

EVALUATION KIT
AVAILABLE**MAXIM**

Linear Li+ Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOK in 3mm x 3mm TDFN

General Description

The MAX1508 is an intelligent, stand-alone constant-current, constant-voltage (CCCV), thermally regulated linear charger for a single-cell lithium-ion (Li+) battery. The MAX1508 integrates the current-sense circuit, MOS pass element, and thermal-regulation circuitry, and also eliminates the reverse-blocking Schottky diode, to create the simplest and smallest charging solution for hand-held equipment.

The MAX1508 functions as a stand-alone charger to control the charging sequence from the prequalification state through fast-charge, top-off charge, and full-charge indication. The MAX1508Y and MAX1508Z eliminate the prequalification state to allow startup into a load without a battery.

Proprietary thermal-regulation circuitry limits the die temperature to +100°C when fast charging or while exposed to high ambient temperatures, allowing maximum charging current without damaging the IC.

The MAX1508 achieves high flexibility by providing an adjustable fast-charge current by an external resistor. Other features include the charging status (CHG) of the battery, an active-low control input (EN) for the MAX1508 and MAX1508Z (active-high control input for the MAX1508Y), and an active-low input power-source detection output (ACOK).

The MAX1508 accepts a +4.25V to +13V supply, but disables charging when the input voltage exceeds +7V to protect against unqualified or faulty AC adapters. The MAX1508 operates over the extended temperature range (-40°C to +85°C) and is available in a compact 8-pin thermally enhanced 3mm x 3mm thin DFN package with 0.8mm height.

Applications

- Cellular and Cordless Phones
- PDAs
- Digital Cameras and MP3 Players
- USB Appliances
- Charging Cradles and Docks
- Bluetooth™ Equipment

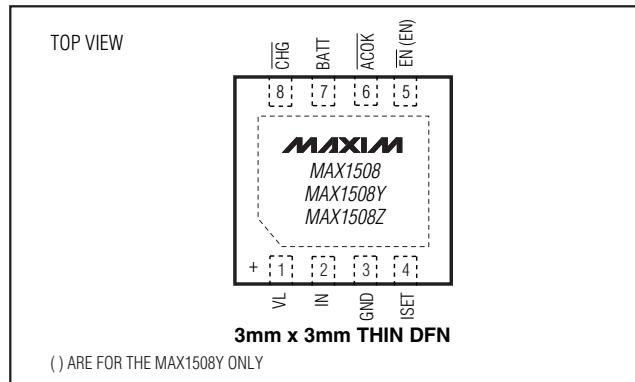
Typical Operating Circuit appears at end of data sheet.

Bluetooth is a trademark of Ericsson.

Features

- ♦ Stand-Alone Linear 1-Cell Li+ Battery Charger
- ♦ No External FET, Reverse-Blocking Diode, or Current-Sense Resistor Required
- ♦ Programmable Fast-Charge Current (0.8A max)
- ♦ Proprietary Die-Temperature Regulation Control (+100°C)
- ♦ +4.25V to +13V Input Voltage Range with Input Overvoltage Protection (OVP) Above +7V
- ♦ Charge-Current Monitor for Fuel Gauging
- ♦ Low Dropout Voltage—130mV at 0.425A
- ♦ Input Power-Source Detection Output (ACOK)
- ♦ Soft-Start Limits Inrush Current
- ♦ No Prequalification State for the MAX1508Y and MAX1508Z
- ♦ Charge Status Output (CHG) for LED or Microprocessor Interface
- ♦ Small 3mm x 3mm 8-Pin Thin DFN Package, 0.8mm High
- ♦ Active-Low Charge Enable (EN) (MAX1508 and MAX1508Z)
- ♦ Active-High Charge Enable (EN) (MAX1508Y)

Ordering Information


PART	TEMP RANGE	PIN-PACKAGE	TOP MARK
MAX1508ETA-T	-40°C to +85°C	8 Thin DFN-EP*	AHF
MAX1508ETA+T	-40°C to +85°C	8 Thin DFN-EP*	AHF

*EP = Exposed paddle.

+Denotes lead-free package.

Ordering Information continued at end of data sheet.

Pin Configuration

MAXIM

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Maxim Integrated Products 1

MAX1508/MAX1508Y/MAX1508Z

Linear Li+ Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOK in 3mm x 3mm TDFN

ABSOLUTE MAXIMUM RATINGS

IN, \overline{CHG} to GND	-0.3V to +14V
VL, BATT, ISET, \overline{EN} , EN, \overline{ACOK} to GND	-0.3V to +6V
VL to IN	-14V to +0.3V
IN to BATT Continuous Current	0.9A
Continuous Power Dissipation ($T_A = +70^\circ C$)	
8-Pin TDFN (derate 24.4mW/ $^\circ C$ above $+70^\circ C$)	1951mW

Short-Circuit Duration	Continuous
Operating Temperature Range	-40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

