register Information							
Description	n	Register to indicate if a high or low limit has been exceeded.					
Offset		0x02					
	Bitfield Details						
Field	Name	Description	Access	Default			
7:6	Reserved		RO	0x0			
5	OS_bit	The NCT80 sets this bit to 1 if the temperature exceeds either the high or low OS limit. The interrupt mode can be selected in register 0x04 bit 7.	RO	0			
4	GPI	The NCT80 sets this bit to 1 if the GPI (chassis intrusion) pin has gone high.	RO	0			
3	TACH2	The NCT80 sets this bit to 1 if the fan speed limit has been exceeded.	RO	0			
2	TACH1	The NCT80 sets this bit to 1 if the fan speed limit has been exceeded.	RO	0			
1	ВТІ	If this bit is set to 1 then it indicates that an interrupt has occurred on the Board Temperature Input (BTI) pin.	RO	0			
0	Temperature	The NCT80 sets this bit to 1 if the temperature exceeds either the high or low limit. The interrupt mode can be selected in register 0x04 bit 6.	RO	0			

MASKREGISTER1

		Register Information		
Description Register to mask out of limit conditions shown in the corresponding status register		er.		
Offset		0x03		
		Bitfield Details		
Field	Name	Description	Access	Default
7	INT_IN	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0
6	IN6	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0
5	IN5	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0
4	IN4	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0
3	IN3	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0
2	IN2	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0
1	IN1	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0
0	IN0	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0

MASKREGISTER2

		Register Information					
Descripti	on	Register to mask out of limit conditions shown in the corresponding status register.					
Offset		0x04					
Bitfield Details							
Field	Name	Description	Access	Default			
7 Mode_select_OS_ temp_interrupt once the converted below with temper on temper register above		Writing zero to this bit selects the default interrupt mode which gives the user an interrupt if the temperature goes above the \overline{OS} limit. The interrupt will be cleared conce the status register is read, but it will again be generated when the next conversion has completed. It will continue to do so until the temperature goes below the hysteresis limit. Writing a 1 to this bit selects the one time interrupt mode which only gives the user one interrupt when it goes above the \overline{OS} limit. The interrupt will be cleared conce the status register is read. Another interrupt will not be generated until the temperature goes below the hysteresis limit. It will also be cleared if the status register is read. No more interrupts will be generated until the temperature goes above the \overline{OS} limit again. The corresponding bit will be cleared in the status register every time it is read but may not set again when the next conversion is done.		0			
6	Mode_select_hot_ temp_interrupt	Writing zero to this bit selects the default interrupt mode which gives the user an interrupt if the temperature goes above the hot limit. The interrupt will be cleared once the status register is read, but it will again be generated when the next conversion has completed. It will continue to do so until the temperature goes below the hysteresis limit. Writing a 1 to this bit selects the one time interrupt mode which only gives the user one interrupt when it goes above the hot limit. The interrupt will be cleared once the status register is read. Another interrupt will not be generated until the temperature goes below the hysteresis limit. It will also be cleared if the status register is read. No more interrupts will be generated until the temperature goes above the hot limit again. The corresponding bit will be cleared in the status register every time it is read but may not set again when the next conversion is done.	RW	0			
5	OS_bit	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0			
4	GPI	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0			
3	TACH2	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0			
2	TACH1	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0			
1	BTI	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0			
0	Temperature	Writing a 1 to this bit disables the corresponding status bit for the INT output.	RW	0			

