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dsPIC30F5011/5013

The dsPIC30F5011/5013 (Rev. A3) samples that you
have received were found to conform to the
specifications and functionality described in the
following documents:

• DS70157 – “dsPIC30F/33F Programmer’s 
Reference Manual”

• DS70116 – “dsPIC30F5011, dsPIC30F5013 Data 
Sheet”

• DS70046 – “dsPIC30F Family Reference Manual”

The exceptions to the specifications in the documents
listed above are described in this section. These
exceptions are described for the specific devices listed
below:

• dsPIC30F5011
• dsPIC30F5013

These devices may be identified by the following
message that appears in the MPLAB® ICD 2 Output
Window under MPLAB IDE, when a “Reset and
Connect” operation is performed within MPLAB IDE:

Setting Vdd source to target
Target Device dsPIC30F5013 found, 
revision = 0x1003
...Reading ICD Product ID
Running ICD Self Test
...Passed
MPLAB ICD 2 Ready

The errata described in this section will be fixed in
future revisions of dsPIC30F5011 and dsPIC30F5013
devices.

Silicon Errata Summary
The following list summarizes the errata described in
this document:

1. MAC Class Instructions with ±4 Address
Modification

Sequential MAC instructions, which prefetch data
from Y data space using ±4 address modification,
will cause an address error trap.

2. Decimal Adjust Instruction
The Decimal Adjust instruction, DAW.b, may
improperly clear the Carry bit, C (SR<0>).

3. PSV Operations Using SR
In certain instructions, fetching one of the
operands from program memory using Program
Space Visibility (PSV) will corrupt specific bits in
the STATUS Register, SR.

4. Early Termination of Nested DO Loops 
When using two DO loops in a nested fashion,
terminating the inner-level DO loop by setting the
EDT (CORCON<11>) bit will produce unexpected
results.

5. I2C™ – Read Operations on I2CCON SFR
Read operations performed on the I2CCON SFR
may yield incorrect results at operation over 20 MIPS.

6. I2C – Write Operations on I2CTRN SFR
Write operations performed on the I2CTRN SFR may
yield incorrect results at operation over 20 MIPS.

7. UART – Write Operations on U1MODE and
U2MODE SFRs
Write operations performed on the U1MODE and
U2MODE SFRs may yield incorrect results at
operation over 20 MIPS.

8. DCI – Stop in Idle mode
The DCI module should not be stopped when the
device enters Idle mode.

9. 4x PLL Operation
The 4x PLL mode of operation may not function
correctly for certain input frequencies.

10. Sequential Interrupts
Sequential interrupts after modifying the CPU IPL,
interrupt IPL, interrupt enable or interrupt flag may
cause an address error trap.
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11. DISI Instruction

The DISI instruction will not disable interrupts if a
DISI instruction is executed in the same
instruction cycle that the DISI counter
decrements to zero.

12. Output Compare Module in PWM Mode

Output compare will produce a glitch when
loading 0% duty cycle in PWM mode. It will also
miss the next compare after the glitch.

13. Output Compare Module

The output compare module will produce a glitch
on the output when an I/O pin is initially set high
and the module is configured to drive the pin low at
a specified time.

14. INT0, ADC and Sleep Mode
ADC event triggers from the INT0 pin will not
wake-up the device from Sleep mode if the SMPI
bits are non-zero.

15. 8x PLL Mode
If 8x PLL mode is used, the input frequency range
is 5 MHz-10 MHz instead of 4 MHz-10 MHz.

16. Sleep Mode
Execution of the Sleep instruction (PWRSAV #0)
may cause incorrect program operation after the
device wakes up from Sleep. The current
consumption during Sleep may also increase
beyond the specifications listed in the device data
sheet.

17. I2C Module

The I2C module loses incoming data bytes when
operating as an I2C slave.

18. I/O Port – Port Pin Multiplexed with IC1

The Port I/O pin multiplexed with the Input Capture
1 (IC1) function cannot be used as a digital input
pin when the UART auto-baud feature is enabled.

19. I2C Module: 10-bit Addressing Mode

When the I2C module is configured for 10-bit
addressing using the same address bits (A10 and
A9) as other I2C devices, the A10 and A9 bits may
not work as expected.

20. Timer Module

Clock switching prevents the device from waking
up from Sleep.

21. PLL Lock Status Bit

The PLL LOCK Status bit (OSCCON<5>) can
occasionally get cleared and generate an
oscillator failure trap even when the PLL is still
locked and functioning correctly.

22. PSV Operations

An address error trap occurs in certain addressing
modes when accessing the first four bytes of any
PSV page.