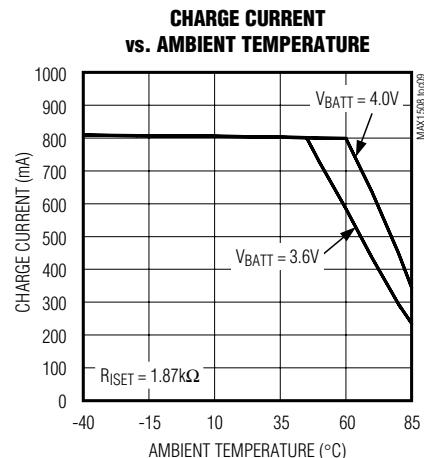
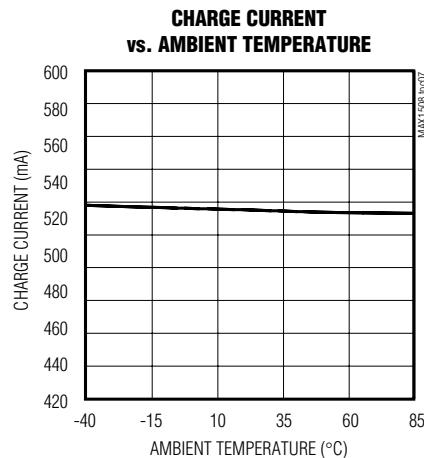
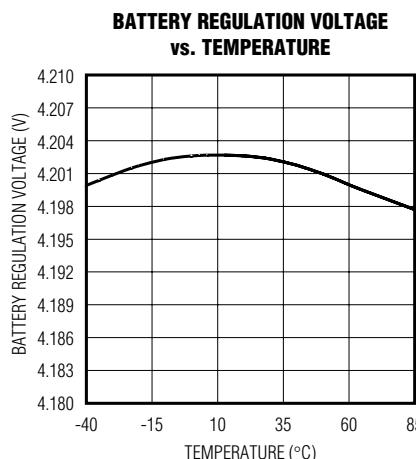
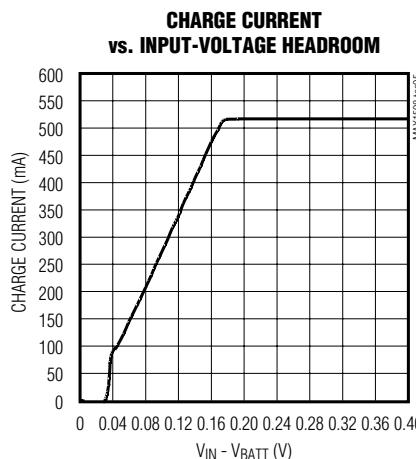
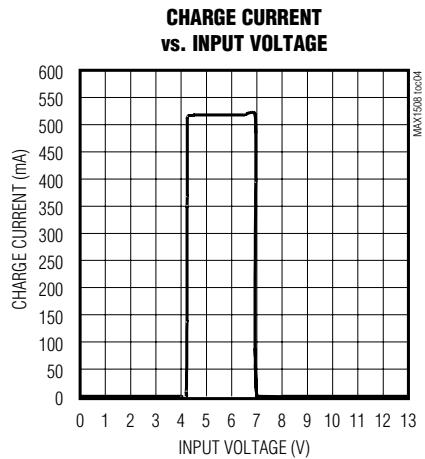
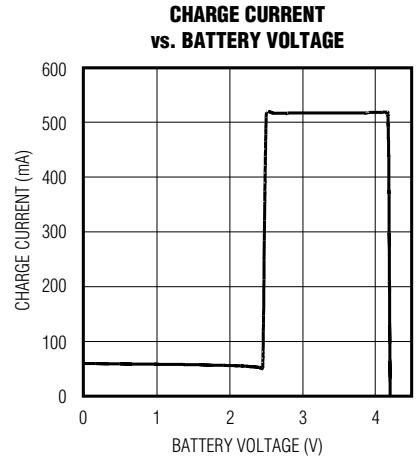
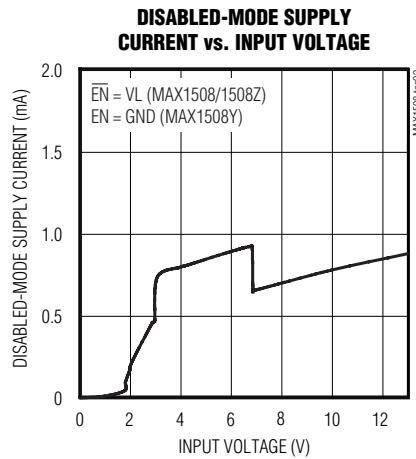
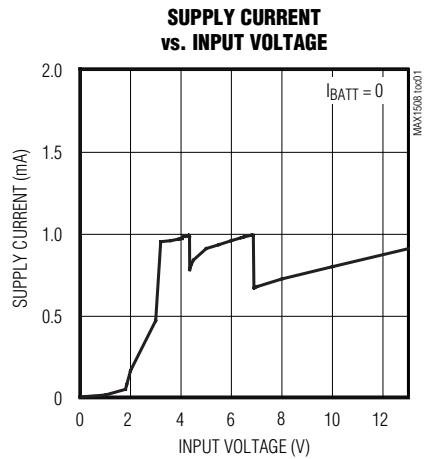
($V_{IN} = 5V$, $V_{BATT} = 4.0V$, $\overline{ACOK} = \overline{EN} = \overline{CHG}$ = unconnected (for the MAX1508 and MAX1508Z), $EN = VL$ (for the MAX1508Y), $R_{ISET} = 2.8k\Omega$ to GND, $C_{VL} = 0.47\mu F$, BATT bypassed to GND with $1\mu F$, $T_A = -40^\circ C$ to $+85^\circ C$, unless otherwise noted. Typical values are at $T_A = +25^\circ C$.) (Note 1)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Voltage Range		0	13		V	
Input Operating Range		4.25	6.50		V	
ACOK Trip Point, IN	$V_{IN} - V_{BATT}$, V_{IN} rising	20	40	60	mV	
	$V_{IN} - V_{BATT}$, V_{IN} falling	15	30	45		
Overvoltage Lockout Trip Point	V_{IN} rising	6.5	7	7.5	V	
	V_{IN} hysteresis		0.11			
IN Input Current	Charging ($I_{IN} - I_{BATT}$)		1	2	mA	
	Disabled, $\overline{EN} = VL$ (MAX1508/MAX1508Z), $EN = GND$ (MAX1508Y)		0.8	1.5		
	OFF state ($V_{IN} = V_{BATT} = 4.0V$)		0.065			
VL Output Voltage	$I_{VL} = 100\mu A$		3.3		V	
VL Load Regulation	$I_{VL} = 100\mu A$ to 2mA		-71	-200	mV	
VL Temperature Coefficient	$I_{VL} = 100\mu A$		-2		mV/°C	
VL Undervoltage Lockout Trip Point	V_{IN} rising		2.95		V	
	Hysteresis		0.17			
BATT Input Current	$V_{IN} = 0$ to 4V		3	10	μA	
	$\overline{EN} = VL$ (MAX1508/MAX1508Z), $EN = GND$ (MAX1508Y)		4	10		
Maximum RMS Charge Current			0.8		A	
Battery Regulation Voltage	$I_{BATT} = 0$	$T_A = 0^\circ C$ to $+85^\circ C$	4.162	4.2	4.238	V
		$T_A = -40^\circ C$ to $+85^\circ C$	4.150	4.2	4.250	
BATT Removal Detection Threshold	V_{BATT} rising		4.4	4.67	4.9	V