FAN DIVISOR OUTPUT PIN CONFIG

			Register Information					
Description			This register allows the user to configure the TACH reading modes and also the $\overline{\text{OS}}$ and $\overline{\text{RST_OUT}}$ pin configuration.					
Offset		0x05						
		•	Bitfield Details					
Field	Name		Description	Access	Default			
7	RST_en		Setting this bit to 1 enables the RST_OUT functionality on the RST_OUT / OS output pin. If bits 6 and 7 are set to 0 then this pin is disabled.					
6	OS_pin_en	pin. For t	his bit to 1 enables the \overline{OS} functionality on the \overline{RST} _OUT / \overline{OS} output the \overline{OS} pin to function, bit 7 of this register must be set to 0. If bits 6 e set to 0 then this pin is disabled.	RW	0			
5:4	TACH2_divisor	input (An	ensitive input is selected setting bit <4> = 1 selects and active-low interrupt will be generated if the TACH2 input is Low), if bit <4> = 0 in active-high input (an interrupt will be generated if the TACH2 ligh).	RW	0x1			
		0x0:	Divide by 1					
		0x1:	Divide by 2					
		0x2:	Divide by 4					
		0x3:	Divide by 8					
3:2	TACH1_divisor	input (An	interrupt will be generated if the TACH1 input is Low), if bit <2> = 0 n active-high input (an interrupt will be generated if the TACH1 input is Low).	RW	0x1			
		0x0:	Divide by 1					
		0x1:	Divide by 2					
		0x2:	Divide by 4					
		0x3:	Divide by 8					
1	TACH2_mode		his bit to 1 selects the level sensitive input mode. his bit to 0 selects TACH Count Mode for the input pin.	RW	0			
0	TACH1_mode		nis bit to 1 selects the level sensitive input mode. nis bit to 0 selects TACH Count Mode for the input pin.	RW	0			

${\tt OS_CONFIG_TEMP_RESOLUTION}$

			Register Information				
Description		This register allows the user to configure the $\overline{\text{OS}}$ output pin and also the temperature sensor resolution.					
Offset		0x06					
			Bitfield Details				
Field	Name		Description	Access	Default		
7:4	Temp_resolution	tempera the LSB 7-4 are	Depending of the state of bit 3 in this register these bits are the LSBs of the temperature measurement. If 8 bit resolution is selected then bit 7 only is the LSB of the temperature reading. If 11 bit resolution is selected then bits 7–4 are the LSBs of the temperature data (bit 7 being the most significant of the 4 bits).		0x0		
3 Temp_resol contro	Temp_resolution_	Selects	Selects either an 8 bit or 11 bit temperature conversion.		0		
	control	0:	Selects an 8 bit plus sign temperature conversion.	1			
		1:	Selects an 11 bit plus sign temperature conversion.	1			
2	OS_mode_select	Selects	the mode of operation for the $\overline{\text{OS}}$ pin.	RW	0		
		0:]			
		1:		1			
1	OS_polarity	Selects	the polarity of the open drain $\overline{\text{OS}}$ pin.	RW	0		
		0:	Selects OS to be active low.	1			
		1:	Selects OS to be active high.	1			
0	OS_status	This rea	ad only bit mirrors the state of the RST_OUT/OS pin when the OS pin ed.	RO	1		

CONVERSION_RATE

			Register Information			
Description Register to control the conversion rate of the ADC input channels.						
Offset		0x07	0x07			
	Bitfield Details					
Field	Name		Description Acco		Default	
7:1	Reserved			RO	0x00	
0	Conv_rate			RW	0	
		0:	Sets the conversion rate to be ever 728 ms (typical).			
		1:	Sets the NCT80 to operate in continuous conversion mode.			

CHANNEL_SELECT_REGISTER

			Register Information				
Descriptio	n	Allows the user to manually add/remove measurement channels from the ADC round robin loop.					
Offset		0x08					
		•	Bitfield Details				
Field	Name		Description	Access	Default		
7	Temp			RW	0		
		0:	This channel is included in the conversion loop.				
		1:	This channel is disabled and conversions are skipped. Value register will return 0 and it will not cause an interrupt to be generated.				
6	IN6			RW	0		
		0:	This channel is included in the conversion loop.				
		1:	This channel is disabled and conversions are skipped. Value register will return 0 and it will not cause an interrupt to be generated.				
5	IN5			RW	0		
		0:	This channel is included in the conversion loop.				
		1:	This channel is disabled and conversions are skipped. Value register will return 0 and it will not cause an interrupt to be generated.				
4	IN4			RW	0		
		0:	This channel is included in the conversion loop.				
		1:	This channel is disabled and conversions are skipped. Value register will return 0 and it will not cause an interrupt to be generated.				
3	IN3			RW	0		
		0:	This channel is included in the conversion loop.				
		1:	This channel is disabled and conversions are skipped. Value register will return 0 and it will not cause an interrupt to be generated.				
2	IN2			RW	0		
		0:	This channel is included in the conversion loop.				
		1:	This channel is disabled and conversions are skipped. Value register will return 0 and it will not cause an interrupt to be generated.				
1	IN1			RW	0		
		0:	This channel is included in the conversion loop.				
		1:	This channel is disabled and conversions are skipped. Value register will return 0 and it will not cause an interrupt to be generated.				
0	IN0			RW	0		
		0:	This channel is included in the conversion loop.				
		1:	This channel is disabled and conversions are skipped. Value register will return 0 and it will not cause an interrupt to be generated.				