23. I2C Module: 10-bit Addressing Mode

The 10-bit slave does not set the RBF flag or load
the I2CxRCV register on address match if the
Least Significant bits of the address are the same
as the 7-bit reserved addresses. 

24. I2C Module: 10-bit Addressing Mode

When the I2C module is configured as a 10-bit
slave with an address of 0x102, the I2CxRCV
register content for the lower address byte is 0x01
rather than 0x02.

25. I2C Module

When the I2C module is enabled, the dsPIC® DSC
device generates a glitch on the SDA and SCL
pins, causing a false communication start in a
single-master configuration or a bus collision in a
multi-master configuration.

The following sections will describe the errata and work
around to these errata, where they may apply.
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1. Module: MAC Class Instructions with ±4 

Address Modification

Sequential MAC class instructions, which prefetch
data from Y data space using ±4 address
modification, will cause an address error trap. The
trap occurs only when all of the following
conditions are true:

1. Two sequential MAC class instructions (or a
MAC class instruction executed in a REPEAT or
DO loop) that prefetch from Y data space.

2. Both instructions prefetch data from Y data
space using the + = 4 or - = 4 address
modification.

3. Neither of the instruction uses an accumulator
write back.

Work around
The problem described above can be avoided by
using any of the following methods:

1. Inserting any other instruction between the two
MAC class instructions.

2. Adding an accumulator write back (a dummy
write back if needed) to either of the MAC class
instructions.

3. Do not use the + = 4 or - = 4 address
modification.

4. Do not prefetch data from Y data space.

2. Module: CPU – DAW.b Instruction

The Decimal Adjust instruction, DAW.b, may
improperly clear the Carry bit, C (SR<0>), when
executed.

Work around
Check the state of the Carry bit prior to executing
the DAW.b instruction. If the Carry bit is set, set the
Carry bit again after executing the DAW.b
instruction. Example 1 shows how the application
should process the Carry bit during a BCD addition
operation.

EXAMPLE 1: CHECK CARRY BIT BEFORE 
DAW.b

.include “p30f5013.inc”

.......
MOV.b #0x80, w0 ;First BCD number
MOV.b #0x80, w1 ;Second BCD number
ADD.b w0, w1, w2 ;Perform addition
BRA NC, L0 ;If C set go to L0 
DAW.b w2 ;If not,do DAW and
BSET.b  SR, #C ;set the carry bit
BRA L1 ;and exit 

L0:DAW.b w2
L1: ....
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3. Module: PSV Operations Using SR

When one of the operands of instructions shown in
Table 1 is fetched from program memory using
Program Space Visibility (PSV), the STATUS
Register, SR and/or the results may be corrupted.

These instructions are identified in Table 1.
Example 2 demonstrates one scenario where this
occurs.

Also, always use Work around 2 if the C compiler
is used to generate code for dsPIC30F5011/5013
devices.

.

EXAMPLE 2: INCORRECT RESULTS

Work arounds
Work around 1: For Assembly Language 
Source Code
To work around the erratum in the MPLAB ASM30
assembler, the application may perform a PSV
access to move the source operand from program
memory to RAM or a W register prior to performing
the operations listed in Table 1. The work around
for Example 2 is demonstrated in Example 3.

EXAMPLE 3: CORRECT RESULTS

Work around 2: For C Language Source Code
For applications using C language, MPLAB C30
versions 1.20.04 or higher provide the following
command-line switch that implements a work
around for the erratum. 

-merrata=psv

Refer to the “readme.txt” file in the MPLAB C30
v1.20.04 toolsuite for further details.

TABLE 1: AFFECTED INSTRUCTIONS
Instruction(1) Examples of Incorrect Operation(2) Data Corruption IN

ADDC ADDC W0, [W1++], W2 ; SR<1:0> bits(3), Result in W2
SUBB SUBB.b W0, [++W1], W3 ; SR<1:0> bits(3), Result in W3
SUBBR SUBBR.b W0, [++W1], W3 ; SR<1:0> bits(3), Result in W3
CPB CPB W0, [W1++], W4 ; SR<1:0> bits(3)

RLC RLC [W1], W4 ; SR<1:0> bits(3), Result in W4
RRC RRC [W1], W2 ; SR<1:0> bits(3), Result in W2
ADD (Accumulator-based) ADD [W1++], A ; SR<1:0> bits(3)

LAC LAC [W1], A ; SR<15:10> bits(4)

Note 1: Refer to the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157) for details on the dsPIC30F 
instruction set.