Linear Li+ Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOK in 3mm x 3mm TDFN

ELECTRICAL CHARACTERISTICS (continued)

($V_{IN} = 5V$, $V_{BATT} = 4.0V$, $\overline{ACOK} = \overline{EN} = \overline{CHG}$ = unconnected (for the MAX1508 and MAX1508Z), $EN = VL$ (for the MAX1508Y,) $R_{ISET} = 2.8k\Omega$ to GND, $C_{VL} = 0.47\mu F$, BATT bypassed to GND with $1\mu F$, $T_A = -40^\circ C$ to $+85^\circ C$, unless otherwise noted. Typical values are at $T_A = +25^\circ C$.) (Note 1)









PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
BATT Removal Detection-Threshold Hysteresis		200			mV
Minimum BATT Bypass Capacitance		1			$\mu F/A$
Fast-Charge Current-Loop System Accuracy	$V_{BATT} = 3.5V$	478	520	562	mA
Precharge Current System Accuracy	Percentage of the fast-charge current, $V_{BATT} = 2.2V$ (MAX1508 only)	5	10	15	%
Die-Temperature-Regulation Set Point		100			$^\circ C$
V_{BATT} Precharge Threshold Voltage	V_{BATT} rising (MAX1508 only)	2.3	2.5	2.7	V
Current-Sense Amplifier Gain, I_{SET} to I_{BATT} in Fast-Charge Mode	$I_{BATT} = 500mA$, $V_{ISET} = 1.4V$	0.880	0.958	1.035	mA/A
Regulator Dropout Voltage ($V_{IN} - V_{BATT}$)	$V_{BATT} = 4.1V$, $I_{BATT} = 425mA$	130	200		mV
\overline{EN} or EN Logic Input Low Voltage	$4.25V < V_{IN} < 6.5V$		0.52		V
\overline{EN} or EN Logic Input High Voltage	$4.25V < V_{IN} < 6.5V$	1.3			V
\overline{EN} or EN Internal Pulldown Resistor	(MAX1508 and MAX1508Z only)	100	200	400	$k\Omega$
\overline{CHG} Output Low Current	$V_{CHG} = 1V$	5	12	20	mA
\overline{CHG} Output High Leakage Current	$V_{CHG} = 13V$	$T_A = +25^\circ C$	1		μA
			0.002		
ACOK Output Low Voltage	$I_{ACOK} = 0.5mA$		0.4		V
ACOK Output High Leakage Current	$V_{ACOK} = 5.5V$	$T_A = +25^\circ C$	1		μA
			0.002		
Full-Battery Detection Current Threshold (as a Percentage of the Fast-Charge Current)	I_{BATT} falling	5	10	15	%

Note 1: Limits are 100% production tested at $T_A = +25^\circ C$. Limits over operating temperature range are guaranteed through correlation using statistical quality control (SQC) methods.

Linear Li+ Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOK in 3mm x 3mm TDFN

Typical Operating Characteristics

($V_{IN} = 5V$, $V_{BATT} = 4.0V$, $\overline{ACOK} = \overline{EN} = \overline{CHG}$ = unconnected, $EN = VL$ (MAX1508Y), $R_{ISET} = 2.8k\Omega$ to GND, $C_{IN} = 1\mu F$, $C_{BATT} = 1\mu F$, $C_{VL} = 0.47\mu F$, $T_A = +25^\circ C$, unless otherwise noted.)

Linear Li+ Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOK in 3mm x 3mm TDFN

Pin Description

PIN	NAME	FUNCTION
1	VL	Internally Generated Logic Supply for Chip. Bypass VL to GND with a 0.47 μ F capacitor.
2	IN	Input Supply Voltage. Bypass IN to GND with a 1 μ F capacitor to improve line noise and transient rejection.
3	GND	Ground. Connect GND and exposed pad to a large copper trace for maximum power dissipation.
4	ISET	Charge-Current Program and Fast-Charge Current Monitor. Output current from ISET is 0.958mA per amp of battery charging current. The charging current is set by connecting a resistor from ISET to GND. Fast-charge current = $1461V / R_{ISET}\Omega$.
5	\bar{EN}	Logic-Level Enable Input (MAX1508/1508Z). Drive \bar{EN} high to disable charger. Pull \bar{EN} low or float for normal operation. \bar{EN} has an internal 200k Ω pulldown resistor.
	EN	Logic-Level Enable Input (MAX1508Y). Drive EN low to disable charger. Drive EN high for normal operation.
6	ACOK	Input Power-Detection Output. The open-drain ACOK output asserts low when $+4.25V \leq V_{IN} \leq +7V$ and $V_{IN} - V_{BATT} \geq 40mV$. ACOK requires an external 100k Ω pullup resistor. ACOK is high impedance in shutdown.
7	BATT	Li+ Battery Connection. Bypass BATT to GND with a capacitor of at least 1 μ F per ampere of charge current.
8	\bar{CHG}	Charging Indicator, Open-Drain Output. \bar{CHG} goes low (and can turn on an LED) when charging begins. \bar{CHG} is high impedance when the battery current drops below 10% of the fast-charging current, or when \bar{EN} is high. Connect a pullup resistor to the μ P's I/O voltage when interfacing with a μ P logic input.
—	PAD	Exposed Pad. Connect exposed pad to a large copper trace for maximum power dissipation. The pad is internally connected to GND.

Detailed Description

The MAX1508 charger uses voltage, current, and thermal-control loops to charge a single Li+ cell and to protect the battery (Figure 1). When a Li+ battery with a cell voltage below 2.5V is inserted, the MAX1508 charger enters the prequalification stage where it precharges that cell with 10% of the user-programmed fast-charge current. There is no prequalification stage for the MAX1508Z and MAX1508Y in order to allow startup into a load without a battery. The \bar{CHG} indicator output is driven low (Figure 2) to indicate entry into the prequalification state. Once the cell has passed 2.5V, the charger soft-starts before it enters the fast-charge stage. The fast-charge current level is programmed through a resistor from ISET to ground. As the battery voltage approaches 4.2V, the charging current is reduced. If the battery current drops to less than 10% of the fast-charging current, the \bar{CHG} indicator goes high impedance, signaling the battery is fully charged. At this point the MAX1508 enters a constant voltage-regulation mode to maintain the battery at full charge. If, at any point while charging the battery, the die temperature approaches +100°C, the MAX1508 reduces the charging current so the die temperature does not exceed the temperature-regulation set point.

The thermal-regulation loop limits the MAX1508 die temperature to +100°C by reducing the charge current as necessary (see the *Thermal Regulation* section).

This feature not only protects the MAX1508 from overheating, but also allows higher charge current without risking damage to the system.

MAX1508/MAX1508Z EN Charger Enable Input

\bar{EN} is a logic input (active low) to enable the charger. Drive \bar{EN} low, leave floating, or connect to GND to enable the charger control circuitry. Drive \bar{EN} high to disable the charger control circuitry. \bar{EN} has a 200k Ω internal pulldown resistance.

MAX1508Y EN Charger Enable Input

EN is a logic input (active high) to enable the charger. Drive EN high to enable the charger control circuitry. Drive EN low to disable the charger control circuitry.

ACOK Output

Active-Low Output. The open-drain ACOK output asserts low when $+4.25V < V_{IN} < +7V$ and $V_{IN} - V_{BATT} > 40mV$. ACOK requires an external 100k Ω pullup resistor to the system's logic I/O voltage. ACOK is high impedance in shutdown.

VL Internal Voltage Regulator

The MAX1508 linear charger contains an internal linear regulator available on the VL output pin. VL requires a 0.47 μ F ceramic bypass capacitor to GND. VL is regulated to 3.3V whenever the input voltage is above 3.5V.

MAX1508/MAX1508Y/MAX1508Z

Linear Li+ Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOK in 3mm x 3mm TDFN

CHG Charge Indicator Output

CHG is an open-drain current source for indicating charge status. Table 1 describes the state of CHG during different stages of operation.

CHG is a nominal 12mA current source suitable for driving a charge-indication LED. If the MAX1508 is used in conjunction with a microprocessor, a pullup resistor to the logic I/O voltage allows CHG to indicate charge status to the μ P instead of driving an LED.

Soft-Start

An analog soft-start algorithm activates when entering fast-charge mode. When the prequalification state is complete (V_{BATT} exceeds +2.5V), the charging current ramps up in 3ms to the full charging current. This reduces the inrush current on the input supply. Since the MAX1508Y and MAX1508Z do not have a prequalification state, they automatically enter soft-start upon activation.