CONVERSION_RATE_PROGRAMMING

			Register Information				
			Register to add further programmability to the conversion rate of the ADC input channels. Note Any non-zero value in this register over-rides setting as controlled from register 07h				
Offset		0x09					
			Bitfield Details				
Field	Name	Description Access			Default		
7:3	Reserved				0x00		
2:0	Conv_rate	0x00	Use Conversion rate as setup from register 0x07 bit 0	RW	0x0		
		0x01	Conversion rate = 1.2 ms				
		0x02	Conversion rate = 4.8 ms				
		0x03	Conversion rate = 9.6 ms				
		0x04	Conversion rate = 38 ms				
		0x05	Conversion rate = 77 ms				
		0x06	Conversion rate = 154 ms				
		0x07	Conversion rate = 614 ms				

INO_READING

Register Information						
Description This register stores the data returned on this input channel						
Offset		0x20				
		Bitfield Details				
Field	Name	Description	Access	Default		
15:6	IN0_Data		RO	0x0000		

IN1 READING

	. .							
	Register Information							
Description This register stores the data returned on this input channel								
Offset 0x21								
		Bitfield Details						
Field	Name	Description	Access	Default				
15:6	IN1_Data		RO	0x0000				

IN2_READING

Register Information							
Description This register stores the data returned on this input channel							
Offset		0x22	0x22				
		Bitfield Details					
Field	Name	Description	Access	Default			
15:6	IN2_Data		RO	0x0000			

IN3_READING

Register Information					
Description This register stores the data returned on this input channel					
Offset	Offset 0x23				
	Bitfield Details				
Field	Name	Description	Access	Default	
15:6	IN3_Data		RO	0x0000	

IN4_READING

	Register Information					
Description This register stores the data returned on this input channel						
Offset		0x24				
	Bitfield Details					
Field	Name	Description	Access	Default		
15:6	IN4_Data		RO	0x0000		

IN5_READING

Register Information					
Descriptio	Description This register stores the data returned on this input channel				
Offset	Offset 0x25				
	Bitfield Details				
Field	Name	Description	Access	Default	
15:6	IN5_Data		RO	0x0000	

IN6_READING

	Register Information					
Description This register stores the data returned on this input channel						
Offset		0x26				
	Bitfield Details					
Field	Name	Description	Access	Default		
15:6	IN6_Data		RO	0x0000		

TEMP_READING

Register Information						
Description This register stores the data returned on the temperature channel						
Offset		0x27				
	Bitfield Details					
Field	Name	Description	Access	Default		
15:4	Temp_Data		RO	0x0000		

TACH1_READING

	Register Information					
Description This register stores the number of counts on the TACH1 input pin.						
Offset		0x28				
		Bitfield Details				
Field	Name	Description	Access	Default		
7:0	TACH1_Data		RO	0x00		

TACH2_READING

	Register Information					
Description This register stores the number of counts on the TACH2 input pin.						
Offset		0x29				
	Bitfield Details					
Field	Name	Description	Access	Default		
7:0	TACH2_Data		RO	0x00		

INO_HIGH_LIMIT

	Register Information					
Descriptio	Description High limit register.					
Offset	Offset 0x2A					
		Bitfield Details				
Field	Name	Description	Access	Default		
7:0	HIGH_LIMIT		RW	0x00		