2: The errata only affects these instructions when a PSV access is performed to fetch one of the source 
operands in the instruction. A PSV access is performed when the Effective Address of the source operand 
is greater than 0x8000 and the PSV (CORCON<2>) bit is set to ‘1’. In the examples shown, the data 
access from program memory is made via the W1 register. 

3: SR<1:0> bits represent Sticky Zero and Carry Status bits, respectively.
4: SR<15:10> bits represent Accumulator Overflow and Saturation Status bits.

.include “p30fxxxx.inc”

.......
MOV.B #0x00, W0 ;Load PSVPAG register
MOV.B WREG, PSVPAG
BSET CORCON, #PSV ;Enable PSV
....
MOV #0x8200, W1 ;Set up W1 for

;indirect PSV access
;from 0x000200

ADD W3, [W1++], W5 ;This instruction
;works ok

ADDC W4, [W1++], W6 ;Carry flag and
;W6 gets
;corrupted here!

.include “p30fxxxx.inc”

.......
MOV.B #0x00, w0 ;Load PSVPAG register
MOV.B WREG, PSVPAG
BSET CORCON, #PSV ;Enable PSV
....
MOV #0x8200, W1 ;Set up W1 for

;indirect PSV access
;from 0x000200

ADD W3, [W1++], W5 ;This instruction
;works ok

MOV [W1++], W2 ;Load W2 with data
;from program memory 

ADDC W4, W2, W6 ;Carry flag and W4
;results are ok!
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4. Module: Early Termination of Nested DO 

Loops

When using two DO loops in a nested fashion,
terminating the inner-level DO loop by setting the
EDT (CORCON<11>) bit will produce unexpected
results. Specifically, the device may continue
executing code within the outer DO loop forever.
This erratum does not affect the operation of the
MPLAB C30 compiler.

Work around
The application should save the DCOUNT SFR
prior to entering the inner DO loop and restore it
upon exiting the inner DO loop. This work around is
shown in Example 4.

EXAMPLE 4: SAVE AND RESTORE 
DCOUNT

5. Module: I2C – Read Operations on 
I2CCON SFR

Data read from the I2CCON Special Function
Register (SFR) may not be correct at device
operation greater than 20 MIPS for VDD in the
range of 4.5V to 5.5V (or 10 MIPS VDD in the range
of 3V to 3.6V).

If the dsPIC DSC device needs to operate at a
throughput higher than 20 MIPS, the user should
incorporate the suggested work around while
reading the I2CCON SFR.

Applications that use I2C software functions from
Microchip’s dsPIC30F Peripheral Library, should
operate the device at 20 MIPS or less.

Work arounds
Work around 1: For Assembly Language 
Source Code
When reading the I2CCON SFR, perform two
consecutive read operations of the same SFR.
The work around is demonstrated in Example 5. In
this example, a Memory Direct Addressing mode
is used to read the SFR. The application may use
any addressing mode to perform the read
operation. Note that interrupts must be temporarily
disabled as shown, so that the two consecutive
reads do not get interrupted.

EXAMPLE 5: CONSECUTIVE READS

Work around 2: For C Language Source Code
For C programmers, the MPLAB C30 v1.20.02
toolsuite provides a built-in function that may be
incorporated in the application source code. This
function may be used to read the I2CCON SFR.
Some examples of usage are shown in the
“readme.txt” file provided with the MPLAB C30
v1.20.02 toolsuite. The function has the following
prototype:
unsigned __builtin_readsfr(volatile void *);

The special argument is the address of a 16-bit
SFR (I2CCON in this case). This function should
only be used to read the I2CCON Special Function
Register. For example, the I2CCON register can
be read using a function call:
reg_value = __builtin_readsfr(&I2CCON);

where ‘reg_value’ is the 16-bit value read from
the SFR.

.include “p30fxxxx.inc”

.......
DO #CNT1, LOOP0 ;Outer loop start
....
PUSH DCOUNT ;Save DCOUNT
DO #CNT2, LOOP1 ;Inner loop
.... ;starts
BTSS Flag, #0
BSET CORCON, #EDT ;Terminate inner
.... ;DO-loop early
....

LOOP1: MOV W1, W5 ;Inner loop ends
POP DCOUNT ;Restore DCOUNT
...

LOOP0: MOV W5, W8 ;Outer loop ends

Note: For details on the functionality of 
EDT bit, see section 2.9.2.4
in the dsPIC30F Family Reference
Manual.

