74CBTLV3125-Q100

4-bit bus switch

Rev. 2 — 8 October 2018

Product data sheet

1. General description

The 74CBTLV3125-Q100 provides a 4-bit high-speed bus switch with separate output enable inputs (1OE to 4OE). The low on-state resistance of the switch allows connections to be made with minimal propagation delay. The switch is disabled (high-impedance OFF-state) when the output enable (nOE) input is HIGH.

To ensure the high-impedance OFF-state during power-up or power-down, $n\overline{OE}$ should be tied to the V_{CC} through a pull-up resistor. The minimum value of the resistor is determined by the current-sinking capability of the driver.

Schmitt trigger action at control input makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 2.3 V to 3.6 V.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

2. Features and benefits

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Supply voltage range from 2.3 V to 3.6 V
- Standard '125'-type pinout
- High noise immunity
- Complies with JEDEC standard:
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8-B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - MIL-STD-883, method 3015 exceeds 2000 V
 - HBM JESD22-A114F: exceeds 2000 V
 - CDM AEC-Q100-011 revision B exceeds 1000 V
- 5 Ω switch connection between two ports
- · Rail to rail switching on data I/O ports
- CMOS low power consumption
- Latch-up performance exceeds 250 mA per JESD78B Class I level A
- · I_{OFF} circuitry provides partial Power-down mode operation

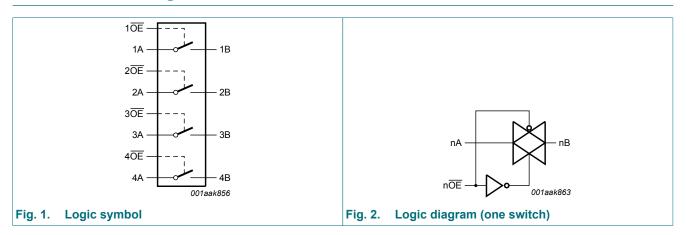
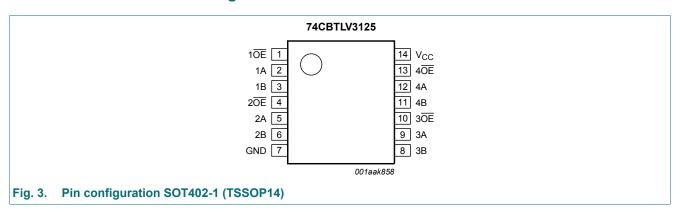

3. Ordering information

Table 1. Ordering information

Type number	Package	ckage							
	Temperature range	Name	Description	Version					
74CBTLV3125PW-Q100	-40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1					



4. Functional diagram

5. Pinning information

5.1. Pinning

5.2. Pin description

Table 2. Pin description

Symbol	Pin	Description				
OE, 2OE, 3OE, 4OE1, 4, 10, 13output enable input		output enable input				
1A, 2A, 3A, 4A,	2, 5, 9, 12	A input/output				
1B, 2B, 3B, 4B	3, 6, 8, 11	B output/input				
GND 7 ground (0 V)		ground (0 V)				
V _{CC}	14	positive supply voltage				

6. Functional description

Table 3. Function table

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level.$

Output enable input OE	Function switch		
L	ON-state		
Н	OFF-state		

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
VI	input voltage	control inputs [1]	-0.5	+4.6	V
V _{SW}	switch voltage	enable and disable mode [2]	-0.5	V _{CC} + 0.5	V
I _{IK}	input clamping current	V _I < -0.5 V	-50	-	mA
I _{SK}	switch clamping current	V _I < -0.5 V	-50	-	mA
I _{SW}	switch current	V _{SW} = 0 V to V _{CC}	-	±128	mA
I _{CC}	supply current		-	+100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C to } +125 ^{\circ}\text{C}$ [3]	-	500	mW