INO_LOW_LIMIT

	Register Information					
Descriptio	Description Low limit register.					
Offset	fset 0x2B					
		Bitfield Details				
Field	Name	Description	Access	Default		
7:0	LOW_LIMIT		RW	0x00		

IN1_HIGH_LIMIT

	Register Information					
Descriptio	Description High limit register.					
Offset	Offset 0x2C					
		Bitfield Details				
Field	Name	Description	Access	Default		
7:0	HIGH_LIMIT		RW	0x00		

IN1_LOW_LIMIT

	Register Information					
Description Low limit register.		Low limit register.				
Offset		0x2D	0x2D			
		Bitfield Details				
Field	Name	Description	Access	Default		
7:0	LOW_LIMIT		RW	0x00		

IN2_HIGH_LIMIT

	Register Information				
Descriptio	Description High limit register.				
Offset	Offset 0x2E				
		Bitfield Details			
Field	Name	Description	Access	Default	
7:0	HIGH_LIMIT		RW	0x00	

IN2_LOW_LIMIT

Register Information					
Descriptio	Description Low limit register.				
Offset	Offset 0x2F				
		Bitfield Details			
Field	Name	Description	Access	Default	
7:0	LOW_LIMIT		RW	0x00	

IN3_HIGH_LIMIT

	Register Information					
Descriptio	Description High limit register.					
Offset	Offset 0x30					
		Bitfield Details				
Field	Name	Description	Access	Default		
7:0	HIGH_LIMIT		RW	0x00		

IN3_LOW_LIMIT

Register Information					
Descriptio	Description Low limit register.				
Offset	Offset 0x31				
		Bitfield Details			
Field	Name	Description	Access	Default	
7:0	LOW_LIMIT		RW	0x00	

IN4_HIGH_LIMIT

Register Information					
Descriptio	Description High limit register.				
Offset	Offset 0x32				
		Bitfield Details			
Field	Name	Description	Access	Default	
7:0	HIGH_LIMIT		RW	0x00	

IN4_LOW_LIMIT

	Register Information					
Descriptio	Description Low limit register.					
Offset	Offset 0x33					
		Bitfield Details				
Field	Name	Description	Access	Default		
7:0	LOW_LIMIT		RW	0x00		

IN5_HIGH_LIMIT

Register Information					
Description High limit register.					
Offset	Offset 0x34				
		Bitfield Details			
Field	Name	Description	Access	Default	
7:0	HIGH_LIMIT		RW	0x00	

IN5_LOW_LIMIT

	······					
	Register Information					
Descriptio	Description Low limit register.					
Offset	Offset 0x35					
		Bitfield Details				
Field	Name	Description	Access	Default		
7:0	LOW_LIMIT		RW	0x00		

IN6_HIGH_LIMIT

	Register Information					
Descriptio	Description High limit register.					
Offset	Offset 0x36					
		Bitfield Details				
Field	Name	Description	Access	Default		
7:0	HIGH_LIMIT		RW	0x00		

IN6_LOW_LIMIT

Register Information					
Descriptio	Description Low limit register.				
Offset	Offset 0x37				
		Bitfield Details			
Field	Name	Description	Access	Default	
7:0	LOW_LIMIT		RW	0x00	

HOT_TEMP_HIGH_LIMIT

Register Information					
Description	Description Hot temperature limit				
Offset	Offset 0x38				
		Bitfield Details			
Field	Name	Description	Access	Default	
7:0	HOT_TEMP_HIGH_LIMIT		RW	0x55	

HOT_TEMP_HYSTERESIS_LIMIT

Register Information					
Descriptio	Description Hysteresis Temperature Limit (low)				
Offset	Offset 0x39				
		Bitfield Details			
Field	Name	Description	Access	Default	
7:0	HOT_TEMP_HYSTERESIS_LIMIT		RW	0x4B	

OS_TEMP_HIGH_LIMIT

	Register Information					
Descriptio	Description Hot temperature limit					
Offset	Offset 0x3A					
		Bitfield Details				
Field	Name	Description	Access	Default		
7:0	HOT_TEMP_HIGH_LIMIT		RW	0x55		