.include “p30fxxxx.inc”

.......
PUSH SR
BSET SR, #IPL2
BSET SR, #IPL1
BSET SR, #IPL0
MOV I2CCON, W0 ; first SFR read
MOV I2CCON, W0 ; second SFR read
POP SR
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6. Module: I2C – Write Operations on 
I2CTRN SFR

Data writes to the I2CTRN Special Function
Register (SFR) may not be correct at device
operation greater than 20 MIPS for VDD in the
range of 4.5V to 5.5V (or 10 MIPS VDD in the range
of 3V to 3.6V).
If the dsPIC DSC device needs to operate at a
throughput higher than 20 MIPS, the user should
incorporate the suggested work around while
writing to the I2CTRN SFR.
Applications that use I2C software functions from
Microchip’s dsPIC30F Peripheral Library should
operate the device at 20 MIPS or less.

Work arounds
Work around 1: For Assembly Language 
Source Code
When writing to the I2CTRN SFR, the user must
follow the write sequence shown in Example 6. In
this example, a Memory Direct Addressing mode
is used to write to the SFR. The application may
use any addressing mode to perform the write
operation. Note that interrupts must be temporarily
disabled as shown, so that this write sequence
does not get interrupted.

EXAMPLE 6: SPECIAL WRITE SEQUENCE

Work around 2: For C Language Source Code
For C programmers, the MPLAB C30 v1.30
toolsuite provides a built-in function that may be
incorporated in the application source code. This
function may be used to write to the I2CTRN SFR.
Some examples of usage are shown in the
“readme.txt” file provided with the MPLAB C30
v1.30 toolsuite. The function has the following
prototype:
void __builtin_writesfr(volatile void *,
unsigned int);

The special argument is the address of a 16-bit
SFR (I2CTRN in this case). For example, the
I2CTRN register can be written using a function
call:
__builtin_writesfr(&I2CTRN, reg_value);

where ‘reg_value’ is the 16-bit value to be
written to the SFR.

7. Module: UART – Write Operations on 
U1MODE and U2MODE SFRs

Data writes to the U1MODE and U2MODE Special
Function Registers (SFRs) may not be correct at
device operation greater than 20 MIPS for VDD in
the range of 4.5V to 5.5V (or 10 MIPS VDD in the
range of 3V to 3.6V).
If the dsPIC DSC device needs to operate at a
throughput higher than 20 MIPS, the user should
incorporate the suggested work around while
writing to the U1MODE or U2MODE SFR.
Applications that use UART software functions
from Microchip’s dsPIC30F Peripheral Library
should operate the device at 20 MIPS or less.

Work arounds
Work around 1: For Assembly Language 
Source Code
When writing to the U1MODE (or U2MODE) SFR,
the user must follow the write sequence shown in
Example 7. In this example, a Memory Direct
Addressing mode is used to write to the SFR. The
application may use any addressing mode to
perform the write operation. Note that interrupts
must be temporarily disabled as shown, so that
this write sequence does not get interrupted.

EXAMPLE 7: SPECIAL WRITE SEQUENCE

Work around 2: For C Language Source Code
For C programmers, the MPLAB C30 v1.30
toolsuite provides a built-in function that may be
incorporated in the application source code. This
function may be used to write to the U1MODE and
U2MODE SFRs. Some examples of usage are
shown in the “readme.txt” file provided with the
MPLAB C30 v1.30 toolsuite. The function has the
following prototype:
void __builtin_writesfr(volatile void *,
unsigned int);

The special argument is the address of a 16-bit
SFR (U1MODE or U2MODE in this case). For
example, the U1MODE register can be written
using a function call:

.include “p30fxxxx.inc”

.......
MOV #reg_value, W1 ;I2CTRN value
PUSH SR
BSET SR, #IPL2
BSET SR, #IPL1
BSET SR, #IPL0
MOV #I2CTRN, W0 ;write I2CTRN 

;address to W0
MOV W0, W0 ;perform a direct

;write to W0
MOV W1, I2CTRN ;write to I2CTRN
POP SR

.include “p30fxxxx.inc”

.......
MOV #reg_value, W1 ;U1MODE value
PUSH SR
BSET SR, #IPL2
BSET SR, #IPL1
BSET SR, #IPL0
MOV #U1MODE, W0 ;write U1MODE

;address to W0
MOV W0, W0 ;perform a direct 

;write to W0 
MOV W1, U1MODE ;write to U1MODE
POP SR
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__builtin_writesfr(&U1MODE, reg_value);

where ‘reg_value’ is the 16-bit value to be
written to the SFR.

8. Module: Data Converter Interface – Idle

For this release of silicon, the DCI module should
not be stopped when the device enters Idle mode.

Work around
Do not set the DCISIDL (DCICON1<13>) bit. This
will ensure the DCI module continues to run when
the device enters Idle mode.

9. Module: 4x PLL Operation

When the 4x PLL mode of operation is selected,
the specified input frequency range of 4-10 MHz is
not fully supported. 

When device VDD is 2.5-3.0V, the 4x PLL input
frequency must be in the range of 4-5 MHz. When
device VDD is 3.0-3.6V, the 4x PLL input frequency
must be in the range of 4-6 MHz for both industrial
and extended temperature ranges. 

Work around
1. Use 8x PLL or 16x PLL mode of operation and

set final device clock speed using the
POST<1:0> oscillator postscaler control bits
(OSCCON<7:6>).

2. Use the EC without PLL Clock mode with a
suitable clock frequency to obtain the equivalent
4x PLL clock rate.

10. Module: Interrupt Controller – Sequential 
Interrupts

When interrupt nesting is enabled (or NSTDIS
(INTCON1<15>) bit is ‘0’), the following sequence
of events will lead to an address error trap. The
generic terms “Interrupt 1” and “Interrupt 2” are
used to represent any two enabled dsPIC30F
interrupts.

1. Interrupt 1 processing begins.
2. Interrupt 1 is negated by user software by one

of the following methods:
- CPU IPL is raised to Interrupt 1 IPL level or
 higher or

- Interrupt 1 IPL is lowered to CPU IPL level or
 lower or

- Interrupt 1 is disabled (Interrupt 1 IE bit set to
 ‘0’) or

- Interrupt 1 flag is cleared
3. Interrupt 2 occurs with a priority higher than

Interrupt 1.

Work around
The user may disable interrupt nesting or execute
a DISI instruction before modifying the CPU IPL
or Interrupt 1 setting. A minimum DISI value of 2
is required if the DISI is executed immediately
before the CPU IPL or Interrupt 1 is modified, as
shown in Example 8. If the MPLAB C30 compiler
is being used, one must inspect the Disassembly
Listing in the MPLAB IDE file to determine the
exact number of cycles to disable level 1-6
interrupts. One may use a large DISI value and
then set the DISICNT register to zero, as shown in
Example 9. A macro may also be used to perform
this task, as shown in Example 10.

EXAMPLE 8: USING DISI 

EXAMPLE 9: RAISING CPU INTERRUPT PRIORITY LEVEL 

EXAMPLE 10: USING MACRO 

.include       “p30fxxxx.inc”

...
DISI#2 ; protect the disable of INT1 
BCLRIEC1, #INT1IE; disable interrupt 1
... ; next instruction protected by DISI

.include       “p30fxxxx.h”

...
__asm__ volatile (“DISI #0x1FFF”);   // protect CPU IPL modification 
SRbits.IPL = 0x5;                    // set CPU IPL to 5
DISICNT = 0x0;                       // remove DISI protection

#define DISI_PROTECT(X) {\
__asm__ volatile (“DISI #0x1FFF”);\
X; \
DISICNT = 0; }

DISI_PROTECT(SRbits.IPL = 0x5);   // safely modify the CPU IPL
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11. Module: DISI Instruction

When a user executes a DISI #7, for example,
this will disable interrupts for 7 + 1 cycles (7 + the
DISI instruction itself). In this case, the DISI
instruction uses a counter which counts down from
7 to 0. The counter is loaded with 7 at the end of
the DISI instruction.

If the user code executes another DISI on the
instruction cycle where the DISI counter has
become zero, the new DISI count is loaded, but
the DISI state machine does not properly
re-engage and continue to disable interrupts. At
this point, all interrupts are enabled. The next time
the user code executes a DISI instruction, the
feature will act normally and block interrupts.

In summary, it is only when a DISI execution is
coincident with the current DISI count = 0, that the
issue occurs. Executing a DISI instruction before
the DISI counter is loaded with the new value,
and interrupts remain disabled until the counter
becomes zero.

Work around
When executing multiple DISI instructions within
the source code, make sure that subsequent DISI
instructions have at least one instruction cycle
between the time that the DISI counter
decrements to zero and the next DISI instruction.
Alternatively, make sure that the subsequent DISI
instructions are called before the DISI counter
decrements to zero.

12. Module: Output Compare in PWM Mode

If the desired duty cycle is ‘0’ (OCxRS = 0), the
module will generate a high level glitch of 1 TCY.
The second problem is that on the next cycle after
the glitch, the OC pin does not go high, or, in other
words, it misses the next compare for any value
written on OCxRS.

Work around
There are two possible solutions to this problem:

1. Load a value greater than ‘0’ to the OCxRS
register when operating in PWM mode. In this
case, no 0% duty cycle is achievable.