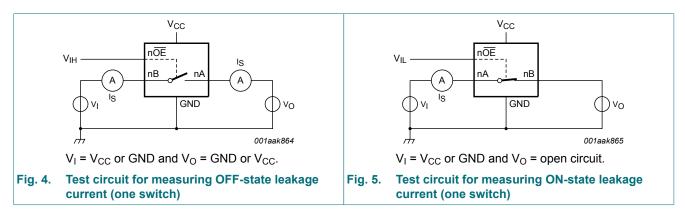
- [1] The minimum input voltage rating may be exceeded if the input clamping current ratings are observed.
- [2] The switch voltage ratings may be exceeded if switch clamping current ratings are observed
- [3] For TSSOP14 package: Ptot derates linearly with 5.5 mW/K above 60 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		2.3	3.6	V
VI	input voltage	control inputs	0	3.6	V
V_{SW}	switch voltage	enable and disable mode	0	V _{CC}	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	pin nOE; V _{CC} = 2.3 V to 3.6 V	0	200	ns/V

9. Static characteristics


Table 6. Static characteristics

At recommended operating conditions voltages are referenced to GND (ground = 0 V).

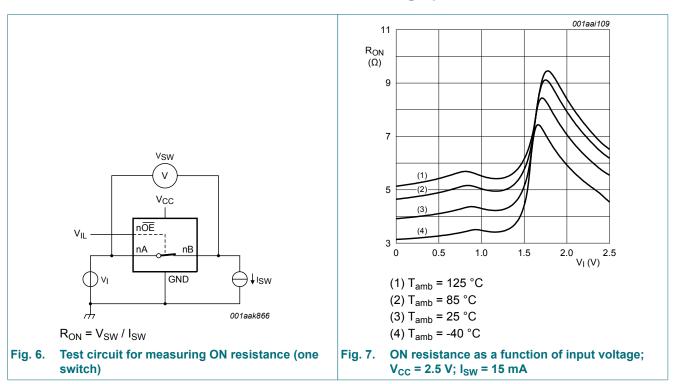
Symbol	Parameter	Conditions	T _{amb} =	-40 °C to -	+85 °C	T _{amb} = -40 °C to +125 °C		
			Min	Typ[1]	Max	Min	Max	
V _{IH}	HIGH-level	V _{CC} = 2.3 V to 2.7 V	1.7	-	-	1.7	-	V
	input voltage	V _{CC} = 3.0 V to 3.6 V	2.0	-	-	2.0	-	V
V _{IL}	LOW-level input	V _{CC} = 2.3 V to 2.7 V	-	-	0.7	-	0.7	V
	voltage	V _{CC} = 3.0 V to 3.6 V	-	-	0.9	-	0.9	V
I _I	input leakage current	pin \overline{OE} ; $V_I = GND$ to V_{CC} ; $V_{CC} = 3.6 \text{ V}$	-	-	±1.0	-	±20	μΑ
$I_{S(OFF)}$ OFF-state $I_{CC} = 3.6 \text{ V}$; see Fig. 4		-	-	±1	-	±20	μΑ	
I _{S(ON)}	ON-state $V_{CC} = 3.6 \text{ V}$; see Fig. 5		-	-	±1	-	±20	μΑ
I _{OFF}	power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V}$	-	-	±10	-	±50	μΑ
I _{CC}	supply current	V_I = GND or V_{CC} ; I_O = 0 A; V_{SW} = GND or V_{CC} ; V_{CC} = 3.6 V	-	-	10	-	50	μΑ
ΔI _{CC}	additional supply current	pin \overline{OE} ; $V_1 = V_{CC} - 0.6 \text{ V}$; [2] $V_{SW} = GND \text{ or } V_{CC}$; $V_{CC} = 3.6 \text{ V}$	-	-	300	-	2000	μΑ
Cı	input capacitance	pin n OE ; V _{CC} = 3.3 V; V _I = 0 V to 3.3 V	-	0.9	-	-	-	pF
C _{S(OFF)}	OFF-state capacitance	$V_{CC} = 3.3 \text{ V}; V_{I} = 0 \text{ V to } 3.3 \text{ V}$	-	5.2	-	-	-	pF
C _{S(ON)}	ON-state capacitance	$V_{CC} = 3.3 \text{ V}; V_{I} = 0 \text{ V to } 3.3 \text{ V}$	-	14.3	-	-	-	pF

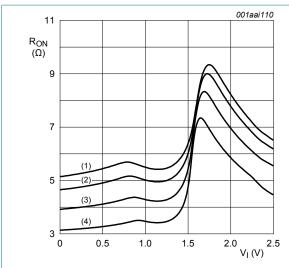
- All typical values are measured at T_{amb} = 25 °C. One input at 3 V, other inputs at V_{CC} or GND.