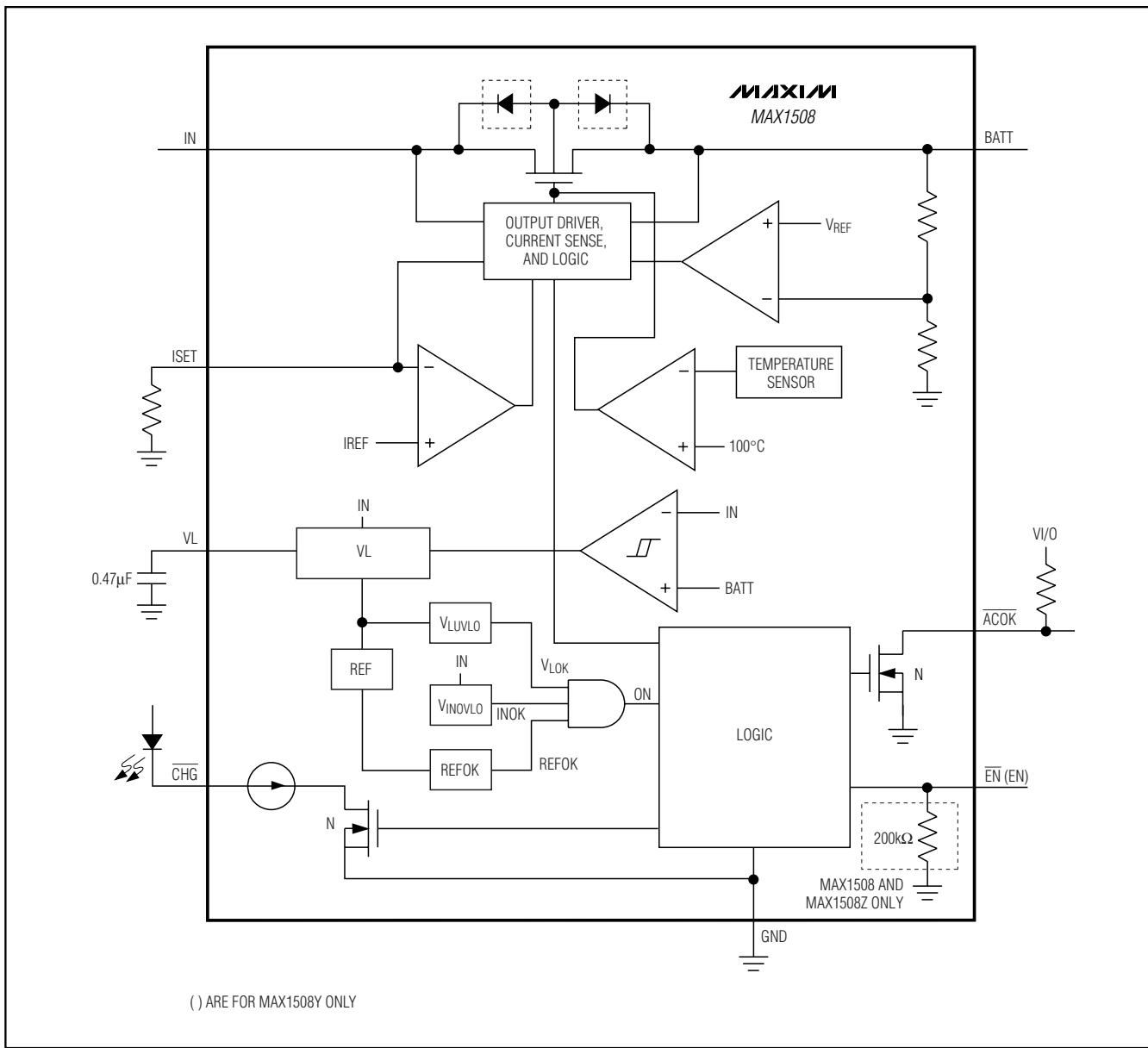


Figure 1. Functional Diagram

Linear Li+ Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOK in 3mm x 3mm TDFN