2. If the application requires 0% duty cycles, the
output compare module can be disabled for
0% duty cycles, and re-enabled for non-zero
percent duty cycles.

13. Module: Output Compare

A glitch will be produced on an output compare pin
under the following conditions:

• The user software initially drives the I/O pin 
high using the output compare module or a 
write to the associated PORT register.

• The output compare module is configured and 
enabled to drive the pin low at some later time 
(OCxCON = 0x0002 or OCxCON = 0x0003).

When these events occur, the output compare
module will drive the pin low for one instruction
cycle (TCY) after the module is enabled.

Work around
None. However, the user may use a timer interrupt
and write to the associated PORT register to
control the pin manually.

14. Module: INT0, ADC and Sleep Mode

ADC event triggers from the INT0 pin will not
wake-up the device from Sleep mode if the SMPI
bits are non-zero. This means that if the ADC is
configured to generate an interrupt after a certain
number of INT0 triggered conversions, the ADC
conversions will not be triggered and the device
will remain in Sleep. The ADC will perform
conversions and wake-up the device only if it is
configured to generate an interrupt after each INT0
triggered conversion (SMPI<3:0> = 0000).

Work around
None. If ADC event trigger from the INT0 pin is
required, initialize SMPI<3:0> to ‘0000’ (interrupt
on every conversion).

15. Module: 8x PLL Mode

If 8x PLL mode is used, the input frequency range
is 5 MHz-10 MHz instead of 4 MHz-10 MHz.

Work around
None. If 8x PLL is used, make sure the input
crystal or clock frequency is 5 MHz or greater.
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16. Module: Sleep Mode

Execution of the Sleep instruction (PWRSAV #0)
may cause incorrect program operation after the
device wakes up from Sleep. The current
consumption during Sleep may also increase
beyond the specifications listed in the device data
sheet.

Work arounds
To avoid this issue, any of the following three work
arounds can be implemented, depending on the
application requirements.

Work around 1:
Ensure that the PWRSAV #0 instruction is located
at the end of the last row of program Flash memory
available on the target device and fill the
remainder of the row with NOP instructions.

This can be accomplished by replacing all
occurrences of the PWRSAV #0 instruction with a
function call to a suitably aligned subroutine. The
address( ) attribute provided by the MPLAB
ASM30 assembler can be utilized to correctly
align the instructions in the subroutine. For an
application written in C, the function call would be
GotoSleep( ), while for an assembly language
application, the function call would be
CALL _GotoSleep.

The address error trap service routine software
can then replace the invalid return address saved
on the stack with the address of the instruction
immediately following the _GotoSleep or
GotoSleep( ) function call. This ensures that
the device continues executing the correct code
sequence after waking up from Sleep mode.

Example 11 demonstrates the work around
described above, as it would apply to a
dsPIC30F5011 device.

EXAMPLE 11:
; ----------------------------------------------------------------------------------------------
.global __reset
.global _main
.global _GotoSleep
.global __AddressError
.global __INT1Interrupt
; ----------------------------------------------------------------------------------------------

.section *, code
_main:

BSET    INTCON2, #INT1EP ; Set up INT pins to detect falling edge
BCLR    IFS1, #INT1IF ; Clear interrupt pin interrupt flag bits
BSET    IEC1, #INT1IE ; Enable ISR processing for INT pins
CALL    _GotoSleep ; Call function to enter SLEEP mode

_continue:
BRA  _continue

; ----------------------------------------------------------------------------------------------
; Address Error Trap
__AddressError:

BCLR    INTCON1, #ADDRERR
; Set program memory return address to _continue
POP.D W0
MOV.B #tblpage (_continue), W1
MOV #tbloffset (_continue), W0
PUSH.D W0
RETFIE

; ----------------------------------------------------------------------------------------------
__INT1Interrupt:

BCLR IFS1, #INT1IF ; Ensure flag is reset
RETFIE ; Return from Interrupt Service Routine

; ----------------------------------------------------------------------------------------------
.section *, code, address (0xAFC0)

_GotoSleep:
; fill remainder of the last row with NOP instructions

.rept 31
NOP

.endr
; Place SLEEP instruction in the last word of program memory

PWRSAV #0
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Work around 2: 
Instead of executing a PWRSAV #0 instruction to
put the device into Sleep mode, perform a clock
switch to the 512 kHz Low-Power RC (LPRC)
Oscillator with a 64:1 postscaler mode. This
enables the device to operate at 0.002 MIPS,
thereby significantly reducing the current
consumption of the device. Similarly, instead of
using an interrupt to wake-up the device from
Sleep mode, perform another clock switch back to
the original oscillator source to resume normal
operation. Depending on the device, refer to
Section 7. “Oscillator” (DS70054) or Section
29. “Oscillator” (DS70268) in the “dsPIC30F
Family Reference Manual” (DS70046) for more
details on performing a clock switch operation.