9.1. Test circuits

4/14

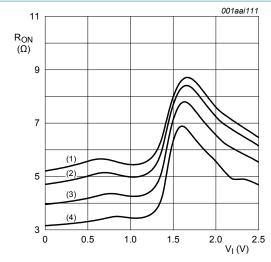
9.2. ON resistance


Table 7. Resistance R_{ON}


At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuit see Fig. 6.

Symbol	Parameter	Conditions	T _{amb} =	-40 °C to	+85 °C	T _{amb} = -40 °	C to +125 °C	Unit
			Min	Typ [1]	Max	Min	Max	
R _{ON}	ON resistance	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V};$ see Fig. 7 to Fig. 9						
		I _{SW} = 64 mA; V _I = 0 V	-	4.2	8.0	-	15.0	Ω
		I _{SW} = 24 mA; V _I = 0 V	-	4.2	8.0	-	15.0	Ω
		I _{SW} = 15 mA; V _I = 1.7 V	-	8.4	40.0	-	60.0	Ω
		V _{CC} = 3.0 V to 3.6 V; see <u>Fig. 10</u> to <u>Fig. 12</u>						
		I _{SW} = 64 mA; V _I = 0 V	-	4.0	7.0	-	11.0	Ω
		I _{SW} = 24 mA; V _I = 0 V	-	4.0	7.0	-	11.0	Ω
		I _{SW} = 15 mA; V _I = 2.4 V	-	6.2	15.0	-	25.5	Ω

- 1] Typical values are measured at T_{amb} = 25 °C and nominal V_{CC} .
- [2] Measured by the voltage drop between the A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals.


9.3. ON resistance test circuit and graphs

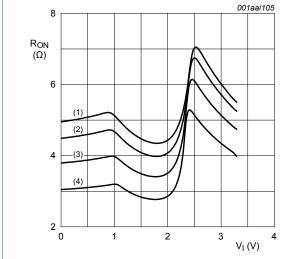

- (1) $T_{amb} = 125 \, ^{\circ}C$
- (2) T_{amb} = 85 °C
- (3) $T_{amb} = 25 \, ^{\circ}C$
- (4) T_{amb} = -40 °C

Fig. 8. ON resistance as a function of input voltage; $V_{CC} = 2.5 \text{ V}$; $I_{SW} = 24 \text{ mA}$

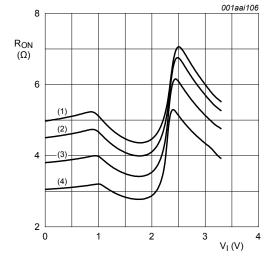

- (1) $T_{amb} = 125 \, ^{\circ}C$
- (2) T_{amb} = 85 °C
- (3) $T_{amb} = 25 \, ^{\circ}C$
- (4) $T_{amb} = -40 \, ^{\circ}C$

Fig. 9. ON resistance as a function of input voltage; $V_{CC} = 2.5 \text{ V}$; $I_{SW} = 64 \text{ mA}$

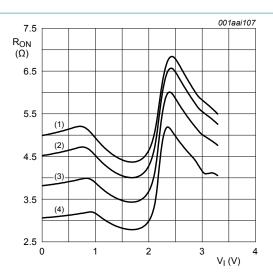

- (1) $T_{amb} = 125 \, ^{\circ}C$
- (2) T_{amb} = 85 °C
- (3) $T_{amb} = 25 \, ^{\circ}C$
- (4) T_{amb} = -40 °C

Fig. 10. ON resistance as a function of input voltage; $V_{CC} = 3.3 \text{ V}$; $I_{SW} = 15 \text{ mA}$