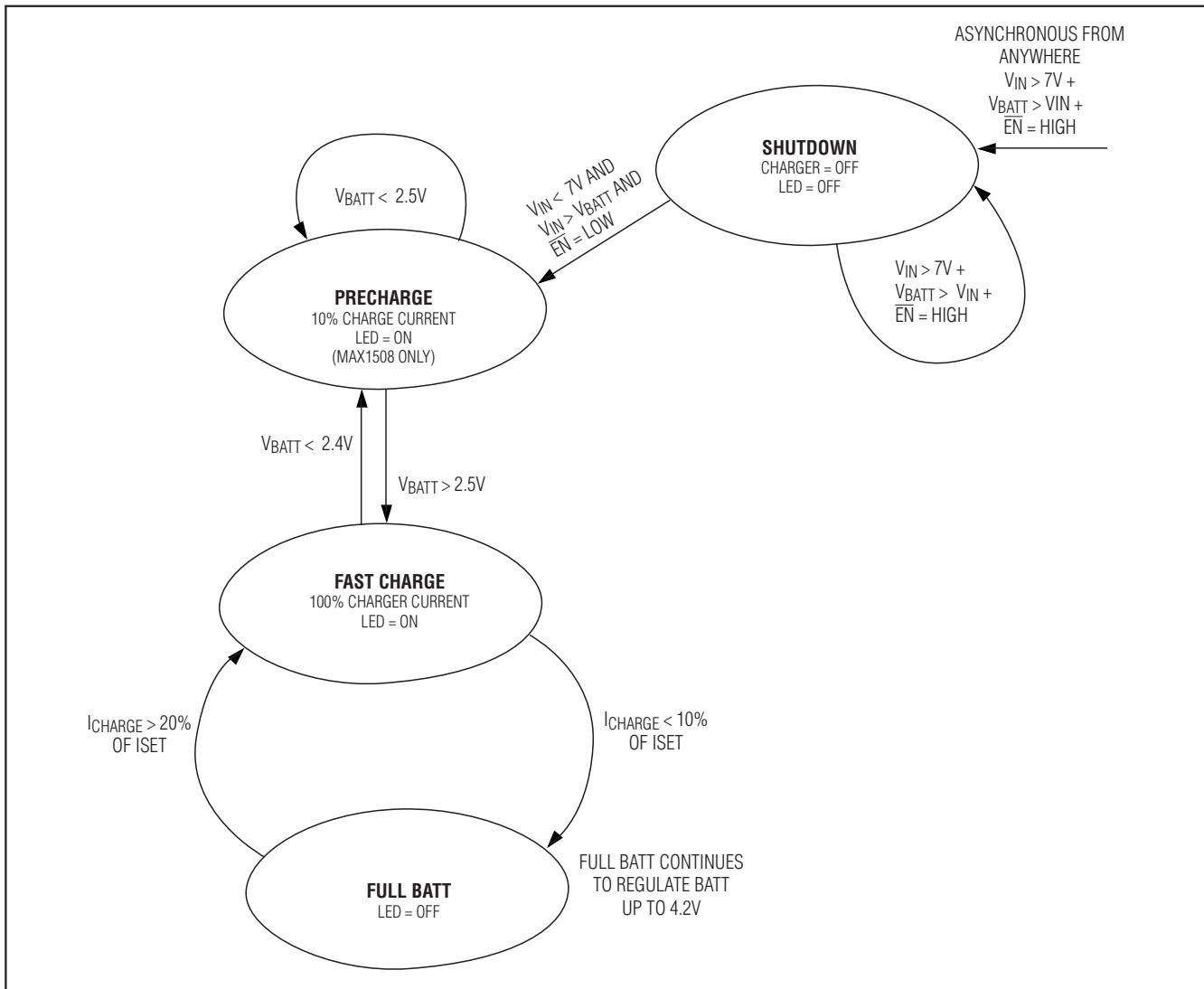


Figure 2. Charge State Diagram

Applications Information

Charge-Current Selection

The maximum charging current is programmed by an external RISET resistor connected from ISET to GND. Select the RISET value based on the following formula:

$$I_{FAST} = 1461V / RISET\Omega$$

where I_{FAST} is in amps and $RISET$ is in ohms. ISET can also be used to monitor the fast-charge current level. The output current from the ISET pin is 0.958mA per amp of charging current. The output voltage at ISET is proportional to the charging current as follows:

$$VISET = (I_{CHG} \times RISET) / 1044$$

The voltage at ISET is nominally 1.4V at the selected fast-charge current, and falls with charging current as the cell becomes fully charged.

Thermal Regulation

The MAX1508 features a proprietary thermal-regulation circuit to protect both the IC and the system from excessive heat. When the MAX1508's die temperature reaches $+100^{\circ}\text{C}$, the charge current is reduced to prevent any additional increase in the die temperature. An active thermal loop does not indicate a fault condition. Thermal regulation allows the MAX1508 to provide continuous charge to the battery under adverse conditions without causing excessive power dissipation.

Linear Li+ Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOK in 3mm x 3mm TDFN

Capacitor Selection

Connect a ceramic capacitor from BATT to GND for proper stability. Use a 1 μ F X5R ceramic capacitor for most applications.

Connect a 1 μ F ceramic capacitor from IN to GND. Use a larger input bypass capacitor for high input voltages or high charging currents to reduce supply noise.

Connect a 0.47 μ F ceramic capacitor from VL to GND.

Thermal Considerations

The MAX1508 is in a thermally enhanced thin DFN package with exposed paddle. Connect the exposed paddle of the MAX1508 to a large copper ground plane to provide a thermal contact between the device and the circuit board. The exposed paddle transfers heat away from the device, allowing the MAX1508 to charge the battery with maximum current, while minimizing the increase in die temperature.

DC Input Sources

The MAX1508 operates from well-regulated DC sources. The full-charging input voltage range is 4.25V to 7V. The device can stand up to 13V on the input without damage to the IC. If V_{IN} is greater than 7V, then the MAX1508 stops charging.

An appropriate power supply must provide at least 4.25V when sourcing the desired peak charging current. It also must stay below 6.5V when unloaded.

Application Circuits

Stand-Alone Li+ Charger

The MAX1508 provides a complete Li+ charging solution. The *Typical Operating Circuit* at the end of the data sheet shows the MAX1508 as a stand-alone Li+ battery charger. The 2.8k Ω resistor connected to ISET sets a charging current of 520mA. The LED indicates when either fast-charge or precharge qualification has begun. When the battery is full, the LED turns off.

Table 1. CHG States

\overline{EN} (MAX1508/MAX1508Z)	\overline{EN} (MAX1508Y)	V_{IN}	V_{BATT}	I_{BATT}	\overline{CHG}	STATE
X	X	V_{BATT}	V_{IN}	0	Hi-Z	Shutdown
Low	High	$4.25V \leq V_{IN} \leq 7V$	$< 2.5V$	10% of I_{FAST}	Low	Prequalification
Low	High	$4.25V \leq V_{IN} \leq 7V$	$\geq 2.5V$	I_{FAST}^*	Low	Fast Charge
Low	High	$4.25V \leq V_{IN} \leq 7V$	4.2V	10% of I_{FAST}	Hi-Z	Full Charge
Low	High	$> 7V$	X	0	Hi-Z	Overvoltage
High	Low	X	X	0	Hi-Z	Disabled

X = Don't care.

* I_{FAST} is reduced as necessary to maintain the die temperature at +100°C.

Microprocessor-Interfaced Charger

Figure 3 shows the MAX1508 as a μ P-cooperated Li+ battery charger. The MAX1508 and MAX1508Z start charging the battery when \overline{EN} is low. The μ P can drive \overline{EN} high to disable the charger (MAX1508 and MAX1508Z). The MAX1508's ACOK output indicates the presence of a valid AC adapter to the μ P. CHG can be used to detect the charge status of a battery. By monitoring V_{ISET} , the system can measure the charge current.

USB-Powered Li+ Charger

The universal serial bus (USB) provides a high-speed serial communication port as well as power for the remote device. The MAX1508 can be configured to charge its battery at the highest current possible from the host port. Figure 4 shows the MAX1508 as a USB battery charger. To make the circuit compatible with either 100mA or 500mA USB ports, the circuit initializes at 95mA charging current. The microprocessor then interrogates the host to determine its current capability. If the host port is capable, the charging current is increased to 435mA. The 435mA current was chosen to avoid exceeding the 500mA USB specification.

Layout and Bypassing

Connect a 1 μ F ceramic input capacitor as close to the device as possible. Provide a large copper GND plane to allow the exposed paddle to sink heat away from the device. Connect the battery to BATT as close to the device as possible to provide accurate battery voltage sensing. Make all high-current traces short and wide to minimize voltage drops. For an example layout, refer to the MAX1507/MAX1508 evaluation kit layout.

Chip Information

TRANSISTOR COUNT: 1812

PROCESS: BiCMOS

Linear Li+ Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOK in 3mm x 3mm TDFN

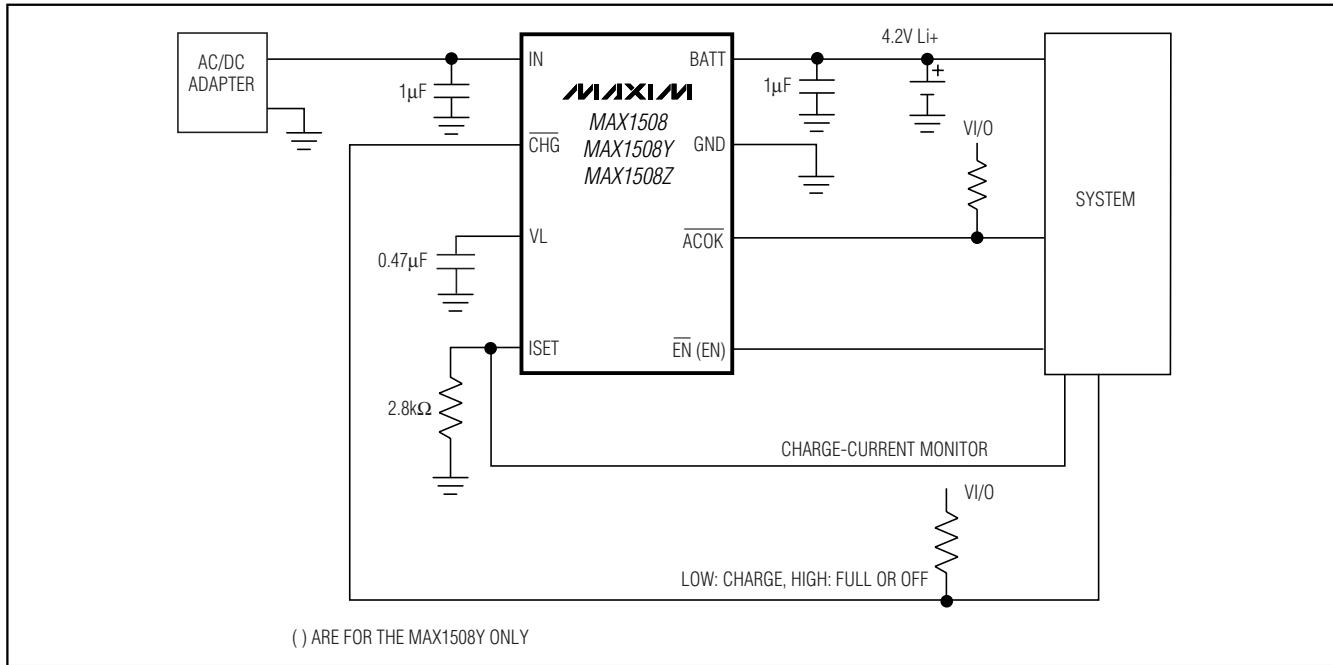


Figure 3. μP-Interfaced Li+ Battery Charger

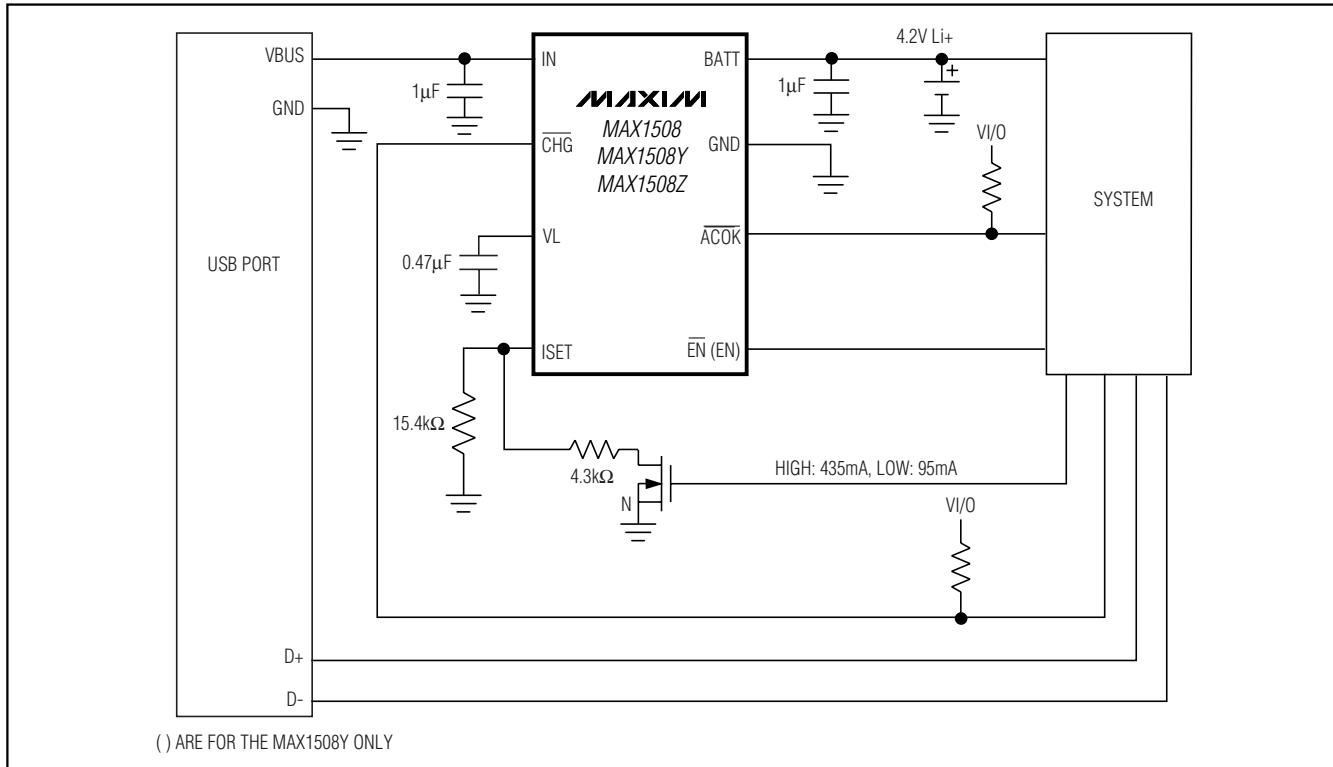
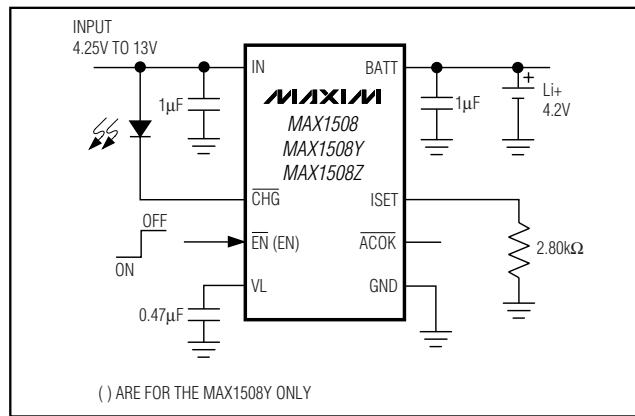