Work around 3: 
Instead of executing a PWRSAV #0 instruction to
put the device into Sleep mode, perform a clock
switch to the 32 kHz Low-Power (LP) Oscillator
with a 64:1 postscaler mode. This enables the
device to operate at 0.000125 MIPS, thereby
significantly reducing the current consumption of
the device. Similarly, instead of using an interrupt
to wake-up the device from Sleep mode, perform
another clock switch back to the original oscillator
source to resume normal operation. Depending on
the device, refer to Section 7. “Oscillator”
(DS70054) or Section 29. “Oscillator”
(DS70268) in the “dsPIC30F Family Reference
Manual” (DS70046) for more details on performing
a clock switch operation.

Note: The above work around is recommended
for users for whom application hardware
changes are not possible.

Note: The above work around is recommended
for users for whom application hardware
changes are possible, and also for users
whose application hardware already
includes a 32 kHz LP Oscillator crystal.
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17. Module: I2C

When the I2C module is configured as a slave,
either in single-master or multi-master mode, the
I2C receiver buffer is filled whether a valid slave
address is detected or not. Therefore, an I2C
receiver overflow condition occurs and this
condition is indicated by the I2COV flag in the
I2CSTAT register. 

This overflow condition inhibits the ability to set the
I2C receive interrupt flag (SI2CF) when the last
valid data byte is received. Therefore, the I2C
slave Interrupt Service Routine (ISR) is not called
and the I2C receiver buffer is not read prior receiv-
ing the next data byte.

Work arounds
To avoid this issue, either of the following two work
arounds can be implemented, depending on the
application requirements.

Work around 1:
For applications in which the I2C receiver interrupt
is not required, the following procedure can be
used to receive valid data bytes:

1. Wait until the RBF flag is set.
2. Poll the I2C receiver interrupt SI2CIF flag.
3. If SI2CF is not set in the corresponding

Interrupt Flag Status (IFSx) register, a valid
address or data byte has not been received for
the current slave. Execute a dummy read of
the I2C receiver buffer, I2CRCV; this will clear
the RBF flag. Go back to step 1 until SI2CF is
set and then continue to Step 4.

4. If the SI2CF is set in the corresponding
Interrupt Flag Status (IFSx) register, valid data
has been received. Check the D_A flag to
verify that an address or a data byte has been
received. 

5. Read the I2CRCV buffer to recover valid data
bytes. This will also clear the RBF flag.

6. Clear the I2C receiver interrupt flag SI2CF.
7. Go back to step 1 to continue receiving

incoming data bytes.

Work around 2:
Use this work around for applications in which the
I2C receiver interrupt is required. Assuming that
the RBF and the I2COV flags in the I2CSTAT
register are set due to previous data transfers in
the I2C bus (i.e., between master and other
slaves); the following procedure can be used to
receive valid data bytes:

1. When a valid slave address byte is detected,
SI2CF bit is set and the I2C slave interrupt
service routine is called; however, the RBF and
I2COV bits are already set due to data
transfers between other I2C nodes.

2. Check the status of the D_A flag and the
I2COV flag in the I2CSTAT register when
executing the I2C slave service routine. 

3. If the D_A flag is cleared and the I2COV flag
are set, an invalid data byte was received but a
valid address byte was received. The overflow
condition occurred because the I2C receive
buffer was overflowing with previous I2C data
transfers between other I2C nodes. This
condition only occurs after a valid slave
address was detected.

4. Clear the I2COV flag and perform a dummy
read of the I2C receiver buffer, I2CRCV, to
clear the RBF bit and recover the valid address
byte. This action will also avoid the loss of the
next data byte due to an overflow condition.

5. Verify that the recovered address byte
matches the current slave address byte. If they
match, the next data to be received is a valid
data byte.

6. If the D_A flag and the I2COV flag are both set,
a valid data byte was received and a previous
valid data byte was lost. It will be necessary to
code for handling this overflow condition. 

18. Module: I/O Port – Port Pin Multiplexed 
with IC1

If the user application enables the auto-baud
feature in the UART module, the I/O pin
multiplexed with the IC1 (Input Capture) pin cannot
be used as a digital input. 