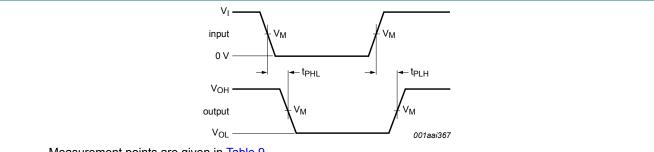
- (1) $T_{amb} = 125 \, ^{\circ}C$
- (2) T_{amb} = 85 °C
- (3) $T_{amb} = 25 \, ^{\circ}C$
- (4) T_{amb} = -40 °C

Fig. 11. ON resistance as a function of input voltage; $V_{CC} = 3.3 \text{ V}$; $I_{SW} = 24 \text{ mA}$

- (1) $T_{amb} = 125 \, ^{\circ}C$
- (2) T_{amb} = 85 °C
- (3) T_{amb} = 25 °C
- (4) $T_{amb} = -40 \, ^{\circ}C$

Fig. 12. ON resistance as a function of input voltage; V_{CC} = 3.3 V; I_{SW} = 64 mA

10. Dynamic characteristics

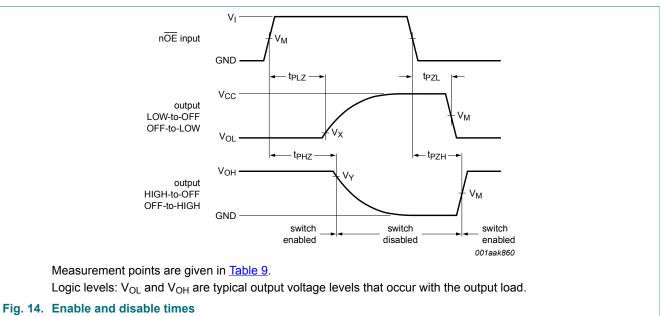

Table 8. Dynamic characteristics

GND = 0 V; for test circuit see Fig. 15

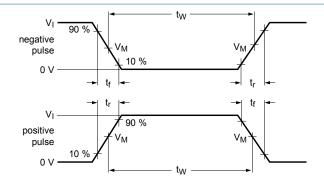
Symbol	Parameter	rameter Conditions		-40 °C to	+85 °C	T _{amb} = -40 °	C to +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation delay	nA to nB or nB to nA; [2] [3] see Fig. 13						
		V _{CC} = 2.3 V to 2.7 V	-	-	0.13	-	0.20	ns
		V _{CC} = 3.0 V to 3.6 V	-	-	0.20	-	0.31	ns
t _{en}	enable time	nOE to nA or nB; [4] see Fig. 14						
		V _{CC} = 2.3 V to 2.7 V	1.0	2.7	4.6	1.0	6.0	ns
		V _{CC} = 3.0 V to 3.6 V	1.0	2.4	4.4	1.0	6.0	ns
t _{dis}	disable time	nOE to nA or nB; [5] see Fig. 14						
		V _{CC} = 2.3 V to 2.7 V	1.0	2.2	3.9	1.0	5.5	ns
		V _{CC} = 3.0 V to 3.6 V	1.0	2.9	4.2	1.0	5.5	ns

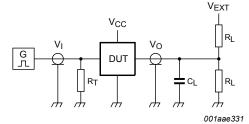
- [1] All typical values are measured at T_{amb} = 25 °C and at nominal V_{CC}.
 [2] The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the load capacitance, when driven by an ideal voltage source (zero output impedance).
- t_{pd} is the same as t_{PLH} and t_{PHL} .
- [4] ten is the same as tell and tell.
- [5] t_{dis} is the same as t_{PHZ} and t_{PLZ} .

10.1. Waveforms and test circuit


Measurement points are given in Table 9.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.


Fig. 13. The data input (nA or nB) to output (nB or nA) propagation delays


Table 9. Measurement points

Supply voltage	Input	nput			Output			
V _{CC}	V _M	Vı	$t_r = t_f$	V _M	V _X	V _Y		
2.3 V to 2.7 V	0.5V _{CC}	V _{CC}	≤ 2.0 ns	0.5V _{CC}	V _{OL} + 0.15 V	V _{OH} - 0.15 V		
3.0 V to 3.6 V	0.5V _{CC}	V _{CC}	≤ 2.0 ns	0.5V _{CC}	V _{OL} + 0.3 V	V _{OH} - 0.3 V		

8 / 14

Test data is given in Table 10.