Figure 4. USB Battery Charger

Linear Li+ Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOK in 3mm x 3mm TDFN


Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE	TOP MARK
MAX1508YETA-T	-40°C to +85°C	8 Thin DFN-EP*	AIL
MAX1508YETA+T	-40°C to +85°C	8 Thin DFN-EP*	AIL
MAX1508ZETA-T	-40°C to +85°C	8 Thin DFN-EP*	AIK
MAX1508ZETA+T	-40°C to +85°C	8 Thin DFN-EP*	AIK

*EP = Exposed paddle.

+Denotes lead-free package.

Typical Operating Circuit

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

Linear Li+ Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOK in 3mm x 3mm TDFN

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS		
SYMBOL	MIN.	MAX.
A	0.70	0.80
D	2.90	3.10
E	2.90	3.10
A1	0.00	0.05
L	0.20	0.40
k	0.25 MIN.	
A2	0.20 REF.	

PACKAGE VARIATIONS

PKG. CODE	N	D2	E2	e	JEDEC SPEC	b	$[(N/2)-1] \times e$	DOWNBONDS ALLOWED
T633-1	6	1.50±0.10	2.30±0.10	0.95 BSC	MO229 / WEEA	0.40±0.05	1.90 REF	NO
T633-2	6	1.50±0.10	2.30±0.10	0.95 BSC	MO229 / WEEA	0.40±0.05	1.90 REF	NO
T833-1	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF	NO
T833-2	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF	NO
T833-3	8	1.50±0.10	2.30±0.10	0.65 BSC	MO229 / WEEC	0.30±0.05	1.95 REF	YES
T1033-1	10	1.50±0.10	2.30±0.10	0.50 BSC	MO229 / WEED-3	0.25±0.05	2.00 REF	NO
T1433-1	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF	YES
T1433-2	14	1.70±0.10	2.30±0.10	0.40 BSC		0.20±0.05	2.40 REF	NO

NOTES:

1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES.
2. COPLANARITY SHALL NOT EXCEED 0.08 mm.
3. WARPAGE SHALL NOT EXCEED 0.10 mm.
4. PACKAGE LENGTH/PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. DRAWING CONFORMS TO JEDEC MO229, EXCEPT DIMENSIONS "D2" AND "E2", AND T1433-1 & T1433-2.
6. "N" IS THE TOTAL NUMBER OF LEADS.
7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.

-DRAWING NOT TO SCALE-

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

11

MAX1508/MAX1508Y/MAX1508Z

Компания «Life Electronics» занимается поставками электронных компонентов импортного и отечественного производства от производителей и со складов крупных дистрибуторов Европы, Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные, электролитические), за счёт заключения дистрибуторских договоров

Мы предлагаем:

- Конкурентоспособные цены и скидки постоянным клиентам.
- Специальные условия для постоянных клиентов.
- Подбор аналогов.
- Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.
- Приемлемые сроки поставки, возможна ускоренная поставка.
- Доставку товара в любую точку России и стран СНГ.
- Комплексную поставку.
- Работу по проектам и поставку образцов.
- Формирование склада под заказчика.
- Сертификаты соответствия на поставляемую продукцию (по желанию клиента).
- Тестирование поставляемой продукции.
- Поставку компонентов, требующих военную и космическую приемку.
- Входной контроль качества.
- Наличие сертификата ISO.

В составе нашей компании организован Конструкторский отдел, призванный помочь разработчикам, и инженерам.

Конструкторский отдел помогает осуществить:

- Регистрацию проекта у производителя компонентов.
- Техническую поддержку проекта.
- Защиту от снятия компонента с производства.
- Оценку стоимости проекта по компонентам.
- Изготовление тестовой платы монтаж и пусконаладочные работы.

Тел: +7 (812) 336 43 04 (многоканальный)
Email: org@lifeelectronics.ru