Work around
None.
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19. Module: I2C

If there are two I2C devices on the bus, one of
them is acting as the Master receiver and the other
as the Slave transmitter. If both devices are config-
ured for 10-bit addressing mode, and have the
same value in the A10 and A9 bits of their
addresses, then when the Slave select address is
sent from the Master, both the Master and Slave
acknowledge it. When the Master sends out the
read operation, both the Master and the Slave
enter into Read mode and both of them transmit
the data. The resultant data will be the ANDing of
the two transmissions.

Work around
In all I2C devices, the addresses as well as bits
A10 and A9 should be different.

20. Module: Timer

When the timer is being operated in Asynchronous
mode using the secondary oscillator (32.768 kHz)
and the device is put into Sleep mode, a clock
switch to any other oscillator mode before putting
the device to Sleep prevents the timer from waking
the device from Sleep.

Work around
Do not clock switch to any other oscillator mode if
the timer is being used in Asynchronous mode
using the secondary oscillator (32.768 kHz).

21. Module: PLL Lock Status Bit

The PLL LOCK Status bit (OSCCON<5>) can
occasionally get cleared and generate an
Oscillator Failure Trap even when the PLL is still
locked and functioning correctly.

Work around
The user application must include an oscillator
failure trap service routine. In the trap service
routine, first inspect the status of the Clock Failure
Status bit (OSCCON<3>). If this bit is clear, return
from the trap service routine immediately and
continue program execution.

22. Module: PSV Operations

An address error trap occurs in certain addressing
modes when accessing the first four bytes of an
PSV page. This only occurs when using the
following addressing modes:

• MOV.D
• Register Indirect Addressing (word or byte 

mode) with pre/post-decrement

Work around
Do not perform PSV accesses to any of the first
four bytes using the above addressing modes. For
applications using the C language, MPLAB C30
version 3.11 or higher, provides the following
command-line switch that implements a work
around for the erratum.

-merrata=psv_trap

Refer to the readme.txt file in the MPLAB C30
v3.11 tool suite for further details.

23. Module: I2C

In 10-bit Addressing mode, some address
matches don't set the RBF flag or load the receive
register I2CxRCV, if the lower address byte
matches the reserved addresses. In particular,
these include all addresses with the form
XX0000XXXX and XX1111XXXX, with the
following exceptions: 

• 001111000X
• 011111001X
• 101111010X
• 111111011X

Work around
Ensure that the lower address byte in 10-bit
Addressing mode does not match any 7-bit
reserved addresses.

24. Module: I2C

When the I2C module is configured as a 10-bit
slave with and address of 0x102, the I2CxRCV
register content for the lower address byte is 0x01
rather than 0x02; however, the module
acknowledges both address bytes.

Work around
None.
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25. Module: I2C

When the I2C module is enabled by setting the
I2CEN bit in the I2CCON register, the dsPIC DSC
device generates a glitch on the SDA and SCL
pins. This glitch falsely indicates “Communication
Start” to all devices on the I2C bus, and can cause
a bus collision in a multi-master configuration.

Additionally, when the I2CEN bit is set, the S and
P bits of the I2C module are set to values ‘1’ and
‘0’, respectively, which indicate a “Communication
Start” condition.

Work arounds
To avoid this issue, either of the following two work
arounds can be implemented, depending on the
application requirements.

Work around 1:
In a single-master environment, add a delay
between enabling the I2C module and the first data
transmission. The delay should be equal to or
greater than the time it takes to transmit two data
bits. 

In the multi-master configuration, in addition to the
delay, all other I2C masters should be synchro-
nized and wait for the I2C module to be initialized
before initiating any kind of communication.

Work around 2:
In dsPIC DSC devices in which the I2C module is
multiplexed with other modules that have
precedence in the use of the pin, it is possible to
avoid this glitch by enabling the higher priority
module before enabling the I2C module. 

Use the following procedure to implement this
work around:

1. Enable the higher priority peripheral module
that is multiplexed on the same pins as the I2C
module.

2. Set up and enable the I2C module.

Disable the higher priority peripheral module that
was enabled in step 1.

Note: Work around 2 works only for devices that
share the SDA and SCL pins with another
peripheral that has a higher precedence
over the port latch, such as the UART. The
priority is shown in the pin diagram located
in the data sheet. For example, if the SDA
and SCL pins are shared with the UART
and SPI pins, and the UART has higher
precedence on the port latch pin.
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APPENDIX A: REVISION HISTORY
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Revision B (3/2005)
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Added silicon issue 10 (Using OSC2/RC15 pin for
Digital I/O).
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Added errata 1, 11, 12, 13, 15 and 16.
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Added silicon issue 17 (Sleep Mode).
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Updated silicon issue 3 (PSV Operations Using SR),
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Added silicon issues 20 and 21 (I2C), and 22 (Timer).
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Digital I/O).
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