Definitions for test circuit:

 R_L = Load resistance.

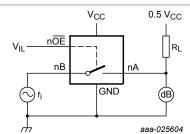
 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig. 15. Test circuit for measuring switching times

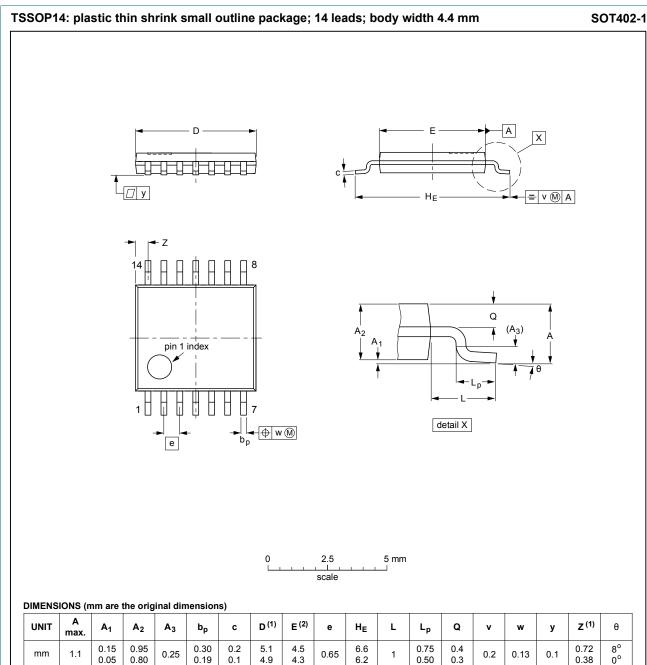
Table 10. Test data


Supply voltage	Load		V _{EXT}		
V _{CC}	C _L	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
2.3 V to 2.7 V	30 pF	500 Ω	open	GND	2V _{CC}
3.0 V to 3.6 V	50 pF	500 Ω	open	GND	2V _{CC}

10.2. Additional dynamic characteristics

Table 11. Additional dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).


Symbol	Parameter	Conditions	Т	Unit		
			Min	Тур	Max	
f _(-3dB)		V_I = GND or V_{CC} ; t_r = t_f ≤ 2.5 ns; V_{CC} = 3.3 V; R_L = 50 Ω ; see Fig. 16	-	406	-	MHz

 $n\overline{OE}$ connected to GND; f_i is biased at 0.5V_{CC}; Adjust f_i voltage to obtain 0 dBm level at output. Increase f_i frequency until dB meter reads -3 dB.

Fig. 16. Test circuit for measuring the frequency response when channel is in ON-state

11. Package outline

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT402-1		MO-153			-99-12-27 03-02-18

Fig. 17. Package outline SOT402-1 (TSSOP14)

12. Abbreviations

Table 12. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MIL	Military

13. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74CBTLV3125_Q100 v.2	20181008	Product data sheet	-	74CBTLV3125_Q100 v.1		
Modifications:	 The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. Legal texts have been adapted to the new company name where appropriate. 					
74CBTLV3125_Q100 v.1	20170105	Product data sheet	-	-		

14. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or

equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own title.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Product data sheet

Contents

1. General description	1		
Features and benefits			
3. Ordering information	1		
4. Functional diagram	2		
5. Pinning information			
5.1. Pinning			
5.2. Pin description			
6. Functional description	2		
7. Limiting values			
8. Recommended operating conditions	3		
9. Static characteristics			
9.1. Test circuits			
9.2. ON resistance			
9.3. ON resistance test circuit and graphs			
10. Dynamic characteristics			
10.1. Waveforms and test circuit			
10.2. Additional dynamic characteristics			
11. Package outline			
12. Abbreviations	12		
13. Revision history			
14. Legal information			
U			

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 8 October 2018

[©] Nexperia B.V. 2018. All rights reserved

OOO «ЛайфЭлектроникс" "LifeElectronics" LLC

ИНН 7805602321 КПП 780501001 P/C 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 3010181090000000703 БИК 044030703

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибьюторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибьюторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помогать разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный) Email: org@lifeelectronics.ru