OS_TEMP_HYSTERESIS_LIMIT

Register Information				
Description Hysteresis Temperature Limit (low)				
Offset 0x3B				
Bitfield Details				
Field	Name	Description	Access	Default
7:0	HOT_TEMP_HYSTERESIS_LIMIT		RW	0x4B

TACH1_COUNT_LIMIT

Register Information					
Description		TACH1 speed limit.			
Offset		0x3C			
Bitfield Details					
Field	Name	Description	Access	Default	
7:0	TACH1_COUNT_LIMIT		RW	0xFF	

TACH2_COUNT_LIMIT

Register Information					
Description		TACH2 speed limit.			
Offset		0x3D			
Bitfield Details					
Field	Name	Description	Access	Default	
7:0	TACH2_COUNT_LIMIT		RW	0xFF	

MANUFACTURERID

Register Information					
Description		Manufacturer ID register. 0x1A for ON Semiconductor.			
Offset		0x3E			
Bitfield Details					
Field	Name	Description	Access	Default	
7:0	MANUFACTURER ID		RO	0x1A	

Serial Bus Interface

Control of the NCT80 is carried out via the I²C bus. The NCT80 is connected to this bus as a slave device, under the control of a master device. The NCT80 has a 7-bit serial bus address. The upper 4 bits of the device address are 0101. The lower 3 bits are set by pins 22, 23 and 24. Table 10 shows the 7-bit address for each of the pin states. The address pins are sampled continuously, so any changes made while power is on will result in the device address changing.

Table 10. I²C ADDRESS OPTIONS

A2	A 1	A0	Address
0	0	0	0x28
0	0	1	0x29
0	1	0	0x2A
0	1	1	0x2B
1	0	0	0x2C
1	0	1	0x2D
1	1	0	0x2E
1	1	1	0x2F

The serial bus protocol operates as follows:

- 1. The master initiates data transfer by establishing a START condition, defined as a high-to-low transition on the serial data line SDA while the serial clock line, SCL, remains high. This indicates that an address/data stream will follow. All slave peripherals connected to the serial bus respond to the START condition, and shift in the next eight bits, consisting of a 7-bit address (MSB first) plus an R/W bit, which determines the direction of the data transfer, i.e., whether data will be written to or read from the slave device. The peripheral whose address corresponds to the transmitted address responds by pulling the data line low during the low period before the ninth clock pulse, known as the Acknowledge Bit. All other devices on the bus now remain idle while the selected device waits for data to be read from or written to it. If the R/W bit is a 0, the master will write to the slave device. If the R/W bit is a 1, the master will read from the slave device.
- 2. Data is sent over the serial bus in sequences of nine clock pulses, eight bits of data followed by an Acknowledge Bit from the slave device.

 Transitions on the data line must occur during the low period of the clock signal and remain stable during the high period, as a low-to-high transition when the clock is high may be interpreted as a STOP signal. The number of data bytes that can be transmitted over the serial bus in a single READ or WRITE operation is limited only by what the master and slave devices can handle.

3. When all data bytes have been read or written, stop conditions are established. In WRITE mode, the master will pull the data line high during the 10th clock pulse to assert a STOP condition. In READ mode, the master device will override the acknowledge bit by pulling the data line high during the low period before the ninth clock pulse. This is known as No Acknowledge. The master will then take the data line low during the low period before the tenth clock pulse, then high during the tenth clock pulse to assert a STOP condition.

Any number of bytes of data may be transferred over the serial bus in one operation, but it is not possible to mix read and write in one operation because the type of operation is determined at the beginning and cannot subsequently be changed without starting a new operation. In the case of the NCT80, write operations contain either one or two bytes, and read operations contain one byte and perform the following functions. To write data to one of the device data registers or read data from it, the Address Pointer Register must be set so that the correct data register is addressed, and then data can be written into that register or read from it. The first byte of a write operation always contains an address that is stored in the Address Pointer Register. If data is to be written to the device, the write operation contains a second data byte that is written to the register selected by the address pointer register. This is illustrated in Figure 20. The device address is sent over the bus followed by R/W set to 0. This is followed by two data bytes. The first data byte is the address of the internal data register to be written to, which is stored in the Address Pointer Register. The second data byte is the data to be written to the internal data register.

When reading data from a register there are two possibilities:

- 1. If the NCT80's Address Pointer Register value is unknown or not the desired value, it is first necessary to set it to the correct value before data can be read from the desired data register. This is done by performing a write to the NCT80 as before, but only the data byte containing the register address is sent, as data is not to be written to the register. This is shown in Figure 16. A read operation is then performed consisting of the serial bus address, R/W bit set to 1, followed by the data byte read from the data register. This is shown in Figure 18.
- 2. If the Address Pointer Register is known to be already at the desired address, data can be read from the corresponding data register without first writing to the Address Pointer Register, so Figure 16 can be omitted.

To read from a register it is necessary to first write the register address to the address pointer. The Byte Write protocol is used for this.

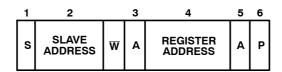


Figure 15. Byte Write Protocol

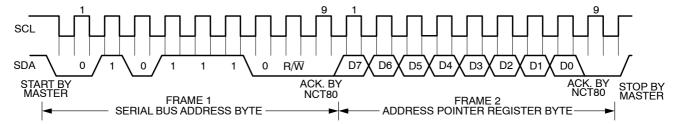


Figure 16. Writing to the Address Pointer

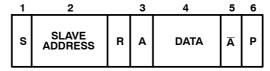


Figure 17. Read Byte Protocol

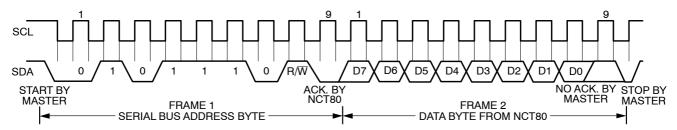
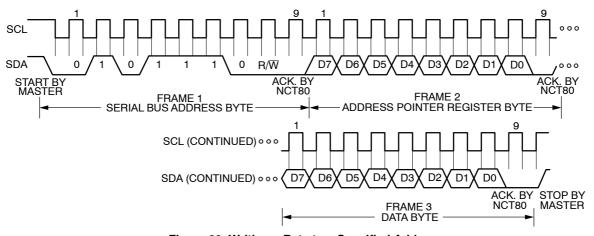
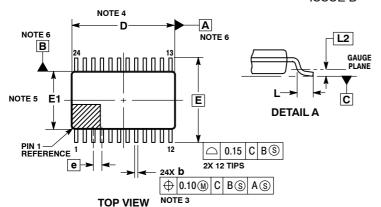
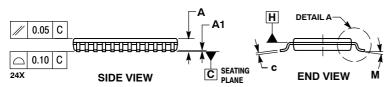


Figure 18. Reading a Byte from the NCT80

To write a byte to a particular register the following 3-byte sequence is used. The first byte is the 7-bit device address plus the Write bit. The second byte is the register address to be written to and the third byte is the data to be written.

Figure 19. Write a Byte to a Register

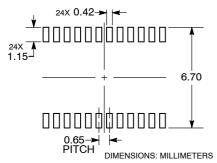




Figure 20. Writing a Byte to a Specified Address

PACKAGE DIMENSIONS

TSSOP24 7.8x4.4, 0.65P

CASE 948H **ISSUE B**



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL BE 0.08 MAX AT MMC. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.
- DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION D IS DETERMINED AT DATUM PLANE H.
- DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE. DIMENSION E1 IS DETERMINED AT DATUM PLANE H.
- DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
 A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEAT-ING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

	MILLIMETERS		
DIM	MIN	MAX	
Α		1.20	
A1	0.05	0.15	
b	0.19	0.30	
С	0.09	0.20	
D	7.70	7.90	
E	6.40 BSC		
E1	4.30	4.50	
е	0.65 BSC		
L	0.50	0.75	
L2	0.25 BSC		
M	0°	8°	

RECOMMENDED **SOLDERING FOOTPRINT**

ON Semiconductor is licensed by Philips Corporation to carry the I2C Bus Protocol.

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, ited. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru