

DISCLAIMER:

mikroPascal for 8051 and this manual are owned by mikroElektronika and are protected

by copyright law and international copyright treaty. Therefore, you should treat this manual
like any other copyrighted material (e.g., a book). The manual and the compiler may not be
copied, partially or as a whole without the written consent from the mikroEelktronika. The
PDF-edition of the manual can be printed for private or local use, but not for distribution.
Modifying the manual or the compiler is strictly prohibited.

HIGH RISK ACTIVITIES:

The mikroPascal for 8051 compiler is not fault-tolerant and is not designed, manufactured

or intended for use or resale as on-line control equipment in hazardous environments requir-
ing fail-safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons systems,
in which the failure of the Software could lead directly to death, personal injury, or severe
physical or environmental damage ("High Risk Activities"). mikroElektronika and its suppliers
specifically disclaim any express or implied warranty of fitness for High Risk Activities.

LICENSE AGREEMENT:

By using the mikroPascal for 8051 compiler, you agree to the terms of this agreement.

Only one person may use licensed version of mikroPascal for 8051 compiler at a time.

Copyright © mikroElektronika 2003 - 2009.

This manual covers mikroPascal for 8051 version 1.1 and the related topics. Newer ver-

sions may contain changes without prior notice.

COMPILER BUG REPORTS:
The compiler has been carefully tested and debugged. It is, however, not possible to
guarantee a 100 % error free product. If you would like to report a bug, please contact us at
the address office@mikroe.com. Please include next information in your bug report:

- Your operating system

- Version of mikroPascal for 8051
- Code sample
- Description of a bug

CONTACT US:
mikroElektronika
Voice: + 381 (11) 36 28 830
Fax: + 381 (11) 36 28 831
Web: www.mikroe.com
E-mail: office@mikroe.com

Reader’s note

Windows is a Registered trademark of Microsoft Corp. All other trade and/or services marks
are the property of the respective owners.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

January 2009.

Re
ad

er
’s

 N
ot

e

Table of Contents

CHAPTER 1 Introduction

CHAPTER 2 mikroPascal for 8051 Environment

CHAPTER 3 mikroPascal for 8051 Specifics

CHAPTER 4 8051 Specifics

CHAPTER 5 mikroPascal for 8051 Language Reference

CHAPTER 6 mikroPascal for 8051 Libraries

CHAPTER 1

Features . 2

Where to Start . 3

mikroElektronika Associates License Statement and Limited Warranty 4

IMPORTANT - READ CAREFULLY . 4

LIMITED WARRANTY . 5

HIGH RISK ACTIVITIES . 6

GENERAL PROVISIONS . 6

Technical Support . 7

How to Register . 8

Who Gets the License Key . 8

How to Get License Key . 8

After Receving the License Key . 10

CHAPTER 2

IDE Overview . 12

Main Menu Options . 14

File Menu Options . 15

Edit Menu Options . 16

Find Text . 17

Replace Text . 18

Find In Files . 18

Go To Line . 19

Replace Text . 19

Regular expressions . 19

View Menu Options . 20

Toolbars . 21

File Toolbar . 21

Edit Toolbar . 21

Advanced Edit Toolbar . 22

Find/Replace Toolbar . 22

Project Toolbar . 23

Build Toolbar . 23

Debugger . 24

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051Table of Contents

iv

Styles Toolbar . 24

Tools Toolbar . 25

Project Menu Options . 26

Run Menu Options . 28

Tools Menu Options . 29

Help Menu Options . 30

Keyboard Shortcuts . 31

IDE Overview . 33

Customizing IDE Layout . 35

Docking Windows . 35

Saving Layout . 36

Auto Hide . 37

Advanced Code Editor . 38

Advanced Editor Features . 38

Code Assistant . 40

Code Folding . 40

Parameter Assistant . 41

Code Templates (Auto Complete) . 41

Auto Correct . 42

Spell Checker . 42

Bookmarks . 42

Goto Line . 42

Uncomment/Comment . 42

Code Explorer . 43

Routine List . 44

Project Manager . 45

Project Settings Window . 47

Library Manager . 48

Error Window . 50

Statistics . 51

Memory Usage Windows . 51

RAM Memory . 51

Data Memory . 51

XData Memory . 52

iData Memory . 52

bData Memory . 53

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

v

PData Memory . 53

Special Function Registers . 54

General Purpose Registers . 54

ROM Memory . 55

ROM Memory Usage . 55

Procedures Windows . 56

Procedures Size Window . 56

Procedures Locations Window . 57

Integrated Tools . 58

USART Terminal . 58

ASCII Chart . 59

EEPROM Editor . 60

7 Segment Display Decoder . 60

UDP Terminal . 61

The mikroPascal for 8051 . 61

Graphic LCD Bitmap Editor . 62

LCD Custom Character . 63

Options . 64

Code editor . 64

Tools . 64

Output settings . 66

Regular Expressions . 67

Introduction . 67

Simple matches . 67

Escape sequences . 67

Character classes . 68

Metacharacters . 68

Metacharacters - Line separators . 69

Metacharacters - Predefined classes . 69

Example: . 69

Metacharacters - Word boundaries . 70

Metacharacters - Iterators . 70

Metacharacters - Alternatives . 71

Metacharacters - Subexpressions . 72

Metacharacters - Backreferences . 72

mikroPascal for 8051 Command Line Options . 73

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051Table of Contents

vi

Projects . 74

New Project . 74

New Project Wizard Steps . 75

Open Project . 78

Customizing Projects . 79

Edit Project . 79

Managing Project Group . 79

Add/Remove Files from Project . 79

Source Files . 81

Managing Source Files . 81

Creating new source file . 81

Opening an existing file . 81

Printing an open file . 81

Saving file . 82

Saving file under a different name . 82

Closing file . 82

Clean Project Folder . 83

Clean Project Folder . 83

Compilation . 84

Output Files . 84

Assembly View . 84

Error Messages . 85

Compiler Error Messages: . 85

Linker Error Messages: . 88

Hint Messages: . 88

Software Simulator Overview . 89

Watch Window . 89

Stopwatch Window . 91

RAM Window . 92

Software Simulator Options . 93

Creating New Library . 94

Multiple Library Versions . 94

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

vii

CHAPTER 3

Pascal Standard Issues . 102

Divergence from the Pascal Standard . 102

Pascal Language Extensions . 102

Predefined Globals and Constants . 103

Math constants . 103

Accessing Individual Bits . 104

Accessing Individual Bits Of Variables . 104

sbit type . 104

bit type . 105

Interrupts . 106

Function Calls from Interrupt . 106

Interrupt Priority Level . 106

Linker Directives . 107

Directive absolute . 107

Directive org . 108

Built-in Routines . 109

Lo . 110

Hi . 110

Higher . 110

Highest . 111

Inc . 111

Dec . 111

Delay_us . 112

Delay_ms . 112

Vdelay_ms . 112

Delay_Cyc . 113

Clock_KHz . 113

Clock_MHz . 113

SetFuncCall . 114

Uart_Init . 114

Code Optimization . 115

Constant folding . 115

Constant propagation . 115

Copy propagation . 115

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051Table of Contents

viii

Value numbering . 115

"Dead code" ellimination . 115

Stack allocation . 115

Local vars optimization . 115

Better code generation and local optimization 115

Types Efficiency . 117

CHAPTER 4

Nested Calls Limitations . 118

8051 Memory Organization . 118

Program Memory (ROM) . 118

Internal Data Memory . 119

External Data Memory . 120

SFR Memory . 120

Memory Models . 121

Small model . 121

Compact model . 121

Large model . 122

code . 124

data . 124

idata . 124

bdata . 124

xdata . 125

pdata . 125

CHAPTER 5

Lexical Elements Overview . 130

Whitespace . 130

Whitespace in Strings . 131

Comments . 131

Nested comments . 131

Tokens . 132

Token Extraction Example . 132

Literals . 133

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

ix

Integer Literals . 133

Floating Point Literals . 133

Character Literals . 134

String Literals . 134

Keywords . 136

Identifiers . 139

Case Sensitivity . 139

Uniqueness and Scope . 139

Identifier Examples . 139

Punctuators . 140

Brackets . 140

Parentheses . 140

Comma . 140

Semicolon . 141

Colon . 141

Dot . 141

Program Organization . 142

Organization of Main Unit . 142

Organization of Other Units . 143

Scope and Visibility . 145

Scope . 145

Visibility . 145

Units . 146

Uses Clause . 146

Main Unit . 146

Other Units . 147

Interface Section . 147

Implementation Section . 148

Variables . 149

Variables and 8051 . 149

Constants . 150

Labels . 151

Functions and Procedures . 152

Functions . 152

Calling a function . 152

Example . 153

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051Table of Contents

x

Procedures . 153

Calling a procedure . 154

Example . 154

Function Pointers . 154

Example: . 154

Example: . 155

Forward declaration . 156

Types . 157

Type Categories . 157

Simple Types . 158

Arrays . 159

Array Declaration . 159

Constant Arrays . 159

Multi-dimensional Arrays . 160

Strings . 161

String Concatenating . 162

Note . 162

@ Operator . 164

Records . 165

Accessing Fields . 166

Types Conversions . 167

Implicit Conversion . 167

Promotion . 167

Clipping . 168

Explicit Conversion . 168

Conversions Examples . 169

Operators . 170

Operators Precedence and Associativity . 170

Arithmetic Operators . 171

Division by Zero . 171

Unary Arithmetic Operators . 171

Relational Operators . 172

Relational Operators in Expressions . 172

Bitwise Operators . 173

Bitwise Operators Overview . 173

Logical Operations on Bit Level . 173

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

xi

Bitwise operators and, or, and xor perform logical operation 173

Unsigned and Conversions . 174

Signed and Conversions . 174

Bitwise Shift Operators . 175

Boolean Operators . 175

Expressions . 176

Statements . 176

Assignment Statements . 177

Compound Statements (Blocks) . 177

Conditional Statements . 178

If Statement . 178

Nested if statements . 178

Case statement . 179

Use the case sta . 179

Nested Case statement . 180

Iteration Statements . 181

For Statement . 181

Endless Loop . 181

While Statement . 182

Repeat Statement . 183

Jump Statements . 184

Break and Continue Statements . 184

Break Statement . 184

Continue Statement . 185

Exit Statement . 185

Goto Statement . 186

asm Statement . 187

Directives . 188

Compiler Directives . 188

Directives $DEFINE and $UNDEFINE . 188

Directives $IFDEF..$ELSE . 189

Include Directive $I . 190

Predefined Flags . 190

Linker Directives . 191

Directive absolute . 191

Directive org . 192

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051Table of Contents

xii

CHAPTER 6

Hardware 8051-specific Libraries . 194

Miscellaneous Libraries . 194

Library Dependencies . 195

CANSPI Library . 197

External dependecies of CANSPI Library . 197

Library Routines . 198

CANSPISetOperationMode until this mode is set) . 199

CANSPISetOperationMode(CANSPI_MODE_CONFIG, 0xFF); 199

CANSPISetOperationMode . 199

CANSPIGetOperationMode . 199

CANSPIInitialize . 200

CANSPISetBaudRate . 202

CANSPISetMask . 203

CANSPISetFilter . 204

CANSPIRead . 205

CANSPIWrite . 206

CANSPI Constants . 207

CANSPI_OP_MODE . 207

CANSPI_CONFIG_FLAGS . 207

CANSPI_TX_MSG_FLAGS . 208

CANSPI_RX_MSG_FLAGS . 209

CANSPI_MASK . 209

CANSPI_FILTER . 209

Library Example . 210

HW Connection . 214

EEPROM Library . 215

Library Routines . 215

Eeprom_Read . 215

Eeprom_Write . 216

Eeprom_Write_Block . 217

Library Example . 218

Graphic LCD Library . 219

External dependencies of Graphic LCD Library 219

Library Routines . 220

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

xiii

Glcd_Init . 221

Glcd_Set_Side . 222

Glcd_Set_X . 222

Glcd_Set_Page . 223

Glcd_Read_Data . 223

Glcd_Write_Data . 224

Glcd_Fill . 224

Glcd_Dot . 225

Glcd_Line . 225

Glcd_V_Line . 226

Glcd_H_Line . 226

Glcd_Rectangle . 227

Glcd_Box . 227

Glcd_Circle . 228

Glcd_Set_Font . 228

Glcd_Write_Char . 229

Glcd_Write_Text . 230

Glcd_Image . 230

Library Example . 231

HW Connection . 233

Keypad Library . 234

External dependencies of Keypad Library . 234

Library Routines . 234

Keypad_Init . 235

Keypad_Key_Press . 235

Keypad_Key_Click . 235

Library Example . 236

HW Connection . 238

LCD Library . 239

External dependencies of LCD Library . 239

Library Routines . 239

Lcd_Init . 240

Lcd_Out . 241

Lcd_Out_Cp . 241

Lcd_Chr . 242

Lcd_Chr_Cp . 242

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051Table of Contents

xiv

Lcd_Cmd . 243

Available LCD Commands . 243

Library Example . 244

HW connection . 246

LCD HW connecti . 246

OneWire Library . 247

External dependencies of OneWire Library . 247

Library Routines . 247

Ow_Reset . 248

Ow_Read . 248

Ow_Write . 249

Library Example . 249

This example reads the te . 249

HW Connection . 252

Manchester Code Library . 253

External dependencies of Manchester Code Library 253

Library Routines . 254

Man_Receive_Init . 254

Man_Receive . 255

Man_Send_Init . 255

Man_Send . 256

Man_Synchro . 256

Man_Out . 257

Library Example . 257

Connection Example . 260

Port Expander Library . 261

External dependencies of Port Expander Library 261

Expander_Init . 262

Expander_Read_Byte . 263

Expander_Write_Byte . 263

Expander_Read_PortA . 264

Expander_Read_PortB . 264

Expander_Read_PortAB . 265

Expander_Write_PortA . 265

Expander_Write_PortB . 266

Expander_Write_PortAB . 266

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

xv

Expander_Set_DirectionPortA . 267

Expander_Set_DirectionPortB . 267

Expander_Set_DirectionPortAB . 268

Expander_Set_PullUpsPortA . 268

Expander_Set_PullUpsPortB . 269

Expander_Set_PullUpsPortAB . 269

Library Example . 270

HW Connection . 271

PS/2 Library . 272

External dependencies of PS/2 Library . 272

Library Routines . 272

Ps2_Config . 273

Ps2_Key_Read . 274

Special Function Keys . 275

Library Example . 276

HW Connection . 277

RS-485 Library . 278

External dependencies of RS-485 Library . 278

Library Routines . 278

RS485master_Init . 279

RS485master_Receive . 279

RS485master_Send . 280

RS485slave_Init . 281

RS485slave_Receive . 282

RS485slave_Send . 283

Library Example . 283

This is a simple demonstration o . 283

HW Connection . 287

Message format and CRC calculations . 288

Software I²C Library . 289

External dependecies of Soft_I2C Library . 289

Library Routines . 289

Soft_I2C_Init . 290

Soft_I2C_Start . 290

Soft_I2C_Read . 290

Soft_I2C_Write . 291

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051Table of Contents

xvi

Soft_I2C_Stop . 291

Library Example . 292

Software SPI Library . 295

External dependencies of Software SPI Library 295

Library Routines . 295

Soft_Spi_Init . 296

Soft_Spi_Read . 296

Soft_Spi_Write . 297

Library Example . 297

This code demonstrates using lib . 297

Software UART Library . 299

External dependencies of Software UART Library 299

Library Routines . 299

Soft_Uart_Init . 300

Soft_Uart_Read . 301

Soft_Uart_Write . 302

Library Example . 303

var Sound_Play_Pin: sbit at P0.B3; . 304

Sound Library . 304

External dependencies of Sound Library . 304

Library Routines . 304

Sound_Init . 304

Sound_Play . 305

Library Example . 305

The example is a simple dem . 305

HW Connection . 308

SPI Library . 309

Library Routines . 309

Spi_Init . 309

Spi_Init_Advanced . 310

Spi_Read . 311

Spi_Write . 311

Library Example . 312

HW Connection . 313

SPI Ethernet Library . 314

Library Routines . 315

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

xvii

Spi_Ethernet_Init . 316

Spi_Ethernet_Enable . 318

Spi_Ethernet_Disable . 319

Spi_Ethernet_doPacket . 320

Spi_Ethernet_putByte . 321

Spi_Ethernet_putBytes . 321

Spi_Ethernet_putConstBytes . 322

Spi_Ethernet_putString . 322

Spi_Ethernet_putConstString . 323

Spi_Ethernet_getByte . 323

Spi_Ethernet_getBytes . 324

Spi_Ethernet_UserTCP . 325

Spi_Ethernet_UserUDP . 326

Library Example . 326

HW Connection . 334

SPI Graphic LCD Library . 335

External dependencies of SPI Graphic LCD Library 335

Library Routines . 335

Spi_Glcd_Init . 336

Spi_Glcd_Set_Side . 336

Spi_Glcd_Set_Page . 337

Spi_Glcd_Set_X . 337

Spi_Glcd_Read_Data . 338

Spi_Glcd_Write_Data . 338

Spi_Glcd_Fill . 339

Spi_Glcd_Dot . 339

Spi_Glcd_Line . 340

Spi_Glcd_V_Line . 340

Spi_Glcd_H_Line . 341

Spi_Glcd_Rectangle . 341

Spi_Glcd_Box . 342

Spi_Glcd_Circle . 342

Spi_Glcd_Set_Font . 343

Spi_Glcd_Write_Char . 344

Spi_Glcd_Write_Text . 345

Spi_Glcd_Image . 346

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051Table of Contents

xviii

Library Example . 346

The example demonstrates how to . 346

HW Connection . 348

SPI LCD Library . 349

External dependencies of SPI LCD Library . 349

Library Routines . 349

Spi_Lcd_Config . 350

Spi_Lcd_Out . 350

Spi_Lcd_Out_Cp . 351

Spi_Lcd_Chr . 351

Spi_Lcd_Chr_Cp . 352

Spi_Lcd_Cmd . 352

Available LCD Commands . 353

Library Example . 354

HW Connection . 355

SPI LCD8 (8-bit interface) Library . 356

External dependencies of SPI LCD Library . 356

Library Routines . 356

Spi_Lcd8_Config . 357

Spi_Lcd8_Out . 357

Spi_Lcd8_Out_Cp . 358

Spi_Lcd8_Chr . 358

Spi_Lcd8_Chr_Cp . 359

Spi_Lcd8_Cmd . 359

Available LCD Commands . 360

Library Example . 361

HW Connection . 362

SPI T6963C Graphic LCD Library . 363

External dependencies of Spi T6963C Graphic LCD Library 363

Library Routines . 364

Spi_T6963C_Config . 365

Spi_T6963C_WriteData . 366

Spi_T6963C_WriteCommand . 366

Spi_T6963C_SetPtr . 367

Spi_T6963C_WaitReady . 367

Spi_T6963C_Fill . 367

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

xix

Spi_T6963C_Dot . 368

Spi_T6963C_Write_Char . 369

Spi_T6963C_Write_Text . 370

Spi_T6963C_Line . 371

Spi_T6963C_Rectangle . 371

Spi_T6963C_Box . 372

Spi_T6963C_Circle . 372

Spi_T6963C_Image . 373

Spi_T6963C_Sprite . 373

Spi_T6963C_Set_Cursor . 374

Spi_T6963C_ClearBit . 374

Spi_T6963C_SetBit . 374

Spi_T6963C_NegBit . 375

Spi_T6963C_DisplayGrPanel . 375

Spi_T6963C_DisplayTxtPanel . 375

Spi_T6963C_SetGrPanel . 376

Spi_T6963C_SetTxtPanel . 376

Spi_T6963C_PanelFill . 377

Spi_T6963C_GrFill . 377

Spi_T6963C_TxtFill . 377

Spi_T6963C_Cursor_Height . 378

Spi_T6963C_Graphics . 378

Spi_T6963C_Text . 378

Spi_T6963C_Cursor . 379

Spi_T6963C_Cursor_Blink . 379

Library Example . 379

The following drawing demo tests advanced . 379

HW Connection . 384

T6963C Graphic LCD Library . 385

External dependencies of T6963C Graphic LCD Library 385

Library Routines . 386

T6963C_Init . 387

T6963C_WriteData . 388

T6963C_WriteCommand . 388

T6963C_SetPtr . 389

T6963C_WaitReady . 389

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051Table of Contents

xx

T6963C_Fill . 389

T6963C_Dot . 390

T6963C_Write_Char . 391

T6963C_Write_Text . 392

T6963C_Line . 393

T6963C_Rectangle . 393

T6963C_Box . 394

T6963C_Circle . 394

T6963C_Image . 395

T6963C_Sprite . 395

T6963C_Set_Cursor . 396

T6963C_ClearBit . 396

T6963C_SetBit . 396

T6963C_NegBit . 397

T6963C_DisplayGrPanel . 397

T6963C_DisplayTxtPanel . 397

T6963C_SetGrPanel . 398

T6963C_SetTxtPanel . 398

T6963C_PanelFill . 399

T6963C_GrFill . 399

T6963C_TxtFill . 399

T6963C_Cursor_Height . 400

T6963C_Graphics . 400

T6963C_Text . 400

T6963C_Cursor . 401

T6963C_Cursor_Blink . 401

Library Example . 401

The following drawing demo tests a . 401

vanced routines . 401

HW Connection . 406

UART Library . 407

Library Routines . 407

Uart_Init . 407

Uart_Data_Ready . 408

Uart_Read . 408

Uart_Write . 409

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

xxi

Library Example . 409

This example demonstrates s . 409

HW Connection . 410

Button Library . 411

External dependecies of Button Library . 411

Library Routines . 411

Button . 412

Conversions Library . 413

Library Routines . 413

ByteToStr . 414

ShortToStr . 414

WordToStr . 415

IntToStr . 415

LongintToStr . 416

LongWordToStr . 416

FloatToStr . 417

Dec2Bcd . 418

Bcd2Dec16 . 418

Dec2Bcd16 . 419

Math Library . 420

Library Functions . 420

acos . 421

asin . 421

atan . 421

atan2 . 421

ceil . 421

cos . 421

cosh . 421

eval_poly . 422

exp . 422

fabs . 422

floor . 422

frexp . 422

ldexp . 422

log . 422

log10 . 423

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051Table of Contents

xxii

modf . 423

pow . 423

sin . 423

sinh . 423

sqrt . 423

tan . 423

tanh . 423

String Library . 424

Library Functions . 424

memchr . 425

memcmp . 425

memcpy . 426

memmove . 426

memset . 426

strcat . 426

strchr . 427

strcmp . 427

strcpy . 427

strcspn . 427

strlen . 428

strncat . 428

strncmp . 428

strncpy . 428

strpbrk . 428

strrchr . 429

strspn . 429

strstr . 429

Time Library . 430

Library Routines . 430

Time_dateToEpoch . 430

Time_epochToDate . 431

Time_dateDiff . 431

Library Example . 432

TimeStruct type definition . 433

Trigonometry Library . 434

Library Routines . 434

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

xxiii

sinE3 . 434

cosE3 . 435

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051Table of Contents

xxiv

Introduction to
mikroPascal for 8051

The mikroPascal for 8051 is a powerful, feature-rich development tool for 8051
microcontrollers. It is designed to provide the programmer with the easiest possi-
ble solution to developing applications for embedded systems, without compromis-
ing performance or control.

1

1

CHAPTER

mikroPascal IDE

Features

mikroPascal for 8051 allows you to quickly develop and deploy complex applications:

- Write your Pascal source code using the built-in Code Editor (Code and Parame-
ter Assistants, Code Folding, Syntax Highlighting, Spell Checker, Auto Correct,
Code Templates, and more.)

- Use included mikroPascal libraries to dramatically speed up the development: data
acquisition, memory, displays, conversions, communication etc.

- Monitor your program structure, variables, and functions in the Code Explorer.
- Generate commented, human-readable assembly, and standard HEX compatible

with all programmers.
- Inspect program flow and debug executable logic with the integrated Software

Simulator.
- Get detailed reports and graphs: RAM and ROM map, code statistics, assembly

listing, calling tree, and more.

2 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Introduction mikroPascal for 8051
CHAPTER 1

- mikroPascal 8051 provides plenty of examples to expand, develop, and use as
building bricks in your projects. Copy them entirely if you deem fit – that’s why we
included them with the compiler.

Where to Start

- In case that you’re a beginner in programming 8051 microcontrollers, read carefully the
8051 Specifics chapter. It might give you some useful pointers on 8051 constraints, code
portability, and good programming practices.

- If you are experienced in Pascal programming, you will probably want to consult
mikroPascal Specifics first. For language issues, you can always refer to the com-
prehensive Language Reference. A complete list of included libraries is available
at mikroPascal Libraries.

- If you are not very experienced in Pascal programming, don’t panic! mikroPascal
8051 provides plenty of examples making it easy for you to go quickly. We suggest
that you first consult Projects and Source Files, and then start browsing the exam-
ples that you're the most interested in.

3MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Introduction
CHAPTER 1

MIKROELEKTRONIKA ASSOCIATES LICENSE STATEMENT AND
LIMITED WARRANTY

IMPORTANT - READ CAREFULLY

This license statement and limited warranty constitute a legal agreement (“License
Agreement”) between you (either as an individual or a single entity) and mikroElek-
tronika (“mikroElektronika Associates”) for software product (“Software”) identified
above, including any software, media, and accompanying on-line or printed docu-
mentation.

BY INSTALLING, COPYING, OR OTHERWISE USING SOFTWARE, YOU AGREE
TO BE BOUND BY ALL TERMS AND CONDITIONS OF THE LICENSE
AGREEMENT.

Upon your acceptance of the terms and conditions of the License Agreement,
mikroElektronika Associates grants you the right to use Software in a way provided
below.

This Software is owned by mikroElektronika Associates and is protected by copy-
right law and international copyright treaty. Therefore, you must treat this Software
like any other copyright material (e.g., a book).

You may transfer Software and documentation on a permanent basis provided. You
retain no copies and the recipient agrees to the terms of the License Agreement.
Except as provided in the License Agreement, you may not transfer, rent, lease,
lend, copy, modify, translate, sublicense, time-share or electronically transmit or
receive Software, media or documentation. You acknowledge that Software in the
source code form remains a confidential trade secret of mikroElektronika Associates
and therefore you agree not to modify Software or attempt to reverse engineer,
decompile, or disassemble it, except and only to the extent that such activity is
expressly permitted by applicable law notwithstanding this limitation.

If you have purchased an upgrade version of Software, it constitutes a single prod-
uct with the mikroElektronika Associates software that you upgraded. You may use
the upgrade version of Software only in accordance with the License Agreement.

4 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Introduction mikroPascal for 8051
CHAPTER 1

LIMITED WARRANTY

Respectfully excepting the Redistributables, which are provided “as is”, without war-
ranty of any kind, mikroElektronika Associates warrants that Software, once updat-
ed and properly used, will perform substantially in accordance with the accompany-
ing documentation, and Software media will be free from defects in materials and
workmanship, for a period of ninety (90) days from the date of receipt. Any implied
warranties on Software are limited to ninety (90) days.

mikroElektronika Associates’ and its suppliers’ entire liability and your exclusive
remedy shall be, at mikroElektronika Associates’ option, either (a) return of the price
paid, or (b) repair or replacement of Software that does not meet mikroElektronika
Associates’ Limited Warranty and which is returned to mikroElektronika Associates
with a copy of your receipt. DO NOT RETURN ANY PRODUCT UNTIL YOU HAVE
CALLED MIKROELEKTRONIKA ASSOCIATES FIRST AND OBTAINED A RETURN
AUTHORIZATION NUMBER. This Limited Warranty is void if failure of Software has
resulted from an accident, abuse, or misapplication. Any replacement of Software
will be warranted for the rest of the original warranty period or thirty (30) days,
whichever is longer.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
MIKROELEKTRONIKA ASSOCIATES AND ITS SUPPLIERS DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESSED OR IMPLIED,
INCLUDED, BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NON-INFRINGEMENT, WITH REGARD TO SOFTWARE, AND THE PROVISION
OF OR FAILURE TO PROVIDE SUPPORT SERVICES.

IN NO EVENT SHALL MIKROELEKTRONIKA ASSOCIATES OR ITS SUPPLIERS
BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS AND BUSINESS INFORMATION, BUSINESS
INTERRUPTION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE
USE OF OR INABILITY TO USE SOFTWARE PRODUCT OR THE PROVISION OF
OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF
MIKROELEKTRONIKA ASSOCIATES HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. IN ANY CASE, MIKROELEKTRONIKA ASSOCIATES’
ENTIRE LIABILITY UNDER ANY PROVISION OF THIS LICENSE AGREEMENT
SHALL BE LIMITED TO THE AMOUNT ACTUALLY PAID BY YOU FOR
SOFTWARE PRODUCT PROVIDED, HOWEVER, IF YOU HAVE ENTERED INTO
A MIKROELEKTRONIKA ASSOCIATES SUPPORT SERVICES AGREEMENT,
MIKROELEKTRONIKA ASSOCIATES’ ENTIRE LIABILITY REGARDING
SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF THAT
AGREEMENT.

5MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Introduction
CHAPTER 1

HIGH RISK ACTIVITIES

Software is not fault-tolerant and is not designed, manufactured or intended for use
or resale as on-line control equipment in hazardous environments requiring fail-safe
performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons
systems, in which the failure of Software could lead directly to death, personal injury,
or severe physical or environmental damage (“High Risk Activities”). mikroElektron-
ika Associates and its suppliers specifically disclaim any expressed or implied war-
ranty of fitness for High Risk Activities.

GENERAL PROVISIONS

This statement may only be modified in writing signed by you and an authorised offi-
cer of mikroElektronika Associates. If any provision of this statement is found void
or unenforceable, the remainder will remain valid and enforceable according to its
terms. If any remedy provided is determined to have failed for its essential purpose,
all limitations of liability and exclusions of damages set forth in the Limited Warran-
ty shall remain in effect.

This statement gives you specific legal rights; you may have others, which vary, from
country to country. mikroElektronika Associates reserves all rights not specifically
granted in this statement.

mikroElektronika
Visegradska 1A,
11000 Belgrade,
Europe.

Phone: + 381 11 36 28 830
Fax: +381 11 36 28 831
Web: www.mikroe.com
E-mail: office@mikroe.com

6 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Introduction mikroPascal for 8051
CHAPTER 1

TECHNICAL SUPPORT

In case you encounter any problem, you are welcome to our support forums at
www.mikroe.com/forum/. Here, you may also find helpful information, hardware tips,
and practical code snippets. Your comments and suggestions on future develop-
ment of the mikroPascal for 8051 are always appreciated — feel free to drop a note
or two on our Wishlist.

In our Knowledge Base www.mikroe.com/en/kb/ you can find the answers to Fre-
quently Asked Questions and solutions to known problems. If you can not find the
solution to your problem in Knowledge Base then report it to Support Desk
www.mikroe.com/en/support/. In this way, we can record and track down bugs more
efficiently, which is in our mutual interest. We respond to every bug report and ques-
tion in a suitable manner, ever improving our technical support.

7MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Introduction
CHAPTER 1

HOW TO REGISTER

The latest version of the mikroPascal for 8051 is always available for downloading
from our website. It is a fully functional software libraries, examples, and compre-
hensive help included.

The only limitation of the free version is that it cannot generate hex output over 2
KB. Although it might sound restrictive, this margin allows you to develop practical,
working applications with no thinking of demo limit. If you intend to develop really
complex projects in the mikroPascal for 8051, then you should consider the possi-
bility of purchasing the license key.

Before we start you might find this link very useful, regarding the questions related
to registration procedure. Copy and paste this link into your web browser

http://www.mikroe.com/pdf/mikrobasic/compiler_activation.pdf (this file is in
PDF format).

Who Gets the License Key

Buyers of the mikroPascal for 8051 are entitled to the license key. After you have
completed the payment procedure, you have an option of registering your mikroPas-
cal. In this way you can generate hex output without any limitations.

How to Get License Key

After you have completed the payment procedure, start the program. Select Help › How

to Register from the drop-down menu or click the How To Register Icon . Fill out the

registration form (figure below), select your distributor, and click the Send button.

8 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Introduction mikroPascal for 8051
CHAPTER 1

This will start your e-mail client with message ready for sending. Review the infor-
mation you have entered, and add the comment if you deem it necessary. Please,
do not modify the subject line.

Upon receiving and verifying your request, we will send the license key to the e-mail
address you specified in the form.

9MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Introduction
CHAPTER 1

After Receving the License Key

The license key comes as a small autoextracting file – just start it anywhere on your
computer in order to activate your copy of compiler and remove the demo limit. You
do not need to restart your computer or install any additional components. Also,
there is no need to run the mikroPascal for 8051 at the time of activation.

Notes:

- The license key is valid until you format your hard disk. In case you need to format
the hard disk, you should request a new activation key.

- Please keep the activation program in a safe place. Every time you
upgrade the compiler you should start this program again in order to
reactivate the license.

10 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Introduction mikroPascal for 8051
CHAPTER 1

mikroPascal for 8051
Environment

The mikroPascal for 8051 is an user-friendly and intuitive environment:

2

11

CHAPTER

IDE Overview

- The Code Editor features adjustable Syntax Highlighting, Code Folding, Code
Assistant, Parameters Assistant, Spell Checker, Auto Correct for common typos
and Code Templates (Auto Complete).

- The Code Explorer (with Keyboard shortcut browser and Quick Help browser) is at
your disposal for easier project management.

- The Project Manager alows multiple project management
- General project settings can be made in the Project Settings window
- Library manager enables simple handling libraries being used in a project
- The Error Window displays all errors detected during compiling and linking.
- The source-level Software Simulator lets you debug executable logic step-by-step

by watching the program flow.
- The New Project Wizard is a fast, reliable, and easy way to create a project.
- Help files are syntax and context sensitive.
- Like in any modern Windows application, you may customize the layout of

mikroPascal for 8051 to suit your needs best.

12 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

- Spell checker underlines identifiers which are unknown to the project. In this way
it helps the programmer to spot potential problems early, much before the project
is compiled.
Spell checker can be disabled by choosing the option in the Preferences dialog (F12).

13MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

MAIN MENU OPTIONS

Available Main Menu options are:

Related topics: Keyboard shortcuts

14 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

FILE MENU OPTIONS

The File menu is the main entry point for manipulation with the source files.

Related topics: Keyboard shortcuts, File Toolbar, Managing Source Files

15MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

File Description

Open a new editor window.

Open source file for editing or image file for viewing.

Reopen recently used file.

Save changes for active editor.

Save the active source file with the different name or
change the file type.

Close active source file.

Print Preview.

Exit IDE.

EDIT MENU OPTIONS

16 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Edit Description

Undo last change.

Redo last change.

Cut selected text to clipboard.

Copy selected text to clipboard.

Paste text from clipboard.

Delete selected text.

Select all text in active editor.

Find text in active editor.

Find next occurence of text in active editor.

Find previous occurence of text in active editor.

Replace text in active editor.

Find text in current file, in all opened files, or in files
from desired folder.

Goto to the desired line in active editor.

Advanced Code Editor options

Find Text

Dialog box for searching the document for the specified text. The search is per-
formed in the direction specified. If the string is not found a message is displayed.

17MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Advanced » Description

Comment selected code or put single line com-
ment if there is no selection.

Uncomment selected code or remove single line
comment if there is no selection.

Indent selected code.

Outdent selected code.

Changes selected text case to lowercase.

Changes selected text case to uppercase.

Changes selected text case to titlercase.

Replace Text

Dialog box for searching for a text string in file and replacing it with another text string.

Find In Files

Dialog box for searching for a text string in current file, all opened files, or in files on a disk.

The string to search for is specified in the Text to find field. If Search in directories option
is selected, The files to search are specified in the Files mask and Path fields.

18 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Go To Line

Dialog box that allows the user to specify the line number at which the cursor should
be positioned.

Replace Text

Dialog box for searching for a text string in file and replacing it with another text string.

Regular expressions

By checking this box, you will be able to advance your search, through Regular
expressions.

Related topics: Keyboard shortcuts, Edit Toolbar, Advanced Edit Toolbar

19MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

VIEW MENU OPTIONS

20 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

File Description

Show/Hide toolbars.

Show/Hide debug windows.

Show/Hide Routine List in active editor.

Show/Hide Project Settings window.

Show/Hide Code Explorer window.

Show/Hide Project Manager window.

Show/Hide Library Manager window.

Show/Hide Bookmarks window.

Show/Hide Error Messages window.

Show/Hide Macro Editor window.

Show Window List window.

TOOLBARS

File Toolbar

File Toolbar is a standard toolbar with following options:

Edit Toolbar

Edit Toolbar is a standard toolbar with following options:

21MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Icon Description

Opens a new editor window.

Open source file for editing or image file for viewing.

Save changes for active window.

Save changes in all opened windows.

Close current editor.

Close all editors.

Print Preview.

Icon Description

Undo last change.

Redo last change.

Cut selected text to clipboard.

Copy selected text to clipboard.

Paste text from clipboard.

Advanced Edit Toolbar

Advanced Edit Toolbar comes with following options:

Find/Replace Toolbar

Find/Replace Toolbar is a standard toolbar with following options:

22 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Icon Description

Comment selected code or put single line comment if there is no selection

Uncomment selected code or remove single line comment if there is
no selection.

Select text from starting delimiter to ending delimiter.

Go to ending delimiter.

Go to line.

Indent selected code lines.

Outdent selected code lines.

Generate HTML code suitable for publishing current source code on
the web.

Icon Description

Find text in current editor.

Find next occurence.

Find previous occurence.

Replace text.

Find text in files.

Project Toolbar

Project Toolbar comes with following options:

Build Toolbar

Build Toolbar comes with following options:

23MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Icon Description

Open new project wizard. wizard.

Open Project

Save Project

Add existing project to project group.

Remove existing project from project group.

Add File To Project

Remove File From Project

Close current project.

Icon Description

Build current project.

Build all opened projects.

Build and program active project.

Start programmer and load current HEX file.

Open assembly code in editor.

View statistics for current project.

Debugger

Debugger Toolbar comes with following options:

Styles Toolbar

Styles toolbar allows you to easily customize your workspace.

24 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Icon Description

Start Software Simulator.

Run/Pause debugger.

Stop debugger.

Step into.

Step over.

Step out.

Run to cursor.

Toggle breakpoint.

Toggle breakpoints.

Clear breakpoints.

View watch window

View stopwatch window

Tools Toolbar

Tools Toolbar comes with following default options:

The Tools toolbar can easily be customized by adding new tools in Options(F12)
window.

Related topics: Keyboard shortcuts, Integrated Tools, Debugger Windows

25MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Icon Description

Run USART Terminal

EEPROM

ASCII Chart

Seven segment decoder tool.

PROJECT MENU OPTIONS

26 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Related topics: Keyboard shortcuts, Project Toolbar, Creating New Project, Project
Manager, Project Settings

27MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Project Description

Build active project.

Build all projects.

Build and program active project.

View Assembly.

Edit search paths.

Clean Project Folder

Add file to project.

Remove file from project.

Open New Project Wizard

Open existing project.

Save current project.

Open project group.

Close project group.

Save active project file with the different name.

Open recently used project.

Close active project.

RUN MENU OPTIONS

Related topics: Keyboard shortcuts, Debug Toolbar

28 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Run Description

Start Software Simulator.

Stop debugger.

Pause Debugger.

Step Into.

Step Over.

Step Out.

Jump to interrupt in current project.

Toggle Breakpoint.

Breakpoints.

Clear Breakpoints.

Show/Hide Watch Window

Show/Hide Stopwatch Window

Toggle between Pascal source and disassembly.

TOOLS MENU OPTIONS

Related topics: Keyboard shortcuts, Tools Toolbar

29MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Tools Description

Run mikroElektronika Programmer

Run USART Terminal

Run EEPROM Editor

Run ASCII Chart

Run 7 Segment Display Decoder

Generate HTML code suitable for publishing
source code on the web.

Generate your own custom LCD characters

Generate bitmap pictures for GLCD

UDP communication terminal.

Open Options window

HELP MENU OPTIONS

Related topics: Keyboard shortcuts

30 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Help Description

Open Help File.

Quick Help.

Check if new compiler version is available.

Open mikroElektronika Support Forums in
a default browser.

Open mikroElektronika Web Page in a
default browser.

Information on how to register

Open About window.

KEYBOARD SHORTCUTS

Below is a complete list of keyboard shortcuts available in mikroPascal for 8051 IDE. You
can also view keyboard shortcuts in the Code Explorer window, tab Keyboard.

31MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

IDE Shortcuts

F1 Help

Ctrl+N New Unit

Ctrl+O Open

Ctrl+Shift+O Open Project

Ctrl+Shift+N Open New Project

Ctrl+K Close Project

Ctrl+F9 Compile

Shift+F9 Compile All

Ctrl+F11 Compile and Program

Shift+F4 View breakpoints

Ctrl+Shift+F5 Clear breakpoints

F11 Start 8051Flash Programmer

F12 Preferences

Basic Editor Shortcuts

F3 Find, Find Next

Shift+F3 Find Previous

Alt+F3 Grep Search, Find in Files

Ctrl+A Select All

Ctrl+C Copy

Ctrl+F Find

Ctrl+R Replace

Ctrl+P Print

Ctrl+S Save unit

Ctrl+Shift+S Save All

Ctrl+V Paste

Ctrl+X Cut

Ctrl+Y Delete entire line

Ctrl+Z Undo

Ctrl+Shift+Z Redo

Advanced Editor Shortcuts

Ctrl+Space Code Assistant

Ctrl+Shift+Space Parameters Assistant

Ctrl+D Find declaration

Ctrl+E Incremental Search

Ctrl+L Routine List

Ctrl+G Goto line

Ctrl+J Insert Code Template

Ctrl+Shift+. Comment Code

Ctrl+Shift+, Uncomment Code

Ctrl+number Goto bookmark

Ctrl+Shift+number Set bookmark

Ctrl+Shift+I Indent selection

Ctrl+Shift+U Unindent selection

TAB Indent selection

Shift+TAB Unindent selection

Alt+Select Select columns

Ctrl+Alt+Select Select columns

Ctrl+Alt+L
Convert selection to
lowercase

Ctrl+Alt+U
Convert selection to
uppercase

Ctrl+Alt+T Convert to Titlecase

32 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Software Simulator Shortcuts

F2 Jump To Interrupt

F4 Run to Cursor

F5 Toggle Breakpoint

F6 Run/Pause Debugger

F7 Step into

F8 Step over

F9 Debug

Ctrl+F2 Reset

Ctrl+F5 Add to Watch List

Ctrl+F8 Step out

Alt+D Dissasembly view

Shift+F5 Open Watch Window

IDE OVERVIEW

The mikroPascal for 8051 is an user-friendly and intuitive environment:

- The Code Editor features adjustable Syntax Highlighting, Code Folding, Code
Assistant, Parameters Assistant, Spell Checker, Auto Correct for common typos
and Code Templates (Auto Complete).

- The Code Explorer (with Keyboard shortcut browser and Quick Help browser) is at
your disposal for easier project management.

- The Project Manager alows multiple project management
- General project settings can be made in the Project Settings window
- Library manager enables simple handling libraries being used in a project
- The Error Window displays all errors detected during compiling and linking.
- The source-level Software Simulator lets you debug executable logic step-by-step

by watching the program flow.
- The New Project Wizard is a fast, reliable, and easy way to create a project.

33MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

- Help files are syntax and context sensitive.
- Like in any modern Windows application, you may customize the layout of

mikroPascal for 8051 to suit your needs best.
- Spell checker underlines identifiers which are unknown to the project. In this way

it helps the programmer to spot potential problems early, much before the project
is compiled.
Spell checker can be disabled by choosing the option in the Preferences dialog (F12).

34 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

CUSTOMIZING IDE LAYOUT

Docking Windows

You can increase the viewing and editing space for code, depending on how you
arrange the windows in the IDE.

Step 1: Click the window you want to dock, to give it focus.

Step 2: Drag the tool window from its current location. A guide diamond appears.
The four arrows of the diamond point towards the four edges of the IDE.

35MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Step 3: Move the pointer over the corresponding portion of the guide diamond. An
outline of the window appears in the designated area.

Step 4: To dock the window in the position indicated, release the mouse button.

Tip: To move a dockable window without snapping it into place, press CTRL while
dragging it.

Saving Layout

Once you have a window layout that you like, you can save the layout by typing the

name for the layout and pressing the Save Layout Icon .

To set the layout select the desired layout from the layout drop-down list and click

the Set Layout Icon .

To remove the layout from the drop-down list, select the desired layout from the list

and click the Delete Layout Icon .

36 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Auto Hide

Auto Hide enables you to see more of your code at one time by minimizing tool win-
dows along the edges of the IDE when not in use.

- Click the window you want to keep visible to give it focus.

- Click the Pushpin Icon on the title bar of the window.

When an auto-hidden window loses focus, it automatically slides back to its tab on

the edge of the IDE. While a window is auto-hidden, its name and icon are visible

on a tab at the edge of the IDE. To display an auto-hidden window, move your point-

er over the tab. The window slides back into view and is ready for use.

37MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

ADVANCED CODE EDITOR

The Code Editor is advanced text editor fashioned to satisfy needs of professionals.
General code editing is the same as working with any standard text-editor, including
familiar Copy, Paste and Undo actions, common for Windows environment.

Advanced Editor Features

- Adjustable Syntax Highlighting
- Code Assistant
- Code Folding
- Parameter Assistant
- Code Templates (Auto Complete)
- Auto Correct for common typos
- Spell Checker
- Bookmarks and Goto Line
- Comment / Uncomment

You can configure the Syntax Highlighting, Code Templates and Auto Correct from

the Editor Settings dialog. To access the Settings, click Tools › Options from the

drop-down menu, click the Show Options Icon or press F12 key.

38 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

39MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Code Assistant

If you type the first few letters of a word and then press Ctrl+Space, all valid identi-
fiers matching the letters you have typed will be prompted in a floating panel (see
the image below). Now you can keep typing to narrow the choice, or you can select
one from the list using the keyboard arrows and Enter.

Code Folding

Code folding is IDE feature which allows users to selectively hide and display sec-
tions of a source file. In this way it is easier to manage large regions of code within
one window, while still viewing only those subsections of the code that are relevant
during a particular editing session.

While typing, the code folding symbols (and) appear automatically. Use the folding
symbols to hide/unhide the code subsections.

If you place a mouse cursor over the tooltip box, the collapsed text will be shown in
a tooltip style box.

40 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Parameter Assistant

The Parameter Assistant will be automatically invoked when you open parenthesis
“(” or press Shift+Ctrl+Space. If the name of a valid function precedes the parenthe-
sis, then the expected parameters will be displayed in a floating panel. As you type
the actual parameter, the next expected parameter will become bold.

Code Templates (Auto Complete)

You can insert the Code Template by typing the name of the template (for instance,
whiles), then press Ctrl+J and the Code Editor will automatically generate a code.

You can add your own templates to the list. Select Tools › Options from the drop-down

menu, or click the Show Options Icon and then select the Auto Complete Tab. Here

you can enter the appropriate keyword, description and code of your template.

Autocomplete macros can retreive system and project information:

- %DATE% - current system date
- %TIME% - current system time
- %DEVICE% - device(MCU) name as specified in project settings
- %DEVICE_CLOCK% - clock as specified in project settings
- %COMPILER% - current compiler version

41MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

These macros can be used in template code, see template ptemplate provided with
mikroPascal for 8051 installation.

Auto Correct

The Auto Correct feature corrects common typing mistakes. To access the list of rec-

ognized typos, select Tools › Options from the drop-down menu, or click the Show

Options Icon and then select the Auto Correct Tab. You can also add your own

preferences to the list.

Also, the Code Editor has a feature to comment or uncomment the selected code by sim-

ple click of a mouse, using the Comment Icon and Uncomment Icon from

the Code Toolbar.

Spell Checker

The Spell Checker underlines unknown objects in the code, so they can be easily
noticed and corrected before compiling your project.

Select Tools › Options from the drop-down menu, or click the Show Options

Icon and then select the Spell Checker Tab.

Bookmarks

Bookmarks make navigation through a large code easier. To set a bookmark, use
Ctrl+Shift+number. To jump to a bookmark, use Ctrl+number.

Goto Line

The Goto Line option makes navigation through a large code easier. Use the short-
cut Ctrl+G to activate this option.

Comment / Uncomment

Also, the Code Editor has a feature to comment or uncomment the selected

code by simple click of a mouse, using the Comment Icon and Uncom-

ment Icon from the Code Toolbar.

42 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

CODE EXPLORER

The Code Explorer gives clear view of each item declared inside the source code.
You can jump to a declaration of any item by right clicking it. Also, besides the list of
defined and declared objects, code explorer displays message about first error and
it's location in code.

Following options are available in the Code Explorer:

43MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Icon Description

Expand/Collapse all nodes in tree.

Locate declaration in code.

ROUTINE LIST

Routine list diplays list of routines, and enables filtering routines by name. Routine
list window can be accessed by pressing Ctrl+L.

You can jump to a desired routine by double clicking on it.

44 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

PROJECT MANAGER

Project Manager is IDE feature which allows users to manage multiple projects.
Several projects which together make project group may be open at the same time.
Only one of them may be active at the moment.
Setting project in active mode is performed by double click on the desired project in
the Project Manager.

Following options are available in the Project Manager:

45MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

For details about adding and removing files from project see Add/Remove Files from
Project.

Related topics: Project Settings, Project Menu Options, File Menu Options, Project
Toolbar, Build Toolbar, Add/Remove Files from Project

46 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Icon Description

Save project Group.

Open project group.

Close the active project.

Close project group.

Add project to the project group.

Remove project from the project group.

Add file to the active project.

Remove selected file from the project.

Build the active project.

Run mikroElektronika's Flash programmer.

PROJECT SETTINGS WINDOW

Following options are available in the Project Settings Window:

- Device - select the appropriate device from the device drop-down list.
- Oscillator - enter the oscillator frequency value.
- Memory Model - Select the desired memory model.

Related topics: Memory Model, Project Manager

47MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

LIBRARY MANAGER

Library Manager enables simple handling libraries being used in a project. Library
Manager window lists all libraries (extencion .mcl) which are instantly stored in the
compiler Uses folder. The desirable library is added to the project by selecting check
box next to the library name.

In order to have all library functions accessible, simply press the button Check All

and all libraries will be selected. In case none library is needed in a project, press the but-

ton Clear All and all libraries will be cleared from the project.

Only the selected libraries will be linked.

48 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Related topics: mikroPascal for 8051 Libraries, Creating New Library

49MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Icon Description

Refresh Library by scanning files in "Uses" folder.Useful when new
libraries are added by copying files to "Uses" folder.

Rebuild all available libraries. Useful when library sources are available and
need refreshing.

Include all available libraries in current project.

No libraries from the list will be included in current project.

Restore library to the state just before last project saving.

ERROR WINDOW

In case that errors were encountered during compiling, the compiler will report them
and won’t generate a hex file. The Error Window will be prompted at the bottom of
the main window by default.

The Error Window is located under message tab, and displays location and type of
errors the compiler has encountered. The compiler also reports warnings, but these
do not affect the output; only errors can interefere with the generation of hex.

Double click the message line in the Error Window to highlight the line where the
error was encountered.

Related topics: Error Messages

50 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

STATISTICS

After successful compilation, you can review statistics of your code. Click the Statis-

tics Icon .

Memory Usage Windows

Provides overview of RAM and ROM usage in the form of histogram.

RAM Memory

Data Memory

Displays Data memory usage in form of histogram.

51MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

XData Memory

Displays XData memory usage in form of histogram.

iData Memory

Displays iData memory usage in form of histogram.

52 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

bData Memory

Displays bData memory usage in form of histogram.

PData Memory

Displays PData memory usage in form of histogram.

53MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Special Function Registers

Summarizes all Special Function Registers and their addresses.

General Purpose Registers

Summarizes all General Purpose Registers and their addresses. Also displays sym-
bolic names of variables and their addresses.

54 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

ROM Memory

ROM Memory Usage

Displays ROM memory usage in form of histogram.

ROM Memory Allocation

Displays ROM memory allocation.

55MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Procedures Windows

Provides overview procedures locations and sizes.

Procedures Size Window

Displays size of each procedure.

56 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Procedures Locations Window

Displays how functions are distributed in microcontroller’s memory.

57MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

INTEGRATED TOOLS

USART Terminal

The mikroPascal for 8051 includes the USART communication terminal for RS232

communication. You can launch it from the drop-down menu Tools › USART Termi-

nal or by clicking the USART Terminal Icon from Tools toolbar.

58 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

ASCII Chart

The ASCII Chart is a handy tool, particularly useful when working with LCD display.

You can launch it from the drop-down menu Tools › ASCII chart or by clicking the

View ASCII Chart Icon from Tools toolbar.

59MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

EEPROM Editor

The EEPROM Editor is used for manipulating MCU's EEPROM memory. You can
launch it from the drop-down menu Tools › EEPROM Editor. When Use this
EEPROM definition is checked compiler will generate Intel hex file
project_name.ihex that contains data from EEPROM editor.

When you run mikroElektronika programmer software from mikroPascal for 8051
IDE - project_name.hex file will be loaded automatically while ihex file must be
loaded manually.

7 Segment Display Decoder

The 7 Segment Display Decoder is a convenient visual panel which returns deci-

mal/hex value for any viable combination you would like to display on 7seg. Click on

the parts of 7 segment image to get the requested value in the edit boxes. You can

launch it from the drop-down menu Tools › 7 Segment Decoderor by clicking the

Seven Segment Icon from Tools toolbar.

60 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

UDP Terminal

The mikroPascal for 8051 includes the UDP Terminal. You can launch it from the
drop-down menu Tools › UDP Terminal.

61MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Graphic LCD Bitmap Editor

The mikroPascal for 8051 includes the Graphic LCD Bitmap Editor. Output is the
mikroPascal for 8051 compatible code. You can launch it from the drop-down menu
Tools › GLCD Bitmap Editor.

62 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

LCD Custom Character

mikroPascal for 8051 includes the LCD Custom Character. Output is mikroPascal
for 8051 compatible code. You can launch it from the drop-down menu Tools › LCD
Custom Character.

63MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

OPTIONS

Options menu consists of three tabs: Code Editor, Tools and Output settings

Code editor

The Code Editor is advanced text editor fashioned to satisfy needs of professionals.

Tools

The mikroPascal for 8051 includes the Tools tab, which enables the use of shortcuts
to external programs, like Calculator or Notepad.
You can set up to 10 different shortcuts, by editing Tool0 - Tool9.

64 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

65MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Output settings

By modifying Output Settings, user can configure the content of the output files.
You can enable or disable, for example, generation of ASM and List file.

66 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

REGULAR EXPRESSIONS

Introduction

Regular Expressions are a widely-used method of specifying patterns of text to
search for. Special metacharacters allow you to specify, for instance, that a particu-
lar string you are looking for, occurs at the beginning, or end of a line, or contains n
recurrences of a certain character.

Simple matches

Any single character matches itself, unless it is a metacharacter with a special
meaning described below. A series of characters matches that series of characters
in the target string, so the pattern "short" would match "short" in the target string.
You can cause characters that normally function as metacharacters or escape
sequences to be interpreted by preceding them with a backslash "\".
For instance, metacharacter "^" matches beginning of string, but "\^" matches
character "^", and "\\" matches "\", etc.

Examples :

integer matches string 'integer'
\^integer matches string '^integer'

Escape sequences

Characters may be specified using a escape sequences: "\n" matches a newline,
"\t" a tab, etc. More generally, \xnn, where nn is a string of hexadecimal digits,
matches the character whose ASCII value is nn.
If you need wide(Unicode)character code, you can use '\x{nnnn}', where 'nnnn'
- one or more hexadecimal digits.

\xnn - char with hex code nn
\x{nnnn)- char with hex code nnnn (one byte for plain text and two bytes
for Unicode)
\t - tab (HT/TAB), same as \x09
\n - newline (NL), same as \x0a
\r - car.return (CR), same as \x0d
\f - form feed (FF), same as \x0c
\a - alarm (bell) (BEL), same as \x07
\e - escape (ESC) , same as \x1b

67MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Examples:

procedure\x20Write matches 'procedure Write' (note space in the
middle)
\tlongint matches 'longint' (predecessed by tab)

Character classes

You can specify a character class, by enclosing a list of characters in [], which will
match any of the characters from the list. If the first character after the "[" is "^",
the class matches any character not in the list.

Examples:

count[aeiou]r finds strings 'countar', 'counter', etc. but not
'countbr', 'countcr', etc.
count[^aeiou]r finds strings 'countbr', 'countcr', etc. but not
'countar', 'counter', etc.

Within a list, the "-" character is used to specify a range, so that a-z represents all
characters between "a" and "z", inclusive.

If you want "-" itself to be a member of a class, put it at the start or end of the list,
or escape it with a backslash.
If you want ']', you may place it at the start of list or escape it with a backslash.

Examples:

[-az] matches 'a', 'z' and '-'
[az-] matches 'a', 'z' and '-'
[a\-z] matches 'a', 'z' and '-'
[a-z] matches all twenty six small characters from 'a' to 'z'
[\n-\x0D] matches any of #10,#11,#12,#13.
[\d-t] matches any digit, '-' or 't'.
[]-a] matches any char from ']'..'a'.

Metacharacters

Metacharacters are special characters which are the essence of regular expres-
sions.There are different types of metacharacters, described below.

68 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Metacharacters - Line separators

^ - start of line
$ - end of line
\A - start of text
\Z - end of text
. - any character in line

Examples:

^PORTA - matches string ' PORTA ' only if it's at the beginning of line
PORTA$ - matches string ' PORTA ' only if it's at the end of line
^PORTA$ - matches string ' PORTA ' only if it's the only string in line
PORT.r - matches strings like 'PORTA', 'PORTB', 'PORT1' and so on

The "^" metacharacter by default is only guaranteed to match beginning of the input
string/text, and the "$" metacharacter only at the end. Embedded line separators
will not be matched by ^" or "$".
You may, however, wish to treat a string as a multi-line buffer, such that the "^" will
match after any line separator within the string, and "$" will match before any line
separator.
Regular expressons works with line separators as recommended at
www.unicode.org (http://www.unicode.org/unicode/reports/tr18/):

Metacharacters - Predefined classes

\w - an alphanumeric character (including "_")
\W - a nonalphanumeric
\d - a numeric character
\D - a non-numeric
\s - any space (same as [\t\n\r\f])
\S - a non space

You may use \w, \d and \s within custom character classes.

Example:

routi\de - matches strings like 'routi1e', 'routi6e' and so on, but not
'routine', 'routime' and so on.

69MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Metacharacters - Word boundaries

A word boundary ("\b") is a spot between two characters that has a "\w" on one
side of it and a "\W" on the other side of it (in either order), counting the imaginary
characters off the beginning and end of the string as matching a "\W".

\b - match a word boundary)
\B - match a non-(word boundary)

Metacharacters - Iterators

Any item of a regular expression may be followed by another type of metacharac-
ters - iterators. Using this metacharacters,you can specify number of occurences of
previous character, metacharacter or subexpression.

* - zero or more ("greedy"), similar to {0,}
+ - one or more ("greedy"), similar to {1,}
? - zero or one ("greedy"), similar to {0,1}
{n} - exactly n times ("greedy")
{n,} - at least n times ("greedy")
{n,m} - at least n but not more than m times ("greedy")
*? - zero or more ("non-greedy"), similar to {0,}?
+? - one or more ("non-greedy"), similar to {1,}?
?? - zero or one ("non-greedy"), similar to {0,1}?
{n}? - exactly n times ("non-greedy")
{n,}? - at least n times ("non-greedy")
{n,m}? - at least n but not more than m times ("non-greedy")

So, digits in curly brackets of the form, {n,m}, specify the minimum number of times
to match the item n and the maximum m. The form {n} is equivalent to {n,n} and
matches exactly n times. The form {n,} matches n or more times. There is no limit
to the size of n or m, but large numbers will chew up more memory and slow down
execution.

If a curly bracket occurs in any other context, it is treated as a regular character.

70 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Examples:

count.*r ß- matches strings like 'counter', 'countelkjdflkj9r' and
'countr'
count.+r - matches strings like 'counter', 'countelkjdflkj9r' but not
'countr'
count.?r - matches strings like 'counter', 'countar' and 'countr' but not
'countelkj9r'
counte{2}r - matches string 'counteer'
counte{2,}r - matches strings like 'counteer', 'counteeer', 'counteeer' etc.
counte{2,3}r - matches strings like 'counteer', or 'counteeer' but not
'counteeeer'

A little explanation about "greediness". "Greedy" takes as many as possible, "non-
greedy" takes as few as possible.
For example, 'b+' and 'b*' applied to string 'abbbbc' return 'bbbb', 'b+?' returns 'b',
'b*?' returns empty string, 'b{2,3}?' returns 'bb', 'b{2,3}' returns 'bbb'.

Metacharacters - Alternatives

You can specify a series of alternatives for a pattern using "|" to separate them, so
that bit|bat|bot will match any of "bit", "bat", or "bot" in the target string (as
would b(i|a|o)t)). The first alternative includes everything from the last pattern
delimiter ("(", "[", or the beginning of the pattern) up to the first "|", and the last
alternative contains everything from the last "|" to the next pattern delimiter. For this
reason, it's common practice to include alternatives in parentheses, to minimize
confusion about where they start and end.

Alternatives are tried from left to right, so the first alternative found for which the
entire expression matches, is the one that is chosen. This means that alternatives
are not necessarily greedy. For example: when matching rou|rout against "rou-
tine", only the "rou" part will match, as that is the first alternative tried, and it suc-
cessfully matches the target string (this might not seem important, but it is important
when you are capturing matched text using parentheses.) Also remember that "|"
is interpreted as a literal within square brackets, so if you write [bit|bat|bot],
you're really only matching [biao|].

Examples:

rou(tine|te) - matches strings 'routine' or 'route'.

71MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Metacharacters - Subexpressions

The bracketing construct (...) may also be used for define regular subexpres-
sions. Subexpressions are numbered based on the left to right order of their open-
ing parenthesis. First subexpression has number '1'

Examples:

(int){8,10} matches strings which contain 8, 9 or 10 instances of the 'int'
routi([0-9]|a+)e matches 'routi0e', 'routi1e' , 'routine', 'routinne',
'routinnne' etc.

Metacharacters - Backreferences

Metacharacters \1 through \9 are interpreted as backreferences. \ matches previ-
ously matched subexpression #.

Examples:

(.)\1+ matches 'aaaa' and 'cc'.
(.+)\1+ matches 'abab' and '123123'
(['"]?)(\d+)\1 matches "13" (in double quotes), or '4' (in single quotes)
or 77 (without quotes) etc

72 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

mikroPascal for 8051 COMMAND LINE OPTIONS

Usage: mikroPascal8051 [-'opts' [-'opts']] ['infile' [-'opts']] [-
'opts']] Infile can be of *.mpas and *.mcl type.

The following parameters and some more (see manual) are valid:
- P : MCU for which compilation will be done.
- FO : Set oscillator.
- SP : Add directory to the search path list.
- N : Output files generated to file path specified by filename.
- B : Save compiled binary files (*.mcl) to 'directory'.
- O : Miscellaneous output options.
- DBG : Generate debug info.
- E : Set memory model opts (S | C | L (small, compact, large)).
- L : Check and rebuild new libraries.
- C : Turn on case sensitivity.

Example:

mikroPascal8051.exe -MSF -DBG -pAT89S8253 -ES -O11111114 -fo10
-N"C:\Lcd\Lcd.mpproj" -SP"C:\Program
Files\Mikroelektronika\mikroPascal 8051\defs\"

-SP"C:\Program Files\Mikroelektronika\mikroPascal
8051\uses\"

-SP"C:\Lcd\" "Lcd.mpas" "System.mcl" "Math.mcl"
"Math_Double.mcl" "Delays.mcl" "__Lib_Lcd.mcl" "__Lib_LcdConsts.mcl"

Parameters used in the example:

- -MSF : Short Message Format; used for internal purposes by IDE.
- -DBG : Generate debug info.
- -pAT89S8253 : MCU AT89S8253 selected.
- -ES : Set small memory model.
- -O11111114 : Miscellaneous output options.
- -fo10 : Set oscillator frequency [in MHz].
- -N"C:\Lcd\Lcd.mpproj" -SP"C:\Program Files\Mikroelektronika\
mikroPascal 8051\defs\" : Output files generated to file path specified
by filename.

- -SP"C:\Program Files\Mikroelektronika\mikroPascal 8051\
defs\" : Add directory to the search path list.

- -SP"C:\Program Files\Mikroelektronika\mikroPascal 8051\
uses\" : Add directory to the search path list.
- -SP"C:\Lcd\" : Add directory to the search path list.
- "Lcd.mpas" "System.mcl" "Math.mcl" "Math_Double.mcl"

"Delays.mcl" "__Lib_Lcd.mcl" "__Lib_LcdConsts.mcl" : Specify input files.

73MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

PROJECTS

The mikroPascal 8051 organizes applications into projects, consisting of a single
project file (extension .mpproj) and one or more source files (extension .mpas).
mikroPascal for 8051 IDE allows you to manage multiple projects (see Project Man-
ager). Source files can be compiled only if they are part of a project.

The project file contains the following information:

- project name and optional description,
- target device,
- memory model,
- device flags (config word),
- device clock,
- list of the project source files with paths,
- binary files (*.mcl),
- image files,
- other files.

Note that the project does not include files in the same way as preprocessor does,
see Add/Remove Files from Project.

New Project

The easiest way to create a project is by means of the New Project Wizard, drop-

down menu Project > New Project or by clicking the New Project Icon from

Project Toolbar.

74 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

New Project Wizard Steps

Step One- Provides basic information on settings in the following steps.

Step Two - Select the device from the device drop-down list.

75MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Step Three - enter the oscillator frequency value.

Step Four - Select the desired memory model.

76 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Step Five - Specify the location where your project will be saved.

Step Six - Add project file to the project if they are avaiable at this point. You can
always add project files later using Project Manager

77MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Open Project

You can open existing project by doing the following: go to Project > Open from
drop-down menu (shortcut Shift+Ctrl+O), and find the location that contains your
project file (extension .mpproj). Select project file and then click on Open button. If
you do not open project file (for instance source file .mpas only) you will not
be able to compile or program desired code.

Related topics: Project Manager, Project Settings, Memory Model

78 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

CUSTOMIZING PROJECTS

Edit Project

You can change basic project settings in the Project Settings window. You can
change chip, oscillator frequency, and memory model. Any change in the Project
Setting Window affects currently active project only, so in case more than one proj-
ect is open, you have to ensure that exactly the desired project is set as active one
in the Project Manager.

Managing Project Group

mikroPascal for 8051 IDE provides covenient option which enables several projects
to be open simultaneously. If you have several projects being connected in some
way, you can create a project group.

The project group may be saved by clicking the Save Project Group Icon from

the Project Manager window. The project group may be reopend by clicking the

Open Project Group Icon . All relevant data about the project group is stored

in the project group file (extension .mpg)

Add/Remove Files from Project

The project can contain the following file types:

- .mpas source files
- .mcl binary files
- .pld project level defines files (future upgrade)
- image files
- .hex, .asm and .lst files, see output files. These files can not be added

or removed from project.
- other files

79MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

The list of relevant source files is stored in the project file (extension .mpproj).

To add source file to the project, click the Add File to Project Icon . Each added

source file must be self-contained, i.e. it must have all necessary definitions after

preprocessing.

To remove file(s) from the project, click the Remove File from Project Icon .

See File Inclusion for more information.

Related topics: Project Manager, Project Settings, Memory Model

80 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

SOURCE FILES

Source files containing Pascal code should have the extension .mpas. The list of
source files relevant to the application is stored in project file with extension
.mpproj, along with other project information. You can compile source files only if
they are part of the project.

Managing Source Files

Creating new source file

To create a new source file, do the following:

1. Select File › New Unit from the drop-down menu, or press Ctrl+N, or click the

New File Icon from the File Toolbar.

2. A new tab will be opened. This is a new source file. Select File › Save from the

drop-down menu, or press Ctrl+S, or click the Save File Icon from the File

Toolbar and name it as you want.

If you use the New Project Wizard, an empty source file, named after the project with
extension .mpas, will be created automatically. The mikroPascal 8051 does not
require you to have a source file named the same as the project, it’s just a matter of
convenience.

Opening an existing file

1. Select File › Open from the drop-down menu, or press Ctrl+O, or click the Open

File Icon from the File Toolbar. In Open Dialog browse to the location of the

file that you want to open, select it and click the Open button.

2. The selected file is displayed in its own tab. If the selected file is already open, its

current Editor tab will become active.

Printing an open file

1. Make sure that the window containing the file that you want to print is the
active window.

2. Select File › Print from the drop-down menu, or press Ctrl+P.
3. In the Print Preview Window, set a desired layout of the document and click the

OK button. The file will be printed on the selected printer.

81MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Saving file

1. Make sure that the window containing the file that you want to save is the
active window.

2. Select File › Save from the drop-down menu, or press Ctrl+S, or click the Save

File Icon from the File Toolbar.

Saving file under a different name

1. Make sure that the window containing the file that you want to save is the
active window.

2. Select File › Save As from the drop-down menu. The New File Name dialog will
be displayed.

3. In the dialog, browse to the folder where you want to save the file.
4. In the File Name field, modify the name of the file you want to save.
5. Click the Save button.

Closing file

1. Make sure that the tab containing the file that you want to close is the active tab.
2. Select File › Close from the drop-down menu, or right click the tab of the file that

you want to close and select Close option from the context menu.
3. If the file has been changed since it was last saved, you will be prompted to save

your changes.

Related topics:File Menu, File Toolbar, Project Manager, Project Settings,

82 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

CLEAN PROJECT FOLDER

Clean Project Folder

This menu gives you option to choose which files from your current project you want
to delete.
Files marked in bold can be easily recreated by building a project. Other files should
be marked for deletion only with a great care, because IDE cannot recover them.

83MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

COMPILATION

When you have created the project and written the source code, it's time to compile

it. Select Project › Build from the drop-down menu, or click the Build Icon from

the Project Toolbar. If more more than one project is open you can compile all open

projects by selecting Project › Build All from the drop-down menu, or click the Build

All Icon from the Project Toolbar.

Progress bar will appear to inform you about the status of compiling. If there are
some errors, you will be notified in the Error Window. If no errors are encountered,
the mikroPascal for 8051 will generate output files.

Output Files

Upon successful compilation, the mikroPascal for 8051 will generate output files in
the project folder (folder which contains the project file .mpproj). Output files are
summarized in the table below:

Assembly View

After compiling the program in the mikroPascal for 8051, you can click the View

Assembly icon or select Project › View Assembly from the drop-down menu

to review the generated assembly code (.asm file) in a new tab window. Assembly

is human-readable with symbolic names.

Related topics:Project Menu, Project Toolbar, Error Window, Project Manager, Pro-
ject Settings

84 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Format Description File Type

Intel HEX
Intel style hex records. Use this file to program
8051 MCU.

.hex

Binary
mikro Compiled Library. Binary distribution of
application that can be included in other projects.

.mcl

List File
Overview of 8051 memory allotment: instruction
addresses, registers, routines and labels.

.lst

Assembler File
Human readable assembly with symbolic names,
extracted from the List File.

.asm

ERROR MESSAGES

Compiler Error Messages:

- "%s" is not valid identifier.
- Unknown type "%s".
- Identifier "%s" was not declared.
- Syntax error: Expected "%s" but "%s" found.
- Argument is out of range "%s".
- Syntax error in additive expression.
- File "%s" not found.
- Invalid command "%s".
- Not enough parameters.
- Too many parameters.
- Too many characters.
- Actual and formal parameters must be identical.
- Invalid ASM instruction: "%s".
- Identifier "%s" has been already declared in "%s".
- Syntax error in multiplicative expression.
- Definition file for "%s" is corrupted.
- ORG directive is currently supported for interrupts only.
- Not enough ROM.
- Not enough RAM.
- External procedure "%s" used in "%s" was not found.
- Internal error: "%s".
- Unit cannot recursively use itself.
- "%s" cannot be used out of loop.
- Supplied and formal parameters do not match ("%s" to "%s").
- Constant cannot be assigned to.
- Constant array must be declared as global.
- Incompatible types ("%s" to "%s").
- Too many characters ("%s").
- Soft_Uart cannot be initialized with selected baud rate/device clock.
- Main label cannot be used in modules.
- Break/Continue cannot be used out of loop.
- Preprocessor Error: "%s".
- Expression is too complicated.
- Duplicated label "%s".
- Complex type cannot be declared here.
- Record is empty.
- Unknown type "%s".
- File not found "%s".
- Constant argument cannot be passed by reference.
- Pointer argument cannot be passed by reference.

85MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

- Operator "%s" not applicable to these operands "%s".
- Exit cannot be called from the main block.
- Array parameter must be passed by reference.
- Error occured while compiling "%s".
- Recursive types are not allowed.
- Adding strings is not allowed, use "strcat" procedure instead.
- Cannot declare pointer to array, use pointer to structure which has array field.
- Return value of the function "%s" is not defined.
- Assignment to for loop variable is not allowed.
- "%s" is allowed only in the main program.
- Start address of "%s" has already been defined.
- Simple constant cannot have a fixed address.
- Invalid date/time format.
- Invalid operator "%s".
- File "%s" is not accessible.
- Forward routine "%s" is missing implementation.
- ";" is not allowed before "else".
- Not enough elements: expected "%s", but "%s" elements found.
- Too many elements: expected "%s" elements.
- "external" is allowed for global declarations only.
- Integer const expected.
- Recusion in definition.
- Array corupted.
- Arguments cannot have explicit memory specificator.
- Bad storage class.
- Pointer to function required.
- Function required.
- Pointer required.
- Illegal pointer conversion to double.
- Integer type needed.
- Members can not have memory specifier.
- Members can not be of bit or sbit type.
- Too many initializers.
- Too many initializers of subaggregate.
- Already used [%s].
- Address must be greater than 0.
- [%s] Identifier redefined.
- User abort.
- Expression must be greater then 0.
- Invalid declarator expected '(' or identifier.
- Typdef name redefined: [%s].
- Declarator error.
- Specifer/qualifier list expected.
- [%s] already used.

86 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

- ILevel can be used only with interrupt service routines.
- ';' expected but [%s] found.
- Expected'[{'.
- [%s] Identifier redefined.
- '(' expected but [%s] found.
- ')' expected but [%s] found.
- 'case' out of switch.
- ':' expected but [%s] found.
- 'default' label out of switch.
- Switch expression must evaluate to integral type.
- While expected but [%s] found.
- 'continue' outside of loop.
- Unreachable code.
- Label redefined.
- Too many chars.
- Unresolved type.
- Arrays of objects containing zero-size arrays are illegal.
- Invalid enumerator.
- ILevel can be used only with interrupt service routines.
- ILevel value must be integral constant.
- ILevel out of range [0..4].
- '}' expected but [%s] found.
- '(' expected but [%s] found.
'- break' outside of loop or switch.
- Empty char.
- Nonexistent field [%s].
- Illegal char representation: [%s].
- Initializer syntax error: multidimension array missing subscript.
- Too many initializers of subaggregate.
- At least one Search Path must be specified.
- Not enough RAM for call satck.
- Parameter [%s] must not be of bit or sbit type.
- Function must not have return value of bit or sbit type.
- Redefinition of [%s] already defined in [%s].
- Main function is not defined.
- System routine not found for initialization of: [%s].
- Bad agregate definition [%s].
- Unresolved extern [%s].
- Bad function absolute address [%s].
- Not enough RAM [%s].
- Compilation Started.
- Compiled Successfully.
- Finished (with errors): 01 Mar 2008, 14:22:26
- Project Linked Successfully.
- All files Preprocessed in [%s] ms.
- All files Compiled in [%s] ms.
- Linked in [%s] ms.
- Project [%s] completed: [%s] ms.

87MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Linker Error Messages:

- Linker error: "%s" "%s".
- Warning: Variable "%s" is not initialized.
- Warning: Return value of the function "%s" is not defined.
- Hint: Constant "%s" has been declared, but not used.
- Warning: Identifier "%s" overrides declaration in unit "%s".
- Constant "%s" was not found.
- Address of the routine has already been defined.
- Duplicated label "%s".
- File "%s" not found.

Hint Messages:

- Hint: Variable "%s" has been declared, but not used.
- Warning: Variable "%s" is not initialized.
- Warning: Return value of the function "%s" is not defined.
- Hint: Constant "%s" has been declared, but not used.
- Warning: Identifier "%s" overrides declaration in unit "%s".
- Warning: Generated baud rate is "%s" bps (error ="%s" percent).
- Warning: Result size may exceed destination array size.
- Warning: Infinite loop.
- Warning: Implicit typecast performed from "%s" to "%s".
- Hint: Unit "%s" has been recompiled.
- Hint: Variable "%s" has been eliminated by optimizer.
- Warning: Implicit typecast of integral value to pointer
- Warning: Library "%s" was not found in search path.
- Warning: Interrupt context saving has been turned off.
- Hint: Compiling unit "%s".

88 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

SOFTWARE SIMULATOR OVERVIEW

The Source-level Software Simulator is an integral component of the mikroPascal
for 8051 environment. It is designed to simulate operations of the 8051 MCUs and
assist the users in debugging Pascal code written for these devices.

After you have successfully compiled your project, you can run the Software Simu-

lator by selecting Run › Start Debugger from the drop-down menu, or by clicking

the Start Debugger Icon from the Debugger Toolbar. Starting the Software Sim-

ulator makes more options available: Step Into, Step Over, Step Out, Run to Cursor,

etc. Line that is to be executed is color highlighted (blue by default).

Note: The Software Simulator simulates the program flow and execution of instruc-
tion lines, but it cannot fully emulate 8051 device behavior, i.e. it doesn’t update
timers, interrupt flags, etc.

Watch Window

The Software Simulator Watch Window is the main Software Simulator window
which allows you to monitor program items while simulating your program. To show
the Watch Window, select View › Debug Windows › Watch from the drop-down
menu.

The Watch Window displays variables and registers of the MCU, along with their
addresses and values.

There are two ways of adding variable/register to the watch list:

- by its real name (variable's name in "Pascal" code). Just select desired

variable/register from Select variable from list drop-down menu and click the

Add Button .

- by its name ID (assembly variable name). Simply type name ID of the variable/reg-

ister you want to display into Search the variable by assemby name box and

click the Add Button .

Variables can also be removed from the Watch window, just select the variable that

you want to remove and then click the Remove Button .

89MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Add All Button adds all variables.

Remove All Button removes all variables.

You can also expand/collapse complex variables, i.e. struct type variables, strings...

Values are updated as you go through the simulation. Recently changed items are
colored red.

Double clicking a variable or clicking the Properties Button opens

the Edit Value window in which you can assign a new value to the selected

variable/register. Also, you can choose the format of variable/register representation

between decimal, hexadecimal, binary, float or character. All representations except

float are unsigned by default. For signed representation click the check box next to

the Signed label.

An item's value can be also changed by double clicking item's value field and typing
the new value directly.

90 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

Stopwatch Window

The Software Simulator Stopwatch Window is available from the drop-down menu,
View › Debug Windows › Stopwatch.

The Stopwatch Window displays a current count of cycles/time since the last Soft-
ware Simulator action. Stopwatch measures the execution time (number of cycles)
from the moment Software Simulator has started and can be reset at any time. Delta
represents the number of cycles between the lines where Software Simulator action
has started and ended.

Note: The user can change the clock in the Stopwatch Window, which will recalcu-
late values for the latest specified frequency. Changing the clock in the Stopwatch
Window does not affect actual project settings – it only provides a simulation.

91MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

RAM Window

The Software Simulator RAM Window is available from the drop-down menu, View
› Debug Windows › RAM.

The RAM Window displays a map of MCU’s RAM, with recently changed items col-
ored red. You can change value of any field by double-clicking it.

92 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

SOFTWARE SIMULATOR OPTIONS

Related topics: Run Menu, Debug Toolbar

93MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

EnvironmentmikroPascal for 8051
CHAPTER 2

Name Description Function Key
Toolbar

Icon

Start Debugger Start Software Simulator. [F9]

Run/Pause
Debugger Run or pause Software Simulator. [F6]

Stop Debugger Stop Software Simulator. [Ctrl+F2]

Toggle
Breakpoints

Toggle breakpoint at the current cursor posi-
tion. To view all breakpoints, select Run >
View Breakpoints from the drop–down menu.
Double clicking an item in the Breakpoints
Window List locates the breakpoint.

[F5]

Run to cursor
Execute all instructions between the current
instruction and cursor position.

[F4]

Step Into

Execute the current Pascal (single or
multi–cycle) instruction, then halt. If the instruc-
tion is a routine call, enter the routine and halt at
the first instruction following the call.

[F7]

Step Over
Execute the current Pascal (single or
multi–cycle) instruction, then halt.

[F8]

Step Out
Execute all remaining instructions in the cur-
rent routine, return and then halt.

[Ctrl+F8]

CREATING NEW LIBRARY

mikroPascal for 8051 allows you to create your own libraries. In order to create a
library in mikroPascal for 8051 follow the steps bellow:

1. Create a new Pascal source file, see Managing Source Files
2. Save the file in the compiler's Uses folder:
DriveName:\Program Files\Mikroelektronika\mikroPascal
8051\Uses__Lib_Example.mpas
3. Write a code for your library and save it.
4. Add __Lib_Example.mpas file in some project, see Project Manager. Recompile

the project.
5. Compiled file __Lib_Example.mcl should appear in ...\mikroPascal

8051\Uses\ folder.
6. Open the definition file for the MCU that you want to use. This file is placed in the

compiler's Defs folder:
DriveName:\Program Files\Mikroelektronika\mikroPascal 8051\Defs\
and it is named MCU_NAME.mlk, for example AT89S8253.mlk

7. Add the Library_Alias and Library_Name at the end of the definition file, for
example #pragma SetLib([Example_Library, __Lib_Example])

8. Add Library to mlk file for each MCU that you want to use with your library.
9. Click Refresh button in Library Manager

Multiple Library Versions

Library Alias represents unique name that is linked to corresponding Library .mcl
file. For example UART library for AT89S8253 is different from UART library for
AT89S4051 MCU. Therefore, two different UART Library versions were made, see
mlk files for these two MCUs. Note that these two libraries have the same Library
Alias (UART) in both mlk files. This approach enables you to have identical repre-
sentation of UART library for both MCUs in Library Manager.

Related topics: Library Manager, Project Manager, Managing Source Files

94 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Environment mikroPascal for 8051
CHAPTER 2

mikroPascal for 8051
Specifics

The following topics cover the specifics of mikroPascal compiler:

- Pascal Standard Issues
- Predefined Globals and Constants
- Accessing Individual Bits
- Interrupts
- 8051 Pointers
- Linker Directives
- Built-in Routines
- Code Optimization

3

95

CHAPTER

PASCAL STANDARD ISSUES

Divergence from the Pascal Standard

- Function recursion is not supported because of no easily-usable stack and
limited memory 8051 Specific

Pascal Language Extensions

mikroPascal for 8051 has additional set of keywords that do not belong to the stan-
dard Pascal language keywords:

- code
- data
- idata
- bdata
- xdata
- pdata
- small
- compact
- large
- at
- sbit
- bit
- sfr
- ilevel

Related topics: Keywords, 8051 Specific

96 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Specifics mikroPascal for 8051
CHAPTER 3

PREDEFINED GLOBALS AND CONSTANTS

To facilitate programming of 8051 compliant MCUs, the mikroPascal for 8051 imple-
ments a number of predefined globals and constants.

All 8051 SFR registers are implicitly declared as global variables of volatile word.
These identifiers have an external linkage, and are visible in the entire project.
When creating a project, the mikroPascal for 8051 will include an appropriate
(*.mpas) file from defs folder, containing declarations of available SFR registers
and constants.

P0 := 1;

Math constants

In addition, several commonly used math constants are predefined in mikroPascal
for 8051:

PI = 3.1415926
PI_HALF = 1.5707963
TWO_PI = 6.2831853
E = 2.7182818

For a complete set of predefined globals and constants, look for “Defs” in the
mikroPascal for 8051 installation folder, or probe the Code Assistant for specific let-
ters (Ctrl+Space in the Code Editor).

97MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

SpecificsmikroPascal for 8051
CHAPTER 3

ACCESSING INDIVIDUAL BITS

The mikroPascal for 8051 allows you to access individual bits of 8-bit variables. It
also supports sbit and bit data types

Accessing Individual Bits Of Variables

Simply use the direct member selector (.) with a variable, preceded with 'B' and fol-
lowed by one of identifiers 0, 1, … , 15 with 15 being the most significant bit.

There is no need of any special declarations. This kind of selective access is an
intrinsic feature of mikroPascal for 8051 and can be used anywhere in the code.
Identifiers 0–15 are not case sensitive and have a specific namespace. You may
override them with your own members 0–15 within any given structure.

If you are familiar with a particular MCU, you can also access bits by name:

// Clear bit 3 on Port0
P0.3 := 0;

See Predefined Globals and Constants for more information on register/bit names.

sbit type

The mikroPascal Compiler have sbit data type which provides access to bit-
addressable SFRs. For example:

var LEDA : sbit at P0.B0;
var name : sbit at sfr-name.B<bit-position>;

The previously declared SFR (sfr-name) is the base address for the sbit. It must be
evenly divisible by 8. The bit-position (which must be a number from 0-7) follows the
dot symbol ('.') and specifies the bit position to access. For example:

var OV : sbit at PSW.B2;
var CY : sbit at PSW.B7;

98 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Specifics mikroPascal for 8051
CHAPTER 3

bit type

The mikroPascal Compiler provides a bit data type that may be used for variable
declarations. It can not be used for argument lists, and function-return values.

var bf : bit; // bit variable

All bit variables are stored in a bit addressable portion 0x20-0x2F segment located
in the internal memory area of the 8051. Because this area is only 16 bytes long, a
maximum of 128 bit variables may be declared within any one scope.

There are no pointers to bit variables:

var ptr : ^bit; // invalid

An array of type bit is not valid:

var arr[5] : bit; // invalid

Bit variables can not be initialized nor they can be members of records.

Related topics: Predefined globals and constants

99MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

SpecificsmikroPascal for 8051
CHAPTER 3

INTERRUPTS

8051 derivates acknowledges an interrupt request by executing a hardware gener-
ated LCALL to the appropriate servicing routine ISRs. ISRs are organized in IVT.
ISR is defined as a standard function but with the org directive afterwards which
connects the function with specific interrupt vector. For example org 0x000B is IVT
address of Timer 0 Overflow interrupt source of the AT89S8253.
For more information on interrupts and IVT refer to the specific data sheet.

Function Calls from Interrupt

Calling functions from within the interrupt routine is allowed. The compiler takes care
about the registers being used, both in "interrupt" and in "main" thread, and performs
"smart" context-switching between them two, saving only the registers that have
been used in both threads. It is not recommended to use function call from interrupt.
In case of doing that take care of stack depth.

Interrupt Priority Level

8051 MCUs has possibilty to assign different priority level trough setting appropriate
values to coresponding SFRs. You should also assign ISR same priority level by
ilevel keyword followed by interrupt priority number.
Available interrupt priority levels are: 0 (default), 1, 2 and 3.

procedure Timer0ISR(); org 0x000B; ilevel 2;
begin

//set Timer0ISR to be ISR for Timer 0 Overflow priority level 2.
end;

Related topics: Pascal standard issues

100 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Specifics mikroPascal for 8051
CHAPTER 3

LINKER DIRECTIVES

mikroPascal for 8051 uses internal algorithm to distribute objects within memory. If
you need to have a variable or a routine at the specific predefined address, use the
linker directives absolute and org.

Note: You must specify an even address when using the linker directives.

Directive absolute

Directive absolute specifies the starting address in RAM for a variable. If the vari-
able spans more than 1 word (16-bit), the higher words will be stored at the consec-
utive locations.

Directive absolute is appended to the declaration of a variable:

var x : word; absolute $32;
// Variable x will occupy 1 word (16 bits) at address $32

y : longint; absolute $34;
// Variable y will occupy 2 words at addresses $34 and $36

Be careful when using the absolute directive because you may overlap two vari-
ables by accident. For example:

var i : word; absolute $42;
// Variable i will occupy 1 word at address $42;

jj : longint; absolute $40;
// Variable will occupy 2 words at $40 and $42; thus,
// changing i changes jj at the same time and vice versa

Note: You must specify an even address when using the absolute directive.

101MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

SpecificsmikroPascal for 8051
CHAPTER 3

Directive org

Directive org specifies the starting address of a routine in ROM. It is appended to
the declaration of a routine. For example:

procedure proc(par : byte); org $200;
begin
// Procedure will start at address $200;
...
end;

org directive can be used with main routine too. For example:

program Led_Blinking;

procedure some_proc();
begin
...

end;

org 0x800; // main procedure starts at 0x800
begin

ADPCFG := $FFFF;
TRISB := $0000;

while TRUE do
begin

LATB := $0000;
Delay_ms(500);
LATB := $FFFF;
Delay_ms(500);

end;
end.

Note: You must specify an even address when using the org directive.

102 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Specifics mikroPascal for 8051
CHAPTER 3

BUILT-IN ROUTINES

The mikroPascal for 8051 compiler provides a set of useful built-in utility functions.

The Delay_us and Delay_ms routines are implemented as “inline”; i.e. code is gen-
erated in the place of a call, so the call doesn’t count against the nested call limit.

The Vdelay_ms, Delay_Cyc and Get_Fosc_kHz are actual Pascal routines. Their
sources can be found in Delays.mpas file located in the uses folder of the compiler.

- Lo
- Hi
- Higher
- Highest

- Inc
- Dec

- Delay_us
- Delay_ms
- Vdelay_ms
- Delay_Cyc

- Clock_Khz
- Clock_Mhz

- SetFuncCall
- Uart_Init

103MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

SpecificsmikroPascal for 8051
CHAPTER 3

Lo

Hi

Higher

104 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Specifics mikroPascal for 8051
CHAPTER 3

Prototype function Lo(number: longint): byte;

Returns Lowest 8 bits (byte)of number, bits 7..0.

Description

Function returns the lowest byte of number. Function does not interpret bit pat-
terns of number – it merely returns 8 bits as found in register.

This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).

Example
d := 0x1AC30F4;
tmp := Lo(d); // Equals 0xF4

Prototype function Hi(number: longint): byte;

Returns Returns next to the lowest byte of number, bits 8..15.

Description

Function returns next to the lowest byte of number. Function does not interpret
bit patterns of number – it merely returns 8 bits as found in register.

This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).

Example
d := 0x1AC30F4;
tmp := Hi(d); // Equals 0x30

Prototype function Higher(number: longint): byte;

Returns Returns next to the highest byte of number, bits 16..23.

Description

Function returns next to the highest byte of number. Function does not interpret
bit patterns of number – it merely returns 8 bits as found in register.

This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).

Example
d := 0x1AC30F4;
tmp := Higher(d); // Equals 0xAC

Highest

Inc

Dec

105MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

SpecificsmikroPascal for 8051
CHAPTER 3

Prototype function Highest(number: longint): byte;

Returns Returns the highest byte of number, bits 24..31.

Description

Function returns the highest byte of number. Function does not interpret bit pat-
terns of number – it merely returns 8 bits as found in register.

This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).

Example
d := 0x1AC30F4;
tmp := Highest(d); // Equals 0x01

Prototype procedure Inc(var par : longint);

Returns Nothing.

Description Increases parameter par by 1.

Requires Nothing.

Example
p := 4;
Inc(p); // p is now 5

Prototype procedure Dec(var par : longint);

Returns Nothing.

Description Decreases parameter par by 1.

Requires Nothing.

Example
p := 4;
Dec(p); // p is now 3

Delay_us

Delay_ms

Vdelay_ms

106 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Specifics mikroPascal for 8051
CHAPTER 3

Prototype procedure Delay_us(time_in_us: const longword);

Returns Nothing.

Description

Creates a software delay in duration of time_in_us microseconds (a constant).
Range of applicable constants depends on the oscillator frequency.

This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Nothing.

Example Delay_us(1000); /* One millisecond pause */

Prototype procedure Delay_ms(time_in_ms: const longword);

Returns Nothing.

Description

Creates a software delay in duration of time_in_ms milliseconds (a constant).
Range of applicable constants depends on the oscillator frequency.

This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Nothing.

Example Delay_ms(1000); /* One second pause */

Prototype procedure Vdelay_ms(time_in_ms: word);

Returns Nothing.

Description

Creates a software delay in duration of time_in_ms milliseconds (a variable).
Generated delay is not as precise as the delay created by Delay_ms.

Note that Vdelay_ms is library function rather than a built-in routine; it is pre-
sented in this topic for the sake of convenience.

Requires Nothing.

Example
pause := 1000;
// ...
Vdelay_ms(pause); // ~ one second pause

Delay_Cyc

Clock_KHz

Clock_MHz

107MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

SpecificsmikroPascal for 8051
CHAPTER 3

Prototype procedure Delay_Cyc(Cycles_div_by_10: byte);

Returns Nothing.

Description

Creates a delay based on MCU clock. Delay lasts for 10 times the input param-
eter in MCU cycles.

Note that Delay_Cyc is library function rather than a built-in routine; it is pre-
sented in this topic for the sake of convenience. There are limitations for
Cycles_div_by_10 value. Value Cycles_div_by_10 must be between 2 and 257.

Requires Nothing.

Example Delay_Cyc(10); /* Hundred MCU cycles pause */

Prototype function Clock_KHz(): word;

Returns Device clock in KHz, rounded to the nearest integer.

Description

Function returns device clock in KHz, rounded to the nearest integer.

This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Nothing.

Example clk := Clock_kHz();

Prototype function Clock_MHz(): byte;

Returns Device clock in MHz, rounded to the nearest integer.

Description

Function returns device clock in MHz, rounded to the nearest integer.

This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Nothing.

Example clk := Clock_MHz();

SetFuncCall

Uart_Init

108 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Specifics mikroPascal for 8051
CHAPTER 3

Prototype procedure SetFuncCall(FuncName: string);

Returns Nothing.

Description

Function informs the linker about a specific routine being called. SetFuncCall
has to be called in a routine which accesses another routine via a pointer.

Function prepares the caller tree, and informs linker about the procedure usage,
making it possible to link the called routine.

Requires Nothing.

Example

procedure first(p, q: byte);
begin
...

SetFuncCall(second); // let linker know that we will call the
routine 'second'
...
end

Prototype procedure Uart_Init(baud_rate: longword);

Returns Nothing.

Description

Configures and initializes the UART module.

The internal UART module module is set to:

- 8-bit data, no parity
- 1 STOP bit
- disabled automatic address recognition
- timer1 as baudrate source (mod2 = autoreload 8bit timer)

Parameters :

- baud_rate: requested baud rate

Refer to the device data sheet for baud rates allowed for specific Fosc.

Requires MCU with the UART module and TIMER1 to be used as baudrate source.

Example
// Initialize hardware UART and establish communication at 2400
bps
Uart_Init(2400);

CODE OPTIMIZATION

Optimizer has been added to extend the compiler usability, cut down the amount of
code generated and speed-up its execution. The main features are:

Constant folding

All expressions that can be evaluated in the compile time (i.e. are constant) are
being replaced by their results. (3 + 5 -> 8);

Constant propagation

When a constant value is being assigned to a certain variable, the compiler recog-
nizes this and replaces the use of the variable by constant in the code that follows,
as long as the value of a variable remains unchanged.

Copy propagation

The compiler recognizes that two variables have the same value and eliminates one
of them further in the code.

Value numbering

The compiler "recognizes" if two expressions yield the same result and can there-
fore eliminate the entire computation for one of them.

"Dead code" ellimination

The code snippets that are not being used elsewhere in the programme do not affect
the final result of the application. They are automatically removed.

Stack allocation

Temporary registers ("Stacks") are being used more rationally, allowing VERY com-
plex expressions to be evaluated with a minimum stack consumption.

Local vars optimization

No local variables are being used if their result does not affect some of the global or
volatile variables.

Better code generation and local optimization

Code generation is more consistent and more attention is payed to implement spe-
cific solutions for the code "building bricks" that further reduce output code size.

109MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

SpecificsmikroPascal for 8051
CHAPTER 3

110 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Specifics mikroPascal for 8051
CHAPTER 3

8051 Specifics

Types Efficiency

First of all, you should know that 8051 ALU, which performs arithmetic operations,
is optimized for working with bytes. Although mikroPascal is capable of handling
very complex data types, 8051 may choke on them, especially if you are working on
some of the older models. This can dramatically increase the time needed for per-
forming even simple operations. Universal advice is to use the smallest possible
type in every situation. It applies to all programming in general, and doubly so with
microcontrollers. Types efficiency is determined by the part of RAM memory that is
used to store a variable/constant. See the example.

4

111

CHAPTER

Nested Calls Limitations

There are no Nested Calls Limitations, except by RAM size. A Nested call repre-
sents a function call to another function within the function body. With each function
call, the stack increases for the size of the returned address. Number of nested calls
is equel to the capacity of RAM which is left out after allocation of all variables.

Note: There are many different types of derivates, so it is necessary to be familiar
with characteristics and special features of the microcontroller in you are using.

8051 MEMORY ORGANIZATION

The 8051 microcontroller's memory is divided into Program Memory and Data
Memory. Program Memory (ROM) is used for permanent saving program being exe-
cuted, while Data Memory (RAM) is used for temporarily storing and keeping inter-
mediate results and variables.

Program Memory (ROM)

Program Memory (ROM) is used for permanent saving program (CODE) being exe-
cuted. The memory is read only. Depending on the settings made in compiler, pro-
gram memory may also used to store a constant variables. The 8051 executes pro-
grams stored in program memory only. code memory type specifier is used to refer
to program memory.

8051 memory organization alows external program memory to be added.
How does the microcontroller handle external memory depends on the pin EA logi-
cal state.

112 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

8051 Specifics mikroPascal for 8051
CHAPTER 4

Internal Data Memory

Up to 256 bytes of internal data memory are available depending on the 8051 deriv-
ative. Locations available to the user occupy addressing space from 0 to 7Fh, i.e.
first 128 registers and this part of RAM is divided in several blocks. The first 128
bytes of internal data memory are both directly and indirectly addressable. The
upper 128 bytes of data memory (from 0x80 to 0xFF) can be addressed only indi-
rectly.

Since internal data memory is used for CALL stack also and there is only 256 bytes
splited over few different memory areas fine utilizing of this memory is crucial for fast
and compact code. See types efficiency also.

Memory block in the range of 20h to 2Fh is bit-addressable, which means that each
bit being there has its own address from 0 to 7Fh. Since there are 16 such registers,
this block contains in total of 128 bits with separate addresses (Bit 0 of byte 20h
has the bit address 0, and bit 7 of byte 2Fh has the bit address 7Fh).
Three memory type specifiers can be used to refer to the internal data memory:
data, idata, and bdata.

113MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

8051 SpecificsmikroPascal for 8051
CHAPTER 4

External Data Memory

Access to external memory is slower than access to internal data memory. There
may be up to 64K Bytes of external data memory. Several 8051 devices provide on-
chip XRAM space that is accessed with the same instructions as the traditional
external data space. This XRAM space is typically enabled via proper setting of SFR
register and overlaps the external memory space. Setting of that register must be
manualy done in code, before any access to external memory or XRAM space is
made.
The mikroPascal for 8051 has two memory type specifiers that refers to external
memory space: xdata and pdata.

SFR Memory

The 8051 provides 128 bytes of memory for Special Function Registers (SFRs).
SFRs are bit, byte, or word-sized registers that are used to control timers, counters,
serial I/O, port I/O, and peripherals.
Refer to Special Function Registers for more information. See sbit also.

Related topics: Accessing individual bits, SFRs, Memory type specifiers, Memory models

114 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

8051 Specifics mikroPascal for 8051
CHAPTER 4

MEMORY MODELS

The memory model determines the default memory type to use for function argu-
ments, automatic variables, and declarations that include no explicit memory type.
The mikroPascal for 8051 provides three memory models:

- Small
- Compact
- Large

You may also specify the memory model on a function-by-function basis by adding
the memory model to the function declaration.

Small memory model generates the fastest, most efficient code. This is default
memory model. You may override the default memory type imposed by the memo-
ry model by explicitly declaring a variable with a memory type specifier.

Small model

In this model, all variables, by default, reside in the internal data memory of the 8051
system—as if they were declared explicitly using the data memory type specifier.
In this memory model, variable access is very efficient. However, all objects (that are
not explicitly located in another memory area) and the call stack must fit into the
internal RAM.
Call Stack size is critical because the stack space used depends on the nesting
depth of the various functions.

Compact model

Using the compact model, by default, all variables are allocated in a single page 256
bytes of external data memory of the 8051 system—as if they were explicitly
declared using the pdata memory type specifier. This memory model can accommo-
date a maximum of 256 bytes of variables. The limitation is due to the addressing
scheme used which is indirect through registers R0 and R1 (@R0, @R1). This
memory model is not as efficient as the small model and variable access is not as
fast. However, the compact model is faster than the large model. mikroPascal for
8051 uses the @R0 and @R1 operands to acess external memory with instructions
that use 8 bit wide pointers and provide only the low-order byte of the address. The
high-order address byte (or page) is provided by Port 2 on most 8051 derivates (see
data sheet for details).

115MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

8051 SpecificsmikroPascal for 8051
CHAPTER 4

Large model

In the large model all variables reside in external data memory (which may be up to
64K Bytes). This is the same as if they were explicitly declared using the xdata
memory type specifier. The DPTR is used to address external memory. Instruction
set is not optimized for this memory model(access to external memory) so it neeeds
more code than the small or compact model to manipulate with the variables.

function xadd(a1 : byte; a2 : byte) : byte; large; // allocate param-
eters and local variables in xdata space
begin

result := a1+a2;
end;

Related topics: Memory type specifiers, 8051 Memory Organization, Accessing indi-
vidual bits, SFRs, Project Settings

116 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

8051 Specifics mikroPascal for 8051
CHAPTER 4

Memory Type Specifiers

The mikroPascal for 8051 supports usage of all memory areas. Each variable may
be explicitly assigned to a specific memory space by including a memory type spec-
ifier in the declaration, or implicitly assigned (based on a memory model).

The following memory type specifiers can be used:

- code
- data
- idata
- bdata
- xdata
- pdata

Memory type specifiers can be included in svariable declaration.
For example:

data data_buffer : byte; // puts data_buffer in data ram
xdata x_data : array[100] of char; // puts array in external memory
idata ibuffer : real; // puts ibuffer in idata ramm

If no memory type is specified for a variable, the compiler locates the variable in the
memory space determined by the memory model: Small, Compact, or Large.

117MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

8051 SpecificsmikroPascal for 8051
CHAPTER 4

code

data

idata

bdata

118 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

8051 Specifics mikroPascal for 8051
CHAPTER 4

Description

Program memory (64 KBytes); accessed by opcode MOVC @A+DPTR.

The code memory type may be used for constants and functions. This memory
is accessed using 16-bit addresses and may be on-chip or external.

Example
// puts txt in program memory
code const txt : string [11] = 'Enter text:';

Description

Directly addressable internal data memory; fastest access to variables (128
bytes).

This memory is directly accessed using 8-bit addresses and is the on-chip RAM
of the 8051. It has the shortest (fastest) access time but the amount of data is
limited in size (to 128 bytes or less).

Example
// puts x in data ram
data x : byte;

Description

Indirectly addressable internal data memory; accessed across the full internal
address space (256 bytes).

This memory is indirectly accessed using 8-bit addresses and is the on-chip
RAM of the 8051. The amount of idata is limited in size (to 128 bytes or less) it
is upper 128 addresses of RAM

Example
// puts x in idata ram
idata x : byte;

Description

Bit-addressable internal data memory; supports mixed bit and byte access (16
bytes).

This memory is directly accessed using 8-bit addresses and is the on-chip bit-
addressable RAM of the 8051. Variables declared with the bdata type are bit-
addressable and may be read and written using bit instructions.

For more information about the bdata type refer to the Accessing Individual Bits.

Example
// puts x in bdata
bdata x : byte;

xdata

pdata

Related topics: 8051 Memory Organization, Memory models, Accessing individual bits, SFRs,
Constants, Functions

119MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

8051 SpecificsmikroPascal for 8051
CHAPTER 4

Description

External data memory (64 KBytes); accessed by opcode MOVX @DPTR.

This memory is indirectly accessed using 16-bit addresses and is the external
data RAM of the 8051. The amount of xdata is limited in size (to 64K or less).

Example
// puts x in xdata
xdata x : byte;

Description

Paged (256 bytes) external data memory; accessed by opcode MOVX @Rn.

This memory is indirectly accessed using 8-bit addresses and is one 256-byte
page of external data RAM of the 8051. The amount of pdata is limited in size
(to 256 bytes).

Example
// puts x in pdata
pdata x : byte;

120 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

8051 Specifics mikroPascal for 8051
CHAPTER 4

mikroPascal for 8051
Language Reference

The mikroPascal for 8051 Language Reference describes the syntax, semantics and
implementation of the mikroPascal for 8051 language.

The aim of this reference guide is to provide a more understandable description of
the mikroPascal for 8051 language to the user.

5

121

CHAPTER

- Lexical Elements

Whitespace
Comments
Tokens

Literals
Keywords
Identifiers
Punctuators

- Program Organization

Program Organization
Scope and Visibility
Units

- Variables
- Constants
- Labels
- Functions and Procedures

Functions
Procedures

- Types

Simple Types
Arrays
Strings
Pointers
Records
Types Conversions

Implicit Conversion
Explicit Conversion

- Operators

Introduction to Operators
Operators Precedence and Associativity
Arithmetic Operators
Relational Operators
Bitwise Operators
Boolean Operators

122 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

- Expressions

Expressions

- Statements

Introduction to Statements
Assignment Statements
Compound Statements (Blocks)
Conditional Statements

If Statement
Case Statement

Iteration Statements (Loops)

For Statement
While Statement
Repeat Statement

Jump Statements

Break and Continue Statements
Exit Statement
Goto Statement

asm Statement

- Directives

Compiler Directives
Linker Directives

123MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

LEXICAL ELEMENTS OVERVIEW

The following topics provide a formal definition of the mikroPascal for 8051 lexical
elements. They describe different categories of word-like units (tokens) recognized
by mikroPascal for 8051.

In the tokenizing phase of compilation, the source code file is parsed (i.e. broken
down) into tokens and whitespace. The tokens in mikroPascal for 8051 are derived
from a series of operations performed on your programs by the compiler.

WHITESPACE

Whitespace is a collective name given to spaces (blanks), horizontal and vertical
tabs, newline characters and comments. Whitespace can serve to indicate where
tokens start and end, but beyond this function, any surplus whitespace is discarded.
For example, two sequences

var i : char;
j : word;

and

var
i : char;

j : word;

are lexically equivalent and parse identically to give nine tokens:

var
i
:
char
;
j
:
word
;

124 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

Whitespace in Strings

The ASCII characters representing whitespace can occur within string literals, in
which case they are protected from the normal parsing process (they remain a part
of the string). For example,

some_string := 'mikro foo';

parses into four tokens, including a single string literal token:

some_string
:=
'mikro foo'
;

COMMENTS

Comments are pieces of a text used to annotate a program, and are technically
another form of whitespace. Comments are for the programmer’s use only. They are
stripped from the source text before parsing.

There are two ways to create comments in mikroPascal. You can use multi-line com-
ments which are enclosed with braces or (* and *):

{ All text between left and right brace
constitutes a comment. May span multiple lines. }

(* Comment can be
written in this way too. *)

or single-line comments:

// Any text between a double-slash and the end of the
// line constitutes a comment spanning one line only.

Nested comments

mikroPascal doesn’t allow nested comments. The attempt to nest a comment like this

{ i { identifier } : word; }

fails, because the scope of the first open brace “{” ends at the first closed brace “}”.
This gives us

: word; }

which would generate a syntax error.

125MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

TOKENS

Token is the smallest element of the Pascal program that compiler can recognize.
The parser separates tokens from the input stream by creating the longest token
possible using the input characters in a left–to–right scan.

mikroPascal for 8051 recognizes the following kinds of tokens:

- keywords
- identifiers
- constants
- operators
- punctuators (also known as separators)

Token Extraction Example

Here is an example of token extraction. Take a look at the following example code
sequence:

end_flag := 0;

First, note that end_flag would be parsed as a single identifier, rather than as the
keyword end followed by the identifier _flag.

The compiler would parse it as the following four tokens:

end_flag // variable identifier
:= // assignment operator
0 // literal
; // statement terminator

Note that := parses as one token (the longest token possible), not as token : fol-
lowed by token =.

126 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

LITERALS

Literals are tokens representing fixed numeric or character values.

The data type of a constant is deduced by the compiler using such clues as numer-
ic value and format used in the source code.

Integer Literals

Integral values can be represented in decimal, hexadecimal, or binary notation.

In decimal notation, numerals are represented as a sequence of digits (without com-
mas, spaces, or dots), with optional prefix + or - operator to indicate the sign. Values
default to positive (6258 is equivalent to +6258).

The dollar-sign prefix ($) or the prefix 0x indicates a hexadecimal numeral (for
example, $8F or 0x8F).

The percent-sign prefix (%) indicates a binary numeral (for example, %01010000).

Here are some examples:

11 // decimal literal
$11 // hex literal, equals decimal 17
0x11 // hex literal, equals decimal 17
%11 // binary literal, equals decimal 3

The allowed range of values is imposed by the largest data type in mikroPascal for
8051 – longint. Compiler will report an error if the literal exceeds 2147483647
($7FFFFFFF).

Floating Point Literals

A floating-point value consists of:

- Decimal integer
- Decimal point
- Decimal fraction
- e or E and a signed integer exponent (optional)

You can omit either the decimal integer or decimal fraction (but not both).

Negative floating constants are taken as positive constants with the unary operator
minus (-) prefixed.

127MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

mikroPascal for 8051 limits floating-point constants to range ±1.17549435082 * 10-
38 .. ±6.80564774407 * 1038.

Here are some examples:

0. // = 0.0
-1.23 // = -1.23
23.45e6 // = 23.45 * 10^6
2e-5 // = 2.0 * 10^-5
3E+10 // = 3.0 * 10^10
.09E34 // = 0.09 * 10^34

Character Literals

Character literal is one character from the extended ASCII character set, enclosed
with apostrophes.

Character literal can be assigned to variables of the byte and char type (variable of
byte will be assigned the ASCII value of the character). Also, you can assign char-
acter literal to a string variable.

Note: Quotes ("") have no special meaning in mikroPascal for 8051.

String Literals

String literal is a sequence of characters from the extended ASCII character set,
written in one line and enclosed with apostrophes. Whitespace is preserved in string
literals, i.e. parser does not “go into” strings but treats them as single tokens.

Length of string literal is a number of characters it consists of. String is stored inter-
nally as the given sequence of characters plus a final null character. This null
character is introduced to terminate the string, it does not count against the string’s
total length.

String literal with nothing in between the apostrophes (null string) is stored as a sin-
gle null character.

You can assign string literal to a string variable or to an array of char.

Here are several string literals:

128 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

'Hello world!' // message, 12 chars long
'Temperature is stable' // message, 21 chars long
' ' // two spaces, 2 chars long
'C' // letter, 1 char long
'' // null string, 0 chars long

The apostrophe itself cannot be a part of the string literal, i.e. there is no escape
sequence. You can use the built-in function Chr to print an apostrophe: Chr(39).
Also, see String Splicing.

129MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

KEYWORDS

Keywords are the words reserved for special purposes and must not be used as nor-
mal identifier names.

Beside standard Pascal keywords, all relevant SFRs are defined as global variables
and represent reserved words that cannot be redefined (for example: W0, TMR1,
T1CON, etc). Probe the Code Assistant for specific letters (Ctrl+Space in Editor) or
refer to Predefined Globals and Constants.

Here is the alphabetical listing of keywords in Pascal:

- absolute
- abstract
- and
- array
- as
- asm
- assembler
- at
- automated
- bdata
- begin
- bit
- case
- cdecl
- class
- code
- compact
- const
- constructor
- contains
- data
- default
- deprecated
- destructor
- dispid
- dispinterface
- div
- do
- downto
- dynamic
- end
- except
- export
- exports
- external

130 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

- far
- file
- final
- finalization
- finally
- for
- forward
- goto
- helper
- idata
- if
- ilevel
- implementation
- implements
- in
- index
- inherited
- initialization
- inline
- interface
- is
- label
- library
- message
- mod
- name
- near
- nil
- nodefault
- not
- object
- of
- on
- operator
- or
- org
- out
- overload
- override
- package
- packed
- pascal
- pdata
- platform
- private
- procedure
- program
- property
- protected

131MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

- public
- published
- raise
- read
- readonly
- record
- register
- reintroduce
- repeat
- requires
- safecall
- sbit
- sealed
- set
- shl
- shr
- small
- stdcall
- stored
- string
- threadvar
- to
- try
- type
- unit
- until
- uses
- var
- virtual
- volatile
- while
- with
- write
- writeonly
- xdata
- xor

Also, mikroPascal includes a number of predefined identifiers used in libraries. You
can replace them by your own definitions, if you plan to develop your own libraries.
For more information, see mikroPascal Libraries.

132 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

IDENTIFIERS

Identifiers are arbitrary names of any length given to functions, variables, symbolic
constants, user-defined data types and labels. All these program elements will be
referred to as objects throughout the help (don't get confused about the meaning of
object in object-oriented programming).

Identifiers can contain the letters a to z and A to Z, underscore character “_”, and
digits from 0 to 9. The only restriction is that the first character must be a letter or an
underscore.

Case Sensitivity

Pascal is not case sensitive, so Sum, sum, and suM are an equivalent identifier.

Uniqueness and Scope

Although identifier names are arbitrary (according to the stated rules), if the same
name is used for more than one identifier within the same scope then error arises.
Duplicated names are illegal within same scope. For more information, refer to
Scope and Visibility.

Identifier Examples

Here are some valid identifiers:

temperature_V1
Pressure
no_hit
dat2string
SUM3
_vtext

… and here are some invalid identifiers:

7temp // NO -- cannot begin with a numeral
%higher // NO -- cannot contain special characters
xor // NO -- cannot match reserved word
j23.07.04 // NO -- cannot contain special characters (dot)

133MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

PUNCTUATORS

The mikroPascal punctuators (also known as separators) are:

- [] – Brackets
- () – Parentheses
- , – Comma
- ; – Semicolon
- : – Colon
- . – Dot

Brackets

Brackets [] indicate single and multidimensional array subscripts:

var alphabet : array[1..30] of byte;
// ...
alphabet[3] := 'c';

For more information, refer to Arrays.

Parentheses

Parentheses () are used to group expressions, isolate conditional expressions and
indicate function calls and function declarations:

d := c * (a + b); // Override normal precedence
if (d = z) then ... // Useful with conditional statements
func(); // Function call, no arguments
function func2(n : word); // Function declaration with parameters

For more information, refer to Operators Precedence and Associativity, Expressions
and Functions and Procedures.

Comma

Comma (,) separates the arguments in function calls:

LCD_Out(1, 1, txt);

Further, the comma separates identifiers in declarations:

var i, j, k : byte;

The comma also separates elements of array in initialization lists:

const MONTHS : array[1..12] of byte =
(31,28,31,30,31,30,31,31,30,31,30,31);

134 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

Semicolon

Semicolon (;) is a statement terminator. Every statement in Pascal must be termi-
nated with a semicolon. The exceptions are: the last (outer most) end statement in
the program which is terminated with a dot and the last statement before end which
doesn't need to be terminated with a semicolon.

For more information, see Statements.

Colon

Colon (:) is used in declarations to separate identifier list from type identifier. For
example:

var
i, j : byte;
k : word;

In the program, use the colon to indicate a labeled statement:

start: nop;
...

goto start;

For more information, refer to Labels.

Dot

Dot (.) indicates an access to a field of a record. For example:

person.surname := 'Smith';

For more information, refer to Records.

Dot is a necessary part of floating point literals. Also, dot can be used for accessing
individual bits of registers in mikroPascal.

135MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

PROGRAM ORGANIZATION

Pascal imposes quite strict program organization. Below you can find models for
writing legible and organized source files. For more information on file inclusion and
scope, refer to Units and Scope and Visibility.

Organization of Main Unit

Basically, the main source file has two sections: declaration and program body. Dec-
larations should be in their proper place in the code, organized in an orderly man-
ner. Otherwise, the compiler may not be able to comprehend the program correctly.

When writing code, follow the model presented below. The main unit should look like this:

program { program name }
uses { include other units }

//**
//* Declarations (globals):
//**

{ constants declarations }
const ...

{ types declarations }
type ...

{ variables declarations }
var Name[, Name2...] : [^]type; [absolute 0x123;] [external;]
[volatile;] [register;] [sfr;]

{ labels declarations }
label ...

{ procedures declarations }
procedure procedure_name(parameter_list);

{ local declarations }
begin

...
end;

{ functions declarations }
function function_name(parameter_list) : return_type;

{ local declarations }
begin

...
end;

136 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

//**
//* Program body:
//**

begin
{ write your code here }

end.

Organization of Other Units

Units other than main start with the keyword unit. Implementation section starts
with the keyword implementation. Follow the model presented below:

unit { unit name }
uses { include other units }

//**
//* Interface (globals):
//**

{ constants declarations }
const ...

{ types declarations }
type ...

{ variables declarations }
var Name[, Name2...] : [^]type; [absolute 0x123;] [external;]
[volatile;] [register;] [sfr;]

{ procedures prototypes }
procedure procedure_name([var] [const] ParamName : [^]type; [var]
[const] ParamName2, ParamName3 : [^]type);

{ functions prototypes }
function function_name([var] [const] ParamName : [^]type; [var]
[const] ParamName2, ParamName3 : [^]type) : [^]type;

//**
//* Implementation:
//**

implementation

{ constants declarations }
const ...

{ types declarations }
type ...

137MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

{ variables declarations }
var Name[, Name2...] : [^]type; [absolute 0x123;] [external;]
[volatile;] [register;] [sfr;]

{ labels declarations }
label ...

{ procedures declarations }
procedure procedure_name([var] [const] ParamName : [^]type; [var]
[const] ParamName2, ParamName3 : [^]type); [ilevel 0x123;] [over-
load;] [forward;]

{ local declarations }
begin

...
end;

{ functions declarations }
function function_name([var] [const] ParamName : [^]type; [var]
[const] ParamName2, ParamName3 : [^]type) : [^]type; [ilevel 0x123;]
[overload;] [forward;]

{ local declarations }
begin

...
end;

end.

Note: constants, types and variables used in the implementation section are inac-
cessible to other units. This feature is not applied to the procedures and functions in
the current version, but it will be added to the future ones.

Note: Functions and procedures must have the same declarations in the interface
and implementation section. Otherwise, compiler will report an error.

138 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

SCOPE AND VISIBILITY

Scope

The scope of an identifier is a part of the program in which the identifier can be used
to access its object. There are different categories of scope, which depends on how
and where identifiers are declared:

Visibility

The visibility of an identifier is that region of the program source code from which
legal access to the identifier’s associated object can be made.

Scope and visibility usually coincide, though there are circumstances under which
an object becomes temporarily hidden by the appearance of a duplicate identifier,
i.e. the object still exists but the original identifier cannot be used to access it until
the scope of the duplicate identifier is ended.

Technically, visibility cannot exceed scope, but scope can exceed visibility.

139MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

Place of declaration Scope

Identifier is declared in the
declaration of a program,
function, or procedure

Scope extends from the point where it is declared to
the end of the current block, including all blocks
enclosed within that scope. Identifiers in the outer-
most scope (file scope) of the main unit are referred
to as globals, while other identifiers are locals.

Identifier is declared in the
interface section of a unit

Scope extends the interface section of a unit from
the point where it is declared to the end of the unit,
and to any other unit or program that uses that unit.

Identifier is declared in the
implementation section of
a unit, but not within the
block of any function or
procedure

Scope extends from the point where it is declared to
the end of the unit. The identifier is available to any
function or procedure in the unit.

UNITS

In mikroPascal for 8051, each project consists of a single project file and one or
more unit files. Project file, with extension .mpproj contains information about the
project, while unit files, with extension .mpas, contain the actual source code.

Units allow you to:

- break large programs into encapsulated parts that can be edited separately,
- create libraries that can be used in different projects,
- distribute libraries to other developers without disclosing the source code.

Each unit is stored in its own file and compiled separately. Compiled units are linked
to create an application. In order to build a project, the compiler needs either a
source file or a compiled unit file (.mcl file) for each unit.

Uses Clause

mikroPascal for 8051 includes units by means of the uses clause. It consists of the
reserved word uses, followed by one or more comma-delimited unit names, followed
by a semicolon. Extension of the file should not be included. There can be at most
one uses clause in each source file, and it must appear immediately after the pro-
gram (or unit) name.

Here’s an example:

uses utils, strings, Unit2, MyUnit;For the given unit name, the compiler will check for
the presence of .mcl and .mpas files, in order specified by the search paths.

- If both .mpas and .mcl files are found, the compiler will check their dates and
include the newer one in the project. If the .mpas file is newer than .mcl, a new
library will be written over the old one;

- If only .mpas file is found, the compiler will create the .mcl file and include it in the
project;

- If only .mcl file is present, i.e. no source code is available, the compiler will include
it as it is found;

- If none found, the compiler will issue a “File not found” warning.

Main Unit

Every project in mikroPascal for 8051 requires a single main unit file. The main unit
file is identified by the keyword program at the beginning; it instructs the compiler
where to “start”.

140 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

After you have successfully created an empty project with the Project Wizard, the
Code Editor will display a new main unit. It contains the bare-bones of the Pascal
program:

program MyProject;

{ main procedure }
begin

{ Place program code here }
end.

Nothing should precede the keyword program except comments. After the program
name, you can optionally place the uses clause.

Place all global declarations (constants, variables, types, labels, routines) before the
keyword begin.

Other Units

Units other than main start with the keyword unit. Newly created blank unit contains
the bare-bones:

unit MyUnit;

implementation

end.

Other than comments, nothing should precede the keyword unit. After the unit
name, you can optionally place the uses clause.

Interface Section

Part of the unit above the keyword implementation is referred to as interface sec-
tion. Here, you can place global declarations (constants, variables, labels and types)
for the project.

You do not define routines in the interface section. Instead, state the prototypes of
routines (from implementation section) that you want to be visible outside the unit.
Prototypes must match the declarations exactly.

141MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

Implementation Section

Implementation section hides all irrelevant innards from other units, allowing encap-
sulation of code.

Everything declared below the keyword implementation is private, i.e. has its
scope limited to the file. When you declare an identifier in the implementation sec-
tion of a unit, you cannot use it outside the unit, but you can use it in any block or
routine defined within the unit.

By placing the prototype in the interface section of the unit (above the implementa-
tion) you can make the routine public, i.e. visible outside of unit. Prototypes must
match the declarations exactly.

142 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

VARIABLES

Variable is object whose value can be changed during the runtime. Every variable is
declared under unique name which must be a valid identifier. This name is used for
accessing the memory location occupied by a variable.

Variables are declared in the declaration part of the file or routine — each variable
needs to be declared before being used. Global variables (those that do not belong
to any enclosing block) are declared below the uses statement, above the keyword
begin.

Specifying a data type for each variable is mandatory. Syntax for variable declara-
tion is:

var identifier_list : type;

identifier_list is a comma-delimited list of valid identifiers and type can be any
data type.

For more details refer to Types and Types Conversions. For more information on
variables’ scope refer to the chapter Scope and Visibility.

Pascal allows shortened syntax with only one keyword var followed by multiple vari-
able declarations. For example:

var i, j, k : byte;
counter, temp : word;
samples : array[100] of word;

Variables and 8051

Every declared variable consumes part of RAM. Data type of variable determines
not only allowed range of values, but also the space variable occupies in RAM. Bear
in mind that operations using different types of variables take different time to be
completed. mikroPascal for 8051 recycles local variable memory space – local vari-
ables declared in different functions and procedures share the same memory space,
if possible.

There is no need to declare SFRs explicitly, as mikroPascal for 8051 automatically
declares relevant registers as global variables of volatile word see SFR for details.

143MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

CONSTANTS

Constant is a data whose value cannot be changed during the runtime. Using a con-
stant in a program consumes no RAM. Constants can be used in any expression,
but cannot be assigned a new value.

Constants are declared in the declaration part of a program or routine. You can
declare any number of constants after the keyword const:

const constant_name [: type] = value;

Every constant is declared under unique constant_name which must be a valid
identifier. It is a tradition to write constant names in uppercase. Constant requires
you to specify value, which is a literal appropriate for the given type. type is option-
al and in the absence of type, the compiler assumes the “smallest” of all types that
can accommodate value.

Note: You cannot omit type when declaring a constant array.

Pascal allows shorthand syntax with only one keyword const followed by multiple
constant declarations. Here’s an example:

const
MAX : longint = 10000;
MIN = 1000; // compiler will assume word type
SWITCH = 'n'; // compiler will assume char type
MSG = 'Hello'; // compiler will assume string type
MONTHS : array[1..12] of byte = (31,28,31,30,31,30,31,31,30,31,30,31);

144 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

LABELS

Labels serve as targets for goto statements. Mark the desired statement with a label
and colon like this:

label_identifier : statement

Before marking a statement, you must declare a label. Labels are declared in dec-
laration part of unit or routine, similar to variables and constants. Declare labels
using the keyword label:

label label1, ..., labeln;

Name of the label needs to be a valid identifier. The label declaration, marked state-
ment, and goto statement must belong to the same block. Hence it is not possible
to jump into or out of a procedure or function. Do not mark more than one statement
in a block with the same label.

Here is an example of an infinite loop that calls the Beep procedure repeatedly:

label loop;
...
loop:

Beep;
goto loop;

Note: label should be followed by end of line (CR) otherwise compiler will report an error:

label loop;
...
loop: Beep; // compiler will report an error
loop: // compiler will report an error

145MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

FUNCTIONS AND PROCEDURES

Functions and procedures, collectively referred to as routines, are subprograms
(self-contained statement blocks) which perform a certain task based on a number
of input parameters. When executed, a function returns a value while procedure
does not.

mikroPascal for 8051 does not support inline routines.

Functions

A function is declared like this:

function function_name(parameter_list) : return_type;
{ local declarations }

begin
{ function body }

end;

function_name represents a function’s name and can be any valid identifier.
return_type is a type of return value and can be any simple type. Within parenthe-
ses, parameter_list is a formal parameter list very similar to variable declaration.
In Pascal, parameters are always passed to a function by the value — to pass an
argument by address, add the keyword var ahead of identifier.

Local declarations are optional declarations of variables and/or constants, local
for the given function. Function body is a sequence of statements to be executed
upon calling the function.

Calling a function

A function is called by its name, with actual arguments placed in the same sequence
as their matching formal parameters. The compiler is able to coerce mismatching
arguments to the proper type according to implicit conversion rules. Upon a function
call, all formal parameters are created as local objects initialized by values of actu-
al arguments. Upon return from a function, a temporary object is created in the place
of the call and it is initialized by the value of the function result. This means that func-
tion call as an operand in complex expression is treated as the function result.

In standard Pascal, a function_name is automatically created local variable that
can be used for returning a value of a function. mikroPascal for 8051 also allows you
to use the automatically created local variable result to assign the return value of
a function if you find function name to be too ponderous. If the return value of a func-
tion is not defined the compiler will report an error.

146 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

Function calls are considered to be primary expressions and can be used in situa-
tions where expression is expected. A function call can also be a self-contained
statement and in that case the return value is discarded.

Example

Here’s a simple function which calculates xn based on input parameters x and n (n
> 0):

function power(x, n : byte) : longint;
var i : byte;
begin

i := 0; result := 1;
if n > 0 then

for i := 1 to n do result := result*x;
end;

Now we could call it to calculate 312 for example:

tmp := power(3, 12);

PROCEDURES

Procedure is declared like this:

procedure procedure_name(parameter_list);
{ local declarations }

begin
{ procedure body }

end;

procedure_name represents a procedure’s name and can be any valid identifier.
Within parentheses, parameter_list is a formal parameter list very similar to vari-
able declaration. In Pascal, parameters are always passed to a procedure by the
value — to pass an argument by address, add the keyword var ahead of identifier.

Local declarations are optional declaration of variables and/or constants, local for
the given procedure. Procedure body is a sequence of statements to be executed
upon calling the procedure.

147MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

Calling a procedure

A procedure is called by its name, with actual arguments placed in the same
sequence as their matching formal parameters. The compiler is able to coerce mis-
matching arguments to the proper type according to implicit conversion rules. Upon
procedure call, all formal parameters are created as local objects initialized by the
values of actual arguments.

Procedure call is a self-contained statement.

Example

Here’s an example procedure which transforms its input time parameters, preparing
them for output on LCD:

procedure time_prep(var sec, min, hr : byte);
begin

sec := ((sec and $F0) shr 4)*10 + (sec and $0F);
min := ((min and $F0) shr 4)*10 + (min and $0F);
hr := ((hr and $F0) shr 4)*10 + (hr and $0F);

end;

Function Pointers

Function pointers are allowed in mikroPascal for 8051. The example shows how to
define and use a function pointer:

Example:

Example demonstrates the usage of function pointers. It is shown how to declare a
procedural type, a pointer to function and finally how to call a function via pointer.

program Example;

type TMyFunctionType = function (param1, param2: byte; param3: word)
: word; // First, define the procedural type

var MyPtr: ^TMyFunctionType;
// This is a pointer to previously defined type

Sample: word;

function Func1(p1, p2: byte; p3: word): word; // Now,
define few functions which will be pointed to. Make sure that param-
eters match the type definition
begin

result := p1 and p2 or p3; // return something
end;

148 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

function Func2(abc: byte; def: byte; ghi: word): word; // Another
function of the same kind. Make sure that parameters match the type
definition
begin

result := abc * def + ghi; // return something
end;

function Func3(first, yellow: byte; monday: word): word; // Yet
another function. Make sure that parameters match the type defini-
tion
begin

result := monday - yellow - first; // return something
end;

// main program:
begin

MyPtr := @Func1; // MyPtr now points to Func1
Sample := MyPtr^(1, 2, 3); // Perform function call via

pointer, call Func1, the return value is 3
MyPtr := @Func2; // MyPtr now points to Func2
Sample := MyPtr^(1, 2, 3); // Perform function call via

pointer, call Func2, the return value is 5
MyPtr := @Func3; // MyPtr now points to Func3
Sample := MyPtr^(1, 2, 3); // Perform function call via

pointer, call Func3, the return value is 0
end.

A function can return a complex type. Follow the example bellow to learn how to
declare and use a function which returns a complex type.

Example:

This example shows how to declare a function which returns a complex type.

program Example;

type TCircle = record // Record
CenterX, CenterY: word;
Radius: byte;

end;

var MyCircle: TCircle; // Global variable

function DefineCircle(x, y: word; r: byte): TCircle; // DefineCircle
function returns a Record

149MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

begin
result.CenterX := x;
result.CenterY := y;
result.Radius := r;

end;

begin
MyCircle := DefineCircle(100, 200, 30); //

Get a Record via function call
MyCircle.CenterX := DefineCircle(100, 200, 30).CenterX + 20; //

Access a Record field via function call
// |-----------------------| |-----|
// | |
// Function returns TCircle Access to one

field of TCircle
end.

Forward declaration

A function can be declared without having it followed by it's implementation, by hav-
ing it followed by the forward procedure. The effective implementation of that func-
tion must follow later in the unit. The function can be used after a forward declara-
tion as if it had been implemented already. The following is an example of a forward
declaration:

program Volume;

var Volume : word;

function First(a, b : word) : word; forward;

function Second(c : word) : word;
var tmp : word;
begin

tmp := First(2, 3);
result := tmp * c;

end;

function First(a, b : word) : word;
begin

result := a * b;
end;

begin
Volume := Second(4);

end.

150 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

TYPES

Pascal is strictly typed language, which means that every variable and constant
need to have a strictly defined type, known at the time of compilation.

The type serves:

- to determine correct memory allocation required,
- to interpret the bit patterns found in the object during subsequent accesses,
- in many type-checking situations, to ensure that illegal assignments are trapped.

mikroPascal supports many standard (predefined) and user-defined data types,
including signed and unsigned integers of various sizes, arrays, strings, pointers
and records.

Type Categories

Types can be divided into:

- simple types
- arrays
- strings
- pointers
- records

151MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

SIMPLE TYPES

Simple types represent types that cannot be divided into more basic elements and
are the model for representing elementary data on machine level. Basic memory
unit in mikroPascal for 8051 has 16 bits.

Here is an overview of simple types in mikroPascal for 8051:

You can assign signed to unsigned or vice versa only using the explicit conversion.
Refer to Types Conversions for more information.

152 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

Type Size Range

byte, char 8–bit 0 .. 255

short 8–bit -127 .. 128

word 16–bit 0 .. 65535

integer 16–bit -32768 .. 32767

dword 32–bit 0 .. 4294967295

longint 32–bit -2147483648 .. 2147483647

real 32–bit
±1.17549435082 * 10-38 ..
±6.80564774407 * 1038

bit 1–bit 0 or 1

sbit 1–bit 0 or 1

ARRAYS

An array represents an indexed collection of elements of the same type (called the
base type). Because each element has a unique index, arrays, unlike sets, can
meaningfully contain the same value more than once.

Array Declaration

Array types are denoted by constructions in the following form:

array[index_start .. index_end] of type

Each of the elements of an array is numbered from index_start through
index_end. The specifier index_start can be omitted along with dots, in which
case it defaults to zero.

Every element of an array is of type and can be accessed by specifying array name
followed by element’s index within brackets.

Here are a few examples of array declaration:

var
weekdays : array[1..7] of byte;
samples : array[50] of word;

begin
// Now we can access elements of array variables, for example:
samples[0] := 1;
if samples[37] = 0 then ...

Constant Arrays

Constant array is initialized by assigning it a comma-delimited sequence of values
within parentheses. For example:

// Declare a constant array which holds number of days in each month:
const MONTHS : array[1..12] of byte =
(31,28,31,30,31,30,31,31,30,31,30,31);

The number of assigned values must not exceed the specified length. The opposite
is possible, when the trailing “excess” elements are assigned zeroes.

For more information on arrays of char, refer to Strings.

153MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

Multi-dimensional Arrays

Multidimensional arrays are constructed by declaring arrays of array type. These
arrays are stored in memory in such way that the right most subscript changes
fastest, i.e. arrays are stored “in rows”. Here is a sample 2-dimensional array:

m : array[5] of array[10] of byte; // 2-dimensional array of size 5x10

A variable m is an array of 5 elements, which in turn are arrays of 10 byte each. Thus,
we have a matrix of 5x10 elements where the first element is m[0][0] and last one
is m[4][9]. The first element of the 4th row would be m[3][0].

154 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

STRINGS

A string represents a sequence of characters equivalent to an array of char. It is
declared like this:

string_name : string[length]

The specifier length is a number of characters the string consists of. String is stored
internally as the given sequence of characters plus a final null character which is
introduced to terminate the string. It does not count against the string’s total length.

A null string ('') is stored as a single null character.

You can assign string literals or other strings to string variables. String on the right
side of an assignment operator has to be shorter or of equal length than the one on
the right side. For example:

var
msg1 : string[20];
msg2 : string[19];

begin
msg1 := 'This is some message';
msg2 := 'Yet another message';

msg1 := msg2; // this is ok, but vice versa would be illegal
...

Alternately, you can handle strings element–by–element. For example:

var s : string[5];
...
s := 'mik';
{
s[0] is char literal 'm'
s[1] is char literal 'i'
s[2] is char literal 'k'
s[3] is zero
s[4] is undefined
s[5] is undefined
}

Be careful when handling strings in this way, since overwriting the end of a string will
cause an unpredictable behavior.

155MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

String Concatenating

mikroPascal for 8051 allows you to concatenate strings by means of plus operator.
This kind of concatenation is applicable to string variables/literals, character vari-
ables/literals. For control characters, use the non-quoted hash sign and a numeral
(e.g. #13 for CR).

Here is an example:

var msg : string[20];
res_txt : string[5];
res, channel : word;

begin

//...

// Get result of ADC
res := Adc_Read(channel);

// Create string out of numeric result
WordToStr(res, res_txt);

// Prepare message for output
msg := 'Result is ' + // Text "Result is"

res_txt ; // Result of ADC

//...

Note: In current version plus operator for concatenating strings will accept at most
two operands.

Note

mikroPascal for 8051 includes a String Library which automatizes string related tasks.

156 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

Pointers

A pointer is a data type which holds a memory address. While a variable accesses
that memory address directly, a pointer can be thought of as a reference to that
memory address.

To declare a pointer data type, add a carat prefix (^) before type. For example, in
order to create a pointer to an integer, write:

^integer;

In order to access data at the pointer’s memory location, add a carat after the vari-
able name. For example, let’s declare variable p which points to a word, and then
assign value 5 to the pointed memory location:

var p : ^word;
...
p^ := 5;

A pointer can be assigned to another pointer. However, note that only the address,
not the value, is copied. Once you modify the data located at one pointer, the other
pointer, when dereferenced, also yields modified data.

Pointers to program memory space are declared using the keyword const:

program const_ptr;

// constant array will be stored in program memory
const b_array: array[5] of byte = (1,2,3,4,5);

const ptr: ^byte; // ptr is pointer to program memory space

begin
ptr := @b_array; // ptr now points to b_array[0]
P0 := ptr^;
ptr := ptr + 3; // ptr now points to b_array[3]
P0 := ptr^;

end.

Pointers to procedures are currently under construction.

157MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

@ Operator

The @ operator returns the address of a variable or routine, i.e. @ constructs a point-
er to its operand. The following rules are applied to @:

- If X is a variable, @X returns the address of X.
- If F is a routine (a function or procedure), @F returns F’s entry point (the result is

of longint).

158 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

RECORDS

A record (analogous to a structure in some languages) represents a heterogeneous
set of elements. Each element is called a field. The declaration of the record type
specifies a name and type for each field. The syntax of a record type declaration is

type recordTypeName = record
fieldList1 : type1;
...
fieldListn : typen;

end;

where recordTypeName is a valid identifier, each type denotes a type, and each
fieldList is a valid identifier or a comma-delimited list of identifiers. The scope of
a field identifier is limited to the record in which it occurs, so you don’t have to worry
about naming conflicts between field identifiers and other variables.

Note: In mikroPascal for 8051, you cannot use the record construction directly in
variable declarations, i.e. without type.

For example, the following declaration creates a record type called TDot:

type
TDot = record

x, y : real;
end;

Each TDot contains two fields: x and y coordinates. Memory is allocated when you
declare the record, like this:

var m, n: TDot;

This variable declaration creates two instances of TDot, called m and n.

A field can be of previously defined record type. For example:

// Structure defining a circle:
type

TCircle = record
radius : real;
center : TDot;

end;

159MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

Accessing Fields

You can access the fields of a record by means of dot (.) as a direct field selector. If we
have declared variables circle1 and circle2 of previously defined type TCircle:

var circle1, circle2 : TCircle;

we could access their individual fields like this:

circle1.radius := 3.7;
circle1.center.x := 0;
circle1.center.y := 0;

You can also commit assignments between complex variables, if they are of the
same type:

circle2 := circle1; // This will copy values of all fields

160 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

TYPES CONVERSIONS

Conversion of variable of one type to a variable of another type is typecasting.
mikroPascal for 8051 supports both implicit and explicit conversions for built-in
types.

Implicit Conversion

Compiler will provide an automatic implicit conversion in the following situations:

- statement requires an expression of particular type (according to language
definition), and we use an expression of different type,

- operator requires an operand of particular type, and we use an operand of
different type,

- function requires a formal parameter of particular type, and we pass it an object of
different type,

- result does not match the declared function return type.

Promotion

When operands are of different types, implicit conversion promotes the less com-
plex type to more complex type taking the following steps:

byte/char � word
short � integer
short � longint
integer � longint
integer � real

Higher bytes of extended unsigned operand are filled with zeroes. Higher bytes of
extended signed operand are filled with bit sign (if number is negative, fill higher
bytes with one, otherwise with zeroes). For example:

var a : byte; b : word;
...
a := $FF;
b := a; // a is promoted to word, b becomes $00FF

161MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

Clipping

In assignments and statements that require an expression of particular type, desti-
nation will store the correct value only if it can properly represent the result of
expression, i.e. if the result fits in destination range.

If expression evaluates to a more complex type than expected, excess of data will
be simply clipped (higher bytes are lost).

var i : byte; j : word;
...
j := $FF0F;
i := j; // i becomes $0F, higher byte $FF is lost

Explicit Conversion

Explicit conversion can be executed at any point by inserting type keyword (byte,
word, short, integer, longint or real) ahead of an expression to be convert-
ed. The expression must be enclosed in parentheses. Explicit conversion can be
performed only on the operand right of the assignment operator.

Special case is conversion between signed and unsigned types. Explicit conversion
between signed and unsigned data does not change binary representation of data
— it merely allows copying of source to destination.

For example:

var a : byte; b : short;
...
b := -1;
a := byte(b); // a is 255, not 1

// This is because binary representation remains
// 11111111; it's just interpreted differently now

You can’t execute explicit conversion on the operand left of the assignment operator:

word(b) := a; // Compiler will report an error

162 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

Conversions Examples

Here is an example of conversion:

var a, b, c : byte;
d : word;

...
a := 241;
b := 128;

c := a + b; // equals 113
c := word(a + b); // equals 113
d := a + b; // equals 369

163MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

OPERATORS

Operators are tokens that trigger some computation when being applied to variables
and other objects in an expression.

There are four types of operators in mikroPascal for 8051:

- Arithmetic Operators
- Bitwise Operators
- Boolean Operators
- Relational Operators

OPERATORS PRECEDENCE AND ASSOCIATIVITY

There are 4 precedence categories in mikroPascal for 8051. Operators in the same
category have equal precedence with each other.

Each category has an associativity rule: left-to-right (�), or right-to-left (�). In the
absence of parentheses, these rules resolve the grouping of expressions with oper-
ators of equal precedence.

164 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

Precedence Operands Operators Associativity

4 1 @ not + - �

3 2
* / div mod and

shl shr �

2 2 + - or xor �

1 2 = <> < > <= >= �

ARITHMETIC OPERATORS

Arithmetic operators are used to perform mathematical computations. They have numer-
ical operands and return numerical results. Since the char operators are technically
bytes, they can be also used as unsigned operands in arithmetic operations.

All arithmetic operators associate from left to right.

Division by Zero

If 0 (zero) is used explicitly as the second operand (i.e. x div 0), the compiler will
report an error and will not generate code.
But in case of implicit division by zero: x div y, where y is 0 (zero), the result will
be the maximum integer (i.e 255, if the result is byte type; 65536, if the result is word
type, etc.).

Unary Arithmetic Operators

Operator - can be used as a prefix unary operator to change sign of a signed value.
Unary prefix operator + can be used, but it doesn’t affect data.

For example:

b := -a;

165MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

Operator Operation Operands Result

+ addition
byte, short, word, inte-
ger, longint, dword, real

byte, short, word,
integer, longint,

dword, real

- subtraction
byte, short, word, inte-
ger, longint, dword, real

byte, short, word,
integer, longint,

dword, real

* multiplication
byte, short, word, inte-
ger, longint, dword, real

word, integer, longint,
dword, real

/ division, floating-point
byte, short, word, inte-
ger, longint, dword, real

real

div
division, rounds down to

nearest integer
byte, short, word, inte-

ger, longint, dword
byte, short, word,

integer, longint, dword

mod

modulus, returns the
remainder of integer
division (cannot be
used with floating

points)

byte, short, word, inte-
ger, longint, dword

byte, short, word,
integer, longint, dword

RELATIONAL OPERATORS

Use relational operators to test equality or inequality of expressions. All relational
operators return TRUE or FALSE.

All relational operators associate from left to right.

Relational Operators in Expressions

Precedence of arithmetic and relational operators is designated in such a way to
allow complex expressions without parentheses to have expected meaning:

a + 5 >= c - 1.0 / e // ? (a + 5) >= (c - (1.0 / e))

166 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

Operator Operation

= equal

<> not equal

> greater than

< less than

>= greater than or equal

<= less than or equal

BITWISE OPERATORS

Use bitwise operators to modify individual bits of numerical operands. Operands
need to be either both signed or both unsigned.

Bitwise operators associate from left to right. The only exception is the bitwise com-
plement operator not which associates from right to left.

Bitwise Operators Overview

Logical Operations on Bit Level

Bitwise operators and, or, and xor perform logical operations on the appropriate pairs of
bits of their operands. not operator complements each bit of its operand. For example:

167MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

Operator Operation

and
bitwise AND; compares pairs of bits and generates a 1 result if
both bits are 1, otherwise it returns 0

or
bitwise (inclusive) OR; compares pairs of bits and generates a 1
result if either or both bits are 1, otherwise it returns 0

xor
bitwise exclusive OR (XOR); compares pairs of bits and generates a
1 result if the bits are complementary, otherwise it returns 0

not bitwise complement (unary); inverts each bit

shl
bitwise shift left; moves the bits to the left, discards the far left bit
and assigns 0 to the right most bit.

shr
bitwise shift right; moves the bits to the right, discards the far right bit
and if unsigned assigns 0 to the left most bit, otherwise sign extends

and 0 1

0 0 0

1 0 1

or 0 1

0 0 1

1 1 1

xor 0 1

0 0 1

1 1 0

not 0 1

1 0

$1234 and $5678 // equals $1230

{ because ..

$1234 : 0001 0010 0011 0100
$5678 : 0101 0110 0111 1000

and : 0001 0010 0011 0000

.. that is, $1230 }// Similarly:

$1234 or $5678 // equals $567C
$1234 xor $5678 // equals $444C
not $1234 // equals $EDCB

Unsigned and Conversions

If a number is converted from less complex to more complex data type, the upper
bytes are filled with zeroes. If a number is converted from more complex to less
complex data type, the data is simply truncated (the upper bytes are lost).

For example:

var a : byte; b : word;
...

a := $AA;
b := $F0F0;
b := b and a;
{ a is extended with zeroes; b becomes $00A0 }

Signed and Conversions

If number is converted from less complex data type to more complex, upper bytes
are filled with ones if sign bit is 1 (number is negative); upper bytes are filled with
zeroes if sign bit is 0 (number is positive). If number is converted from more com-
plex data type to less complex, data is simply truncated (upper bytes are lost).

For example:

var a : byte; b : word;
...

a := -12;
b := $70FF;
b := b and a;

{ a is sign extended, with the upper byte equal to $FF;
b becomes $70F4 }

168 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

Bitwise Shift Operators

Binary operators shl and shr move the bits of the left operand by a number of posi-
tions specified by the right operand, to the left or right, respectively. Right operand
has to be positive and less than 255.

With shift left (shl), left most bits are discarded, and “new” bits on the right are
assigned zeroes. Thus, shifting unsigned operand to the left by n positions is equiv-

alent to multiplying it by 2n if all discarded bits are zero. This is also true for signed
operands if all discarded bits are equal to the sign bit.

With shift right (shr), right most bits are discarded, and the “freed” bits on the left
are assigned zeroes (in case of unsigned operand) or the value of the sign bit (in
case of signed operand). Shifting operand to the right by n positions is equivalent to

dividing it by 2n.

BOOLEAN OPERATORS

Although mikroPascal for 8051 does not support boolean type, you have Boolean
operators at your disposal for building complex conditional expressions. These
operators conform to standard Boolean logic and return either TRUE (all ones) or
FALSE (zero):

Boolean operators associate from left to right. Negation operator not associates
from right to left.

169MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

Operator Operation

and logical AND

or logical OR

xor logical exclusive OR (XOR)

not logical negation

EXPRESSIONS

An expression is a sequence of operators, operands and punctuators that returns a
value.

The primary expressions include: literals, constants, variables and function calls.
More complex expressions can be created from primary expressions by using oper-
ators. Formally, expressions are defined recursively: subexpressions can be nested
up to the limits of memory.

Expressions are evaluated according to certain conversion, grouping, associativity
and precedence rules which depend on the operators in use, presence of parenthe-
ses and data types of the operands. The precedence and associativity of the oper-
ators are summarized in Operator Precedence and Associativity. The way operands
and subexpressions are grouped does not necessarily specify the actual order in
which they are evaluated by mikroPascal for 8051.

STATEMENTS

Statements define algorithmic actions within a program. Each statement needs to
be terminated with a semicolon (;). In the absence of specific jump and selection
statements, statements are executed sequentially in the order of appearance in the
source code.

The most simple statements are assignments, procedure calls and jump state-
ments. These can be combined to form loops, branches and other structured state-
ments.

Refer to:

- Assignment Statements
- Compound Statements (Blocks)
- Conditional Statements
- Iteration Statements (Loops)
- Jump Statements

- asm Statement

170 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

ASSIGNMENT STATEMENTS

Assignment statements have the form:

variable := expression;

The statement evaluates expression and assigns its value to variable. All the
rules of implicit conversion are applied. Variable can be any declared variable or
array element, and expression can be any expression.

Do not confuse the assignment with relational operator = which tests for equality.
Also note that, although similar, the construction is not related to the declaration of
constants.

COMPOUND STATEMENTS (BLOCKS)

Compound statement, or block, is a list of statements enclosed by keywords begin
and end:

begin
statements

end;

Syntactically, a block is considered to be a single statement which is allowed to be
used when Pascal syntax requires a single statement. Blocks can be nested up to
the limits of memory.

For example, the while loop expects one statement in its body, so we can pass it a
compound statement:

while i < n do
begin

temp := a[i];
a[i] := b[i];
b[i] := temp;
i := i + 1;

end;

171MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

CONDITIONAL STATEMENTS

Conditional or selection statements select one of alternative courses of action by
testing certain values. There are two types of selection statements:

- if
- case

If Statement

Use if to implement a conditional statement. The syntax of if statement has the form:

if expression then statement1 [else statement2]

If expression evaluates to true then statement1 executes. If expression is false
then statement2 executes. The expression must convert to a boolean type; other-
wise, the condition is ill-formed. The else keyword with an alternate statement
(statement2) is optional.

There should never be a semicolon before the keyword else.

Nested if statements

Nested if statements require additional attention. A general rule is that the nested
conditionals are parsed starting from the innermost conditional, with each else
bound to the nearest available if on its left:

if expression1 then
if expression2 then statement1
else statement2

The compiler treats the construction in this way:

if expression1 then
begin

if expression2 then statement1
else statement2

end

In order to force the compiler to interpret our example the other way around, we
have to write it explicitly:

if expression1 then
begin

if expression2 then statement1
end
else statement2

172 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

CASE STATEMENT

Use the case statement to pass control to a specific program branch, based on a
certain condition. The case statement consists of a selector expression (a condition)
and a list of possible values. The syntax of the case statement is:

case selector of
value_1 : statement_1
...
value_n : statement_n
[else default_statement]

end;

selector is an expression which should evaluate as integral value. values can be
literals, constants, or expressions, and statements can be any statements.

The else clause is optional. If using the else branch, note that there should never
be a semicolon before the keyword else.

First, the selector expression (condition) is evaluated. Afterwards the case state-
ment compares it against all available values. If the match is found, the statement
following the match evaluates, and the case statement terminates. In case there are
multiple matches, the first matching statement will be executed. If none of values
matches selector, then default_statement in the else clause (if there is some)
is executed.

Here’s a simple example of the case statement:

case operator of
'*' : result := n1 * n2;
'/' : result := n1 / n2;
'+' : result := n1 + n2;
'-' : result := n1 - n2

else result := 0;
end;

Also, you can group values together for a match. Simply separate the items by commas:

case reg of
0: opmode := 0;
1,2,3,4: opmode := 1;
5,6,7: opmode := 2;

end;

In mikroPascal for 8051, values in the case statement can be variables too:

173MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

case byte_variable of

byte_var1: opmode := 0; // this will be compiled correctly

byte_var2:
opmode := 1; // avoid this case, compiler will parse

// a variable followed by colon sign as
label

byte_var3: // adding a comment solves the parsing
problem

opmode := 2;
end;

Nested Case statement

Note that the case statements can be nested – values are then assigned to the
innermost enclosing case statement.

174 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

ITERATION STATEMENTS

Iteration statements let you loop a set of statements. There are three forms of iter-
ation statements in mikroPascal for 8051:

- for
- while
- repeat

You can use the statements break and continue to control the flow of a loop state-
ment. break terminates the statement in which it occurs, while continue begins
executing the next iteration of the sequence.

FOR STATEMENT

The for statement implements an iterative loop and requires you to specify the
number of iterations. The syntax of the for statement is:

for counter := initial_value to final_value do statement
// or
for counter := initial_value downto final_value do statement

counter is a variable which increments (or decrements if you use downto) with each
iteration of the loop. Before the first iteration, counter is set to initial_value and
will increment (or decrement) until it reaches final_value. With each iteration,
statement will be executed.

initial_value and final_value should be expressions compatible with counter;
statement can be any statement that does not change the value of counter.

Here is an example of calculating scalar product of two vectors, a and b, of length
n, using the for statement:

s := 0;
for i := 0 to n-1 do

s := s + a[i] * b[i];

Endless Loop

The for statement results in an endless loop if final_value equals or exceeds the
range of the counter’s type.

More legible way to create an endless loop in Pascal is to use the statement while
TRUE do.

175MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

WHILE STATEMENT

Use the while keyword to conditionally iterate a statement. The syntax of the while
statement is:

while expression do statement

statement is executed repeatedly as long as expression evaluates true. The test
takes place before the statement is executed. Thus, if expression evaluates false
on the first pass, the loop does not execute.

Here is an example of calculating scalar product of two vectors, using the while
statement:

s := 0; i := 0;
while i < n do
begin

s := s + a[i] * b[i];
i := i + 1;

end;

Probably the easiest way to create an endless loop is to use the statement:

while TRUE do ...;

176 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

REPEAT STATEMENT

The repeat statement executes until the condition becomes false. The syntax of the
repeat statement is:

repeat statement until expression

statement is executed repeatedly as long as expression evaluates true. The
expression is evaluated after each iteration, so the loop will execute statement at
least once.

Here is an example of calculating scalar product of two vectors, using the repeat
statement:

s := 0; i := 0;
...
repeat

begin
s := s + a[i] * b[i];
i := i + 1;

end;
until i = n;

177MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

JUMP STATEMENTS

A jump statement, when executed, transfers control unconditionally. There are four
such statements in mikroPascal for 8051:

- break
- continue
- exit
- goto

BREAK AND CONTINUE STATEMENTS

Break Statement

Sometimes, you might need to stop the loop from within its body. Use the break
statement within loops to pass control to the first statement following the innermost
loop (for, while, or repeat block).

For example:

Lcd_Out(1,1,'Insert CF card');

// Wait for CF card to be plugged; refresh every second
while TRUE do
begin

if Cf_Detect() = 1 then break;
Delay_ms(1000);

end;

// Now we can work with CF card ...
Lcd_Out(1,1,'Card detected ');

178 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

Continue Statement

You can use the continue statement within loops to “skip the cycle”:

- continue statement in for loop moves program counter to the line with keyword for
- continue statement in while loop moves program counter to the line with loop

condition (top of the loop),
- continue statement in repeat loop moves program counter to the line with loop

condition (bottom of the loop).

EXIT STATEMENT

The exit statement allows you to break out of a routine (function or procedure). It
passes the control to the first statement following the routine call.

Here is a simple example:

procedure Proc1();
var error: byte;
begin

... // we're doing something here
if error = TRUE then exit;
... // some code, which won't be executed if error is true

end;

Note: If breaking out of a function, return value will be the value of the local variable
result at the moment of exit.

179MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

// continue jumps
here
for i := ... do

begin
...
continue;
...

end;

// continue jumps
here
while condition do

begin
...
continue;
...

end;

repeat
begin

...
continue;
...

// continue jumps
here
until condition;

GOTO STATEMENT

Use the goto statement to unconditionally jump to a local label — for more informa-
tion, refer to Labels. Syntax of goto statement is:

goto label_name;

This will transfer control to the location of a local label specified by label_name. The
goto line can come before or after the label.

The label declaration, marked statement and goto statement must belong to the
same block. Hence it is not possible to jump into or out of a procedure or function.

You can use goto to break out from any level of nested control structures. Never
jump into a loop or other structured statement, since this can have unpredictable
effects.

Use of goto statement is generally discouraged as practically every algorithm can
be realized without it, resulting in legible structured programs. One possible appli-
cation of goto statement is breaking out from deeply nested control structures:

for (...) do
begin

for (...) do
begin

...
if (disaster) then goto Error;
...

end;
end;

.

.

.
Error: // error handling code

180 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

asm STATEMENT

mikroPascal for 8051 allows embedding assembly in the source code by means of
the asm statement. Note that you cannot use numerals as absolute addresses for
register variables in assembly instructions. You may use symbolic names instead
(listing will display these names as well as addresses).

You can group assembly instructions with the asm keyword:

asm
block of assembly instructions

end;

If you plan to use a certain Pascal variable in embedded assembly only, be sure to
at least initialize it (assign it initial value) in Pascal code; otherwise, the linker will
issue an error. This is not applied to predefined globals such as P0.

For example, the following code will not be compiled because the linker won’t be
able to recognize the variable myvar:

program test;
var myvar : word;
begin

asm
MOV #10, W0
MOV W0, _myvar

end;
end.

Adding the following line (or similar one) above the asm block would let linker know
that variable is used:

myvar := 20;

181MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

DIRECTIVES

Directives are words of special significance which provide additional functionality
regarding compilation and output.

The following directives are available for use:

- Compiler directives for conditional compilation,
- Linker directives for object distribution in memory.

COMPILER DIRECTIVES

mikroPascal for 8051 treats comments beginning with a “$” immediately following an
opening brace as a compiler directive; for example, {$ELSE}. The compiler direc-
tives are not case sensitive.

You can use a conditional compilation to select particular sections of code to com-
pile, while excluding other sections. All compiler directives must be completed in the
source file in which they have begun.

Directives $DEFINE and $UNDEFINE

Use directive $DEFINE to define a conditional compiler constant (“flag”). You can use
any identifier for a flag, with no limitations. No conflicts with program identifiers are
possible because the flags have a separate name space. Only one flag can be set
per directive.

For example:

{$DEFINE Extended_format}

Use $UNDEFINE to undefine (“clear”) previously defined flag.

Note: Pascal does not support macros; directives $DEFINE and $UNDEFINE do not cre-
ate/destroy macros. They only provide flags for directive $IFDEF to check against.

182 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

Directives $IFDEF..$ELSE

Conditional compilation is carried out by the $IFDEF directive. $IFDEF tests whether
a flag is currently defined or not, i.e. whether a previous $DEFINE directive has been
processed for that flag and is still in force.

Directive $IFDEF is terminated with the $ENDIF directive, and can have an optional
$ELSE clause:

{$IFDEF flag}
<block of code>

{$ELSE}
<alternate block of code>

{$ENDIF}

First, $IFDEF checks if flag is defined by means of $DEFINE. If so, only <block of
code> will be compiled. Otherwise, <alternate block of code> will be compiled.
$ENDIF ends the conditional sequence. The result of the preceding scenario is that
only one section of code (possibly empty) is passed on for further processing.

The processed section can contain further conditional clauses, nested to any depth;
each $IFDEF must be matched with a closing $ENDIF.

Here is an example:

// Uncomment the appropriate flag for your application:
//{$DEFINE resolution10}
//{$DEFINE resolution12}

{$IFDEF resolution10}
// <code specific to 10-bit resolution>

{$ELSE}
{$IFDEF resolution12}

// <code specific to 12-bit resolution>
{$ELSE}

// <default code>
{$ENDIF}

{$ENDIF}

183MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

Include Directive $I

The $I parameter directive instructs mikroPascal for 8051 to include the named text
file in the compilation. In effect, the file is inserted in the compiled text right after the
{$I filename} directive. If filename does not specify a directory path, then, in addi-
tion to searching for the file in the same directory as the current unit, mikroPascal
for 8051 will search for file in order specified by the search paths.

To specify a filename that includes a space, surround the file name with quotation
marks: {$I "My file"}.

There is one restriction to the use of include files: An include file can't be specified
in the middle of a statement part. In fact, all statements between the begin and end
of a statement part must exist in the same source file.

Predefined Flags

The compiler sets directives upon completion of project settings, so the user does-
n't need to define certain flags.
Here is an example:

{$IFDEF AT89S8253} // If AT89S8253 MCU is selected
{$IFDEF P30} AT89S8253 and P30 flags will be automatically
defined

184 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

LINKER DIRECTIVES

mikroPascal for 8051 uses internal algorithm to distribute objects within memory. If
you need to have a variable or a routine at the specific predefined address, use the
linker directives absolute and org.

Note: You must specify an even address when using the linker directives.

Directive absolute

Directive absolute specifies the starting address in RAM for a variable. If the vari-
able spans more than 1 word (16-bit), the higher words will be stored at the consec-
utive locations.

Directive absolute is appended to the declaration of a variable:

var x : word; absolute $32;
// Variable x will occupy 1 word (16 bits) at address $32

y : longint; absolute $34;
// Variable y will occupy 2 words at addresses $34 and $36

Be careful when using the absolute directive because you may overlap two vari-
ables by accident. For example:

var i : word; absolute $42;
// Variable i will occupy 1 word at address $42;

jj : longint; absolute $40;
// Variable will occupy 2 words at $40 and $42; thus,
// changing i changes jj at the same time and vice versa

Note: You must specify an even address when using the absolute directive.

185MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language ReferencemikroPascal for 8051
CHAPTER 5

Directive org

Directive org specifies the starting address of a routine in ROM. It is appended to
the declaration of a routine. For example:

procedure proc(par : byte); org $200;
begin
// Procedure will start at address $200;
...
end;

org directive can be used with main routine too. For example:

program Led_Blinking;

procedure some_proc();
begin
...

end;

org 0x800; // main procedure starts at 0x800
begin

ADPCFG := $FFFF;
TRISB := $0000;

while TRUE do
begin

LATB := $0000;
Delay_ms(500);
LATB := $FFFF;
Delay_ms(500);

end;
end.

Note: You must specify an even address when using the org directive.

186 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Language Reference mikroPascal for 8051
CHAPTER 5

mikroPascal for 8051
Libraries

mikroPascal for 8051 provides a set of libraries which simplify the initialization and
use of 8051 compliant MCUs and their modules:

Use Library manager to include mikroPascal for 8051 Libraries in you project.

6

187

CHAPTER

Hardware 8051-specific Libraries

- CANSPI Library
- EEPROM Library
- Graphic LCD Library
- Keypad Library
- LCD Library
- Manchester Code Library
- OneWire Library
- Port Expander Library
- PS/2 Library
- RS-485 Library
- Software I2C Library
- Software SPI Library
- Software UART Library
- Sound Library
- SPI Library
- SPI Ethernet Library
- SPI Graphic LCD Library
- SPI LCD Library
- SPI LCD8 Library
- SPI T6963C Graphic LCD Library
- T6963C Graphic LCD Library
- UART Library

Miscellaneous Libraries

- Button Library
- Conversions Library
- Math Library
- String Library
- Time Library
- Trigonometry Library

See also Built-in Routines.

188 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

LIBRARY DEPENDENCIES

Certain libraries use (depend on) function and/or variables, constants defined in
other libraries.
Image below shows clear representation about these dependencies.

For example, SPI_Glcd uses Glcd_Fonts and Port_Expander library which uses SPI
library.
This means that if you check SPI_Glcd library in Library manager, all libraries on
which it depends will be checked too.

189MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Related topics: Library manager, 8051 Libraries

190 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

CANSPI LIBRARY

The SPI module is available with a number of the 8051 compliant MCUs. The
mikroPascal for 8051 provides a library (driver) for working with mikroElektronika's
CANSPI Add-on boards (with MCP2515 or MCP2510) via SPI interface.

The CAN is a very robust protocol that has error detection and signalization,
self–checking and fault confinement. Faulty CAN data and remote frames are re-
transmitted automatically, similar to the Ethernet.

Data transfer rates depend on distance. For example, 1 Mbit/s can be achieved at
network lengths below 40m while 250 Kbit/s can be achieved at network lengths
below 250m. The greater distance the lower maximum bitrate that can be achieved.
The lowest bitrate defined by the standard is 200Kbit/s. Cables used are shielded
twisted pairs.

CAN supports two message formats:

- Standard format, with 11 identifier bits and
- Extended format, with 29 identifier bits

Note:

- Consult the CAN standard about CAN bus termination resistance.
- An effective CANSPI communication speed depends on SPI and certainly is

slower than “real” CAN.
- CANSPI module refers to mikroElektronika's CANSPI Add-on board connected to

SPI module of MCU.

External dependecies of CANSPI Library

191MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

The following variables
must be defined in all

projects using CANSPI
Library:

Description: Example :

var CanSpi_CS: sbit;
external; Chip Select line.

var CanSpi_CS: sbit
at P1.B0;

var CanSpi_RST: sbit;
external; Reset line.

var CanSpi_Rst: sbit
at P1.B2;

Library Routines

- CANSPISetOperationMode
- CANSPIGetOperationMode
- CANSPIInitialize
- CANSPISetBaudRate
- CANSPISetMask
- CANSPISetFilter
- CANSPIread
- CANSPIWrite

The following routines are for an internal use by the library only:

- RegsToCANSPIID
- CANSPIIDToRegs

Be sure to check CANSPI constants necessary for using some of the functions.

192 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

CANSPISetOperationMode

CANSPIGetOperationMode

193MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure CANSPISetOperationMode(mode: byte; WAIT: byte);

Returns Nothing.

Description

Sets the CANSPI module to requested mode.

Parameters :

- mode: CANSPI module operation mode. Valid values: CANSPI_OP_MODE
constants (see CANSPI constants).

- WAIT: CANSPI mode switching verification request. If WAIT = 0, the call is
non-blocking. The function does not verify if the CANSPI module is switched to
requested mode or not. Caller must use CANSPIGetOperationMode to verify
correct operation mode before performing mode specific operation. If WAIT != 0,
the call is blocking – the function won’t “return” until the requested mode is set.

Requires

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

Example
// set the CANSPI module into configuration mode (wait inside
CANSPISetOperationMode until this mode is set)
CANSPISetOperationMode(CANSPI_MODE_CONFIG, 0xFF);

Prototype function CANSPIGetOperationMode(): byte;

Returns Current operation mode.

Description
The function returns current operation mode of the CANSPI module. Check
CANSPI_OP_MODE constants (see CANSPI constants) or device datasheet for
operation mode codes.

Requires

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

Example

// check whether the CANSPI module is in Normal mode and if it
is do something.
if (CANSPIGetOperationMode() = CANSPI_MODE_NORMAL) then
begin

...
end;

CANSPIInitialize

194 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure CANSPIInitialize(SJW: byte; BRP: byte; PHSEG1: byte;
PHSEG2: byte; PROPSEG: byte; CAN_CONFIG_FLAGS: byte);

Returns Nothing.

Description

Initializes the CANSPI module.

Stand-Alone CAN controller in the CANSPI module is set to:

- Disable CAN capture
- Continue CAN operation in Idle mode
- Do not abort pending transmissions
- Fcan clock: 4*Tcy (Fosc)
- Baud rate is set according to given parameters
- CAN mode: Normal
- Filter and mask registers IDs are set to zero
- Filter and mask message frame type is set according to CAN_CONFIG_FLAGS value

SAM,SEG2PHTS,WAKFIL and DBEN bits are set according to CAN_CONFIG_FLAGS value.

Parameters:

- SJW as defined in CAN controller's datasheet
- BRP as defined in CAN controller's datasheet
- PHSEG1 as defined in CAN controller's datasheet
- PHSEG2 as defined in CAN controller's datasheet
- PROPSEG as defined in CAN controller's datasheet
- CAN_CONFIG_FLAGS is formed from predefined constants (see CANSPI constants)

Requires

CanSpi_CS and CanSpi_Rst variables must be defined before using this function.

The CANSPI routines are supported only by MCUs with the SPI module.

The SPI module needs to be initialized. See the Spi_Init and Spi_Init_Advanced
routines.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

195MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Example

// initialize the CANSPI module with the appropriate baud rate
and message acceptance flags along with the sampling rules
var Can_Init_Flags: byte;

...
Can_Init_Flags := CAN_CONFIG_SAMPLE_THRICE and // form value

to be used
CAN_CONFIG_PHSEG2_PRG_ON and // with

CANSPIInitialize
CAN_CONFIG_XTD_MSG and
CAN_CONFIG_DBL_BUFFER_ON and
CAN_CONFIG_VALID_XTD_MSG;

...
Spi_Init(); // initialize

SPI module
CANSPIInitialize(1,3,3,3,1,Can_Init_Flags); // initialize

external CANSPI module

CANSPISetBaudRate

196 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure CANSPISetBaudRate(SJW: byte; BRP: byte; PHSEG1: byte;
PHSEG2: byte; PROPSEG: byte; CAN_CONFIG_FLAGS: byte);

Returns Nothing.

Description

Sets the CANSPI module baud rate. Due to complexity of the CAN protocol,
you can not simply force a bps value. Instead, use this function when the
CANSPI module is in Config mode.

SAM, SEG2PHTS and WAKFIL bits are set according to CAN_CONFIG_FLAGS value.
Refer to datasheet for details.

Parameters:

- SJW as defined in CAN controller's datasheet
- BRP as defined in CAN controller's datasheet
- PHSEG1 as defined in CAN controller's datasheet
- PHSEG2 as defined in CAN controller's datasheet
- PROPSEG as defined in CAN controller's datasheet
- CAN_CONFIG_FLAGS is formed from predefined constants (see CANSPI constants)

Requires

The CANSPI module must be in Config mode, otherwise the function will be
ignored. See CANSPISetOperationMode.

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

Example

// set required baud rate and sampling rules
var can_config_flags: byte;
...
CANSPISetOperationMode(CANSPI_MODE_CONFIG,0xFF); //
set CONFIGURATION mode (CANSPI module mast be in config mode for
baud rate settings)
can_config_flags := CANSPI_CONFIG_SAMPLE_THRICE and

CANSPI_CONFIG_PHSEG2_PRG_ON and
CANSPI_CONFIG_STD_MSG and
CANSPI_CONFIG_DBL_BUFFER_ON and
CANSPI_CONFIG_VALID_XTD_MSG and
CANSPI_CONFIG_LINE_FILTER_OFF;

CANSPISetBaudRate(1, 1, 3, 3, 1, can_config_flags);

CANSPISetMask

197MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
procedure CANSPISetMask(CAN_MASK: byte; val: longint; CAN_CON-
FIG_FLAGS: byte);

Returns Nothing.

Description

Configures mask for advanced filtering of messages. The parameter value is
bit-adjusted to the appropriate mask registers.

Parameters:

- CAN_MASK: CANSPI module mask number. Valid values: CANSPI_MASK costants
(see CANSPI constants)

- val: mask register value
- CAN_CONFIG_FLAGS: selects type of message to filter. Valid values:

CANSPI_CONFIG_ALL_VALID_MSG,
CANSPI_CONFIG_MATCH_MSG_TYPE and CANSPI_CONFIG_STD_MSG,
CANSPI_CONFIG_MATCH_MSG_TYPE and CANSPI_CONFIG_XTD_MSG.

(see CANSPI constants)

Requires

The CANSPI module must be in Config mode, otherwise the function will be
ignored. See CANSPISetOperationMode.

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

Example

// set the appropriate filter mask and message type value
CANSPISetOperationMode(CANSPI_MODE_CONFIG,0xFF); //
set CONFIGURATION mode (CANSPI module must be in config mode for
mask settings)

// Set all B1 mask bits to 1 (all filtered bits are relevant):
// Note that -1 is just a cheaper way to write 0xFFFFFFFF.
// Complement will do the trick and fill it up with ones.
CANSPISetMask(CANSPI_MASK_B1, -1, CANSPI_CONFIG_MATCH_MSG_TYPE
and CANSPI_CONFIG_XTD_MSG);

CANSPISetFilter

198 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure CANSPISetFilter(CAN_FILTER: byte; val: longint;
CAN_CONFIG_FLAGS: byte);

Returns Nothing.

Description

Configures message filter. The parameter value is bit-adjusted to the appropri-
ate filter registers.

Parameters:

- CAN_FILTER: CANSPI module filter number. Valid values: CANSPI_FILTER
constants (see CANSPI constants)

- val: filter register value
- CAN_CONFIG_FLAGS: selects type of message to filter. Valid values:

CANSPI_CONFIG_ALL_VALID_MSG,
CANSPI_CONFIG_MATCH_MSG_TYPE and CANSPI_CONFIG_STD_MSG,
CANSPI_CONFIG_MATCH_MSG_TYPE and CANSPI_CONFIG_XTD_MSG.

(see CANSPI constants)

Requires

The CANSPI module must be in Config mode, otherwise the function will be
ignored. See CANSPISetOperationMode.

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

Example

// set the appropriate filter value and message type
CANSPISetOperationMode(CANSPI_MODE_CONFIG,0xFF);
// set CONFIGURATION mode (CANSPI module must be in config mode
for filter settings)

/* Set id of filter B1_F1 to 3: */
CANSPISetFilter(CANSPI_FILTER_B1_F1, 3, CANSPI_CONFIG_XTD_MSG);

CANSPIRead

199MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
function CANSPIRead(var id: longint; var rd_data: array[20] of
byte; data_len: byte; CAN_RX_MSG_FLAGS: byte): byte;

Returns
- 0 if nothing is received
- 0xFF if one of the Receive Buffers is full (message received)

Description

If at least one full Receive Buffer is found, it will be processed in the following
way:

- Message ID is retrieved and stored to location provided by the id parameter
- Message data is retrieved and stored to a buffer provided by the rd_data parameter
- Message length is retrieved and stored to location provided by the
data_len parameter

- Message flags are retrieved and stored to location provided by the
CAN_RX_MSG_FLAGS parameter

Parameters:

- id: message identifier storage address
- rd_data: data buffer (an array of bytes up to 8 bytes in length)
- data_len: data length storage address.
- CAN_RX_MSG_FLAGS: message flags storage address

Requires

The CANSPI module must be in a mode in which receiving is possible. See
CANSPISetOperationMode.

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

Example

// check the CANSPI module for received messages. If any was
received do something.
var msg_rcvd, rx_flags, data_len: byte;
rd_data: array[8] of byte;
msg_id: longint;

...
CANSPISetOperationMode(CANSPI_MODE_NORMAL,0xFF);
// set NORMAL mode (CANSPI module must be in mode in which
receive is possible)
...
rx_flags := 0;
// clear message flags
if (msg_rcvd = CANSPIRead(msg_id, rd_data, data_len, rx_flags)
begin

...
end;

CANSPIWrite

200 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
function CANSPIWrite(id: longint; var wr_data: array[20] of byte;
data_len: byte; CAN_TX_MSG_FLAGS: byte): byte;

Returns
- 0 if all Transmit Buffers are busy
- 0xFF if at least one Transmit Buffer is available

Description

If at least one empty Transmit Buffer is found, the function sends message in
the queue for transmission.

Parameters:

- id:CAN message identifier. Valid values: 11 or 29 bit values, depending on
message type (standard or extended)

- wr_data: data to be sent (an array of bytes up to 8 bytes in length)
- data_len: data length. Valid values: 1 to 8
- CAN_RX_MSG_FLAGS: message flags

Requires

The CANSPI module must be in mode in which transmission is possible. See
CANSPISetOperationMode.

The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

Example

// send message extended CAN message with the appropriate ID and
data
var tx_flags: byte;
rd_data: array[8] of byte;
msg_id: longint;

...
CANSPISetOperationMode(CAN_MODE_NORMAL, 0xFF);
// set NORMAL mode (CANSPI must be in mode in which transmission
is possible)

tx_flags := CANSPI_TX_PRIORITY_0 ands CANSPI_TX_XTD_FRAME;
// set message flags
CANSPIWrite(msg_id, rd_data, 2, tx_flags);

CANSPI Constants

There is a number of constants predefined in the CANSPI library. You need to be
familiar with them in order to be able to use the library effectively. Check the exam-
ple at the end of the chapter.

CANSPI_OP_MODE

The CANSPI_OP_MODE constants define CANSPI operation mode. Function
CANSPISetOperationMode expects one of these as it's argument:

const
CANSPI_MODE_BITS = 0xE0; // Use this to access opmode bits
CANSPI_MODE_NORMAL = 0x00;
CANSPI_MODE_SLEEP = 0x20;
CANSPI_MODE_LOOP = 0x40;
CANSPI_MODE_LISTEN = 0x60;
CANSPI_MODE_CONFIG = 0x80;

CANSPI_CONFIG_FLAGS

The CANSPI_CONFIG_FLAGS constants define flags related to the CANSPI mod-
ule configuration. The functions CANSPIInitialize, CANSPISetBaudRate,
CANSPISetMask and CANSPISetFilter expect one of these (or a bitwise combina-
tion) as their argument:

const
CANSPI_CONFIG_DEFAULT = 0xFF; // 11111111

CANSPI_CONFIG_PHSEG2_PRG_BIT = 0x01;
CANSPI_CONFIG_PHSEG2_PRG_ON = 0xFF; // XXXXXXX1
CANSPI_CONFIG_PHSEG2_PRG_OFF = 0xFE; // XXXXXXX0

CANSPI_CONFIG_LINE_FILTER_BIT = 0x02;
CANSPI_CONFIG_LINE_FILTER_ON = 0xFF; // XXXXXX1X
CANSPI_CONFIG_LINE_FILTER_OFF = 0xFD; // XXXXXX0X

CANSPI_CONFIG_SAMPLE_BIT = 0x04;
CANSPI_CONFIG_SAMPLE_ONCE = 0xFF; // XXXXX1XX
CANSPI_CONFIG_SAMPLE_THRICE = 0xFB; // XXXXX0XX

CANSPI_CONFIG_MSG_TYPE_BIT = 0x08;
CANSPI_CONFIG_STD_MSG = 0xFF; // XXXX1XXX
CANSPI_CONFIG_XTD_MSG = 0xF7; // XXXX0XXX

201MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

CANSPI_CONFIG_DBL_BUFFER_BIT = 0x10;
CANSPI_CONFIG_DBL_BUFFER_ON = 0xFF; // XXX1XXXX
CANSPI_CONFIG_DBL_BUFFER_OFF = 0xEF; // XXX0XXXX

CANSPI_CONFIG_MSG_BITS = 0x60;
CANSPI_CONFIG_ALL_MSG = 0xFF; // X11XXXXX
CANSPI_CONFIG_VALID_XTD_MSG = 0xDF; // X10XXXXX
CANSPI_CONFIG_VALID_STD_MSG = 0xBF; // X01XXXXX
CANSPI_CONFIG_ALL_VALID_MSG = 0x9F; // X00XXXXX

You may use bitwise and to form config byte out of these values. For example:

init := CANSPI_CONFIG_SAMPLE_THRICE and
CANSPI_CONFIG_PHSEG2_PRG_ON and
CANSPI_CONFIG_STD_MSG and
CANSPI_CONFIG_DBL_BUFFER_ON and
CANSPI_CONFIG_VALID_XTD_MSG and
CANSPI_CONFIG_LINE_FILTER_OFF;

...
CANSPIInitialize(1, 1, 3, 3, 1, init); // initialize CANSPI

CANSPI_TX_MSG_FLAGS

CANSPI_TX_MSG_FLAGS are flags related to transmission of a CAN message:

const
CANSPI_TX_PRIORITY_BITS = 0x03;
CANSPI_TX_PRIORITY_0 = 0xFC; // XXXXXX00
CANSPI_TX_PRIORITY_1 = 0xFD; // XXXXXX01
CANSPI_TX_PRIORITY_2 = 0xFE; // XXXXXX10
CANSPI_TX_PRIORITY_3 = 0xFF; // XXXXXX11

CANSPI_TX_FRAME_BIT = 0x08;
CANSPI_TX_STD_FRAME = 0xFF; // XXXXX1XX
CANSPI_TX_XTD_FRAME = 0xF7; // XXXXX0XX

CANSPI_TX_RTR_BIT = 0x40;
CANSPI_TX_NO_RTR_FRAME = 0xFF; // X1XXXXXX
CANSPI_TX_RTR_FRAME = 0xBF; // X0XXXXXX

You may use bitwise and to adjust the appropriate flags. For example:

/* form value to be used as sending message flag: */
send_config := CANSPI_TX_PRIORITY_0 and

CANSPI_TX_XTD_FRAME and
CANSPI_TX_NO_RTR_FRAME;

...
CANSPIWrite(id, data, 1, send_config);

202 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

CANSPI_RX_MSG_FLAGS

CANSPI_RX_MSG_FLAGS are flags related to reception of CAN message. If a par-
ticular bit is set then corresponding meaning is TRUE or else it will be FALSE.

const
CANSPI_RX_FILTER_BITS = 0x07; // Use this to access filter bits
CANSPI_RX_FILTER_1 = 0x00;
CANSPI_RX_FILTER_2 = 0x01;
CANSPI_RX_FILTER_3 = 0x02;
CANSPI_RX_FILTER_4 = 0x03;
CANSPI_RX_FILTER_5 = 0x04;
CANSPI_RX_FILTER_6 = 0x05;

CANSPI_RX_OVERFLOW = 0x08; // Set if Overflowed else cleared
CANSPI_RX_INVALID_MSG = 0x10; // Set if invalid else cleared
CANSPI_RX_XTD_FRAME = 0x20; // Set if XTD message else cleared
CANSPI_RX_RTR_FRAME = 0x40; // Set if RTR message else cleared
CANSPI_RX_DBL_BUFFERED = 0x80; // Set if this message was hard-

ware double-buffered

You may use bitwise and to adjust the appropriate flags. For example:

if (MsgFlag and CANSPI_RX_OVERFLOW <> 0) then
begin

...
// Receiver overflow has occurred.
// We have lost our previous message.

end;

CANSPI_MASK

The CANSPI_MASK constants define mask codes. Function CANSPISetMask
expects one of these as it's argument:

const
CANSPI_MASK_B1 = 0;
CANSPI_MASK_B2 = 1;

CANSPI_FILTER

The CANSPI_FILTER constants define filter codes. Functions CANSPISetFilter
expects one of these as it's argument:

const
CANSPI_FILTER_B1_F1 = 0;
CANSPI_FILTER_B1_F2 = 1;
CANSPI_FILTER_B2_F1 = 2;
CANSPI_FILTER_B2_F2 = 3;
CANSPI_FILTER_B2_F3 = 4;
CANSPI_FILTER_B2_F4 = 5;

203MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Library Example

This is a simple demonstration of CANSPI Library routines usage. First node initi-
ates the communication with the second node by sending some data to its address.
The second node responds by sending back the data incremented by 1. First node
then does the same and sends incremented data back to second node, etc.

Code for the first CANSPI node:

program Can_Spi_1st;

var Can_Init_Flags, Can_Send_Flags, Can_Rcv_Flags : byte; // CAN
flags

Rx_Data_Len : byte; // Received data length in bytes
RxTx_Data : array[8] of byte; // CAN rx/tx data buffer
Msg_Rcvd : byte; // Reception flag
Tx_ID, Rx_ID : longint; // CAN rx and tx ID

// CANSPI module connections
var CanSpi_CS : sbit at P1.B0;
var CanSpi_Rst : sbit at P1.B2;
// End CANSPI module connections

begin

Can_Init_Flags := 0; //
Can_Send_Flags := 0; // Clear flags
Can_Rcv_Flags := 0; //

Can_Send_Flags := CAN_TX_PRIORITY_0 and // Form value to be used
CAN_TX_XTD_FRAME and // with CANSPIWrite
CAN_TX_NO_RTR_FRAME;

Can_Init_Flags := CAN_CONFIG_SAMPLE_THRICE and // Form
value to be used

CAN_CONFIG_PHSEG2_PRG_ON and // with
CANSPIInit

CAN_CONFIG_XTD_MSG and
CAN_CONFIG_DBL_BUFFER_ON and
CAN_CONFIG_VALID_XTD_MSG;

Spi_Init(); // Initialize SPI module
CANSPIInitialize(1,3,3,3,1,Can_Init_Flags); // Initialize

external CANSPI module

CANSPISetOperationMode(CAN_MODE_CONFIG,0xFF); // Set CONFIG-
URATION mode

204 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

CANSPISetMask(CAN_MASK_B1,-1,CAN_CONFIG_XTD_MSG); // Set all
mask1 bits to ones

CANSPISetMask(CAN_MASK_B2,-1,CAN_CONFIG_XTD_MSG); //
Set all mask2 bits to ones

CANSPISetFilter(CAN_FILTER_B2_F4,3,CAN_CONFIG_XTD_MSG); // Set
id of filter B2_F4 to 3

CANSPISetOperationMode(CAN_MODE_NORMAL,0xFF); // Set NORMAL mode

RxTx_Data[0] := 9; // Set initial data to be sent

Tx_ID := 12111; // Set transmit ID

CANSPIWrite(Tx_ID, RxTx_Data, 1, Can_Send_Flags); //
Send initial message

while (TRUE) do
begin // Endless loop

Msg_Rcvd := CANSPIRead(Rx_ID , RxTx_Data , Rx_Data_Len,
Can_Rcv_Flags); // Receive message

if ((Rx_ID = 3) and Msg_Rcvd) then
begin // If message received check id

P0 := RxTx_Data[0];
// ID correct, output data at PORT0

Inc(RxTx_Data[0]);
// Increment received data

Delay_ms(10);
CANSPIWrite(Tx_ID, RxTx_Data, 1, Can_Send_Flags);

// Send incremented data back
end;

end;
end.

Code for the second CANSPI node:

program Can_Spi_2nd;

var Can_Init_Flags, Can_Send_Flags, Can_Rcv_Flags : byte; // CAN
flags

Rx_Data_Len : byte; // Received data length in bytes
RxTx_Data : array[8] of byte; // CAN rx/tx data buffer
Msg_Rcvd : byte; // Reception flag
Tx_ID, Rx_ID : longint; // CAN rx and tx ID

// CANSPI module connections
var CanSpi_CS : sbit at P1.B0;
var CanSpi_Rst : sbit at P1.B2;
// End CANSPI module connections

205MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

206 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

begin

Can_Init_Flags := 0; //
Can_Send_Flags := 0; // Clear flags
Can_Rcv_Flags := 0; //

Can_Send_Flags := CAN_TX_PRIORITY_0 and // Form value to be used
CAN_TX_XTD_FRAME and // with CANSPIWrite
CAN_TX_NO_RTR_FRAME;

Can_Init_Flags := CAN_CONFIG_SAMPLE_THRICE and //
Form value to be used

CAN_CONFIG_PHSEG2_PRG_ON and // with CANSPIInit
CAN_CONFIG_XTD_MSG and
CAN_CONFIG_DBL_BUFFER_ON and
CAN_CONFIG_VALID_XTD_MSG and
CAN_CONFIG_LINE_FILTER_OFF;

Spi_Init(); // Initialize SPI module
CANSPIInitialize(1,3,3,3,1,Can_Init_Flags); //

Initialize CAN-SPI module

CANSPISetOperationMode(CAN_MODE_CONFIG,0xFF); //
Set CONFIGURATION mode

CANSPISetMask(CAN_MASK_B1,-1,CAN_CONFIG_XTD_MSG); //
Set all mask1 bits to ones

CANSPISetMask(CAN_MASK_B2,-1,CAN_CONFIG_XTD_MSG); //
Set all mask2 bits to ones

CANSPISetFilter(CAN_FILTER_B2_F3,12111,CAN_CONFIG_XTD_MSG); //
Set id of filter B2_F3 to 12111

CANSPISetOperationMode(CAN_MODE_NORMAL,0xFF); // Set NORMAL mode

Tx_ID := 3; // Set tx ID

while (TRUE) do
begin // Endless loop

Msg_Rcvd := CANSPIRead(Rx_ID , RxTx_Data , Rx_Data_Len,
Can_Rcv_Flags); // Receive message

if ((Rx_ID = 12111) and Msg_Rcvd) then
// If message received check id

begin
P0 := RxTx_Data[0]; // ID correct, output data at PORT0
Inc(RxTx_Data[0]) ; // Increment received data
CANSPIWrite(Tx_ID, RxTx_Data, 1, Can_Send_Flags); //

Send incremented data back
end;

end;
end.

207MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

HW Connection

Example of interfacing CAN transceiver MCP2510 with MCU via SPI interface

208 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

EEPROM LIBRARY

EEPROM data memory is available with a number of 8051 family. The mikroPascal for 8051
includes a library for comfortable work with MCU's internal EEPROM.

Note: EEPROM Library functions implementation is MCU dependent, consult the appropriate
MCU datasheet for details about available EEPROM size and address range.

Library Routines

- Eeprom_Read
- Eeprom_Write
- Eeprom_Write_Block

Eeprom_Read

209MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function Eeprom_Read(address: word): byte;

Returns Byte from the specified address.

Description

Reads data from specified address.

Parameters :

- address: address of the EEPROM memory location to be read.

Requires Nothing.

Example

var eeAddr : word;
temp : byte;
...
eeAddr := 2
temp := Eeprom_Read(eeAddr);

Eeprom_Write

210 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype function Eeprom_Write(address: word; wrdata: byte): byte;

Returns
- 0 writing was successful
- 1 if error occured

Description

Writes wrdata to specified address.

Parameters :

- address: address of the EEPROM memory location to be written.
- wrdata: data to be written.

Note: Specified memory location will be erased before writing starts.

Requires Nothing.

Example

var eeWrite : byte = 0x55;
wrAddr : word = 0x732;

...
eeWrite := 0x55;
wrAddr := 0x732;
Eeprom_Write(wrAddr, eeWrite);

Eeprom_Write_Block

211MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function Eeprom_Write_Block(address: word; var ptrdata: byte): byte;

Returns
- 0 writing was successful
- 1 if error occured

Description

Writes one EEPROM row (32 bytes block) of data.

Parameters :

- address: starting address of the EEPROM memory block to be written.
- ptrdata: data block to be written.

Note: Specified memory block will be erased before writing starts.

Requires

EEPROM module must support block write operations.

It is the user's responsibility to maintain proper address alignment. In this case,
address has to be a multiply of 32, which is the size (in bytes) of one row of
MCU's EEPROM memory.

Example

var
wrAddr : word;
iArr : string[16];
...
wrAddr : 0x0100;
iArr := 'mikroElektronika';
Eeprom_Write_Block(wrAddr, iArr);

Library Example

This example demonstrates using the EEPROM Library with AT89S8253 MCU.

First, some data is written to EEPROM in byte and block mode; then the data is read
from the same locations and displayed on P0, P1 and P2.

program Eeprom;
var dat : array [32] of byte; // Data buffer, loop vari-
able

ii : byte;

begin
for ii := 31 downto dat[ii] do nop; // Fill data buffer

Eeprom_Write(2,0xAA); // Write some data at address 2
Eeprom_Write(0x732,0x55); // Write some data at address 0x732
Eeprom_Write_Block(0x100,dat); // Write 32 bytes block at

address 0x100

Delay_ms(1000); // Blink P0 and P1 diodes
P0 := 0xFF; // to indicate reading start
P1 := 0xFF;
Delay_ms(1000);
P0 := 0x00;
P1 := 0x00;
Delay_ms(1000);

P0 := Eeprom_Read(2); // Read data from address
2 and display it on PORT0

P1 := Eeprom_Read(0x732); // Read data from address
0x732 and display it on PORT1

Delay_ms(1000);

for ii := 0 to 31 do // Read 32 bytes block from address 0x100
begin

P2 := Eeprom_Read(0x100+ii); // and display data
on PORT2

Delay_ms(500);
end;

end.

212 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

GRAPHIC LCD LIBRARY

The mikroPascal for 8051 provides a library for operating Graphic LCD 128x64 (with
commonly used Samsung KS108/KS107 controller).

For creating a custom set of GLCD images use GLCD Bitmap Editor Tool.

External dependencies of Graphic LCD Library

213MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

The following variables
must be defined in all

projects using Graphic
LCD Library:

Description: Example :

var GLCD_DataPort:
byte; external;
volatile; sfr;

LCD Data Port.
var GLCD_DataPort:
byte at P0; sfr;

var GLCD_CS1: sbit;
external; Chip Select 1 line.

var GLCD_CS1: sbit at
P2.B0;

var GLCD_CS2: sbit;
external; Chip Select 2 line.

var GLCD_CS2: sbit at
P2.B0;

var GLCD_RS: sbit;
external; Register select line.

var GLCD_RS: sbit at
P2.B0;

var GLCD_RW: sbit;
external; Read/Write line.

var GLCD_RW: sbit at
P2.B0;

var GLCD_RST: sbit;
external; Reset line.

var GLCD_RST: sbit at
P2.B0;

var GLCD_EN: sbit;
external; Enable line.

var GLCD_EN: sbit at
P2.B0;

Library Routines

Basic routines:

- Glcd_Init
- Glcd_Set_Side
- Glcd_Set_X
- Glcd_Set_Page
- Glcd_Read_Data
- Glcd_Write_Data

Advanced routines:

- Glcd_Fill
- Glcd_Dot
- Glcd_Line
- Glcd_V_Line
- Glcd_H_Line
- Glcd_Rectangle
- Glcd_Box
- Glcd_Circle
- Glcd_Set_Font
- Glcd_Write_Char
- Glcd_Write_Text
- Glcd_Image

214 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Glcd_Init

215MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Glcd_Init();

Returns Nothing.

Description
Initializes the GLCD module. Each of the control lines is both port and pin con-
figurable, while data lines must be on a single port (pins <0:7>).

Requires

Global variables :

- GLCD_CS1 : chip select 1 signal pin
- GLCD_CS2 : chip select 2 signal pin
- GLCD_RS : register select signal pin
- GLCD_RW : read/write signal pin
- GLCD_EN : enable signal pin
- GLCD_RST : reset signal pin
- GLCD_DataPort : data port

must be defined before using this function.

Example

' glcd pinout settings

var GLCD_DataPort: byte at P0; sfr;

var GLCD_CS1 : sbit at P2.B0;
GLCD_CS2 : sbit at P2.B1;
GLCD_RS : sbit at P2.B2;
GLCD_RW : sbit at P2.B3;
GLCD_RST : sbit at P2.B5;
GLCD_EN : sbit at P2.B4;

...

Glcd_Init();

Glcd_Set_Side

Glcd_Set_X

216 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Glcd_Set_Side(x_pos: byte);

Returns Nothing.

Description

Selects GLCD side. Refer to the GLCD datasheet for detailed explaination.

Parameters :

- x_pos: position on x-axis. Valid values: 0..127

The parameter x_pos specifies the GLCD side: values from 0 to 63 specify the
left side, values from 64 to 127 specify the right side.

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example

The following two lines are equivalent, and both of them select the left side of
GLCD:

Glcd_Select_Side(0);
Glcd_Select_Side(10);

Prototype procedure Glcd_Set_X(x_pos: byte);

Returns Nothing.

Description

Sets x-axis position to x_pos dots from the left border of GLCD within the
selected side.

Parameters :

- x_pos: position on x-axis. Valid values: 0..63

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example Glcd_Set_X(25);

Glcd_Set_Page

Glcd_Read_Data

217MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Glcd_Set_Page(page: byte);

Returns Nothing.

Description

Selects page of the GLCD.

Parameters :

- page: page number. Valid values: 0..7

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example Glcd_Set_Page(5);

Prototype function Glcd_Read_Data(): byte;

Returns One byte from GLCD memory.

Description
Reads data from from the current location of GLCD memory and moves to the
next location.

Requires

GLCD needs to be initialized, see Glcd_Init routine.

GLCD side, x-axis position and page should be set first. See functions
Glcd_Set_Side, Glcd_Set_X, and Glcd_Set_Page.

Example
var data: byte;
...
data := Glcd_Read_Data();

Glcd_Write_Data

Glcd_Fill

218 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Glcd_Write_Data(ddata: byte);

Returns Nothing.

Description

Writes one byte to the current location in GLCD memory and moves to the next
location.

Parameters :

- ddata: data to be written

Requires

GLCD needs to be initialized, see Glcd_Init routine.

GLCD side, x-axis position and page should be set first. See functions
Glcd_Set_Side, Glcd_Set_X, and Glcd_Set_Page.

Example
var data: byte;
...
Glcd_Write_Data(data);

Prototype procedure Glcd_Fill(pattern: byte);

Returns Nothing.

Description

Fills GLCD memory with the byte pattern.

Parameters :

- pattern: byte to fill GLCD memory with

To clear the GLCD screen, use Glcd_Fill(0).

To fill the screen completely, use Glcd_Fill(0xFF).

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example
' Clear screen
Glcd_Fill(0);

Glcd_Dot

Glcd_Line

219MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Glcd_Dot(x_pos: byte; y_pos: byte; color: byte);

Returns Nothing.

Description

Draws a dot on GLCD at coordinates (x_pos, y_pos).

Parameters :

- x_pos: x position. Valid values: 0..127
- y_pos: y position. Valid values: 0..63
- color: color parameter. Valid values: 0..2

The parameter color determines a dot state: 0 clears dot, 1 puts a dot, and 2
inverts dot state.

Note: For x and y axis layout explanation see schematic at the bottom of this page.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example
' Invert the dot in the upper left corner
Glcd_Dot(0, 0, 2);

Prototype
procedure Glcd_Line(x_start: integer; y_start: integer; x_end
integer; y_end integer; color: byte);

Returns Nothing.

Description

Draws a line on GLCD.

Parameters :

- x_start: x coordinate of the line start. Valid values: 0..127
- y_start: y coordinate of the line start. Valid values: 0..63
- x_end: x coordinate of the line end. Valid values: 0..127
- y_end: y coordinate of the line end. Valid values: 0..63
- color: color parameter. Valid values: 0..2

The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example
' Draw a line between dots (0,0) and (20,30)
Glcd_Line(0, 0, 20, 30, 1);

Glcd_V_Line

Glcd_H_Line

220 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure Glcd_V_Line(y_start: byte; y_end: byte; x_pos: byte;
color: byte);

Returns Nothing.

Description

Draws a vertical line on GLCD.

Parameters :

- y_start: y coordinate of the line start. Valid values: 0..63
- y_end: y coordinate of the line end. Valid values: 0..63
- x_pos: x coordinate of vertical line. Valid values: 0..127
- color: color parameter. Valid values: 0..2

The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example
' Draw a vertical line between dots (10,5) and (10,25)
Glcd_V_Line(5, 25, 10, 1);

Prototype
procedure Glcd_V_Line(x_start: byte; x_end: byte; y_pos: byte;
color: byte);

Returns Nothing.

Description

Draws a horizontal line on GLCD.

Parameters :

- x_start: x coordinate of the line start. Valid values: 0..127
- x_end: x coordinate of the line end. Valid values: 0..127
- y_pos: y coordinate of horizontal line. Valid values: 0..63
- color: color parameter. Valid values: 0..2

The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example
' Draw a horizontal line between dots (10,20) and (50,20)
Glcd_H_Line(10, 50, 20, 1);

Glcd_Rectangle

Glcd_Box

221MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
procedure Glcd_Rectangle(x_upper_left: byte; y_upper_left: byte;
x_bottom_right: byte; y_bottom_right: byte; color: byte);

Returns Nothing.

Description

Draws a rectangle on GLCD.

Parameters :

- x_upper_left: x coordinate of the upper left rectangle corner. Valid values: 0..127
- y_upper_left: y coordinate of the upper left rectangle corner. Valid values: 0..63
- x_bottom_right: x coordinate of the lower right rectangle corner. Valid

values: 0..127
- y_bottom_right: y coordinate of the lower right rectangle corner. Valid

values: 0..63
- color: color parameter. Valid values: 0..2

The parameter color determines the color of the rectangle border: 0 white, 1
black, and 2 inverts each dot.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example
' Draw a rectangle between dots (5,5) and (40,40)
Glcd_Rectangle(5, 5, 40, 40, 1);

Prototype
procedure Glcd_Box(x_upper_left: byte; y_upper_left: byte; x_bot-
tom_right: byte; y_bottom_right: byte; color: byte);

Returns Nothing.

Description

Draws a box on GLCD.

Parameters :

- x_upper_left: x coordinate of the upper left box corner. Valid values: 0..127
- y_upper_left: y coordinate of the upper left box corner. Valid values: 0..63
- x_bottom_right: x coordinate of the lower right box corner. Valid values: 0..127
- y_bottom_right: y coordinate of the lower right box corner. Valid values: 0..63
- color: color parameter. Valid values: 0..2

The parameter color determines the color of the box fill: 0 white, 1 black, and 2
inverts each dot.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example
' Draw a box between dots (5,15) and (20,40)
Glcd_Box(5, 15, 20, 40, 1);

Glcd_Circle

Glcd_Set_Font

222 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure Glcd_Circle(x_center: integer; y_center: integer;
radius: integer; color: byte);

Returns Nothing.

Description

Draws a circle on GLCD.

Parameters :

- x_center: x coordinate of the circle center. Valid values: 0..127
- y_center: y coordinate of the circle center. Valid values: 0..63
- radius: radius size
- color: color parameter. Valid values: 0..2

The parameter color determines the color of the circle line: 0 white, 1 black,
and 2 inverts each dot.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example
' Draw a circle with center in (50,50) and radius=10
Glcd_Circle(50, 50, 10, 1);

Prototype
procedure Glcd_Set_Font(const ActiveFont: ^byte; FontWidth: byte;
FontHeight: byte; FontOffs: word);

Returns Nothing.

Description

Sets font that will be used with Glcd_Write_Char and Glcd_Write_Text routines.

Parameters :

- activeFont: font to be set. Needs to be formatted as an array of byte
- aFontWidth: width of the font characters in dots.
- aFontHeight: height of the font characters in dots.
- aFontOffs: number that represents difference between the mikroPascal for

8051 character set and regular ASCII set (eg. if 'A' is 65 in ASCII character,
and 'A' is 45 in the mikroPascal for 8051 character set, aFontOffs is 20). Demo
fonts supplied with the library have an offset of 32, which means that they start
with space.

The user can use fonts given in the file “__Lib_GLCDFonts.mpas” file located in
the Uses folder or create his own fonts.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example
' Use the custom 5x7 font "myfont" which starts with space (32):
Glcd_Set_Font(myfont, 5, 7, 32);

Glcd_Write_Char

223MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
procedure Glcd_Write_Char(chr: byte; x_pos: byte; page_num: byte;
color: byte);

Returns Nothing.

Description

Prints character on the GLCD.

Parameters :

- chr: character to be written
- x_pos: character starting position on x-axis. Valid values: 0..(127-FontWidth)
- page_num: the number of the page on which character will be written. Valid

values: 0..7
- color: color parameter. Valid values: 0..2

The parameter color determines the color of the character: 0 white, 1 black,
and 2 inverts each dot.

Note: For x axis and page layout explanation see schematic at the bottom of
this page.

Requires
GLCD needs to be initialized, see Glcd_Init routine. Use Glcd_Set_Font to
specify the font for display; if no font is specified, then default 5x8 font supplied
with the library will be used.

Example
' Write character 'C' on the position 10 inside the page 2:
Glcd_Write_Char('C', 10, 2, 1);

Glcd_Write_Text

Glcd_Image

224 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure Glcd_Write_Text(var text: string[19]; x_pos: byte;
page_num: byte; color: byte);

Returns Nothing.

Description

Prints text on GLCD.

Parameters :

- text: text to be written
- x_pos: text starting position on x-axis.
- page_num: the number of the page on which text will be written. Valid values: 0..7
- color: color parameter. Valid values: 0..2

The parameter color determines the color of the text: 0 white, 1 black, and 2
inverts each dot.

Note: For x axis and page layout explanation see schematic at the bottom of
this page.

Requires
GLCD needs to be initialized, see Glcd_Init routine. Use Glcd_Set_Font to
specify the font for display; if no font is specified, then default 5x8 font supplied
with the library will be used.

Example
' Write text "Hello world!" on the position 10 inside the page 2:
Glcd_Write_Text("Hello world!", 10, 2, 1);

Prototype procedure Glcd_Image(const image: ^byte);

Returns Nothing.

Description

Displays bitmap on GLCD.

Parameters :

- image: image to be displayed. Bitmap array must be located in code memory.

Use the mikroPascal for 8051 integrated GLCD Bitmap Editor to convert image
to a constant array suitable for displaying on GLCD.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example
' Draw image my_image on GLCD
Glcd_Image(my_image);

Library Example

The following example demonstrates routines of the GLCD library: initialization,
clear(pattern fill), image displaying, drawing lines, circles, boxes and rectangles, text
displaying and handling.

program GLCD_Test;

//Declarations--

uses bitmap;
//--end-
declarations

// Glcd module connections
var GLCD_CS1 : sbit at P2.B0; // GLCD chip select 1 signal
var GLCD_CS2 : sbit at P2.B1; // GLCD chip select 2 signal
var GLCD_RS : sbit at P2.B2; // GLCD register select signal
var GLCD_RW : sbit at P2.B3; // GLCD read/write signal
var GLCD_RST : sbit at P2.B5; // GLCD reset signal
var GLCD_EN : sbit at P2.B4; // GLCD enable signal
// End Glcd module connections

procedure delay2S(); // 2 seconds delay function
begin

Delay_ms(2000);
end;

var ii : word;
someText : array[17] of byte;

begin

Glcd_Init(); // Initialize GLCD
Glcd_Fill(0x00); // Clear GLCD

while (TRUE) do
begin

Glcd_Image(@advanced8051_bmp); // Draw image
Delay2S(); Delay2S();

Glcd_Fill(0x00);

Glcd_Box(62,40,124,56,1); // Draw box
Glcd_Rectangle(5,5,84,35,1); // Draw rectangle
Glcd_Line(0, 63, 127, 0,1); // Draw line

delay2S();

225MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

for ii := 5 to 59 do // Draw horizontal and vertical lines
begin

Delay_ms(250);
Glcd_V_Line(2, 54, ii, 1);
Glcd_H_Line(2, 120, ii, 1);

end;

Delay2S();

Glcd_Fill(0x00);

Glcd_Set_Font(@Character8x8, 8, 8, 32); // Choose font, see
__Lib_GLCDFonts.c in Uses folder

Glcd_Write_Text('mikroE', 5, 7, 2); // Write string

for ii := 1 to 10 do // Draw circles
Glcd_Circle(63,32, 3*ii, 1);

Delay2S();

Glcd_Box(12,20, 70,57, 2); // Draw box
Delay2S();

Glcd_Set_Font(@FontSystem5x8, 5, 8, 32); // Change font
someText := 'BIG:ONE';
Glcd_Write_Text(someText, 5,3, 2); // Write string
Delay2S();

someText := 'SMALL:NOT:SMALLER';
Glcd_Write_Text(someText, 20,5, 1); // Write string
Delay2S();

end;

end.

226 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

HW Connection

GLCD HW connection

227MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

KEYPAD LIBRARY

The mikroPascal for 8051 provides a library for working with 4x4 keypad. The library
routines can also be used with 4x1, 4x2, or 4x3 keypad. For connections explana-
tion see schematic at the bottom of this page.

Note: Since sampling lines for 8051 MCUs are activated by logical zero Keypad
Library can not be used with hardwares that have protective diodes connected with
anode to MCU side, such as mikroElektronika's Keypad extra board HW.Rev v1.20

External dependencies of Keypad Library

Library Routines

- Keypad_Init
- Keypad_Key_Press
- Keypad_Key_Click

228 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

The following variable
must be defined in all
projects using Keypad

Library:

Description: Example :

var keypadPort: byte;
external; sfr; Keypad Port.

var keypadPort: byte
at P0; sfr;

Keypad_Init

Keypad_Key_Press

Keypad_Key_Click

229MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Keypad_Init();

Returns Nothing.

Description Initializes port for working with keypad.

Requires keypadPort variable must be defined before using this function.

Example

// Initialize P0 for communication with keypad
var keypadPort : byte at P0; sfr;
...
Keypad_Init();

Prototype function Keypad_Key_Press(): byte;

Returns
The code of a pressed key (1..16).

If no key is pressed, returns 0.

Description Reads the key from keypad when key gets pressed.

Requires Port needs to be initialized for working with the Keypad library, see Keypad_Init.

Example
var kp : byte;
...
kp := Keypad_Key_Press();

Prototype function Keypad_Key_Click(): byte;

Returns
The code of a clicked key (1..16).

If no key is clicked, returns 0.

Description

Call to Keypad_Key_Click is a blocking call: the function waits until some key is
pressed and released. When released, the function returns 1 to 16, depending
on the key. If more than one key is pressed simultaneously the function will wait
until all pressed keys are released. After that the function will return the code of
the first pressed key.

Requires Port needs to be initialized for working with the Keypad library, see Keypad_Init.

Example
var kp : byte;
...
kp := Keypad_Key_Click();

Library Example

This is a simple example of using the Keypad Library. It supports keypads with 1..4
rows and 1..4 columns. The code being returned by Keypad_Key_Click() function is
in range from 1..16. In this example, the code returned is transformed into ASCII
codes [0..9,A..F] and displayed on LCD. In addition, a small single-byte counter dis-
plays in the second LCD row number of key presses.

program Keypad_Test;
var kp, cnt, oldstate : byte;

txt : array[5] of byte;

// Keypad module connections
var keypadPort : byte at P0; sfr
// End Keypad module connections

// lcd pinout definition
var LCD_RS : sbit at P2.B0;
var LCD_EN : sbit at P2.B1;

var LCD_D7 : sbit at P2.B5;
var LCD_D6 : sbit at P2.B4;
var LCD_D5 : sbit at P2.B3;
var LCD_D4 : sbit at P2.B2;
// end lcd definitions

begin
oldstate := 0;
cnt := 0; // Reset counter
Keypad_Init(); // Initialize Keypad
Lcd_Init(); // Initialize LCD
Lcd_Cmd(LCD_CLEAR); // Clear display
Lcd_Cmd(LCD_CURSOR_OFF); // Cursor off

Lcd_Out(1, 1, 'Key :'); // Write message text on LCD
Lcd_Out(2, 1, 'Times:');

while TRUE do
begin

kp := 0; // Reset key code variable

// Wait for key to be pressed and released
while (kp = 0)do
kp := Keypad_Key_Click();// Store key code in kp variable

230 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

// Prepare value for output, transform key to it's ASCII value
case kp of

//case 10: kp = 42; // '*' // Uncomment this
block for keypad4x3

//case 11: kp = 48; // '0'
//case 12: kp = 35; // '#'
//default: kp += 48;

1: kp := 49; // 1// Uncomment this block for keypad4x4
2: kp := 50; // 2
3: kp := 51; // 3
4: kp := 65; // A
5: kp := 52; // 4
6: kp := 53; // 5
7: kp := 54; // 6
8: kp := 66; // B
9: kp := 55; // 7

10: kp := 56; // 8
11: kp := 57; // 9
12: kp := 67; // C
13: kp := 42; // *
14: kp := 48; // 0
15: kp := 35; // #
16: kp := 68; // D

end;//case

if (kp <> oldstate) then // Pressed key differs from previous
begin

cnt := 1;
oldstate := kp;

end
else // Pressed key is same as previous

Inc(cnt);

Lcd_Chr(1, 10, kp); // Print key ASCII value on LCD

if (cnt = 255) then // If counter varialble overflow
begin

cnt := 0;
Lcd_Out(2, 10, ' ');

end;

WordToStr(cnt, txt); // Transform counter value to string
Lcd_Out(2, 10, txt); // Display counter value on LCD

end;

end.

231MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

HW Connection

4x4 Keypad connection scheme

232 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

LCD LIBRARY

The mikroPascal for 8051 provides a library for communication with LCDs (with
HD44780 compliant controllers) through the 4-bit interface. An example of LCD con-
nections is given on the schematic at the bottom of this page.

For creating a set of custom LCD characters use LCD Custom Character Tool.

External dependencies of LCD Library

Library Routines

- Lcd_Init
- Lcd_Out
- Lcd_Out_Cp
- Lcd_Chr
- Lcd_Chr_Cp
- Lcd_Cmd

233MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

The following variables
must be defined in all
projects using LCD

Library:

Description: Example :

var LCD_RS: sbit;
external; Register Select line.

var LCD_RS: sbit at
P2.B0;

var LCD_EN: sbit;
external; Enable line.

var LCD_EN: sbit at
P2.B1;

var LCD_D7: sbit;
external; Data 7 line.

var LCD_D7: sbit at
P2.B5;

var LCD_D6: sbit;
external; Data 6 line.

var LCD_D6: sbit at
P2.B4;

var LCD_D5: sbit;
external; Data 5 line.

var LCD_D5: sbit at
P2.B3;

var LCD_D4: sbit;
external; Data 4 line.

var LCD_D4: sbit at
P2.B2;

Lcd_Init

234 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Lcd_Init()

Returns Nothing.

Description Initializes LCD module.

Requires

Global variables:

- LCD_D7 : data bit 7
- LCD_D6 : data bit 6
- LCD_D5 : data bit 5
- LCD_D4 : data bit 4
- RS: register select (data/instruction) signal pin
- EN: enable signal pin

must be defined before using this function.

Example

// lcd pinout settings

var
LCD_RS : sbit at P2.B0;
LCD_EN : sbit at P2.B1;
LCD_D7 : sbit at P2.B5;
LCD_D6 : sbit at P2.B4;
LCD_D5 : sbit at P2.B3;
LCD_D4 : sbit at P2.B2;

...

Lcd_Init();

Lcd_Out

Lcd_Out_Cp

235MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Lcd_Out(row: byte; column: byte; var text: string[19]);

Returns Nothing.

Description

Prints text on LCD starting from specified position. Both string variables and lit-
erals can be passed as a text.

Parameters :

- row: starting position row number
- column: starting position column number
- text: text to be written

Requires The LCD module needs to be initialized. See Lcd_Init routine.

Example
// Write text "Hello!" on LCD starting from row 1, column 3:
Lcd_Out(1, 3, "Hello!");

Prototype procedure Lcd_Out_Cp(var text: string[19]);

Returns Nothing.

Description

Prints text on LCD at current cursor position. Both string variables and literals
can be passed as a text.

Parameters :

- text: text to be written

Requires The LCD module needs to be initialized. See Lcd_Init routine.

Example
// Write text "Here!" at current cursor position:
Lcd_Out_Cp("Here!");

Lcd_Chr

Lcd_Chr_Cp

236 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Lcd_Chr(row: byte; column: byte; out_char: byte);

Returns Nothing.

Description

Prints character on LCD at specified position. Both variables and literals can be
passed as a character.

Parameters :

- row: writing position row number
- column: writing position column number
- out_char: character to be written

Requires The LCD module needs to be initialized. See Lcd_Init routine.

Example
// Write character "i" at row 2, column 3:
Lcd_Chr(2, 3, 'i');

Prototype procedure Lcd_Chr_Cp(out_char: byte);

Returns Nothing.

Description

Prints character on LCD at current cursor position. Both variables and literals
can be passed as a character.

Parameters :

- out_char: character to be written

Requires The LCD module needs to be initialized. See Lcd_Init routine.

Example
// Write character "e" at current cursor position:
Lcd_Chr_Cp('e');

Lcd_Cmd

Available LCD Commands

237MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Lcd_Cmd(out_char: byte);

Returns Nothing.

Description

Sends command to LCD.

Parameters :

- out_char: command to be sent

Note: Predefined constants can be passed to the function, see Available LCD
Commands.

Requires The LCD module needs to be initialized. See Lcd_Init table.

Example
// Clear LCD display:
Lcd_Cmd(LCD_CLEAR);

Lcd Command Purpose

LCD_FIRST_ROW Move cursor to the 1st row

LCD_SECOND_ROW Move cursor to the 2nd row

LCD_THIRD_ROW Move cursor to the 3rd row

LCD_FOURTH_ROW Move cursor to the 4th row

LCD_CLEAR Clear display

LCD_RETURN_HOME
Return cursor to home position, returns a shifted display to its original
position. Display data RAM is unaffected.

LCD_CURSOR_OFF Turn off cursor

LCD_UNDERLINE_ON Underline cursor on

LCD_BLINK_CURSOR_ON Blink cursor on

LCD_MOVE_CURSOR_LEFT Move cursor left without changing display data RAM

LCD_MOVE_CURSOR_RIGHT Move cursor right without changing display data RAM

LCD_TURN_ON Turn LCD display on

LCD_TURN_OFF Turn LCD display off

LCD_SHIFT_LEFT Shift display left without changing display data RAM

LCD_SHIFT_RIGHT Shift display right without changing display data RAM

Library Example

The following code demonstrates usage of the LCD Library routines:

program Lcd_Test;

// LCD module connections
var LCD_RS : sbit at P2.B0;
var LCD_EN : sbit at P2.B1;

var LCD_D7 : sbit at P2.B5;
var LCD_D6 : sbit at P2.B4;
var LCD_D5 : sbit at P2.B3;
var LCD_D4 : sbit at P2.B2;
// End LCD module connections

var txt1 : array[16] of byte;
txt2 : array[9] of byte;
txt3 : array[7] of byte;
txt4 : array[7] of byte;
i : byte; // Loop variable

procedure Move_Delay(); // Function used for text
moving

begin
Delay_ms(500); // You can change the mov-

ing speed here
end;

begin
txt1 := 'mikroElektronika';
txt2 := 'Easy8051B';
txt3 := 'lcd4bit';
txt4 := 'example';
Lcd_Init(); // Initialize LCD
Lcd_Cmd(LCD_CLEAR); // Clear display
Lcd_Cmd(LCD_CURSOR_OFF); // Cursor off

LCD_Out(1,6,txt3); // Write text in first row
LCD_Out(2,6,txt4); // Write text in second row
Delay_ms(2000);
Lcd_Cmd(LCD_CLEAR); // Clear display

LCD_Out(1,1,txt1); // Write text in first row
LCD_Out(2,4,txt2); // Write text in second row
Delay_ms(500);

238 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

// Moving text
for i:=0 to 3 do // Move text to the right 4 times

begin
Lcd_Cmd(LCD_SHIFT_RIGHT);
Move_Delay();

end;

while TRUE do // Endless loop
begin

for i:=0 to 6 do // Move text to the left 7 times
begin

Lcd_Cmd(LCD_SHIFT_LEFT);
Move_Delay();

end;

for i:=0 to 6 do // Move text to the right 7 times
begin

Lcd_Cmd(LCD_SHIFT_RIGHT);
Move_Delay();

end;

end;
end.

239MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

HW connection

LCD HW connection

240 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

ONEWIRE LIBRARY

The OneWire library provides routines for communication via the Dallas OneWire
protocol, e.g. with DS18x20 digital thermometer. OneWire is a Master/Slave proto-
col, and all communication cabling required is a single wire. OneWire enabled
devices should have open collector drivers (with single pull-up resistor) on the
shared data line.

Slave devices on the OneWire bus can even get their power supply from data line.
For detailed schematic see device datasheet.

Some basic characteristics of this protocol are:

- single master system,
- low cost,
- low transfer rates (up to 16 kbps),
- fairly long distances (up to 300 meters),
- small data transfer packages.

Each OneWire device has also a unique 64-bit registration number (8-bit device
type, 48-bit serial number and 8-bit CRC), so multiple slaves can co-exist on the
same bus.

Note: Oscillator frequency Fosc needs to be at least 8MHz in order to use the rou-
tines with Dallas digital thermometers.

External dependencies of OneWire Library

Library Routines

- Ow_Reset
- Ow_Read
- Ow_Write

241MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

This variable must be
defined in any project
that is using OneWire

Library:

Description: Example :

var OW_Bit: sbit;
external; OneWire line.

var OW_Bit: sbit; at
P2.B7;

Ow_Reset

Ow_Read

242 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype function Ow_Reset(): word;

Returns
- 0 if the device is present
- 1 if the device is not present

Description

Issues OneWire reset signal for DS18x20.

Parameters :

- None.

Requires
Devices compliant with the Dallas OneWire protocol.

Global variable OW_Bit must be defined before using this function.

Example
// Issue Reset signal on One-Wire Bus
Ow_Reset();

Prototype function Ow_Read(): byte;

Returns Data read from an external device over the OneWire bus.

Description Reads one byte of data via the OneWire bus.

Requires
Devices compliant with the Dallas OneWire protocol.

Global variable OW_Bit must be defined before using this function.

Example

// Read a byte from the One-Wire Bus
var read_data : byte;
...
read_data := Ow_Read();

Ow_Write

Library Example

This example reads the temperature using DS18x20 connected to pin P1.2. After reset, MCU
obtains temperature from the sensor and prints it on the LCD. Make sure to pull-up P1.2 line and
to turn off the P1 leds.

program OneWire;

// lcd pinout definition
var LCD_RS : sbit at P2.B0;
var LCD_EN : sbit at P2.B1;

var LCD_D7 : sbit at P2.B5;
var LCD_D6 : sbit at P2.B4;
var LCD_D5 : sbit at P2.B3;
var LCD_D4 : sbit at P2.B2;
// end lcd definition

// OneWire pinout
var OW_Bit : sbit at P1.B2;
// end OneWire definition

// Set TEMP_RESOLUTION to the corresponding resolution of used DS18x20 sensor:
// 18S20: 9 (default setting; can be 9,10,11,or 12)
// 18B20: 12
const TEMP_RESOLUTION : byte = 9;

var text : array[8] of byte;
temp : word;

243MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Ow_Write(par: byte);

Returns Nothing.

Description

Writes one byte of data via the OneWire bus.

Parameters :

- par: data to be written

Requires
Devices compliant with the Dallas OneWire protocol.

Global variable OW_Bit must be defined before using this function.

Example
// Send a byte to the One-Wire Bus
Ow_Write(0xCC);

procedure Display_Temperature(temp2write : word) ;
const RES_SHIFT : byte = TEMP_RESOLUTION - 8;
var temp_whole : byte;

temp_fraction : word;

begin
text := '000.0000';
// check if temperature is negative
if (temp2write and 0x8000) then

begin
text[0] := '-';
temp2write := not temp2write + 1;

end;

// extract temp_whole
temp_whole := temp2write shr RES_SHIFT ;

// convert temp_whole to characters
if (temp_whole/100) then

text[0] := temp_whole/100 + 48;

text[1] := (temp_whole/10)mod 10 + 48; // Extract
tens digit

text[2] := temp_whole mod 10 + 48; // Extract
ones digit

// extract temp_fraction and convert it to unsigned int
temp_fraction := temp2write shl (4-RES_SHIFT);
temp_fraction := temp_fraction and 0x000F;
temp_fraction := temp_fraction * 625;

// convert temp_fraction to characters
text[4] := temp_fraction/1000 + 48; // Extract

thousands digit
text[5] := (temp_fraction/100) mod 10 + 48; // Extract

hundreds digit
text[6] := (temp_fraction/10) mod 10 + 48; // Extract

tens digit
text[7] := temp_fraction mod 10 + 48; // Extract

ones digit

// print temperature on LCD
Lcd_Out(2, 5, text);

end;

begin

244 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Lcd_Init(); // Initialize LCD
Lcd_Cmd(LCD_CLEAR); // Clear LCD
Lcd_Cmd(LCD_CURSOR_OFF); // Turn cursor off
Lcd_Out(1, 1, ' Temperature: ');
// Print degree character, 'C' for Centigrades
Lcd_Chr(2,13,223);
Lcd_Chr(2,14,'C');

//--- main loop
while TRUE do

begin
//--- perform temperature reading
Ow_Reset(); // Onewire reset signal
Ow_Write(0xCC); // Issue command SKIP_ROM
Ow_Write(0x44); // Issue command CONVERT_T
Delay_us(120);

Ow_Reset();
Ow_Write(0xCC); // Issue command SKIP_ROM
Ow_Write(0xBE); // Issue command READ_SCRATCHPAD

temp := Ow_Read();
temp := (Ow_Read() shl 8) + temp;

//--- Format and display result on Lcd
Display_Temperature(temp);

Delay_ms(500);
end;

end.

245MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

HW Connection

Example of DS1820 connection

246 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

MANCHESTER CODE LIBRARY

The mikroPascal for 8051 provides a library for handling Manchester coded signals.
The Manchester code is a code in which data and clock signals are combined to
form a single self-synchronizing data stream; each encoded bit contains a transition
at the midpoint of a bit period, the direction of transition determines whether the bit
is 0 or 1; the second half is the true bit value and the first half is the complement of
the true bit value (as shown in the figure below).

Notes: The Manchester receive routines are blocking calls (Man_Receive_Init and
Man_Synchro). This means that MCU will wait until the task has been performed
(e.g. byte is received, synchronization achieved, etc).

External dependencies of Manchester Code Library

247MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

The following variables
must be defined in all
projects using Man-

chester Code Library:

Description: Example :

var MANRXPIN : sbit;
external; Receive line.

var MANRXPIN : sbit
at P0.B0;

var MANTXPIN : sbit;
external; Transmit line.

var MANTXPIN : sbit
at P1.B1;

Library Routines

- Man_Receive_Init
- Man_Receive
- Man_Send_Init
- Man_Send
- Man_Synchro
- Man_Out

The following routines are for the internal use by compiler only:

- Manchester_0
- Manchester_1
- Manchester_Out

Man_Receive_Init

248 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype function Man_Receive_Init(): word;

Returns
- 0 - if initialization and synchronization were successful.
- 1 - upon unsuccessful synchronization.

Description

The function configures Receiver pin and performs synchronization procedure in
order to retrieve baud rate out of the incoming signal.

Note: In case of multiple persistent errors on reception, the user should call this
routine once again or Man_Synchro routine to enable synchronization.

Requires MANRXPIN variable must be defined before using this function.

Example

// Initialize Receiver
var MANRXPIN : sbit at P0.B0;
...
Man_Receive_Init();

Man_Receive

Man_Send_Init

249MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function Man_Receive(var error: byte): byte;

Returns A byte read from the incoming signal.

Description

The function extracts one byte from incoming signal.

Parameters :

- error: error flag. If signal format does not match the expected, the error flag
will be set to non-zero.

Requires
To use this function, the user must prepare the MCU for receiving. See
Man_Receive_Init.

Example

var data, error : byte
...
data := 0
error := 0
data := Man_Receive(&error);

if (error <> 0) then
begin

// error handling
end;

Prototype procedure Man_Send_Init();

Returns Nothing.

Description The function configures Transmitter pin.

Requires MANTXPIN variable must be defined before using this function.

Example

// Initialize Transmitter:
var MANTXPIN : sbit at P1.B1;
...
Man_Send_Init();

Man_Send

Man_Synchro

250 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Man_Send(tr_data: byte);

Returns Nothing.

Description

Sends one byte.

Parameters :

- tr_data: data to be sent

Note: Baud rate used is 500 bps.

Requires
To use this function, the user must prepare the MCU for sending. See
Man_Send_Init.

Example
var msg : byte;
...
Man_Send(msg);

Prototype function Man_Synchro(): word;

Returns
- 0 - if synchronization was not successful.
- Half of the manchester bit length, given in multiples of 10us - upon

successful synchronization.

Description Measures half of the manchester bit length with 10us resolution.

Requires
To use this function, you must first prepare the MCU for receiving. See
Man_Receive_Init.

Example
var man__half_bit_len : word ;
...
man__half_bit_len := Man_Synchro();

Man_Out

Library Example

The following code is code for the Manchester receiver, it shows how to use the Manchester
Library for receiving data:

program Manchester_Receiver;

// LCD module connections
var LCD_RS : sbit at P2.B0;
var LCD_EN : sbit at P2.B1;

var LCD_D7 : sbit at P2.B5;
var LCD_D6 : sbit at P2.B4;
var LCD_D5 : sbit at P2.B3;
var LCD_D4 : sbit at P2.B2;
// End LCD module connections

// Manchester module connections
var MANRXPIN : sbit at P0.B0;
var MANTXPIN : sbit at P1.B1;
// End Manchester module connections

var error, ErrorCount, temp : byte;

begin
ErrorCount := 0;

Lcd_Init(); // Initialize LCD
Lcd_Cmd(LCD_CLEAR); // Clear LCD display

251MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Man_Out(BitValue: byte);

Returns Nothing.

Description

Sends one byte in Manchester format.

Parameters :

- BitValue: data to be sent

Requires
To use this function, the user must prepare the MCU for sending. See
Man_Send_Init.

Example
var BitValue : byte;
...
Man_Out(BitValue);

Man_Receive_Init(); // Initialize Receiver

while TRUE do // Endless loop
begin

Lcd_Cmd(LCD_FIRST_ROW); // Move cursor to the 1st row

while TRUE do // Wait for the "start" byte
begin

temp := Man_Receive(error); // Attempt byte receive
if (temp = 0x0B) then // "Start" byte, see

Transmitter example
exit; // We got the starting sequence

if (error <> 0) then // Exit so we do not loop forever
exit;

end;

while (temp <> 0x0E) do
begin

temp := Man_Receive(error); // Attempt byte receive
if (error <> 0) then // If error occured

begin
Lcd_Chr_CP('?'); // Write question mark on LCD
Inc(ErrorCount); // Update error counter
if (ErrorCount > 20) then // In case of

multiple errors
begin
temp := Man_Synchro(); // Try to syn-

chronize again
//Man_Receive_Init(); // Alternative,

try to Initialize Receiver again
ErrorCount := 0; // Reset error counter

end;
end

else // No error occured
begin

if (temp <> 0x0E) then // If "End"
byte was received(see Transmitter example)

Lcd_Chr_CP(temp); // do not
write received byte on LCD

end;
Delay_ms(25);

end;
end; // If "End" byte was received exit do loop

end.

The following code is code for the Manchester transmitter, it shows how to use the
Manchester Library for transmitting data:

252 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

program Manchester_Transmitter;

// Manchester module connections
var MANRXPIN : sbit at P0.B0;
var MANTXPIN : sbit at P1.B1;
// End Manchester module connections

var index, character : byte;
s1 : array[16] of byte;

begin
s1 := 'mikroElektronika';
Man_Send_Init(); // Initialize transmitter

while TRUE do // Endless loop
begin

Man_Send(0x0B); // Send "start" byte
Delay_ms(100); // Wait for a while

character := s1[0]; // Take first char from string
index := 0; // Initialize index variable
while (character <> 0) do // String ends with zero

begin
Man_Send(character); // Send character
Delay_ms(90); // Wait for a while
Inc(index); // Increment index variable
character := s1[index]; // Take next char from string

end;
Man_Send(0x0E); // Send "end" byte
Delay_ms(1000);

end;
end.

253MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Connection Example

Simple Transmitter connection

Simple Receiver connection

254 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

PORT EXPANDER LIBRARY

The mikroPascal for 8051 provides a library for communication with the Microchip’s
Port Expander MCP23S17 via SPI interface. Connections of the 8051 compliant
MCU and MCP23S17 is given on the schematic at the bottom of this page.

Note: Library uses the SPI module for communication. The user must initialize SPI
module before using the Port Expander Library.

Note: Library does not use Port Expander interrupts.

External dependencies of Port Expander Library

Library Routines

- Expander_Init
- Expander_Read_Byte
- Expander_Write_Byte
- Expander_Read_PortA
- Expander_Read_PortB
- Expander_Read_PortAB
- Expander_Write_PortA
- Expander_Write_PortB
- Expander_Write_PortAB
- Expander_Set_DirectionPortA
- Expander_Set_DirectionPortB
- Expander_Set_DirectionPortAB
- Expander_Set_PullUpsPortA
- Expander_Set_PullUpsPortB
- Expander_Set_PullUpsPortAB

255MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

The following variables
must be defined in all

projects using Port
Expander Library:

Description: Example :

var SPExpanderCS :
sbit; external; Chip Select line.

var SPExpanderCS :
sbit at P1.B1;

var SPExpanderRST :
sbit; external; Reset line.

var SPExpanderRST :
sbit at P1.B0;

Expander_Init

256 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Expander_Init(ModuleAddress : byte);

Returns Nothing.

Description

Initializes Port Expander using SPI communication.

Port Expander module settings :

- hardware addressing enabled
- automatic address pointer incrementing disabled (byte mode)
- BANK_0 register adressing
- slew rate enabled

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

Requires

SPExpanderCS and SPExpanderRST variables must be defined before using
this function.

SPI module needs to be initialized. See Spi_Init and Spi_Init_Advanced routines.

Example

// port expander pinout definition
var SPExpanderCS : sbit at P1.B1;

SPExpanderRST : sbit at P1.B0;
...
Spi_Init(); // initialize SPI module
Expander_Init(0); // initialize port expander

Expander_Read_Byte

Expander_Write_Byte

257MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
function Expander_Read_Byte(ModuleAddress : byte; RegAddress :
byte) : byte;

Returns Byte read.

Description

The function reads byte from Port Expander.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

- RegAddress: Port Expander's internal register address

Requires Port Expander must be initialized. See Expander_Init.

Example

// Read a byte from Port Expander's register
var read_data : byte;
...
read_data := Expander_Read_Byte(0,1);

Prototype
procedure Expander_Write_Byte(ModuleAddress: byte; RegAddress:
byte; Data_: byte);

Returns Nothing.

Description

Routine writes a byte to Port Expander.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

- RegAddress: Port Expander's internal register address
- Data_: data to be written

Requires Port Expander must be initialized. See Expander_Init.

Example
// Write a byte to the Port Expander's register
Expander_Write_Byte(0,1,0xFF);

Expander_Read_PortA

Expander_Read_PortB

258 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype function Expander_Read_PortA(ModuleAddress: byte): byte;

Returns Byte read.

Description

The function reads byte from Port Expander's PortA.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

Requires

Port Expander must be initialized. See Expander_Init.

Port Expander's PortA should be configured as input. See Expander_Set_Direc-
tionPortA and Expander_Set_DirectionPortAB routines.

Example

// Read a byte from Port Expander's PORTA
var read_data : byte;
...
Expander_Set_DirectionPortA(0,0xFF); // set expander's
porta to be input
...
read_data := Expander_Read_PortA(0);

Prototype function Expander_Read_PortB(ModuleAddress: byte): byte;

Returns Byte read.

Description

The function reads byte from Port Expander's PortB.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

Requires

Port Expander must be initialized. See Expander_Init.

Port Expander's PortB should be configured as input. See Expander_Set_Direc-
tionPortB and Expander_Set_DirectionPortAB routines.

Example

// Read a byte from Port Expander's PORTB
var read_data : byte;
...
Expander_Set_DirectionPortB(0,0xFF); // set expander's
portb to be input
...
read_data := Expander_Read_PortB(0);

Expander_Read_PortAB

Expander_Write_PortA

259MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function Expander_Read_PortAB(ModuleAddress: byte): word;

Returns Word read.

Description

The function reads word from Port Expander's ports. PortA readings are in the
higher byte of the result. PortB readings are in the lower byte of the result.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

Requires

Port Expander must be initialized. See Expander_Init.

Port Expander's PortA and PortB should be configured as inputs. See
Expander_Set_DirectionPortA, Expander_Set_DirectionPortB and
Expander_Set_DirectionPortAB routines.

Example

// Read a byte from Port Expander's PORTA and PORTB
var read_data : word;
...
Expander_Set_DirectionPortAB(0,0xFFFF); // set expander's
porta and portb to be input
...
read_data := Expander_Read_PortAB(0);

Prototype procedure Expander_Write_PortA(ModuleAddress: byte; Data_: byte);

Returns Nothing.

Description

The function writes byte to Port Expander's PortA.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

- Data_: data to be written

Requires

Port Expander must be initialized. See Expander_Init.

Port Expander's PortA should be configured as output. See
Expander_Set_DirectionPortA and Expander_Set_DirectionPortAB routines.

Example

// Write a byte to Port Expander's PORTA

...
Expander_Set_DirectionPortA(0,0x00); // set expander's
porta to be output
...
Expander_Write_PortA(0, 0xAA);

Expander_Write_PortB

Expander_Write_PortAB

260 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Expander_Write_PortB(ModuleAddress: byte; Data_: byte);

Returns Nothing.

Description

The function writes byte to Port Expander's PortB.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

- Data_: data to be written

Requires

Port Expander must be initialized. See Expander_Init.

Port Expander's PortB should be configured as output. See
Expander_Set_DirectionPortB and Expander_Set_DirectionPortAB routines.

Example

// Write a byte to Port Expander's PORTB

...
Expander_Set_DirectionPortB(0,0x00); // set expander's
portb to be output
...
Expander_Write_PortB(0, 0x55);

Prototype procedure Expander_Write_PortAB(ModuleAddress: byte; Data_: word);

Returns Nothing.

Description

The function writes word to Port Expander's ports.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

- Data_: data to be written. Data to be written to PortA are passed in Data's
higher byte. Data to be written to PortB are passed in Data's lower byte

Requires

Port Expander must be initialized. See Expander_Init.

Port Expander's PortA and PortB should be configured as outputs. See
Expander_Set_DirectionPortA, Expander_Set_DirectionPortB and
Expander_Set_DirectionPortAB routines.

Example

// Write a byte to Port Expander's PORTA and PORTB

...
Expander_Set_DirectionPortAB(0,0x0000); // set expander's
porta and portb to be output
...
Expander_Write_PortAB(0, 0xAA55);

Expander_Set_DirectionPortA

Expander_Set_DirectionPortB

261MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
procedure Expander_Set_DirectionPortA(ModuleAddress: byte; Data_:
byte);

Returns Nothing.

Description

The function sets Port Expander's PortA direction.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

- Data_: data to be written to the PortA direction register. Each bit corresponds
to the appropriate pin of the PortA register. Set bit designates corresponding
pin as input. Cleared bit designates corresponding pin as output.

Requires Port Expander must be initialized. See Expander_Init.

Example
// Set Port Expander's PORTA to be output
Expander_Set_DirectionPortA(0,0x00);

Prototype
procedure Expander_Set_DirectionPortB(ModuleAddress: byte; Data_:
byte);

Returns Nothing.

Description

The function sets Port Expander's PortB direction.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

- Data_: data to be written to the PortB direction register. Each bit corresponds
to the appropriate pin of the PortB register. Set bit designates corresponding
pin as input. Cleared bit designates corresponding pin as output.

Requires Port Expander must be initialized. See Expander_Init.

Example
// Set Port Expander's PORTB to be input
Expander_Set_DirectionPortB(0,0xFF);

Expander_Set_DirectionPortAB

Expander_Set_PullUpsPortA

262 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure Expander_Set_DirectionPortAB(ModuleAddress: byte;
Direction: word);

Returns Nothing.

Description

The function sets Port Expander's PortA and PortB direction.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

- Direction: data to be written to direction registers. Data to be written to the
PortA direction register are passed in Direction's higher byte. Data to be
written to the PortB direction register are passed in Direction's lower byte.
Each bit corresponds to the appropriate pin of the PortA/PortB register. Set bit
designates corresponding pin as input. Cleared bit designates corresponding
pin as output.

Requires Port Expander must be initialized. See Expander_Init.

Example
// Set Port Expander's PORTA to be output and PORTB to be input
Expander_Set_DirectionPortAB(0,0x00FF);

Prototype
procedure Expander_Set_PullUpsPortA(ModuleAddress: byte; Data_:
byte);

Returns Nothing.

Description

The function sets Port Expander's PortA pull up/down resistors.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

- Data_: data for choosing pull up/down resistors configuration. Each bit
corresponds to the appropriate pin of the PortA register. Set bit enables pull-up
for corresponding pin.

Requires Port Expander must be initialized. See Expander_Init.

Example
// Set Port Expander's PORTA pull-up resistors
Expander_Set_PullUpsPortA(0, 0xFF);

Expander_Set_PullUpsPortB

Expander_Set_PullUpsPortAB

263MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
procedure Expander_Set_PullUpsPortB(ModuleAddress: byte; Data_:
byte);

Returns Nothing.

Description

The function sets Port Expander's PortB pull up/down resistors.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

- Data_: data for choosing pull up/down resistors configuration. Each bit
corresponds to the appropriate pin of the PortB register. Set bit enables
pull-up for corresponding pin.

Requires Port Expander must be initialized. See Expander_Init.

Example
// Set Port Expander's PORTB pull-up resistors
Expander_Set_PullUpsPortB(0, 0xFF);

Prototype
procedure Expander_Set_PullUpsPortAB(ModuleAddress: byte;
PullUps: word);

Returns Nothing.

Description

The function sets Port Expander's PortA and PortB pull up/down resistors.

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

- PullUps: data for choosing pull up/down resistors configuration. PortA pull
up/down resistors configuration is passed in PullUps's higher byte. PortB pull
up/down resistors configuration is passed in PullUps's lower byte. Each bit
corresponds to the appropriate pin of the PortA/PortB register. Set bit enables
pull-up for corresponding pin.

Requires Port Expander must be initialized. See Expander_Init.

Example
// Set Port Expander's PORTA and PORTB pull-up resistors
Expander_Set_PullUpsPortAB(0, 0xFFFF);

Library Example

The example demonstrates how to communicate with Port Expander MCP23S17.

Note that Port Expander pins A2 A1 A0 are connected to GND so Port Expander
Hardware Address is 0.

program PortExpander;

var i : byte;

// Port Expander module connections
var SPExpanderRST : sbit at P1.B0;
var SPExpanderCS : sbit at P1.B1;
// End Port Expander module connections

begin
i := 0;
Spi_Init(); // Initialize SPI module

Expander_Init(0); // Initialize Port Expander

Expander_Set_DirectionPortA(0, 0x00); // Set Expander's
PORTA to be output

Expander_Set_DirectionPortB(0,0xFF); // Set Expander's
PORTB to be input

Expander_Set_PullUpsPortB(0,0xFF); // Set pull-ups to
all of the Expander's PORTB pins

while TRUE do // Endless loop
begin

Expander_Write_PortA(0, i); // Write i to
expander's PORTA

Inc(i);
P0 := Expander_Read_PortB(0); // Read expander's

PORTB and write it to PORT0
Delay_ms(100);

end;
end.

264 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

HW Connection

Port Expander HW connection

265MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

PS/2 LIBRARY

The mikroPascal for 8051 provides a library for communication with the common
PS/2 keyboard.

Note: The library does not utilize interrupts for data retrieval, and requires the oscil-
lator clock to be at least 6MHz.

Note: The pins to which a PS/2 keyboard is attached should be connected to the
pull-up resistors.

Note: Although PS/2 is a two-way communication bus, this library does not provide
MCU-to-keyboard communication; e.g. pressing the Caps Lock key will not turn on
the Caps Lock LED.

External dependencies of PS/2 Library

Library Routines

- Ps2_Config
- Ps2_Key_Read

266 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

The following variables
must be defined in all
projects using PS/2

Library:

Description: Example :

var PS2_DATA: sbit;
external; PS/2 Data line.

var PS2_DATA: sbit at
P0.B0;

var PS2_CLOCK: sbit;
external; PS/2 Clock line.

var PS2_CLOCK: sbit
at P0.B1;

Ps2_Config

267MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Ps2_Config();

Returns Nothing.

Description Initializes the MCU for work with the PS/2 keyboard.

Requires

Global variables :

- PS2_DATA : Data signal pin
- PS2_CLOCK : Clock signal pin

must be defined before using this function.

Example

// PS2 pinout definition
var PS2_DATA : sbit at P0.B0;

PS2_CLOCK : sbit at P0.B1;
...
Ps2_Config(); // Init PS/2 Keyboard

Ps2_Key_Read

268 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
function Ps2_Key_Read(var value: byte; var special: byte; var
pressed: byte): byte;

Returns
- 1 if reading of a key from the keyboard was successful
- 0 if no key was pressed

Description

The function retrieves information on key pressed.

Parameters :

- value: holds the value of the key pressed. For characters, numerals,
punctuation marks, and space value will store the appropriate ASCII code.
Routine “recognizes” the function of Shift and Caps Lock, and behaves
appropriately. For special function keys see Special Function Keys Table.

- special: is a flag for special function keys (F1, Enter, Esc, etc). If key pressed
is one of these, special will be set to 1, otherwise 0.

- pressed: is set to 1 if the key is pressed, and 0 if it is released.

Requires PS/2 keyboard needs to be initialized. See Ps2_Config routine.

Example

var value, special, pressed: byte;
...
// Press Enter to continue:
repeat

if (Ps2_Key_Read(value, special, pressed)) then
if ((value = 13) and (special = 1)) then break;

until (0=1);

Special Function Keys

269MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Key Value returned

F1 1

F2 2

F3 3

F4 4

F5 5

F6 6

F7 7

F8 8

F9 9

F10 10

F11 11

F12 12

Enter 13

Page Up 14

Page Down 15

Backspace 16

Insert 17

Delete 18

Windows 19

Ctrl 20

Shift 21

Alt 22

Print Screen 23

Pause 24

Caps Lock 25

End 26

Home 27

Scroll Lock 28

Num Lock 29

Left Arrow 30

Right Arrow 31

Up Arrow 32

Down Arrow 33

Escape 34

Tab 35

Library Example

This simple example reads values of the pressed keys on the PS/2 keyboard and
sends them via UART.

program PS2_Example;

var keydata, special, down : byte;

// PS2 module connections
var PS2_DATA : sbit at P0.B0;

PS2_CLOCK : sbit at P0.B1;
// End PS2 module connections

begin
keydata := 0;
special := 0;
down := 0;
Uart_Init(4800); // Initialize UART module at 4800 bps
Ps2_Config(); // Initialize PS/2 Keyboard
Delay_ms(100); // Wait for keyboard to finish

while TRUE do // Endless loop
begin

if (Ps2_Key_Read(keydata, special, down)) then // If data
was read from PS/2

begin
if (down and (keydata = 16)) then // Backspace read

Uart_Write(0x08) // Send Backspace to usart terminal

else
if (down and (keydata = 13)) then // Enter read

Uart_Write(13) // Send
carriage return to usart terminal

//Uart_Write(10); // Uncomment
this line if usart terminal also expects line feed

// for new line transition

else
if (down and not special and keydata) then // Common

key read
Uart_Write(keydata); // Send key to usart terminal

end;
Delay_ms(10); // Debounce period

end;
end.

270 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

HW Connection

Example of PS2 keyboard connection

271MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

RS-485 LIBRARY

RS-485 is a multipoint communication which allows multiple devices to be connect-
ed to a single bus. The mikroPascal for 8051 provides a set of library routines for
comfortable work with RS485 system using Master/Slave architecture. Master and
Slave devices interchange packets of information. Each of these packets contains
synchronization bytes, CRC byte, address byte and the data. Each Slave has
unique address and receives only packets addressed to it. The Slave can never ini-
tiate communication.

It is the user’s responsibility to ensure that only one device transmits via 485 bus at
a time.

The RS-485 routines require the UART module. Pins of UART need to be attached
to RS-485 interface transceiver, such as LTC485 or similar (see schematic at the
bottom of this page).

Library constants:

- START byte value = 150
- STOP byte value = 169
- Address 50 is the broadcast address for all Slaves (packets containing address 50

will be received by all Slaves except the Slaves with addresses 150 and 169).

External dependencies of RS-485 Library

Library Routines

- RS485master_Init
- RS485master_Receive
- RS485master_Send
- RS485slave_Init
- RS485slave_Receive
- RS485slave_Send

272 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

The following variable
must be defined in all
projects using RS-485

Library:

Description: Example :

var rs485_transceive:
sbit; external;

Control RS-485 Trans-
mit/Receive operation
mode

var rs485_transceive:
sbit at P3.B2;

RS485master_Init

RS485master_Receive

273MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Rs485master_Init();

Returns Nothing.

Description Initializes MCU as a Master for RS-485 communication.

Requires

rs485_transceive variable must be defined before using this function. This pin
is connected to RE/DE input of RS-485 transceiver(see schematic at the bottom
of this page). RE/DE signal controls RS-485 transceiver operation mode. Valid
values: 1 (for transmitting) and 0 (for receiving)

UART HW module needs to be initialized. See Uart_Init.

Example

// rs485 module pinout
var rs485_transceive : sbit at P3.B2; // transmit/receive con-
trol set to port3.bit2
...
Uart_Init(9600); // initialize usart module
Rs485master_Init(); // intialize mcu as a
Master for RS-485 communication

Prototype procedure Rs485master_Receive(var data_buffer: array[20] of byte);

Returns Nothing.

Description

Receives messages from Slaves. Messages are multi-byte, so this routine must
be called for each byte received.

Parameters :

- data_buffer: 7 byte buffer for storing received data, in the following manner:
- data[0..2]: message content
- data[3]: number of message bytes received, 1–3
- data[4]: is set to 255 when message is received
- data[5]: is set to 255 if error has occurred
- data[6]: address of the Slave which sent the message

The function automatically adjusts data[4] and data[5] upon every received
message. These flags need to be cleared by software.

Requires
MCU must be initialized as a Master for RS-485 communication. See
RS485master_Init.

Example
var msg : array[20] of byte;
...
RS485master_Receive(msg);

RS485master_Send

274 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure Rs485master_Send(var data_buffer: array[20] of byte;
datalen: byte; slave_address: byte);

Returns Nothing.

Description

Sends message to Slave(s). Message format can be found at the bottom of this
page.

Parameters :

- data_buffer: data to be sent
- datalen: number of bytes for transmition. Valid values: 0...3.
- slave_address: Slave(s) address

Requires

MCU must be initialized as a Master for RS-485 communication. See
RS485master_Init.

It is the user’s responsibility to ensure (by protocol) that only one device sends
data via 485 bus at a time.

Example

var msg : array[20] of byte;
...
// send 3 bytes of data to slave with address 0x12
RS485master_Send(msg, 3, 0x12);

RS485slave_Init

275MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Rs485slave_Init(slave_address: byte);

Returns Nothing.

Description

Initializes MCU as a Slave for RS-485 communication.

Parameters :

- slave_address: Slave address

Requires

rs485_transceive variable must be defined before using this function. This pin
is connected to RE/DE input of RS-485 transceiver(see schematic at the bottom
of this page). RE/DE signal controls RS-485 transceiver operation mode. Valid
values: 1 (for transmitting) and 0 (for receiving)

UART HW module needs to be initialized. See Uart_Init.

Example

// rs485 module pinout
var rs485_transceive : sbit at P3.B2; // transmit/receive
control set to port3.bit2
...
Uart_Init(9600); // initialize usart module
Rs485slave_Init(160); // intialize mcu as a Slave
for RS-485 communication with address 160

RS485slave_Receive

276 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure RS485slave_Receive(var data_buffer: array[20] of byte);

Returns Nothing.

Description

Receives messages from Master. If Slave address and Message address field
don't match then the message will be discarded. Messages are multi-byte, so
this routine must be called for each byte received.

Parameters :

- data_buffer: 6 byte buffer for storing received data, in the following manner:
- data[0..2]: message content
- data[3]: number of message bytes received, 1–3
- data[4]: is set to 255 when message is received
- data[5]: is set to 255 if error has occurred

The function automatically adjusts data[4] and data[5] upon every received
message. These flags need to be cleared by software.

Requires
MCU must be initialized as a Slave for RS-485 communication. See
RS485slave_Init.

Example
var msg : array[20] of byte;
...
RS485slave_Read(msg);

RS485slave_Send

Library Example

This is a simple demonstration of RS485 Library routines usage.

Master sends message to Slave with address 160 and waits for a response. The Slave accepts
data, increments it and sends it back to the Master. Master then does the same and sends incre-
mented data back to Slave, etc.

Master displays received data on P0, while error on receive (0xAA) and number of consecutive
unsuccessful retries are displayed on P1. Slave displays received data on P0, while error on
receive (0xAA) is displayed on P1. Hardware configurations in this example are made for the
Easy8051B board and AT89S8253.

RS485 Master code:

277MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
procedure Rs485slave_Send(var data_buffer: array[20] of byte;
datalen : byte);

Returns Nothing.

Description

Sends message to Master. Message format can be found at the bottom of this
page.

Parameters :

- data_buffer: data to be sent
- datalen: number of bytes for transmition. Valid values: 0...3.

Requires
MCU must be initialized as a Slave for RS-485 communication. See
RS485slave_Init. It is the user’s responsibility to ensure (by protocol) that only
one device sends data via 485 bus at a time.

Example

var msg : array[8] of byte;
...
// send 2 bytes of data to the master
RS485slave_Send(msg, 2);

program RS485_Master;

uses __Lib_UART_t1;

var dat : array[10] of byte ; // Buffer for receving/sending messages
counter, j : byte;
count : longint;

// RS485 module connections
var rs485_transceive : sbit at P3.B2; // Transmit/Receive
control set to P3.2
// End RS485 module connections

//-------------- Interrupt routine
procedure UartRxHandler(); ORG 0x23;

begin
EA := 0; // Clear global interrupt enable flag
if (RI <> 0) then // Test UART receive interrupt flag

begin
Rs485master_Receive(dat);// UART receive interrupt detected,

// receive data using RS485 communication
RI := 0; // Clear UART interrupt flag

end;
EA := 1; // Set global interrupt enable flag

end;

begin
count := 0;
P0 := 0; // Clear ports
P1 := 0;

Uart_Init(9600); // Initialize UART module at 9600 bps
Delay_ms(100);

Rs485master_Init(); // Intialize MCU as RS485 master
dat[0] := 0x55; // Fill buffer
dat[1] := 0x00;
dat[2] := 0x00;
dat[4] := 0; // Ensure that message received flag is 0
dat[5] := 0; // Ensure that error flag is 0
dat[6] := 0;
Rs485master_Send(dat,1,160); // Send message to slave with

address 160
// message data is stored in dat
// message is 1 byte long

278 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

ES := 1; // Enable UART interrupt
RI := 0; // Clear UART RX interrupt flag
EA := 1; // Enable interrupts

while TRUE do // Endless loop
begin // Upon completed valid message receiving

// data[4] is set to 255
Inc(count); // Increment loop pass counter

if (dat[5] <> 0) then // If error detected, signal it by
P1 := 0xAA; // setting PORT1 to 0xAA

if (dat[4] <> 0) then // If message received successfully
begin

count := 0; // Reset loop pass counter
dat[4] := 0; // Clear message received flag
j := dat[3]; // Read number of message received bytes
for counter := 1 to j do

P0 := dat[counter-1]; // Show received data on PORT0

dat[0] := dat[0] + 1; // Increment first
received byte dat[0]

Delay_ms(10);
Rs485master_Send(dat,1,160); // And send it back

to Slave
end;

if (count > 10000) then // If loop is passed
100000 times with

begin // no message received
Inc(P1); // Signal receive message failure on PORT1
count := 0; // Reset loop pass counter
Rs485master_Send(dat,1,160); // Retry send message
if (P1 > 10) then // If sending failed 10 times

begin
P1 := 0; // Clear PORT1
Rs485master_Send(dat,1,50); // Send message on

broadcast address
end;

end;
end;

end.

279MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

RS485 Slave code:

program RS485_Slave;

uses __Lib_UART_t1;

var dat : array[9] of byte; // Buffer for receving/sending messages
counter, j : byte;

// RS485 module connections
var rs485_transceive : sbit at P3.B2; // Transmit/Receive control
set to P3.2
// End RS485 module connections

//-------------- Interrupt routine
procedure UartRxHandler(); ORG 0x23;

begin
EA := 0; // Clear global interrupt enable flag
if(RI <> 0) then // Test UART receive interrupt flag

begin
Rs485slave_Receive(dat);// UART receive interrupt detected,

// receive data using RS485 communication
RI := 0; // Clear UART interrupt flag

end;
EA := 1; // Set global interrupt enable flag

end;

begin
P0 := 0; // Clear ports
P1 := 0;

Uart_Init(9600); // Initialize UART module at 9600 bps
Delay_ms(100);
Rs485slave_Init(160); // Intialize MCU as slave, address 160
dat[4] := 0; // ensure that message received flag is 0
dat[5] := 0; // ensure that error flag is 0

ES := 1; // Enable UART interrupt
RI := 0; // Clear UART RX interrupt flag
EA := 1; // Enable interrupts

while TRUE do // Endless loop
begin

// Upon completed valid message receiving
// data[4] is set to 255

if (dat[5] <> 0) then // If error detected, signal it by
P1 := 0xAA; // setting PORT1 to 0xAA

280 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

if (dat[4] <> 0) then // If message received successfully
begin
dat[4] := 0; // Clear message received flag
j := dat[3]; // Read number of message received bytes
for counter := 1 to j do

P0 := dat[counter-1]; // Show received data on PORT0
dat[0] := dat[0] + 1; // Increment received dat[0]
Delay_ms(10);
Rs485slave_Send(dat,1); // And send back to Master

end;
end;

end.

HW Connection

Example of interfacing PC to 8051 MCU via RS485 bus with LTC485 as
RS-485 transceiver

281MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Message format and CRC calculations

Q: How is CRC checksum calculated on RS485 master side?

START_BYTE := 0x96; // 10010110
STOP_BYTE := 0xA9; // 10101001

PACKAGE:

START_BYTE 0x96
ADDRESS
DATALEN
[DATA1] // if exists
[DATA2] // if exists
[DATA3] // if exists
CRC
STOP_BYTE 0xA9

DATALEN bits

bit7 := 1 MASTER SENDS

0 SLAVE SENDS
bit6 := 1 ADDRESS WAS XORed with 1, IT WAS EQUAL TO START_BYTE or
STOP_BYTE

0 ADDRESS UNCHANGED
bit5 := 0 FIXED
bit4 := 1 DATA3 (if exists) WAS XORed with 1, IT WAS EQUAL TO
START_BYTE or STOP_BYTE

0 DATA3 (if exists) UNCHANGED
bit3 := 1 DATA2 (if exists) WAS XORed with 1, IT WAS EQUAL TO
START_BYTE or STOP_BYTE

0 DATA2 (if exists) UNCHANGED
bit2 := 1 DATA1 (if exists) WAS XORed with 1, IT WAS EQUAL TO
START_BYTE or STOP_BYTE

0 DATA1 (if exists) UNCHANGED
bit1bit0 := 0 to 3 NUMBER OF DATA BYTES SEND

CRC generation :

crc_send := datalen xor address;
crc_send := crc_send xor data[0]; // if exists
crc_send := crc_send xor data[1]; // if exists
crc_send := crc_send xor data[2]; // if exists
crc_send := not crc_send;
if ((crc_send = START_BYTE) or (crc_send = STOP_BYTE)) then

Inc(crc_send);

NOTE: DATALEN<4..0> can not take the START_BYTE<4..0> or
STOP_BYTE<4..0> values.

282 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

SOFTWARE I²C LIBRARY

The mikroPascal for 8051 provides routines for implementing Software I˛C commu-
nication. These routines are hardware independent and can be used with any MCU.
The Software I˛C library enables you to use MCU as Master in I˛C communication.
Multi-master mode is not supported.

Note: This library implements time-based activities, so interrupts need to be dis-
abled when using Software I˛C.

Note: All I˛C Library functions are blocking-call functions (they are waiting for I˛C
clock line to become logical one).

Note: The pins used for I˛C communication should be connected to the pull-up
resistors. Turning off the LEDs connected to these pins may also be required.

External dependecies of Soft_I2C Library

Library Routines

- Soft_I2C_Init
- Soft_I2C_Start
- Soft_I2C_Read
- Soft_I2C_Write
- Soft_I2C_Stop

283MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

The following variables
must be defined in all

projects using Soft_I2C
Library:

Description: Example :

var Soft_I2C_Scl:
sbit; external; Soft I˛C Clock line.

var Soft_I2C_Scl:
sbit at P1.B3;

var Soft_I2C_Sda:
sbit; external; Soft I˛C Data line.

var Soft_I2C_Sda:
sbit at P1.B4;

Soft_I2C_Init

Soft_I2C_Start

Soft_I2C_Read

284 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Soft_I2C_Init();

Returns Nothing.

Description Configures the software I˛C module.

Requires
Soft_I2C_Scl and Soft_I2C_Sda variables must be defined before using this
function.

Example

// soft_i2c pinout definition
var Soft_I2C_Scl : sbit at P1.B3;

Soft_I2C_Sda : sbit at P1.B4;
...
Soft_I2C_Init();

Prototype procedure Soft_I2C_Start();

Returns Nothing.

Description Determines if the I˛C bus is free and issues START signal.

Requires
Software I˛C must be configured before using this function. See Soft_I2C_Init
routine.

Example
// Issue START signal
Soft_I2C_Start();

Prototype function Soft_I2C_Read(ack: word): byte;

Returns One byte from the Slave.

Description

Reads one byte from the slave.

Parameters :

- ack: acknowledge signal parameter. If the ack==0 not acknowledge signal will
be sent after reading, otherwise the acknowledge signal will be sent.

Requires

Soft I2C must be configured before using this function. See Soft_I2C_Init routine.

Also, START signal needs to be issued in order to use this function. See
Soft_I2C_Start routine.

Example

var take : word;
...
// Read data and send the not_acknowledge signal
take := Soft_I2C_Read(0);

Soft_I2C_Write

Soft_I2C_Stop

285MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function Soft_I2C_Write(_Data: byte): byte;

Returns
- 0 if there were no errors.

- 1 if write collision was detected on the I2C bus.

Description

Sends data byte via the I2C bus.

Parameters :

- _Data: data to be sent

Requires

Soft I2C must be configured before using this function. See Soft_I2C_Init routine.

Also, START signal needs to be issued in order to use this function. See
Soft_I2C_Start routine.

Example

var _data, error : byte;
...
error := Soft_I2C_Write(data);
error := Soft_I2C_Write(0xA3);

Prototype procedure Soft_I2C_Stop();

Returns Nothing.

Description Issues STOP signal.

Requires Soft I2C must be configured before using this function. See Soft_I2C_Init routine.

Example
// Issue STOP signal
Soft_I2C_Stop();

Library Example

The example demonstrates Software I˛C Library routines usage. The 8051 MCU is
connected (SCL, SDA pins) to PCF8583 RTC (real-time clock). Program reads date
and time are read from the RTC and prints it on LCD.

program RTC_Read;

var seconds, minutes, hours, day, month, year : byte; // Global
date/time variables

// Software I2C connections
var Soft_I2C_Scl : sbit at P1.B3;
var Soft_I2C_Sda : sbit at P1.B4;
// End Software I2C connections

// LCD module connections
var LCD_RS : sbit at P2.B0;
var LCD_EN : sbit at P2.B1;

var LCD_D7 : sbit at P2.B5;
var LCD_D6 : sbit at P2.B4;
var LCD_D5 : sbit at P2.B3;
var LCD_D4 : sbit at P2.B2;
// End LCD module connections

//--------------------- Reads time and date information from RTC
(PCF8583)
procedure Read_Time();

begin
Soft_I2C_Start(); // Issue start signal
Soft_I2C_Write(0xA0); // Address PCF8583, see PCF8583

datasheet
Soft_I2C_Write(2); // Start from address 2
Soft_I2C_Start(); // Issue repeated start signal
Soft_I2C_Write(0xA1); // Address PCF8583 for reading

R/W=1
seconds := Soft_I2C_Read(1); // Read seconds byte
minutes := Soft_I2C_Read(1); // Read minutes byte
hours := Soft_I2C_Read(1); // Read hours byte
day := Soft_I2C_Read(1); // Read year/day byte
month := Soft_I2C_Read(0); // Read weekday/month byte
Soft_I2C_Stop(); // Issue stop signal

end;

//-------------------- Formats date and time
procedure Transform_Time() ;

286 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

begin
seconds := ((seconds and 0xF0) shr 4)*10 + (seconds and 0x0F);

// Transform seconds
minutes := ((minutes and 0xF0) shr 4)*10 + (minutes and 0x0F);

// Transform months
hours := ((hours and 0xF0) shr 4)*10 + (hours and 0x0F);

// Transform hours
year := (day and 0xC0) shr 6; // Transform year
day := ((day and 0x30) shr 4)*10 + (day and 0x0F);

// Transform day
month := ((month and 0x10) shr 4)*10 + (month and 0x0F);

// Transform month
end;

//-------------------- Output values to LCD
procedure Display_Time();

begin
Lcd_Chr(1, 6, (day / 10) + 48); // Print tens digit of

day variable
Lcd_Chr(1, 7, (day mod 10) + 48); // Print oness digit of

day variable
Lcd_Chr(1, 9, (month / 10) + 48);
Lcd_Chr(1,10, (month mod 10) + 48);
Lcd_Chr(1,15, year + 56); // Print year vaiable +

8 (start from year 2008)

Lcd_Chr(2, 6, (hours / 10) + 48);
Lcd_Chr(2, 7, (hours mod 10) + 48);
Lcd_Chr(2, 9, (minutes / 10) + 48);
Lcd_Chr(2,10, (minutes mod 10) + 48);
Lcd_Chr(2,12, (seconds / 10) + 48);
Lcd_Chr(2,13, (seconds mod 10) + 48);

end;

//------------------ Performs project-wide init
procedure Init_Main();

begin
Soft_I2C_Init(); // Initialize Soft I2C communication

Lcd_Init(); // Initialize LCD
Lcd_Cmd(LCD_CLEAR); // Clear LCD display
Lcd_Cmd(LCD_CURSOR_OFF); // Turn cursor off

LCD_Out(1,1,'Date:'); // Prepare and output static text on LCD
LCD_Chr(1,8,':');
LCD_Chr(1,11,':');
LCD_Out(2,1,'Time:');
LCD_Chr(2,8,':');
LCD_Chr(2,11,':');
LCD_Out(1,12,'200');

end;

287MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

//----------------- Main procedure
begin

Init_Main(); // Perform initialization

while TRUE do // Endless loop
begin

Read_Time(); // Read time from RTC(PCF8583)
Transform_Time(); // Format date and time
Display_Time(); // Prepare and display on LCD
Delay_ms(1000); // Wait 1 second

end;
end.

288 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

SOFTWARE SPI LIBRARY

The mikroPascal for 8051 provides routines for implementing Software SPI commu-
nication. These routines are hardware independent and can be used with any MCU.
The Software SPI Library provides easy communication with other devices via SPI:
A/D converters, D/A converters, MAX7219, LTC1290, etc.

Library configuration:

- SPI to Master mode
- Clock value = 20 kHz.
- Data sampled at the middle of interval.
- Clock idle state low.
- Data sampled at the middle of interval.
- Data transmitted at low to high edge.

Note: The Software SPI library implements time-based activities, so interrupts need
to be disabled when using it.

External dependencies of Software SPI Library

Library Routines

- Soft_Spi_Init
- Soft_Spi_Read
- Soft_Spi_Write

289MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

The following variables
must be defined in all

projects using Software
SPI Library:

Description: Example :

var SoftSpi_SDI:
sbit; external; Data In line.

var SoftSpi_SDI: sbit
at P0.B4;

var SoftSpi_SDO:
sbit; external; Data Out line.

var SoftSpi_SDO: sbit
at P0.B5;

var SoftSpi_CLK:
sbit; external; Clock line.

var SoftSpi_CLK: sbit
at P0.B3;

Soft_Spi_Init

Soft_Spi_Read

290 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Soft_SPI_Init();

Returns Nothing.

Description Configures and initializes the software SPI module.

Requires
SoftSpi_CLK, SoftSpi_SDI and SoftSpi_SDO variables must be defined before
using this function.

Example

// soft_spi pinout definition
var SoftSpi_SDI : sbit at P0.B4;

SoftSpi_SDO : sbit at P0.B5;
SoftSpi_CLK : sbit at P0.B3;

...
Soft_SPI_Init(); // Init Soft_SPI

Prototype function Soft_Spi_Read(sdata: byte): byte;

Returns Byte received via the SPI bus.

Description

This routine performs 3 operations simultaneously. It provides clock for the Soft-
ware SPI bus, reads a byte and sends a byte.

Parameters :

- sdata: data to be sent.

Requires Soft SPI must be initialized before using this function. See Soft_Spi_Init routine.

Example

var data_read : byte;
data_send : byte;

...
// Read a byte and assign it to data_read variable
// (data_send byte will be sent via SPI during the Read opera-
tion)
data_read := Soft_Spi_Read(data_send);

Soft_Spi_Write

Library Example

This code demonstrates using library routines for Soft_SPI communication. Also, this example
demonstrates working with Microchip's MCP4921 12-bit D/A converter.

program Soft_SPI;

// DAC module connections
var Chip_Select : sbit at P3.B4;

SoftSpi_CLK : sbit at P1.B7;
SoftSpi_SDI : sbit at P1.B6;
SoftSpi_SDO : sbit at P1.B5;

// End DAC module connections

var value : word;

procedure InitMain();
begin

P0 := 255; // Set PORT0 as input
Soft_SPI_Init(); // Initialize Soft_SPI

end;

// DAC increments (0..4095) --> output voltage (0..Vref)
procedure DAC_Output(valueDAC : word);
var temp : byte;

begin
Chip_Select := 0; // Select DAC chip

291MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Soft_Spi_Write(sdata: byte);

Returns Nothing.

Description

This routine sends one byte via the Software SPI bus.

Parameters :

- sdata: data to be sent.

Requires Soft SPI must be initialized before using this function. See Soft_Spi_Init routine.

Example
// Write a byte to the Soft SPI bus
Soft_Spi_Write(0xAA);

// Send High Byte
temp := (valueDAC shr 8) and 0x0F; // Store valueDAC[11..8]

to temp[3..0]
temp := temp or 0x30; // Define DAC setting, see MCP4921 datasheet
Soft_SPI_Write(temp); // Send high byte via Soft SPI

// Send Low Byte
temp := valueDAC; // Store valueDAC[7..0] to temp[7..0]
Soft_SPI_Write(temp); // Send low byte via Soft SPI

Chip_Select := 1; // Deselect DAC chip
end;

begin

InitMain(); // Perform main initialization

value := 2048; // When program starts, DAC gives
// the output in the mid-range

while TRUE do // Endless loop
begin

if ((P0_0 = 0) and (value < 4095)) then // If P0.0 is
connected to GND

Inc(value) // increment value
else

begin
if ((P0_1 = 0) and (value > 0)) then // If P0.1 is

connected to GND
Dec(value); // decrement value

end;
DAC_Output(value); // Perform output
Delay_ms(10); // Slow down key repeat pace

end;
end.

292 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

SOFTWARE UART LIBRARY

The mikroPascal for 8051 provides routines for implementing Software UART com-
munication. These routines are hardware independent and can be used with any
MCU. The Software UART Library provides easy communication with other devices
via the RS232 protocol.

Note: The Software UART library implements time-based activities, so interrupts
need to be disabled when using it.

External dependencies of Software UART Library

Library Routines

- Soft_Uart_Init
- Soft_Uart_Read
- Soft_Uart_Write

293MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

The following variables
must be defined in all

projects using Software
UART Library:

Description: Example :

var Soft_Uart_RX:
sbit; external; Receive line.

var Soft_Uart_RX:
sbit at P3.B0;

var Soft_Uart_TX:
sbit; external; Transmit line.

var Soft_Uart_TX:
sbit at P3.B1;

Soft_Uart_Init

294 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype function Soft_Uart_Init(baud_rate: dword; inverted: byte): word;

Returns Nothing.

Description

Configures and initializes the software UART module.

Parameters :

- baud_rate: baud rate to be set. Maximum baud rate depends on the MCU’s
clock and working conditions.

- inverted: inverted output flag. When set to a non-zero value, inverted logic
on output is used.

Requires

Global variables:

- Soft_Uart_RX receiver pin
- Soft_Uart_TX transmiter pin

must be defined before using this function.

Example
// Initialize Software UART communication on pins Rx, Tx, at 9600
bps
Soft_Uart_Init(9600, 0);

Soft_Uart_Read

295MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function Soft_Uart_Read(var error: byte): byte;

Returns Byte received via UART.

Description

The function receives a byte via software UART. This is a blocking function call
(waits for start bit).

Parameters :

- error: Error flag. Error code is returned through this variable. Upon successful
transfer this flag will be set to zero. An non zero value indicates communication
error.

Requires
Software UART must be initialized before using this function. See the
Soft_Uart_Init routine.

Example

var data : byte;
error : byte;

...
// wait until data is received
repeat

data := Soft_Uart_Read(error);
until (error=0);

// Now we can work with data:
if (data) then
begin
...
end

Soft_Uart_Write

296 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Soft_Uart_Write(udata: byte);

Returns Nothing.

Description

This routine sends one byte via the Software UART bus.

Parameters :

- udata: data to be sent.

Requires

Software UART must be initialized before using this function. See the
Soft_Uart_Init routine.

Be aware that during transmission, software UART is incapable of receiving
data – data transfer protocol must be set in such a way to prevent loss of infor-
mation.

Example

var some_byte : byte;
...
// Write a byte via Soft Uart
some_byte := 0x0A;
Soft_Uart_Write(some_byte);

Library Example

This example demonstrates simple data exchange via software UART. If MCU is
connected to the PC, you can test the example from the mikroPascal for 8051
USART Terminal Tool.

program Soft_UART;

// Soft UART connections
var Soft_Uart_RX : sbit at P3.B0;
var Soft_Uart_TX : sbit at P3.B1;
// End Soft UART connections

var i, error, byte_read : byte; // Auxiliary variables

begin

Soft_Uart_Init(4800, 0); // Initialize Soft UART
at 4800 bps

for i := 'z' downto i >= 'A' do // Send bytes from 'z'
downto 'A'

begin
Soft_Uart_Write(i);
Delay_ms(100);

end;

while TRUE do // Endless loop
begin

byte_read := Soft_Uart_Read (error); // Read byte, then
test error flag

if (error <> 0) then // If error was detected
P0 := 0xAA // signal it on PORT0

else
Soft_Uart_Write(byte_read); // If error was not

detected, return byte read
end;

end.

297MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

SOUND LIBRARY

The mikroPascal for 8051 provides a Sound Library to supply users with routines necessary for
sound signalization in their applications. Sound generation needs additional hardware, such as
piezo-speaker (example of piezo-speaker interface is given on the schematic at the bottom of this
page).

External dependencies of Sound Library

Library Routines

- Sound_Init
- Sound_Play

Sound_Init

298 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

The following variables
must be defined in all
projects using Sound

Library:

Description: Example :

var Sound_Play_Pin:
sbit; external; Sound output pin.

var Sound_Play_Pin:
sbit at P0.B3;

Prototype procedure Sound_Init();

Returns Nothing.

Description Configures the appropriate MCU pin for sound generation.

Requires Sound_Play_Pin variable must be defined before using this function.

Example

// Initialize the pin P0.3 for playing sound
var Sound_Play_Pin : sbit at P0.B3;
...
Sound_Init();

Sound_Play

Library Example

The example is a simple demonstration of how to use the Sound Library for playing tones on a
piezo speaker.

program Sound;
// Sound connections
var Sound_Play_Pin : sbit at P0.B3;
// End Sound connections

procedure Tone1();
begin

Sound_Play(500, 200); // Frequency = 500Hz, Duration = 200ms
end;

procedure Tone2() ;
begin

Sound_Play(555, 200); // Frequency = 555Hz, Duration = 200ms
end;

procedure Tone3() ;
begin

Sound_Play(625, 200); // Frequency = 625Hz, Duration = 200ms
end;

procedure Melody() ; // Plays the melody "Yellow house"
begin

299MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Sound_Play(var freq_in_Hz: word; var duration_ms: word);

Returns Nothing.

Description

Generates the square wave signal on the appropriate pin.

Parameters :

- freq_in_Hz: signal frequency in Hertz (Hz)
- duration_ms: signal duration in miliseconds (ms)

Requires
In order to hear the sound, you need a piezo speaker (or other hardware) on
designated port. Also, you must call Sound_Init to prepare hardware for output
before using this function.

Example
// Play sound of 1KHz in duration of 100ms
Sound_Play(1000, 100);

Tone1(); Tone2(); Tone3(); Tone3();
Tone1(); Tone2(); Tone3(); Tone3();
Tone1(); Tone2(); Tone3();
Tone1(); Tone2(); Tone3(); Tone3();
Tone1(); Tone2(); Tone3();
Tone3(); Tone3(); Tone2(); Tone2(); Tone1();

end;

procedure ToneA() ; // Tones used in Melody2 function
begin

Sound_Play(1250, 20);
end;

procedure ToneC() ;
begin

Sound_Play(1450, 20);
end;

procedure ToneE() ;
begin

Sound_Play(1650, 80);
end;

procedure Melody2() ; // Plays Melody2
var i : word;

begin
while i <> 1 do

begin
Dec(i);
ToneA();
ToneC();
ToneE();

end;
end;

begin
P1 := 255; // Configure PORT1 as input
Sound_Init(); // Initialize sound pin

Sound_Play(2000, 1000); // Play starting sound, 2kHz, 1 second

while TRUE do // endless loop
begin

if (P1_7 = 0) then // If P1.7 is pressed play Tone1
begin

Tone1();
while (P1_7 = 0) do nop ; // Wait for button to

be released
end;

300 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

if (P1_6 = 0) then // If P1.6 is pressed play Tone2
begin

Tone2();
while (P1_6 = 0) do nop; // Wait for button to

be released
end;

if (P1_5 = 0) then // If P1.5 is pressed play Tone3
begin

Tone3();
while (P1_5 = 0) do nop ; // Wait for button to

be released
end;

if (P1_4 = 0) then // If P1.4 is pressed play Melody2
begin

Melody2();
while (P1_4 = 0) do nop; // Wait for button to

be released
end;

if (P1_3 = 0) then // If P1.3 is pressed play Melody
begin

Melody();
while (P1_3 = 0) do nop; // Wait for button to

be released
end;

end;
end.

301MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

HW Connection

Example of Sound Library sonnection

302 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

SPI LIBRARY

mikroPascal for 8051 provides a library for comfortable with SPI work in Master mode. The 8051
MCU can easily communicate with other devices via SPI: A/D converters, D/A converters,
MAX7219, LTC1290, etc.

Library Routines

- Spi_Init
- Spi_Init_Advanced
- Spi_Read
- Spi_Write

Spi_Init

303MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Init();

Returns Nothing.

Description

This routine configures and enables SPI module with the following settings:

- master mode
- clock idle low
- 8 bit data transfer
- most significant bit sent first
- serial output data changes on idle to active transition of clock state
- serial clock = fosc/128 (fosc/64 in x2 mode)

Requires MCU must have SPI module.

Example
// Initialize the SPI module with default settings
Spi_Init();

Spi_Init_Advanced

304 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Init_Advanced(adv_setting: byte)

Returns Nothing.

Description

This routine configures and enables the SPI module with the user defined settings.

Parameters :

- adv_setting: SPI module configuration flags. Predefined library constants
(see the table below) can be ORed to form appropriate configuration value.

Requires MCU must have SPI module.

Example

// Set SPI to the Master Mode, clock = Fosc/4 , clock IDLE state
low and data transmitted at low to high clock edge:
Spi_Init_Advanced(MASTER_OSC_DIV4 or DATA_ORDER_MSB or
CLK_IDLE_LOW or IDLE_2_ACTIVE);

Bit Mask Description
Predefined library

const

4, 1,
0

Master/slave [4] and clock rate select [1:0] bits

0x10
Sck = Fosc/4 (Fosc/2 in x2
mode), Master mode

MASTER_OSC_DIV4

0x11
Sck = Fosc/16 (f/8 in x2 mode),
Master mode

MASTER_OSC_DIV16

0x12
Sck = Fosc/64 (f/32 in x2 mode),
Master mode

MASTER_OSC_DIV64

0x13
Sck = Fosc/128 (f/64 in x2
mode), Master mode

MASTER_OSC_DIV128

2

SPI clock phase

0x00
Data changes on idle to active
transition of the clock

IDLE_2_ACTIVE

0x04
Data changes on active to idle
transition of the clock

ACTIVE_2_IDLE

3

SPI clock polarity

0x00 Clock idle level is low CLK_IDLE_LOW

0x08 Clock idle level is high CLK_IDLE_HIGH

5

Data order

0x00 Most significant bit sent first DATA_ORDER_MSB

0x20 Least significant bit sent first DATA_ORDER_LSB

Spi_Read

Spi_Write

305MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function Spi_Read(buffer: byte): byte;

Returns Received data.

Description

Reads one byte from the SPI bus.

Parameters :

- buffer: dummy data for clock generation (see device Datasheet for SPI
modules implementation details)

Requires
SPI module must be initialized before using this function. See Spi_Init and
Spi_Init_Advanced routines.

Example

// read a byte from the SPI bus
var take, dummy1 : byte ;
...
take := Spi_Read(dummy1);

Prototype procedure Spi_Write(wrdata: byte);

Returns Nothing.

Description

Writes byte via the SPI bus.

Parameters :

- wrdata: data to be sent

Requires
SPI module must be initialized before using this function. See Spi_Init and
Spi_Init_Advanced routines.

Example

// write a byte to the SPI bus
var buffer : byte;
...
Spi_Write(buffer);

Library Example

The code demonstrates how to use SPI library functions for communication between SPI
module of the MCU and MAX7219 chip. MAX7219 controls eight 7 segment displays.

program SPI;

// Serial 7-seg Display connections
var CHIP_SEL : sbit at P1.B0; // Chip Select pin definition
// End Serial 7-seg Display connections

procedure Select_max() ; // Function for selecting MAX7219
begin

CHIP_SEL := 0;
Delay_us(1);

end;

procedure Deselect_max() ; // Function for deselecting MAX7219
begin

Delay_us(1);
CHIP_SEL := 1;

end;

procedure Max7219_init() ; // Initializing MAX7219
begin

Select_max();
Spi_Write(0x09); // BCD mode for digit decoding
Spi_Write(0xFF);
Deselect_max();

Select_max();
Spi_Write(0x0A);
Spi_Write(0x0F); // Segment luminosity intensity
Deselect_max();

Select_max();
Spi_Write(0x0B);
Spi_Write(0x07); // Display refresh
Deselect_max();

Select_max();
Spi_Write(0x0C);
Spi_Write(0x01); // Turn on the display
Deselect_max();

Select_max();
Spi_Write(0x00);
Spi_Write(0xFF); // No test
Deselect_max();

end;

306 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

var digit_position, digit_value : byte;

begin

Spi_Init(); // Initialize SPI module, standard configuration
// Instead of SPI_init, you can use SPI_init_Advanced

as shown below
// Spi_Init_Advanced(MASTER_OSC_DIV4 or

DATA_ORDER_MSB or CLK_IDLE_LOW or IDLE_2_ACTIVE);

Max7219_init(); // Initialize max7219

while TRUE do
begin // Endless loop

for digit_value := 0 to 9 do
begin

for digit_position := 8 downto 1 do
begin

Select_max(); // Select max7219
Spi_Write(digit_position); // Send digit position
Spi_Write(digit_value); // Send digit value
Deselect_max(); // Deselect max7219
Delay_ms(300);

end;
end;

end;
end.

HW Connection

SPI HW connection

307MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

SPI ETHERNET LIBRARY

The ENC28J60 is a stand-alone Ethernet controller with an industry standard Serial
Peripheral Interface (SPI™). It is designed to serve as an Ethernet network interface
for any controller equipped with SPI.

The ENC28J60 meets all of the IEEE 802.3 specifications. It incorporates a number
of packet filtering schemes to limit incoming packets. It also provides an internal
DMA module for fast data throughput and hardware assisted IP checksum calcula-
tions. Communication with the host controller is implemented via two interrupt pins
and the SPI, with data rates of up to 10 Mb/s. Two dedicated pins are used for LED
link and network activity indication.

This library is designed to simplify handling of the underlying hardware (ENC28J60).
It works with any 8051 MCU with integrated SPI and more than 4 Kb ROM memo-
ry.

SPI Ethernet library supports:

- IPv4 protocol.
- ARP requests.
- ICMP echo requests.
- UDP requests.
- TCP requests (no stack, no packet reconstruction).
- packet fragmentation is NOT supported.

Note: The appropriate hardware SPI module must be initialized before using any of
the SPI Ethernet library routines. Refer to Spi Library.

308 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

The following variables
must be defined in all

projects using SPI Eth-
ernet Library:

Description: Example :

var Spi_Ethernet_CS :
sbit; external; sfr;

ENC28J60 chip select
pin.

var Spi_Ethernet_CS :
sbit at P1.B1; sfr;

var Spi_Ethernet_RST :
sbit; external; sfr;

ENC28J60 reset pin.
var Spi_Ethernet_RST
: sbit at P1.B0; sfr;

Library Routines

- Spi_Ethernet_Init
- Spi_Ethernet_Enable
- Spi_Ethernet_Disable
- Spi_Ethernet_doPacket
- Spi_Ethernet_putByte
- Spi_Ethernet_putBytes
- Spi_Ethernet_putString
- Spi_Ethernet_putConstString
- Spi_Ethernet_putConstBytes
- Spi_Ethernet_getByte
- Spi_Ethernet_getBytes
- Spi_Ethernet_UserTCP
- Spi_Ethernet_UserUDP

309MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

The following routines
must be defined in all
project using SPI Eth-

ernet Library:

Description: Example :

function
Spi_Ethernet_UserTCP
(remoteHost : ^byte,

remotePort : word,

localPort : word,

reqLength : word):
word;

TCP request handler.

Refer to the library
example at the bottom

of this page
for code

implementation.

function
Spi_Ethernet_UserUDP
(remoteHost : ^byte,

remotePort : word,

destPort : word,

reqLength : word):
word;

UDP request handler.

Refer to the library
example at the bottom

of this page
for code

implementation.

Spi_Ethernet_Init

310 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure Spi_Ethernet_Init(mac: ^byte; ip: ^byte; fullDuplex:
byte);

Returns Nothing.

Description

This is MAC module routine. It initializes ENC28J60 controller. This function is
internaly splited into 2 parts to help linker when coming short of memory.

ENC28J60 controller settings (parameters not mentioned here are set to default):

- receive buffer start address : 0x0000.
- receive buffer end address : 0x19AD.
- transmit buffer start address: 0x19AE.
- transmit buffer end address : 0x1FFF.
- RAM buffer read/write pointers in auto-increment mode.
- receive filters set to default: CRC + MAC Unicast + MAC Broadcast in OR mode.
- flow control with TX and RX pause frames in full duplex mode.
- frames are padded to 60 bytes + CRC.
- maximum packet size is set to 1518.
- Back-to-Back Inter-Packet Gap: 0x15 in full duplex mode; 0x12 in half duplex

mode.
- Non-Back-to-Back Inter-Packet Gap: 0x0012 in full duplex mode; 0x0C12 in

half duplex mode.
- Collision window is set to 63 in half duplex mode to accomodate some
ENC28J60 revisions silicon bugs.

- CLKOUT output is disabled to reduce EMI generation.
- half duplex loopback disabled.
- LED configuration: default (LEDA-link status, LEDB-link activity).

Parameters:

- mac: RAM buffer containing valid MAC address.
- ip: RAM buffer containing valid IP address.
- fullDuplex: ethernet duplex mode switch. Valid values: 0 (half duplex mode)

and 1 (full duplex mode).

Requires The appropriate hardware SPI module must be previously initialized.

311MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Example

const Spi_Ethernet_HALFDUPLEX = 0;
const Spi_Ethernet_FULLDUPLEX = 1;

var
myMacAddr : array[6] of byte; // my MAC address
myIpAddr : array[4] of byte; // my IP addr
...
myMacAddr[0] := 0x00;
myMacAddr[1] := 0x14;
myMacAddr[2] := 0xA5;
myMacAddr[3] := 0x76;
myMacAddr[4] := 0x19;
myMacAddr[5] := 0x3F;

myIpAddr[0] := 192;
myIpAddr[1] := 168;
myIpAddr[2] := 1;
myIpAddr[3] := 60;

Spi_Init();
Spi_Ethernet_Init(PORTC, 0, PORTC, 1, myMacAddr, myIpAddr,

Spi_Ethernet_FULLDUPLEX);

Spi_Ethernet_Enable

312 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Ethernet_Enable(enFlt: byte);

Returns Nothing.

Description

This is MAC module routine. This routine enables appropriate network traffic on
the ENC28J60 module by the means of it's receive filters (unicast, multicast,
broadcast, crc). Specific type of network traffic will be enabled if a correspon-
ding bit of this routine's input parameter is set. Therefore, more than one type of
network traffic can be enabled at the same time. For this purpose, predefined
library constants (see the table below) can be ORed to form appropriate input
value.

Parameters:

- enFlt: network traffic/receive filter flags. Each bit corresponds to the
appropriate network traffic/receive filter:

Note: Advance filtering available in the ENC28J60 module such as Pattern
Match, Magic Packet and Hash Table can not be enabled by this routine. Addi-
tionaly, all filters, except CRC, enabled with this routine will work in OR mode,
which means that packet will be received if any of the enabled filters accepts it.

Bit Mask Description Predefined library const

0 0x01
MAC Broadcast traffic/receive filter
flag. When set, MAC broadcast traf-
fic will be enabled.

Spi_Ethernet_BROADCAST

1 0x02
MAC Multicast traffic/receive filter
flag. When set, MAC multicast traffic
will be enabled.

Spi_Ethernet_MULTICAST

2 0x04 not used none

3 0x08 not used none

4 0x10 not used none

5 0x20
CRC check flag. When set, packets
with invalid CRC field will be discarded.

Spi_Ethernet_CRC

6 0x40 not used none

7 0x80
MAC Unicast traffic/receive filter flag.
When set, MAC unicast traffic will be
enabled.

Spi_Ethernet_UNICAST

Spi_Ethernet_Disable

313MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Description

Note: This routine will change receive filter configuration on-the-fly. It will not, in
any way, mess with enabling/disabling receive/transmit logic or any other part of
the ENC28J60 module. The ENC28J60 module should be properly cofigured by
the means of Spi_Ethernet_Init routine.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

Example
Spi_Ethernet_Enable(Spi_Ethernet_CRC or Spi_Ethernet_UNICAST); //
enable CRC checking and Unicast traffic

Prototype procedure Spi_Ethernet_Disable(disFlt: byte);

Returns Nothing.

Description

This is MAC module routine. This routine disables appropriate network traffic on the
ENC28J60 module by the means of it's receive filters (unicast, multicast, broadcast,
crc). Specific type of network traffic will be disabled if a corresponding bit of this rou-
tine's input parameter is set. Therefore, more than one type of network traffic can be
disabled at the same time. For this purpose, predefined library constants (see the
table below) can be ORed to form appropriate input value.

Parameters:

- disFlt: network traffic/receive filter flags. Each bit corresponds to the
appropriate network traffic/receive filter:

Bit Mask Description
Predefined library

const

0 0x01
MAC Broadcast traffic/receive filter flag. When
set, MAC broadcast traffic will be disabled.

Spi_Ethernet_BRO
ADCAST

1 0x02
MAC Multicast traffic/receive filter flag. When
set, MAC multicast traffic will be disabled.

Spi_Ethernet_MUL
TICAST

2 0x04 not used none

3 0x08 not used none

4 0x10 not used none

5 0x20
CRC check flag. When set, CRC check will
be disabled and packets with invalid CRC
field will be accepted.

Spi_Ethernet_CRC

6 0x40 not used none

7 0x80
MAC Unicast traffic/receive filter flag. When
set, MAC unicast traffic will be disabled.

Spi_Ethernet_UNI
CAST

Spi_Ethernet_doPacket

314 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Description

Note: Advance filtering available in the ENC28J60 module such as Pattern
Match, Magic Packet and Hash Table can not be disabled by this routine.

Note: This routine will change receive filter configuration on-the-fly. It will not, in
any way, mess with enabling/disabling receive/transmit logic or any other part of
the ENC28J60 module. The ENC28J60 module should be properly cofigured by
the means of Spi_Ethernet_Init routine.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

Example
Spi_Ethernet_Disable(Spi_Ethernet_CRC or Spi_Ethernet_UNICAST);
// disable CRC checking and Unicast traffic

Prototype function Spi_Ethernet_doPacket(): byte;

Returns

- 0 - upon successful packet processing (zero packets received or received
packet processed successfully).

- 1 - upon reception error or receive buffer corruption. ENC28J60 controller
needs to be restarted.

- 2 - received packet was not sent to us (not our IP, nor IP broadcast address).
- 3 - received IP packet was not IPv4.
- 4 - received packet was of type unknown to the library.

Description

This is MAC module routine. It processes next received packet if such exists.
Packets are processed in the following manner:

- ARP & ICMP requests are replied automatically.
- upon TCP request the Spi_Ethernet_UserTCP function is called for further

processing.
- upon UDP request the Spi_Ethernet_UserUDP function is called for further

processing.

Note: Spi_Ethernet_doPacket must be called as often as possible in user's code.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

Example

while TRUE do
begin

Spi_Ethernet_doPacket(); // process received packets
end

Spi_Ethernet_putByte

Spi_Ethernet_putBytes

315MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Ethernet_putByte(v: byte);

Returns Nothing.

Description

This is MAC module routine. It stores one byte to address pointed by the cur-
rent ENC28J60 write pointer (EWRPT).

Parameters:

- v: value to store

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

Example
var data as byte;
...
Spi_Ethernet_putByte(data); // put an byte into ENC28J60 buffer

Prototype procedure Spi_Ethernet_putBytes(ptr : ^byte; n : byte);

Returns Nothing.

Description

This is MAC module routine. It stores requested number of bytes into ENC28J60
RAM starting from current ENC28J60 write pointer (EWRPT) location.

Parameters:

- ptr: RAM buffer containing bytes to be written into ENC28J60 RAM.
- n: number of bytes to be written.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

Example

var
buffer : array[17] of byte;
...
buffer := 'mikroElektronika';
...
Spi_Ethernet_putBytes(buffer, 16); // put an RAM array into

ENC28J60 buffer

Spi_Ethernet_putConstBytes

Spi_Ethernet_putString

316 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Ethernet_putConstBytes(const ptr : ^byte; n : byte);

Returns Nothing.

Description

This is MAC module routine. It stores requested number of const bytes into
ENC28J60 RAM starting from current ENC28J60 write pointer (EWRPT) location.

Parameters:

- ptr: const buffer containing bytes to be written into ENC28J60 RAM.
- n: number of bytes to be written.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

Example

const
buffer : array[17] of byte;
...
buffer := 'mikroElektronika';
...
Spi_Ethernet_putConstBytes(buffer, 16); // put a const array

into ENC28J60 buffer

Prototype function Spi_Ethernet_putString(^ptr : byte) : word;

Returns Number of bytes written into ENC28J60 RAM.

Description

This is MAC module routine. It stores whole string (excluding null termination) into
ENC28J60 RAM starting from current ENC28J60 write pointer (EWRPT) location.

Parameters:

- ptr: string to be written into ENC28J60 RAM.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

Example

var
buffer : string[16];
...
buffer := 'mikroElektronika';
...
Spi_Ethernet_putString(buffer); // put a RAM string into

ENC28J60 buffer

Spi_Ethernet_putConstString

Spi_Ethernet_getByte

317MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function Spi_Ethernet_putConstString(const ptr : ^byte): word;

Returns Number of bytes written into ENC28J60 RAM.

Description

This is MAC module routine. It stores whole const string (excluding null termination)
into ENC28J60 RAM starting from current ENC28J60 write pointer (EWRPT) location.

Parameters:

- ptr: const string to be written into ENC28J60 RAM.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

Example

const
buffer : string[16];
...
buffer := 'mikroElektronika';
...
Spi_Ethernet_putConstString(buffer); // put a const string into

ENC28J60 buffer

Prototype function Spi_Ethernet_getByte(): byte;

Returns Byte read from ENC28J60 RAM.

Description
This is MAC module routine. It fetches a byte from address pointed to by cur-
rent ENC28J60 read pointer (ERDPT).

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

Example

var buffer : byte;
...
buffer := Spi_Ethernet_getByte(); // read a byte from ENC28J60
buffer

Spi_Ethernet_getBytes

318 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Ethernet_getBytes(ptr : ^byte; addr : word; n : byte);

Returns Nothing.

Description

This is MAC module routine. It fetches equested number of bytes from
ENC28J60 RAM starting from given address. If value of 0xFFFF is passed as the
address parameter, the reading will start from current ENC28J60 read pointer
(ERDPT) location.

Parameters:

- ptr: buffer for storing bytes read from ENC28J60 RAM.
- addr: ENC28J60 RAM start address. Valid values: 0..8192.
- n: number of bytes to be read.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

Example

var
buffer : array[16] of byte;
...
Spi_Ethernet_getBytes(buffer, 0x100, 16); // read 16 bytes,

starting from address 0x100

Spi_Ethernet_UserTCP

319MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
function Spi_Ethernet_UserTCP(remoteHost : ^byte; remotePort :
word; localPort : word; reqLength : word) : word;

Returns
- 0 - there should not be a reply to the request.
- Length of TCP/HTTP reply data field - otherwise.

Description

This is TCP module routine. It is internally called by the library. The user access-
es to the TCP/HTTP request by using some of the Spi_Ethernet_get routines. The
user puts data in the transmit buffer by using some of the Spi_Ethernet_put rou-
tines. The function must return the length in bytes of the TCP/HTTP reply, or 0 if
there is nothing to transmit. If there is no need to reply to the TCP/HTTP requests,
just define this function with return(0) as a single statement.

Parameters:

- remoteHost : client's IP address.
- remotePort : client's TCP port.
- localPort : port to which the request is sent.
- reqLength : TCP/HTTP request data field length.

Note: The function source code is provided with appropriate example projects.
The code should be adjusted by the user to achieve desired reply.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

Example
This function is internally called by the library and should not be called by the
user's code.

Spi_Ethernet_UserUDP

Library Example

This code shows how to use the 8051 mini Ethernet library :

- the board will reply to ARP & ICMP echo requests
- the board will reply to UDP requests on any port :

returns the request in upper char with a header made of remote host IP & port number

- the board will reply to HTTP requests on port 80, GET method with pathnames :

/ will return the HTML main page
/s will return board status as text string
/t0 ... /t7 will toggle P3.b0 to P3.b7 bit and return HTML main page
all other requests return also HTML main page.

320 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
function Spi_Ethernet_UserUDP(remoteHost : ^byte; remotePort :
word; destPort : word; reqLength : word) : word;

Returns
- 0 - there should not be a reply to the request.
- Length of UDP reply data field - otherwise.

Description

This is UDP module routine. It is internally called by the library. The user
accesses to the UDP request by using some of the Spi_Ethernet_get routines.
The user puts data in the transmit buffer by using some of the Spi_Ethernet_put
routines. The function must return the length in bytes of the UDP reply, or 0 if
nothing to transmit. If you don't need to reply to the UDP requests, just define
this function with a return(0) as single statement.

Parameters:

- remoteHost : client's IP address.
- remotePort : client's port.
- destPort : port to which the request is sent.
- reqLength : UDP request data field length.

Note: The function source code is provided with appropriate example projects.
The code should be adjusted by the user to achieve desired reply.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

Example
This function is internally called by the library and should not be called by the
user's code.

// duplex config flags
#define Spi_Ethernet_HALFDUPLEX 0x00 // half duplex
#define Spi_Ethernet_FULLDUPLEX 0x01 // full duplex

// mE ehternet NIC pinout
sfr sbit Spi_Ethernet_RST at P1.B0;
sfr sbit Spi_Ethernet_CS at P1.B1;
// end ethernet NIC definitions

/**
* ROM constant strings
*/

const code byte httpHeader[] = "HTTP/1.1 200 OK\nContent-type: " ;
// HTTP header
const code byte httpMimeTypeHTML[] = "text/html\n\n" ; //
HTML MIME type
const code byte httpMimeTypeScript[] = "text/plain\n\n" ; //
TEXT MIME type
idata byte httpMethod[] = "GET /";
/*
* web page, splited into 2 parts :
* when coming short of ROM, fragmented data is handled more effi-

ciently by linker
*
* this HTML page calls the boards to get its status, and builds

itself with javascript
*/

const code char *indexPage = // Change the IP
address of the page to be refreshed
"<meta http-equiv=\"refresh\"
content=\"3;url=http://192.168.1.60\">\
<HTML><HEAD></HEAD><BODY>\
<h1>8051 + ENC28J60 Mini Web Server</h1>\
Reload\
<script src=/s></script>\
<table><tr><td><table border=1 style=\"font-size:20px ;font-family:
terminal ;\">\
<tr><th colspan=2>P0</th></tr>\
<script>\
var str,i;\
str=\"\";\
for(i=0;i<8;i++)\
{str+=\"<tr><td bgcolor=pink>BUTTON #\"+i+\"</td>\";\
if(P0&(1<<i)){str+=\"<td bgcolor=red>ON\";}\
else {str+=\"<td bgcolor=#cccccc>OFF\";}\
str+=\"</td></tr>\";}\
document.write(str) ;\
</script>\
" ;

321MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

const char *indexPage2 = "</table></td><td>\
<table border=1 style=\"font-size:20px ;font-family: terminal ;\">\
<tr><th colspan=3>P3</th></tr>\
<script>\
var str,i;\
str=\"\";\
for(i=0;i<8;i++)\
{str+=\"<tr><td bgcolor=yellow>LED #\"+i+\"</td>\";\
if(P3&(1<<i)){str+=\"<td bgcolor=red>ON\";}\
else {str+=\"<td bgcolor=#cccccc>OFF\";}\
str+=\"</td><td>Toggle</td></tr>\";}\
document.write(str) ;\
</script>\
</table></td></tr></table>\
This is HTTP request
#<script>document.write(REQ)</script></BODY></HTML>\
" ;

/***********************************
* RAM variables
*/

idata byte myMacAddr[6] = {0x00, 0x14, 0xA5, 0x76, 0x19, 0x3f} ;
// my MAC address
idata byte myIpAddr[4] = {192, 168, 1, 60} ; //
my IP address
idata byte getRequest[15] ; //
HTTP request buffer
idata byte dyna[29] ; //
buffer for dynamic response
idata unsigned long httpCounter = 0 ;
// counter of HTTP requests

/***
* functions
*/

/*
* put the constant string pointed to by s to the ENC transmit buffer.
*/

/*unsigned int putConstString(const code char *s)
{
unsigned int ctr = 0 ;

while(*s)
{
Spi_Ethernet_putByte(*s++) ;
ctr++ ;
}

return(ctr) ;
}*/

322 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

/*
* it will be much faster to use library Spi_Ethernet_putConstString

routine
* instead of putConstString routine above. However, the code will

be a little
* bit bigger. User should choose between size and speed and pick the
implementation that
* suites him best. If you choose to go with the putConstString def-

inition above
* the #define line below should be commented out.
*
*/

#define putConstString Spi_Ethernet_putConstString

/*
* put the string pointed to by s to the ENC transmit buffer
*/

/*unsigned int putString(char *s)
{
unsigned int ctr = 0 ;

while(*s)
{
Spi_Ethernet_putByte(*s++) ;

ctr++ ;
}

return(ctr) ;
}*/

/*
* it will be much faster to use library Spi_Ethernet_putString rou-

tine
* instead of putString routine above. However, the code will be a

little
* bit bigger. User should choose between size and speed and pick the
implementation that
* suites him best. If you choose to go with the putString defini-

tion above
* the #define line below should be commented out.
*
*/

#define putString Spi_Ethernet_putString

323MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

/*
* this function is called by the library
* the user accesses to the HTTP request by successive calls to

Spi_Ethernet_getByte()
* the user puts data in the transmit buffer by successive calls to

Spi_Ethernet_putByte()
* the function must return the length in bytes of the HTTP reply,

or 0 if nothing to transmit
*
* if you don't need to reply to HTTP requests,
* just define this function with a return(0) as single statement
*
*/

unsigned int Spi_Ethernet_UserTCP(byte *remoteHost, unsigned int
remotePort, unsigned int localPort, unsigned int reqLength)

{
idata unsigned int len; // my reply length

if(localPort != 80) // I listen
only to web request on port 80

{
return(0) ;
}

// get 10 first bytes only of the request, the rest does not
matter here

for(len = 0 ; len < 10 ; len++)
{
getRequest[len] = Spi_Ethernet_getByte() ;
}

getRequest[len] = 0 ;

len = 0;

if(memcmp(getRequest, httpMethod, 5)) // only GET
method is supported here

{
return(0) ;
}

httpCounter++ ; // one more request done

if(getRequest[5] == 's') // if request
path name starts with s, store dynamic data in transmit buffer

{
// the text string replied by this request can be

interpreted as javascript statements
// by browsers

324 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

len = putConstString(httpHeader) ; // HTTP header
len += putConstString(httpMimeTypeScript) ; //

with text MIME type

// add P3 value (buttons) to reply
len += putConstString("var P3=") ;
WordToStr(P3, dyna) ;
len += putString(dyna) ;
len += putConstString(";") ;

// add P0 value (LEDs) to reply
len += putConstString("var P0=") ;
WordToStr(P0, dyna) ;
len += putString(dyna) ;
len += putConstString(";") ;

// add HTTP requests counter to reply
WordToStr(httpCounter, dyna) ;
len += putConstString("var REQ=") ;
len += putString(dyna) ;
len += putConstString(";") ;
}

else if(getRequest[5] == 't') // if request
path name starts with t, toggle P3 (LED) bit number that comes after

{
byte bitMask = 0 ; // for bit mask

if(isdigit(getRequest[6])) // if 0
<= bit number <= 9, bits 8 & 9 does not exist but does not matter

{
bitMask = getRequest[6] - '0' ; //

convert ASCII to integer
bitMask = 1 << bitMask ; //

create bit mask
P3 ^= bitMask ; //

toggle P3 with xor operator
}

}

if(len == 0) // what do to by default
{
len = putConstString(httpHeader) ; //

HTTP header
len += putConstString(httpMimeTypeHTML) ; //

with HTML MIME type
len += putConstString(indexPage) ; //

HTML page first part
len += putConstString(indexPage2) ; //

HTML page second part
}

325MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

return(len) ; //
return to the library with the number of bytes to transmit

}

/*
* this function is called by the library
* the user accesses to the UDP request by successive calls to

Spi_Ethernet_getByte()
* the user puts data in the transmit buffer by successive calls to

Spi_Ethernet_putByte()
* the function must return the length in bytes of the UDP reply, or

0 if nothing to transmit
*
* if you don't need to reply to UDP requests,
* just define this function with a return(0) as single statement
*
*/

unsigned int Spi_Ethernet_UserUDP(byte *remoteHost, unsigned int
remotePort, unsigned int destPort, unsigned int reqLength)

{
idata unsigned int len ; // my reply length
idata byte * ptr ; // pointer to the dynamic buffer

// reply is made of the remote host IP address in human read-
able format

ByteToStr(remoteHost[0], dyna) ; // first IP address byte
dyna[3] = '.' ;
ByteToStr(remoteHost[1], dyna + 4) ; // second
dyna[7] = '.' ;
ByteToStr(remoteHost[2], dyna + 8) ; // third
dyna[11] = '.' ;
ByteToStr(remoteHost[3], dyna + 12) ; // fourth

dyna[15] = ':' ; // add separator

// then remote host port number
WordToStr(remotePort, dyna + 16) ;
dyna[21] = '[' ;
WordToStr(destPort, dyna + 22) ;
dyna[27] = ']' ;
dyna[28] = 0 ;

// the total length of the request is the length of the
dynamic string plus the text of the request

len = 28 + reqLength;

// puts the dynamic string into the transmit buffer
Spi_Ethernet_putBytes(dyna, 28) ;

326 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

// then puts the request string converted into upper char into the
transmit buffer

while(reqLength--)
{

Spi_Ethernet_putByte(toupper(Spi_Ethernet_getByte()))
;

}

return(len) ; // back to the library with the
length of the UDP reply

}

/*
* main entry
*/

procedure main()
{
/*
* starts ENC28J60 with :
* reset bit on P1_0
* CS bit on P1_1
* my MAC & IP address
* full duplex
*/

Spi_Init_Advanced(MASTER_OSC_DIV16 or CLK_IDLE_LOW or
IDLE_2_ACTIVE or DATA_ORDER_MSB);

Spi_Ethernet_Init(myMacAddr, myIpAddr, Spi_Ethernet_FULLDU-
PLEX) ; // full duplex, CRC + MAC Unicast + MAC Broadcast filtering

while(1) // do forever
{
/*
* if necessary, test the return value to get error

code
*/
Spi_Ethernet_doPacket() ; // process incoming

Ethernet packets

/*
* add your stuff here if needed
* Spi_Ethernet_doPacket() must be called as often

as possible
* otherwise packets could be lost
*/

}
}

327MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

HW Connection

328 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

SPI GRAPHIC LCD LIBRARY

The mikroPascal for 8051 provides a library for operating Graphic LCD 128x64 (with
commonly used Samsung KS108/KS107 controller) via SPI interface.

For creating a custom set of GLCD images use GLCD Bitmap Editor Tool.

Note: The library uses the SPI module for communication. User must initialize SPI
module before using the SPI Graphic LCD Library.

Note: This Library is designed to work with the mikroElektronika's Serial LCD/GLCD
Adapter Board pinout, see schematic at the bottom of this page for details.

External dependencies of SPI Graphic LCD Library

The implementation of SPI Graphic LCD Library routines is based on Port Expander
Library routines.

External dependencies are the same as Port Expander Library external dependencies.

Library Routines

Basic routines:

- Spi_Glcd_Init
- Spi_Glcd_Set_Side
- Spi_Glcd_Set_Page
- Spi_Glcd_Set_X
- Spi_Glcd_Read_Data
- Spi_Glcd_Write_Data

Advanced routines:

- Spi_Glcd_Fill
- Spi_Glcd_Dot
- Spi_Glcd_Line
- Spi_Glcd_V_Line
- Spi_Glcd_H_Line
- Spi_Glcd_Rectangle
- Spi_Glcd_Box
- Spi_Glcd_Circle
- Spi_Glcd_Set_Font
- Spi_Glcd_Write_Char
- Spi_Glcd_Write_Text
- Spi_Glcd_Image

329MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Spi_Glcd_Init

Spi_Glcd_Set_Side

330 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Glcd_Init(DeviceAddress : byte);

Returns Nothing.

Description

Initializes the GLCD module via SPI interface.

Parameters :

- DeviceAddress: spi expander hardware address, see schematic at the
bottom of this page

Requires

SPExpanderCS and SPExpanderRST variables must be defined before using this
function.

The SPI module needs to be initialized. See Spi_Init and Spi_Init_Advanced routines.

Example

// port expander pinout definition
var SPExpanderRST : sbit at P1.B0;

SPExpanderCS : sbit at P1.B1;
...
Spi_Init_Advanced(MASTER_OSC_DIV4 or CLK_IDLE_LOW or
IDLE_2_ACTIVE or DATA_ORDER_MSB);
Spi_Glcd_Init(0);

Prototype procedure SPI_Glcd_Set_Side(x_pos : byte);

Returns Nothing.

Description

Selects GLCD side. Refer to the GLCD datasheet for detail explanation.

Parameters :

- x_pos: position on x-axis. Valid values: 0..127

The parameter x_pos specifies the GLCD side: values from 0 to 63 specify the
left side, values from 64 to 127 specify the right side.

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example

The following two lines are equivalent, and both of them select the left side of GLCD:

SPI_Glcd_Set_Side(0);
SPI_Glcd_Set_Side(10);

Spi_Glcd_Set_Page

Spi_Glcd_Set_X

331MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Glcd_Set_Page(page : byte);

Returns Nothing.

Description

Selects page of GLCD.

Parameters :

- page: page number. Valid values: 0..7

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example Spi_Glcd_Set_Page(5);

Prototype procedure SPI_Glcd_Set_X(x_pos : byte);

Returns Nothing.

Description

Sets x-axis position to x_pos dots from the left border of GLCD within the
selected side.

Parameters :

- x_pos: position on x-axis. Valid values: 0..63

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example Spi_Glcd_Set_X(25);

Spi_Glcd_Read_Data

Spi_Glcd_Write_Data

332 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype function Spi_Glcd_Read_Data() : byte;

Returns One byte from GLCD memory.

Description
Reads data from the current location of GLCD memory and moves to the next
location.

Requires

GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init rou-
tines.

GLCD side, x-axis position and page should be set first. See the functions
Spi_Glcd_Set_Side, Spi_Glcd_Set_X, and Spi_Glcd_Set_Page.

Example
var data : byte;
...
data := Spi_Glcd_Read_Data();

Prototype procedure Spi_Glcd_Write_Data(Ddata : byte);

Returns Nothing.

Description

Writes one byte to the current location in GLCD memory and moves to the next
location.

Parameters :

- Ddata: data to be written

Requires

GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

GLCD side, x-axis position and page should be set first. See the functions
Spi_Glcd_Set_Side, Spi_Glcd_Set_X, and Spi_Glcd_Set_Page.

Example
var ddata : byte;
...
Spi_Glcd_Write_Data(ddata);

Spi_Glcd_Fill

Spi_Glcd_Dot

333MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Glcd_Fill(pattern: byte);

Returns Nothing.

Description

Fills GLCD memory with byte pattern.

Parameters :

- pattern: byte to fill GLCD memory with

To clear the GLCD screen, use Spi_Glcd_Fill(0).

To fill the screen completely, use Spi_Glcd_Fill(0xFF).

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example
// Clear screen
Spi_Glcd_Fill(0);

Prototype procedure Spi_Glcd_Dot(x_pos : byte; y_pos : byte; color : byte);

Returns Nothing.

Description

Draws a dot on GLCD at coordinates (x_pos, y_pos).

Parameters :

- x_pos: x position. Valid values: 0..127
- y_pos: y position. Valid values: 0..63
- color: color parameter. Valid values: 0..2

The parameter color determines the dot state: 0 clears dot, 1 puts a dot, and 2
inverts dot state.

Note: For x and y axis layout explanation see schematic at the bottom of this page.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example
// Invert the dot in the upper left corner
Spi_Glcd_Dot(0, 0, 2);

Spi_Glcd_Line

Spi_Glcd_V_Line

334 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure SPI_Glcd_Line(x_start : integer; y_start : integer;
x_end : integer; y_end : integer; color : byte);

Returns Nothing.

Description

Draws a line on GLCD.

Parameters :

- x_start: x coordinate of the line start. Valid values: 0..127
- y_start: y coordinate of the line start. Valid values: 0..63
- x_end: x coordinate of the line end. Valid values: 0..127
- y_end: y coordinate of the line end. Valid values: 0..63
- color: color parameter. Valid values: 0..2

Parameter color determines the line color: 0 white, 1 black, and 2 inverts each dot.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example
// Draw a line between dots (0,0) and (20,30)
Spi_Glcd_Line(0, 0, 20, 30, 1);

Prototype
procedure Spi_Glcd_V_Line(y_start: byte; y_end: byte; x_pos:
byte; color: byte);

Returns Nothing.

Description

Draws a vertical line on GLCD.

Parameters :

- y_start: y coordinate of the line start. Valid values: 0..63
- y_end: y coordinate of the line end. Valid values: 0..63
- x_pos: x coordinate of vertical line. Valid values: 0..127
- color: color parameter. Valid values: 0..2

Parameter color determines the line color: 0 white, 1 black, and 2 inverts each dot.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example
// Draw a vertical line between dots (10,5) and (10,25)
Spi_Glcd_V_Line(5, 25, 10, 1);

Spi_Glcd_H_Line

Spi_Glcd_Rectangle

335MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
procedure Spi_Glcd_V_Line(x_start : byte; x_end : byte; y_pos :
byte; color : byte);

Returns Nothing.

Description

Draws a horizontal line on GLCD.

Parameters :

- x_start: x coordinate of the line start. Valid values: 0..127
- x_end: x coordinate of the line end. Valid values: 0..127
- y_pos: y coordinate of horizontal line. Valid values: 0..63
- color: color parameter. Valid values: 0..2

The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example
// Draw a horizontal line between dots (10,20) and (50,20)
Spi_Glcd_H_Line(10, 50, 20, 1);

Prototype
procedure Spi_Glcd_Rectangle(x_upper_left : byte; y_upper_left :
byte; x_bottom_right : byte; y_bottom_right : byte; color : byte);

Returns Nothing.

Description

Draws a rectangle on GLCD.

Parameters :

- x_upper_left: x coordinate of the upper left rectangle corner. Valid values: 0..127
- y_upper_left: y coordinate of the upper left rectangle corner. Valid values: 0..63
- x_bottom_right: x coordinate of the lower right rectangle corner. Valid values:
0..127

- y_bottom_right: y coordinate of the lower right rectangle corner. Valid values:
0..63

- color: color parameter. Valid values: 0..2

The parameter color determines the color of the rectangle border: 0 white, 1
black, and 2 inverts each dot.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example
// Draw a rectangle between dots (5,5) and (40,40)
Spi_Glcd_Rectangle(5, 5, 40, 40, 1);

Spi_Glcd_Box

Spi_Glcd_Circle

336 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure Spi_Glcd_Box(x_upper_left : byte; y_upper_left : byte;
x_bottom_right : byte; y_bottom_right : byte; color : byte);

Returns Nothing.

Description

Draws a box on GLCD.

Parameters :

- x_upper_left: x coordinate of the upper left box corner. Valid values: 0..127
- y_upper_left: y coordinate of the upper left box corner. Valid values: 0..63
- x_bottom_right: x coordinate of the lower right box corner. Valid values: 0..127
- y_bottom_right: y coordinate of the lower right box corner. Valid values: 0..63
- color: color parameter. Valid values: 0..2

The parameter color determines the color of the box fill: 0 white, 1 black, and 2
inverts each dot.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example
// Draw a box between dots (5,15) and (20,40)
Spi_Glcd_Box(5, 15, 20, 40, 1);

Prototype
procedure Spi_Glcd_Circle(x_center : integer; y_center : integer;
radius : integer; color : byte);

Returns Nothing.

Description

Draws a circle on GLCD.

Parameters :

- x_center: x coordinate of the circle center. Valid values: 0..127
- y_center: y coordinate of the circle center. Valid values: 0..63
- radius: radius size
- color: color parameter. Valid values: 0..2

The parameter color determines the color of the circle line: 0 white, 1 black,
and 2 inverts each dot.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routine.

Example
// Draw a circle with center in (50,50) and radius=10
Spi_Glcd_Circle(50, 50, 10, 1);

Spi_Glcd_Set_Font

337MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
procedure SPI_Glcd_Set_Font(const activeFont : ^byte; aFontWidth
: byte; aFontHeight : byte; aFontOffs : word);

Returns Nothing.

Description

Sets font that will be used with Spi_Glcd_Write_Char and Spi_Glcd_Write_Text
routines.

Parameters :

- activeFont: font to be set. Needs to be formatted as an array of char
- aFontWidth: width of the font characters in dots.
- aFontHeight: height of the font characters in dots.
- aFontOffs: number that represents difference between the mikroPascal

character set and regular ASCII set (eg. if 'A' is 65 in ASCII character, and 'A'
is 45 in the mikroPascal character set, aFontOffs is 20). Demo fonts supplied
with the library have an offset of 32, which means that they start with space.

The user can use fonts given in the file “__Lib_GLCD_fonts.mpas” file located in
the Uses folder or create his own fonts.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example
// Use the custom 5x7 font "myfont" which starts with space (32):
Spi_Glcd_Set_Font(myfont, 5, 7, 32);

Spi_Glcd_Write_Char

338 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure SPI_Glcd_Write_Char(chr1 : byte; x_pos : byte; page_num
: byte; color : byte);

Returns Nothing.

Description

Prints character on GLCD.

Parameters :

- chr1: character to be written
- x_pos: character starting position on x-axis. Valid values: 0..(127-FontWidth)
- page_num: the number of the page on which character will be written. Valid

values: 0..7
- color: color parameter. Valid values: 0..2

The parameter color determines the color of the character: 0 white, 1 black,
and 2 inverts each dot.

Note: For x axis and page layout explanation see schematic at the bottom of
this page.

Requires

GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Use the Spi_Glcd_Set_Font to specify the font for display; if no font is specified, then
the default 5x8 font supplied with the library will be used.

Example
// Write character 'C' on the position 10 inside the page 2:
Spi_Glcd_Write_Char("C", 10, 2, 1);

Spi_Glcd_Write_Text

339MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
procedure SPI_Glcd_Write_Text(var text : string[20]; x_pos :
byte; page_numb : byte; color : byte);

Returns Nothing.

Description

Prints text on GLCD.

Parameters :

- text: text to be written
- x_pos: text starting position on x-axis.
- page_num: the number of the page on which text will be written. Valid values: 0..7
- color: color parameter. Valid values: 0..2

The parameter color determines the color of the text: 0 white, 1 black, and 2
inverts each dot.

Note: For x axis and page layout explanation see schematic at the bottom of
this page.

Requires

GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Use the Spi_Glcd_Set_Font to specify the font for display; if no font is specified,
then the default 5x8 font supplied with the library will be used.

Example
// Write text "Hello world!" on the position 10 inside the page 2:
Spi_Glcd_Write_Text("Hello world!", 10, 2, 1);

Spi_Glcd_Image

Library Example

The example demonstrates how to communicate to KS0108 GLCD via the SPI module, using
serial to parallel convertor MCP23S17.

program SerialGLCD;

uses bitmap;

// Port Expander module connections
var SPExpanderRST : sbit at P1.B0;
var SPExpanderCS : sbit at P1.B1;
// End Port Expander module connections

var
counter, counter2: byte;
jj: word;
someText: string[20];

procedure delay2S;
begin

delay_ms(2000);
end;

begin

340 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Glcd_Image(const image : ^byte);

Returns Nothing.

Description

Displays bitmap on GLCD.

Parameters :

- image: image to be displayed. Bitmap array can be located in both code and
RAM memory (due to the mikroPascal for 8051 pointer to const and pointer to
RAM equivalency).

Use the mikroPascal’s integrated GLCD Bitmap Editor (menu option Tools ›
GLCD Bitmap Editor) to convert image to a constant array suitable for display-
ing on GLCD.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example
// Draw image my_image on GLCD
Spi_Glcd_Image(my_image);

Spi_Init_Advanced(MASTER_OSC_DIV4 or CLK_IDLE_LOW or IDLE_2_ACTIVE
or DATA_ORDER_MSB);

Spi_Glcd_Init(0); // Initialize GLCD via SPI
Spi_Glcd_Fill(0x00); // Clear GLCD

while TRUE do
begin

Spi_Glcd_Image(@advanced8051_bmp); // Draw image
Delay2S(); Delay2S();

Spi_Glcd_Fill(0x0);
Delay2s;
Spi_Glcd_Box(62,40,124,56,1); // Draw box
Spi_Glcd_Rectangle(5,5,84,35,1); // Draw rectangle
Spi_Glcd_Line(0, 63, 127, 0,1); // Draw line

Delay2S();

counter := 5; // Draw horizontal and vertical line
while counter < 60 do

begin
Delay_ms(250);
Spi_Glcd_V_Line(2, 54, counter, 1);
Spi_Glcd_H_Line(2, 120, counter, 1);
counter := counter + 5;

end;

Delay2S();

Spi_Glcd_Fill(0x00);

Spi_Glcd_Set_Font(@Character8x8, 8, 8, 32); // Choose font,
see __Lib_GLCDFonts.c in Uses folder

Spi_Glcd_Write_Text('mikroE', 5, 7, 2); // Write string

for counter2 := 1 to 10 do // Draw circles
Spi_Glcd_Circle(63,32, 3*counter2, 1);

Delay2S();

Spi_Glcd_Box(12,20, 70,63, 2); // Draw box
Delay2S();

Spi_Glcd_Set_Font(@FontSystem5x8, 5, 8, 32); // Change font
someText := 'BIG:LETTERS';
Spi_Glcd_Write_Text(someText, 5, 3, 2); // Write string
Delay2S();

someText := 'SMALL:NOT:SMALLER';
Spi_Glcd_Write_Text(someText, 20,5, 1); // Write string
Delay2S();

end;

end.

341MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

HW Connection

SPI GLCD HW connection

342 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

SPI LCD LIBRARY

The mikroPascal for 8051 provides a library for communication with LCD (with
HD44780 compliant controllers) in 4-bit mode via SPI interface.

For creating a custom set of LCD characters use LCD Custom Character Tool.

Note: The library uses the SPI module for communication. The user must initialize
the SPI module before using the SPI LCD Library.

Note: This Library is designed to work with the mikroElektronika's Serial LCD
Adapter Board pinout. See schematic at the bottom of this page for details.

External dependencies of SPI LCD Library

The implementation of SPI LCD Library routines is based on Port Expander Library
routines.

External dependencies are the same as Port Expander Library external dependen-
cies.

Library Routines

- Spi_Lcd_Config
- Spi_Lcd_Out
- Spi_Lcd_Out_Cp
- Spi_Lcd_Chr
- Spi_Lcd_Chr_Cp
- Spi_Lcd_Cmd

343MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Spi_Lcd_Config

Spi_Lcd_Out

344 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Lcd_Config(DeviceAddress: byte);

Returns Nothing.

Description

Initializes the LCD module via SPI interface.

Parameters :

- DeviceAddress: spi expander hardware address, see schematic at the
bottom of this page

Requires

SPExpanderCS and SPExpanderRST variables must be defined before using this
function.

The SPI module needs to be initialized. See Spi_Init and Spi_Init_Advanced routines.

Example

// port expander pinout definition
var SPExpanderCS : sbit at P1.B1;

SPExpanderRST : sbit at P1.B0;
...
Spi_Init(); // initialize spi
Spi_Lcd_Config(0); // initialize lcd over spi inter-
face

Prototype
procedure Spi_Lcd_Out(row: byte; column: byte; var text:
string[20]);

Returns Nothing.

Description

Prints text on the LCD starting from specified position. Both string variables and
literals can be passed as a text.

Parameters :

- row: starting position row number
- column: starting position column number
- text: text to be written

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd_Config routines.

Example
// Write text "Hello!" on LCD starting from row 1, column 3:
Spi_Lcd_Out(1, 3, "Hello!");

Spi_Lcd_Out_Cp

Spi_Lcd_Chr

345MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Lcd_Out_CP(text : string[20]);

Returns Nothing.

Description

Prints text on the LCD at current cursor position. Both string variables and liter-
als can be passed as a text.

Parameters :

- text: text to be written

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd_Config routines.

Example
// Write text "Here!" at current cursor position:
Spi_Lcd_Out_CP("Here!");

Prototype procedure Spi_Lcd_Chr(Row : byte; Column : byte; Out_Char : byte);

Returns Nothing.

Description

Prints character on LCD at specified position. Both variables and literals can be
passed as character.

Parameters :

- Row: writing position row number
- Column: writing position column number
- Out_Char: character to be written

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd_Config routines.

Example
// Write character "i" at row 2, column 3:
Spi_Lcd_Chr(2, 3, 'i');

Spi_Lcd_Chr_Cp

Spi_Lcd_Cmd

346 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Lcd_Chr_CP(Out_Char : byte);

Returns Nothing.

Description

Prints character on LCD at current cursor position. Both variables and literals
can be passed as character.

Parameters :

- Out_Char: character to be written

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd_Config routines.

Example
// Write character "e" at current cursor position:
Spi_Lcd_Chr_Cp('e');

Prototype procedure Spi_Lcd_Cmd(out_char : byte);

Returns Nothing.

Description

Sends command to LCD.

Parameters :

- out_char: command to be sent

Note: Predefined constants can be passed to the function, see Available LCD
Commands.

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd_Config routines.

Example
// Clear LCD display:
Spi_Lcd_Cmd(LCD_CLEAR);

Available LCD Commands

347MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Lcd Command Purpose

LCD_FIRST_ROW Move cursor to the 1st row

LCD_SECOND_ROW Move cursor to the 2nd row

LCD_THIRD_ROW Move cursor to the 3rd row

LCD_FOURTH_ROW Move cursor to the 4th row

LCD_CLEAR Clear display

LCD_RETURN_HOME
Return cursor to home position, returns a shifted display
to its original position. Display data RAM is unaffected.

LCD_CURSOR_OFF Turn off cursor

LCD_UNDERLINE_ON Underline cursor on

LCD_BLINK_CURSOR_ON Blink cursor on

LCD_MOVE_CURSOR_LEFT Move cursor left without changing display data RAM

LCD_MOVE_CURSOR_RIGHT Move cursor right without changing display data RAM

LCD_TURN_ON Turn LCD display on

LCD_TURN_OFF Turn LCD display off

LCD_SHIFT_LEFT Shift display left without changing display data RAM

LCD_SHIFT_RIGHT Shift display right without changing display data RAM

Library Example

This example demonstrates how to communicate LCD via the SPI module, using
serial to parallel convertor MCP23S17.

program Spi_Lcd;

var text : array[16] of byte;

// Port Expander module connections
var SPExpanderRST : sbit at P1.B0;
var SPExpanderCS : sbit at P1.B1;
// End Port Expander module connections

begin
text := 'mikroElektronika';
Spi_Init(); // Initialize SPI
Spi_Lcd_Config(0); // Initialize LCD over SPI inter-

face
Spi_Lcd_Cmd(LCD_CLEAR); // Clear display
Spi_Lcd_Cmd(LCD_CURSOR_OFF); // Turn cursor off
Spi_Lcd_Out(1,6, 'mikroE'); // Print text to LCD, 1st row, 6th

column
Spi_Lcd_Chr_CP('!'); // Append '!'
Spi_Lcd_Out(2,1, text); // Print text to LCD, 2nd row, 1st

column
Spi_Lcd_Out(3,1,'mikroE'); // For LCD with more than two rows
Spi_Lcd_Out(4,15,'mikroE'); // For LCD with more than two rows

end.

348 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

HW Connection

SPI LCD HW connection

349MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

SPI LCD8 (8-BIT INTERFACE) LIBRARY

The mikroPascal for 8051 provides a library for communication with LCD (with
HD44780 compliant controllers) in 8-bit mode via SPI interface.

For creating a custom set of LCD characters use LCD Custom Character Tool.

Note: Library uses the SPI module for communication. The user must initialize the
SPI module before using the SPI LCD Library.

Note: This Library is designed to work with mikroElektronika's Serial LCD/GLCD
Adapter Board pinout, see schematic at the bottom of this page for details.

External dependencies of SPI LCD Library

The implementation of SPI LCD Library routines is based on Port Expander Library
routines.

External dependencies are the same as Port Expander Library external dependen-
cies.

Library Routines

- Spi_Lcd8_Config
- Spi_Lcd8_Out
- Spi_Lcd8_Out_Cp
- Spi_Lcd8_Chr
- Spi_Lcd8_Chr_Cp
- Spi_Lcd8_Cmd

350 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Spi_Lcd8_Config

Spi_Lcd8_Out

351MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Lcd8_Config(DeviceAddress : byte);

Returns Nothing.

Description

Initializes the LCD module via SPI interface.

Parameters :

- DeviceAddress: spi expander hardware address, see schematic at the
bottom of this page

Requires

SPExpanderCS and SPExpanderRST variables must be defined before using this
function.

The SPI module needs to be initialized. See Spi_Init and Spi_Init_Advanced routines.

Example

// port expander pinout definition
var SPExpanderCS : sbit at P1.B1;

SPExpanderRST : sbit at P1.B0;
...
Spi_Init(); // initialize spi interface
Spi_Lcd8_Config(0); // intialize lcd in 8bit mode via spi

Prototype
procedure Spi_Lcd8_Out(row: byte; column: byte; var text:
string[20]);

Returns Nothing.

Description

Prints text on LCD starting from specified position. Both string variables and lit-
erals can be passed as a text.

Parameters :

- row: starting position row number
- column: starting position column number
- text: text to be written

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd8_Config routines.

Example
// Write text "Hello!" on LCD starting from row 1, column 3:
Spi_Lcd8_Out(1, 3, "Hello!");

Spi_Lcd8_Out_Cp

Spi_Lcd8_Chr

352 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Lcd8_Out_CP(text: string[20]);

Returns Nothing.

Description

Prints text on LCD at current cursor position. Both string variables and literals
can be passed as a text.

Parameters :

- text: text to be written

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd8_Config routines.

Example
// Write text "Here!" at current cursor position:
Spi_Lcd8_Out_Cp("Here!");

Prototype procedure Spi_Lcd8_Chr(Row : byte; Column : byte; Out_Char : byte);

Returns Nothing.

Description

Prints character on LCD at specified position. Both variables and literals can be
passed as character.

Parameters :

- row: writing position row number
- column: writing position column number
- out_char: character to be written

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd8_Config routines.

Example
// Write character "i" at row 2, column 3:
Spi_Lcd8_Chr(2, 3, 'i');

Spi_Lcd8_Chr_Cp

Spi_Lcd8_Cmd

353MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_Lcd8_Chr_CP(Out_Char : byte);

Returns Nothing.

Description

Prints character on LCD at current cursor position. Both variables and literals
can be passed as character.

Parameters :

- out_char : character to be written

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd8_Config routines.

Example

Print “e” at current cursor position:

// Write character "e" at current cursor position:
Spi_Lcd8_Chr_Cp('e');

Prototype procedure Spi_Lcd8_Cmd(out_char : byte);

Returns Nothing.

Description

Sends command to LCD.

Parameters :

- out_char: command to be sent

Note: Predefined constants can be passed to the function, see Available LCD
Commands.

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd8_Config routines.

Example
// Clear LCD display:
Spi_Lcd8_Cmd(LCD_CLEAR);

Available LCD Commands

354 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Lcd Command Purpose

LCD_FIRST_ROW Move cursor to the 1st row

LCD_SECOND_ROW Move cursor to the 2nd row

LCD_THIRD_ROW Move cursor to the 3rd row

LCD_FOURTH_ROW Move cursor to the 4th row

LCD_CLEAR Clear display

LCD_RETURN_HOME
Return cursor to home position, returns a shifted display
to its original position. Display data RAM is unaffected.

LCD_CURSOR_OFF Turn off cursor

LCD_UNDERLINE_ON Underline cursor on

LCD_BLINK_CURSOR_ON Blink cursor on

LCD_MOVE_CURSOR_LEFT Move cursor left without changing display data RAM

LCD_MOVE_CURSOR_RIGHT Move cursor right without changing display data RAM

LCD_TURN_ON Turn LCD display on

LCD_TURN_OFF Turn LCD display off

LCD_SHIFT_LEFT Shift display left without changing display data RAM

LCD_SHIFT_RIGHT Shift display right without changing display data RAM

Library Example

This example demonstrates how to communicate LCD in 8-bit mode via the SPI
module, using serial to parallel convertor MCP23S17.

program Spi_LCD8_Test;

var text : array[16] of byte;

// Port Expander module connections
var SPExpanderRST : sbit at P1.B0;
var SPExpanderCS : sbit at P1.B1;
// End Port Expander module connections

begin
text := 'mikroElektronika';
Spi_Init(); // Initialize SPI

interface
Spi_Lcd8_Config(0); // Intialize LCD

in 8bit mode via SPI
Spi_Lcd8_Cmd(LCD_CLEAR); // Clear display
Spi_Lcd8_Cmd(LCD_CURSOR_OFF); // Turn cursor off
Spi_Lcd8_Out(1,6, text); // Print text to

LCD, 1st row, 6th column...
Spi_Lcd8_Chr_CP('!'); // Append '!'
Spi_Lcd8_Out(2,1, 'mikroelektronika'); // Print text to LCD,

2nd row, 1st column...
Spi_Lcd8_Out(3,1, text); // For LCD modules

with more than two rows
Spi_Lcd8_Out(4,15, text); // For LCD modules

with more than two rows
end.

355MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

HW Connection

SPI LCD8 HW connection

356 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

SPI T6963C GRAPHIC LCD LIBRARY

The mikroPascal for 8051 provides a library for working with GLCDs based on
TOSHIBA T6963C controller via SPI interface. The Toshiba T6963C is a very popu-
lar LCD controller for the use in small graphics modules. It is capable of controlling
displays with a resolution up to 240x128. Because of its low power and small out-
line it is most suitable for mobile applications such as PDAs, MP3 players or mobile
measurement equipment. Although this controller is small, it has a capability of dis-
playing and merging text and graphics and it manages all interfacing signals to the
displays Row and Column drivers.

For creating a custom set of GLCD images use GLCD Bitmap Editor Tool.

Note: The library uses the SPI module for communication. The user must initialize
SPI module before using the Spi T6963C GLCD Library.

Note: This Library is designed to work with mikroElektronika's Serial GLCD 240x128
and 240x64 Adapter Boards pinout, see schematic at the bottom of this page for
details.

Note: Some mikroElektronika's adapter boards have pinout different from T6369C
datasheets. Appropriate relations between these labels are given in the table below:

External dependencies of Spi T6963C Graphic LCD Library

The implementation of Spi T6963C Graphic LCD Library routines is based on Port
Expander Library routines.

External dependencies are the same as Port Expander Library external dependencies.

357MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Adapter Board T6369C datasheet

RS C/D

R/W /RD

E /WR

Library Routines

- Spi_T6963C_Config
- Spi_T6963C_WriteData
- Spi_T6963C_WriteCommand
- Spi_T6963C_SetPtr
- Spi_T6963C_WaitReady
- Spi_T6963C_Fill
- Spi_T6963C_Dot
- Spi_T6963C_Write_Char
- Spi_T6963C_Write_Text
- Spi_T6963C_Line
- Spi_T6963C_Rectangle
- Spi_T6963C_Box
- Spi_T6963C_Circle
- Spi_T6963C_Image
- Spi_T6963C_Sprite
- Spi_T6963C_Set_Cursor

Note: The following low level library routines are implemented as macros. These
macros can be found in the Spi_T6963C.h header file which is located in the SPI
T6963C example projects folders.

- Spi_T6963C_ClearBit
- Spi_T6963C_SetBit
- Spi_T6963C_NegBit
- Spi_T6963C_DisplayGrPanel
- Spi_T6963C_DisplayTxtPanel
- Spi_T6963C_SetGrPanel
- Spi_T6963C_SetTxtPanel
- Spi_T6963C_PanelFill
- Spi_T6963C_GrFill
- Spi_T6963C_TxtFill
- Spi_T6963C_Cursor_Height
- Spi_T6963C_Graphics
- Spi_T6963C_Text
- Spi_T6963C_Cursor
- Spi_T6963C_Cursor_Blink

358 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Spi_T6963C_Config

359MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
procedure Spi_T6963C_Config(width : word; height : byte; fntW :
byte; DeviceAddress : byte; wr : byte; rd : byte; cd : byte; rst
: byte);

Returns Nothing.

Description

Initalizes the Graphic Lcd controller.

Parameters :

- width: width of the GLCD panel
- height: height of the GLCD panel
- fntW: font width
- DeviceAddress: SPI expander hardware address, see schematic at the

bottom of this page
- wr: write signal pin on GLCD control port
- rd: read signal pin on GLCD control port
- cd: command/data signal pin on GLCD control port
- rst: reset signal pin on GLCD control port

Display RAM organization:
The library cuts RAM into panels : a complete panel is one graphics panel fol-
lowed by a text panel (see schematic below).

schematic:
+---------------------+ /\
+ GRAPHICS PANEL #0 + |
+ + |
+ + |
+ + |
+---------------------+ | PANEL 0
+ TEXT PANEL #0 + |
+ + \/
+---------------------+ /\
+ GRAPHICS PANEL #1 + |
+ + |
+ + |
+ + |
+---------------------+ | PANEL 1
+ TEXT PANEL #2 + |
+ + |
+---------------------+ \/

Requires

SPExpanderCS and SPExpanderRST variables must be defined before using
this function.

The SPI module needs to be initialized. See the Spi_Init and Spi_Init_Advanced
routines.

Spi_T6963C_WriteData

Spi_T6963C_WriteCommand

360 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Example

// port expander pinout definition
var SPExpanderRST : sbit at P1.B0;
var SPExpanderCS : sbit at P1.B1;
...
Spi_Init_Advanced(MASTER_OSC_DIV4 OR CLK_IDLE_LOW OR
IDLE_2_ACTIVE OR DATA_ORDER_MSB);
Spi_T6963C_Config(240, 64, 8, 0, 0, 1, 3, 4) ;

Prototype procedure Spi_T6963C_WriteData(Ddata : byte);

Returns Nothing.

Description

Writes data to T6963C controller via SPI interface.

Parameters :

- Ddata: data to be written

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_WriteData(AddrL);

Prototype procedure Spi_T6963C_WriteCommand(Ddata : byte);

Returns Nothing.

Description

Writes command to T6963C controller via SPI interface.

Parameters :

- Ddata: command to be written

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_WriteCommand(Spi_T6963C_CURSOR_POINTER_SET);

Spi_T6963C_SetPtr

Spi_T6963C_WaitReady

Spi_T6963C_Fill

361MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_T6963C_SetPtr(p : word; c : byte);

Returns Nothing.

Description

Sets the memory pointer p for command c.

Parameters :

- p: address where command should be written
- c: command to be written

Requires SToshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
Spi_T6963C_SetPtr(T6963C_grHomeAddr + start,
T6963C_ADDRESS_POINTER_SET);

Prototype procedure Spi_T6963C_WaitReady();

Returns Nothing.

Description Pools the status byte, and loops until Toshiba GLCD module is ready.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_WaitReady();

Prototype procedure Spi_T6963C_Fill(v : byte; start : word; len : word);

Returns Nothing.

Description

Fills controller memory block with given byte.

Parameters :

- v: byte to be written
- start: starting address of the memory block
- len: length of the memory block in bytes

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_Fill(0x33; 0x00FF; 0x000F);

Spi_T6963C_Dot

362 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_T6963C_Dot(x : integer; y : integer; color : byte);

Returns Nothing.

Description

Draws a dot in the current graphic panel of GLCD at coordinates (x, y).

Parameters :

- x: dot position on x-axis
- y: dot position on y-axis
- color: color parameter. Valid values: Spi_T6963C_BLACK and

Spi_T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_Dot(x0, y0, pcolor);

Spi_T6963C_Write_Char

363MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
procedure Spi_T6963C_Write_Char(c : byte; x : byte; y : byte;
mode : byte);

Returns Nothing.

Description

Writes a char in the current text panel of GLCD at coordinates (x, y).

Parameters :

- c: char to be written
- x: char position on x-axis
- y: char position on y-axis
- mode: mode parameter. Valid values:

Spi_T6963C_ROM_MODE_OR, Spi_T6963C_ROM_MODE_XOR,
Spi_T6963C_ROM_MODE_AND and Spi_T6963C_ROM_MODE_TEXT

Mode parameter explanation:

- OR Mode: In the OR-Mode, text and graphics can be displayed and the data
is logically “OR-ed”. This is the most common way of combining text and
graphics for example labels on buttons.

- XOR-Mode: In this mode, the text and graphics data are combined via the
logical “exclusive OR”. This can be useful to display text in negative mode, i.e.
white text on black background.

- AND-Mode: The text and graphic data shown on display are combined via the
logical “AND function”.

- TEXT-Mode: This option is only available when displaying just a text. The Text
Attribute values are stored in the graphic area of display memory.

For more details see the T6963C datasheet.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_Write_Char("A",22,23,AND);

Spi_T6963C_Write_Text

364 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure Spi_T6963C_Write_Text(str : ^byte; x : byte, y : byte;
mode : byte);

Returns Nothing.

Description

Writes text in the current text panel of GLCD at coordinates (x, y).

Parameters :

- str: text to be written
- x: text position on x-axis
- y: text position on y-axis
- mode: mode parameter. Valid values:

Spi_T6963C_ROM_MODE_OR, Spi_T6963C_ROM_MODE_XOR,
Spi_T6963C_ROM_MODE_AND and Spi_T6963C_ROM_MODE_TEXT

Mode parameter explanation:

- OR Mode: In the OR-Mode, text and graphics can be displayed and the data
is logically “OR-ed”. This is the most common way of combining text and
graphics for example labels on buttons.

- XOR-Mode: In this mode, the text and graphics data are combined via the
logical “exclusive OR”. This can be useful to display text in negative mode, i.e.
white text on black background.

- AND-Mode: The text and graphic data shown on the display are combined via
the logical “AND function”.

- TEXT-Mode: This option is only available when displaying just a text. The Text
Attribute values are stored in the graphic area of display memory.

For more details see the T6963C datasheet.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
Spi_T6963C_Write_Text('GLCD LIBRARY DEMO, WELCOME !', 0, 0,
T6963C_ROM_MODE_EXOR);

Spi_T6963C_Line

Spi_T6963C_Rectangle

365MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype
procedure Spi_T6963C_Line(x0 : integer; y0 : integer; x1 : inte-
ger; y1 : integer; pcolor : byte);

Returns Nothing.

Description

Draws a line from (x0, y0) to (x1, y1).

Parameters :

- x0: x coordinate of the line start
- y0: y coordinate of the line end
- x1: x coordinate of the line start
- y1: y coordinate of the line end
- pcolor: color parameter. Valid values:

Spi_T6963C_BLACK and Spi_T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_Line(0, 0, 239, 127, T6963C_WHITE);

Prototype
procedure Spi_T6963C_Rectangle(x0 : integer; y0 : integer; x1 :
integer; y1 : integer; pcolor : byte);

Returns Nothing.

Description

Draws a rectangle on GLCD.

Parameters :

- x0: x coordinate of the upper left rectangle corner
- y0: y coordinate of the upper left rectangle corner
- x1: x coordinate of the lower right rectangle corner
- y1: y coordinate of the lower right rectangle corner
- pcolor: color parameter. Valid values:

Spi_T6963C_BLACK and Spi_T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_Rectangle(20, 20, 219, 107, T6963C_WHITE);

Spi_T6963C_Box

Spi_T6963C_Circle

366 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
procedure Spi_T6963C_Box(x0 : integer; y0 : integer; x1 : inte-
ger; y1 : integer; pcolor : byte);

Returns Nothing.

Description

Draws a box on the GLCD

Parameters :

- x0: x coordinate of the upper left box corner
- y0: y coordinate of the upper left box corner
- x1: x coordinate of the lower right box corner
- y1: y coordinate of the lower right box corner
- pcolor: color parameter. Valid values:

Spi_T6963C_BLACK and Spi_T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_Box(0, 119, 239, 127, T6963C_WHITE);

Prototype
procedure Spi_T6963C_Circle(x : integer; y : integer; r :
longint; pcolor : byte);

Returns Nothing.

Description

Draws a circle on the GLCD.

Parameters :

- x: x coordinate of the circle center
- y: y coordinate of the circle center
- r: radius size
- pcolor: color parameter. Valid values:

Spi_T6963C_BLACK and Spi_T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_Circle(120, 64, 110, T6963C_WHITE);

Spi_T6963C_Image

Spi_T6963C_Sprite

367MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_T6963C_image(const pic : ^byte);

Returns Nothing.

Description

Displays bitmap on GLCD.

Parameters :

- pic: image to be displayed. Bitmap array can be located in both code and
RAM memory (due to the mikroPascal for 8051 pointer to const and pointer to
RAM equivalency).

Use the mikroPascal’s integrated GLCD Bitmap Editor (menu option Tools ›
GLCD Bitmap Editor) to convert image to a constant array suitable for display-
ing on GLCD.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_Image(my_image);

Prototype
procedure Spi_T6963C_sprite(px, py, sx, sy : byte; const pic :
^byte);

Returns Nothing.

Description

Fills graphic rectangle area (px, py) to (px+sx, py+sy) with custom size picture.

Parameters :

- px: x coordinate of the upper left picture corner. Valid values: multiples of the
font width

- py: y coordinate of the upper left picture corner
- pic: picture to be displayed
- sx: picture width. Valid values: multiples of the font width
- sy: picture height

Note: If px and sx parameters are not multiples of the font width they will be
scaled to the nearest lower number that is a multiple of the font width.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_Sprite(76, 4, einstein, 88, 119); // draw a sprite

Spi_T6963C_Set_Cursor

Spi_T6963C_ClearBit

Spi_T6963C_SetBit

368 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_T6963C_set_cursor(x, y : byte);

Returns Nothing.

Description

Sets cursor to row x and column y.

Parameters :

- x: cursor position row number
- y: cursor position column number

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_Set_Cursor(cposx, cposy);

Prototype procedure Spi_T6963C_clearBit(b : byte);

Returns Nothing.

Description

Clears control port bit(s).

Parameters :

- b: bit mask. The function will clear bit x on control port if bit x in bit mask is set to 1.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// clear bits 0 and 1 on control port
Spi_T6963C_ClearBit(0x03);

Prototype procedure Spi_T6963C_setBit(b : byte);

Returns Nothing.

Description

Sets control port bit(s).

Parameters :

- b: bit mask. The function will set bit x on control port if bit x in bit mask is set to 1.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// set bits 0 and 1 on control port
Spi_T6963C_SetBit(0x03);

Spi_T6963C_NegBit

Spi_T6963C_DisplayGrPanel

Spi_T6963C_DisplayTxtPanel

369MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_T6963C_negBit(b : byte);

Returns Nothing.

Description

Negates control port bit(s).

Parameters :

- b: bit mask. The function will negate bit x on control port if bit x in bit mask is
set to 1.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// negate bits 0 and 1 on control port
Spi_T6963C_NegBit(0x03);

Prototype procedure Spi_T6963C_DisplayGrPanel(n : byte);

Returns Nothing.

Description

Display selected graphic panel.

Parameters :

- n: graphic panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// display graphic panel 1
Spi_T6963C_DisplayGrPanel(1);

Prototype procedure Spi_T6963C_DisplayTxtPanel(n : byte);

Returns Nothing.

Description

Display selected text panel.

Parameters :

- n: text panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// display text panel 1
Spi_T6963C_DisplayTxtPanel(1);

Spi_T6963C_SetGrPanel

Spi_T6963C_SetTxtPanel

370 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_T6963C_SetGrPanel(n : byte);

Returns Nothing.

Description

Compute start address for selected graphic panel and set appropriate internal
pointers. All subsequent graphic operations will be preformed at this graphic
panel.

Parameters :

- n: graphic panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// set graphic panel 1 as current graphic panel.
Spi_T6963C_SetGrPanel(1);

Prototype procedure Spi_T6963C_SetTxtPanel(n : byte);

Returns Nothing.

Description

Compute start address for selected text panel and set appropriate internal point-
ers. All subsequent text operations will be preformed at this text panel.

Parameters :

- n: text panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// set text panel 1 as current text panel.
Spi_T6963C_SetTxtPanel(1);

Spi_T6963C_PanelFill

Spi_T6963C_GrFill

Spi_T6963C_TxtFill

371MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_T6963C_PanelFill(v : byte);

Returns Nothing.

Description

Fill current panel in full (graphic+text) with appropriate value (0 to clear).

Parameters :

- v: value to fill panel with.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
clear current panel
Spi_T6963C_PanelFill(0);

Prototype procedure Spi_T6963C_GrFill(v : byte);

Returns Nothing.

Description

Fill current graphic panel with appropriate value (0 to clear).

Parameters :

- v: value to fill graphic panel with.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// clear current graphic panel
Spi_T6963C_GrFill(0);

Prototype procedure Spi_T6963C_TxtFill(v : byte);

Returns Nothing.

Description

Fill current text panel with appropriate value (0 to clear).

Parameters :

- v: this value increased by 32 will be used to fill text panel.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// clear current text panel
Spi_T6963C_TxtFill(0);

Spi_T6963C_Cursor_Height

Spi_T6963C_Graphics

Spi_T6963C_Text

372 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_T6963C_Cursor_Height(n : byte);

Returns Nothing.

Description

Set cursor size.

Parameters :

- n: cursor height. Valid values: 0..7.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C_Cursor_Height(7);

Prototype procedure Spi_T6963C_Graphics(n : byte);

Returns Nothing.

Description

Enable/disable graphic displaying.

Parameters :

- n: graphic enable/disable parameter. Valid values: 0 (disable graphic
dispaying) and 1 (enable graphic displaying).

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// enable graphic displaying
Spi_T6963C_Graphics(1);

Prototype procedure Spi_T6963C_Text(n : byte);

Returns Nothing.

Description

Enable/disable text displaying.

Parameters :

- n: text enable/disable parameter. Valid values: 0 (disable text dispaying) and 1
(enable text displaying).

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// enable text displaying
Spi_T6963C_Text(1);

Spi_T6963C_Cursor

Spi_T6963C_Cursor_Blink

Library Example

The following drawing demo tests advanced routines of the Spi T6963C GLCD library. Hardware
configurations in this example are made for the T6963C 240x128 display, Easy8051B board and
AT89S8253.

373MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Spi_T6963C_Cursor(n : byte);

Returns Nothing.

Description

Set cursor on/off.

Parameters :

- n: on/off parameter. Valid values: 0 (set cursor off) and 1 (set cursor on).

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// set cursor on
Spi_T6963C_Cursor(1);

Prototype procedure Spi_T6963C_Cursor_Blink(n : byte);

Returns Nothing.

Description

Enable/disable cursor blinking.

Parameters :

- n: cursor blinking enable/disable parameter. Valid values: 0 (disable cursor
blinking) and 1 (enable cursor blinking).

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example
// enable cursor blinking
Spi_T6963C_Cursor_Blink(1);

#include "Spi_T6963C.h"

/*
* bitmap pictures stored in ROM
*/

extern const code char mc[] ;
extern const code char einstein[] ;

// Port Expander module connections
sbit SPExpanderRST at P1.B0;
sbit SPExpanderCS at P1.B1;
// End Port Expander module connections

procedure main() {

char idata txt1[] = " EINSTEIN WOULD HAVE LIKED mC";
char idata txt[] = " GLCD LIBRARY DEMO, WELCOME !";

byte panel ; // current panel
word i ; // general purpose register
byte curs ; // cursor visibility
word cposx, cposy ; // cursor x-y position

P0 = 255; // Configure PORT0 as input

/*
* init display for 240 pixel width and 128 pixel height
* 8 bits character width
* data bus on MCP23S17 portB
* control bus on MCP23S17 portA
* bit 2 is !WR
* bit 1 is !RD
* bit 0 is !CD
* bit 4 is RST
*
* chip enable, reverse on, 8x8 font internaly set in library
*/

// Initialize SPI module
Spi_Init_Advanced(MASTER_OSC_DIV4 OR CLK_IDLE_LOW OR IDLE_2_ACTIVE

OR DATA_ORDER_MSB);
// Initialize SPI Toshiba 240x128
Spi_T6963C_Config(240, 128, 8, 0, 2, 1, 0, 4) ;
Delay_ms(1000);
/*
* Enable both graphics and text display at the same time
*/

Spi_T6963C_graphics(1) ;
Spi_T6963C_text(1) ;

374 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

panel = 0 ;
i = 0 ;
curs = 0 ;
cposx = cposy = 0 ;

/*
* Text messages
*/

Spi_T6963C_write_text(txt, 0, 0, Spi_T6963C_ROM_MODE_XOR) ;
Spi_T6963C_write_text(txt1, 0, 15, Spi_T6963C_ROM_MODE_XOR) ;

/*
* Cursor
*/

Spi_T6963C_cursor_height(8) ; // 8 pixel height
Spi_T6963C_set_cursor(0, 0) ; // move cursor to top left
Spi_T6963C_cursor(0) ; // cursor off

/*
* Draw rectangles
*/

Spi_T6963C_rectangle(0, 0, 239, 127, Spi_T6963C_WHITE) ;
Spi_T6963C_rectangle(20, 20, 219, 107, Spi_T6963C_WHITE) ;
Spi_T6963C_rectangle(40, 40, 199, 87, Spi_T6963C_WHITE) ;
Spi_T6963C_rectangle(60, 60, 179, 67, Spi_T6963C_WHITE) ;

/*
* Draw a cross
*/

Spi_T6963C_line(0, 0, 239, 127, Spi_T6963C_WHITE) ;
Spi_T6963C_line(0, 127, 239, 0, Spi_T6963C_WHITE) ;

/*
* Draw solid boxes
*/

Spi_T6963C_box(0, 0, 239, 8, Spi_T6963C_WHITE) ;
Spi_T6963C_box(0, 119, 239, 127, Spi_T6963C_WHITE) ;

/*
* Draw circles
*/

Spi_T6963C_circle(120, 64, 10, Spi_T6963C_WHITE) ;
Spi_T6963C_circle(120, 64, 30, Spi_T6963C_WHITE) ;
Spi_T6963C_circle(120, 64, 50, Spi_T6963C_WHITE) ;
Spi_T6963C_circle(120, 64, 70, Spi_T6963C_WHITE) ;
Spi_T6963C_circle(120, 64, 90, Spi_T6963C_WHITE) ;
Spi_T6963C_circle(120, 64, 110, Spi_T6963C_WHITE) ;
Spi_T6963C_circle(120, 64, 130, Spi_T6963C_WHITE) ;

375MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Spi_T6963C_sprite(76, 4, einstein, 88, 119) ; // Draw a sprite

Spi_T6963C_setGrPanel(1) ; // Select other
graphic panel

Spi_T6963C_image(mc) ; // Fill the graph-
ic screen with a picture

for(;;) { // Endless loop

/*
* If P0_0 is pressed, toggle the display between graphic panel

0 and graphic 1
*/

if(!P0_0) {
panel++ ;
panel &= 1 ;
Spi_T6963C_displayGrPanel(panel) ;
Delay_ms(300) ;
}

/*
* If P0_1 is pressed, display only graphic panel
*/

else if(!P0_1) {
Spi_T6963C_graphics(1) ;
Spi_T6963C_text(0) ;
Delay_ms(300) ;
}

/*
* If P0_2 is pressed, display only text panel
*/

else if(!P0_2) {
Spi_T6963C_graphics(0) ;
Spi_T6963C_text(1) ;
Delay_ms(300) ;
}

/*
* If P0_3 is pressed, display text and graphic panels
*/

else if(!P0_3) {
Spi_T6963C_graphics(1) ;
Spi_T6963C_text(1) ;
Delay_ms(300) ;
}

376 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

/*
* If P0_4 is pressed, change cursor
*/

else if(!P0_4) {
curs++ ;
if(curs == 3) curs = 0 ;
switch(curs) {

case 0:
// no cursor
Spi_T6963C_cursor(0) ;
break ;

case 1:
// blinking cursor
Spi_T6963C_cursor(1) ;
Spi_T6963C_cursor_blink(1) ;
break ;

case 2:
// non blinking cursor
Spi_T6963C_cursor(1) ;
Spi_T6963C_cursor_blink(0) ;
break ;

}
Delay_ms(300) ;
}

/*
* Move cursor, even if not visible
*/

cposx++ ;
if(cposx == Spi_T6963C_txtCols) {

cposx = 0 ;
cposy++ ;
if(cposy == Spi_T6963C_grHeight / Spi_T6963C_CHARACTER_HEIGHT)

{
cposy = 0 ;
}

}
Spi_T6963C_set_cursor(cposx, cposy) ;

Delay_ms(100) ;
}

}

377MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

HW Connection

Spi T6963C GLCD HW connection

378 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

T6963C GRAPHIC LCD LIBRARY

The mikroPascal for 8051 provides a library for working with GLCDs based on
TOSHIBA T6963C controller. The Toshiba T6963C is a very popular LCD controller
for the use in small graphics modules. It is capable of controlling displays with a res-
olution up to 240x128. Because of its low power and small outline it is most suitable
for mobile applications such as PDAs, MP3 players or mobile measurement equip-
ment. Although small, this contoller has a capability of displaying and merging text
and graphics and it manages all the interfacing signals to the displays Row and Col-
umn drivers.

For creating a custom set of GLCD images use GLCD Bitmap Editor Tool.

Note: ChipEnable(CE), FontSelect(FS) and Reverse(MD) have to be set to appro-
priate levels by the user outside of the T6963C_Init function. See the Library Exam-
ple code at the bottom of this page.

Note: Some mikroElektronika's adapter boards have pinout different from T6369C
datasheets. Appropriate relations between these labels are given in the table below:

External dependencies of T6963C Graphic LCD Library

379MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Adapter Board T6369C datasheet

RS C/D

R/W /RD

E /WR

The following variables
must be defined in all
projects using T6963C
Graphic LCD library:

Description: Example :

var T6963C_dataPort :
byte; external; sfr; T6963C Data Port.

var T6963C_dataPort :
byte at P0; sfr;

var T6963C_ctrlPort :
byte; external; sfr; T6963C Control Port.

var T6963C_ctrlPort :
byte at P1; sfr;

var T6963C_ctrlwr :
sbit; external; Write signal.

var T6963C_ctrlwr :
sbit; at P1.B2;

var T6963C_ctrlrd :
sbit external; Read signal.

var T6963C_ctrlrd :
sbit at P1.B1;

var T6963C_ctrlcd :
sbit; external; Command/Data signal.

var T6963C_ctrlcd :
sbit at P1.B0;

var T6963C_ctrlrst :
sbit; external; Reset signal.

var T6963C_ctrlrst :
sbit at P1.B4;

Library Routines

- T6963C_Init
- T6963C_WriteData
- T6963C_WriteCommand
- T6963C_SetPtr
- T6963C_WaitReady
- T6963C_Fill
- T6963C_Dot
- T6963C_Write_Char
- T6963C_Write_Text
- T6963C_Line
- T6963C_Rectangle
- T6963C_Box
- T6963C_Circle
- T6963C_Image
- T6963C_Sprite
- T6963C_Set_Cursor

Note: The following low level library routines are implemented as macros. These
macros can be found in the T6963C.h header file which is located in the T6963C
example projects folders.

- T6963C_ClearBit
- T6963C_SetBit
- T6963C_NegBit
- T6963C_DisplayGrPanel
- T6963C_DisplayTxtPanel
- T6963C_SetGrPanel
- T6963C_SetTxtPanel
- T6963C_PanelFill
- T6963C_GrFill
- T6963C_TxtFill
- T6963C_Cursor_Height
- T6963C_Graphics
- T6963C_Text
- T6963C_Cursor
- T6963C_Cursor_Blink

380 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

T6963C_Init

381MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_init(width : word; height, fntW : byte);

Returns Nothing.

Description

Initalizes the Graphic Lcd controller.

Parameters :

- width: width of the GLCD panel
- height: height of the GLCD panel
- fntW: font width

Display RAM organization:
The library cuts the RAM into panels : a complete panel is one graphics panel
followed by a text panel (see schematic below).

schematic:
+---------------------+ /\
+ GRAPHICS PANEL #0 + |
+ + |
+ + |
+ + |
+---------------------+ | PANEL 0
+ TEXT PANEL #0 + |
+ + \/
+---------------------+ /\
+ GRAPHICS PANEL #1 + |
+ + |
+ + |
+ + |
+---------------------+ | PANEL 1
+ TEXT PANEL #2 + |
+ + |
+---------------------+ \/

Requires

Global variables :

- T6963C_dataPort : Data Port
- T6963C_ctrlPort : Control Port
- T6963C_ctrlwr : write signal pin
- T6963C_ctrlrd : read signal pin
- T6963C_ctrlcd : command/data signal pin
- T6963C_ctrlrst : reset signal pin

must be defined before using this function.

T6963C_WriteData

T6963C_WriteCommand

382 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Example

// T6963CGLCD pinout definition
var T6963C_dataPort : byte at P0; sfr; // pointer to DATA
BUS port
var T6963C_ctrlPort : byte at P1; sfr; // pointer to CONTROL
BUS port
var T6963C_ctrlwr : sbit; at P1.B2; // WR write signal
var T6963C_ctrlrd : sbit at P1.B1; // RD read signal
var T6963C_ctrlcd : sbit at P1.B0; // CD command/data
signal
var T6963C_ctrlrst : sbit at P1.B4; // RST reset signal
...
// init display for 240 pixel width, 128 pixel height and 8 bits
character width
T6963C_init(240, 128, 8);

Prototype procedure T6963C_WriteData(mydata : byte);

Returns Nothing.

Description

Writes data to T6963C controller.

Parameters :

- mydata: data to be written

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_WriteData(AddrL);

Prototype procedure T6963C_WriteCommand(mydata : byte);

Returns Nothing.

Description

Writes command to T6963C controller.

Parameters :

- mydata: command to be written

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_WriteCommand(T6963C_CURSOR_POINTER_SET);

T6963C_SetPtr

T6963C_WaitReady

T6963C_Fill

383MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_SetPtr(p : word; c : byte);

Returns Nothing.

Description

Sets the memory pointer p for command c.

Parameters :

- p: address where command should be written
- c: command to be written

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
T6963C_SetPtr(T6963C_grHomeAddr + start,
T6963C_ADDRESS_POINTER_SET);

Prototype procedure T6963C_WaitReady();

Returns Nothing.

Description Pools the status byte, and loops until Toshiba GLCD module is ready.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_WaitReady();

Prototype procedure T6963C_Fill(v : byte; start, len : word);

Returns Nothing.

Description

Fills controller memory block with given byte.

Parameters :

- v: byte to be written
- start: starting address of the memory block
- len: length of the memory block in bytes

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Fill(0x33,0x00FF,0x000F);

T6963C_Dot

384 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_Dot(x, y : integer; color : byte);

Returns Nothing.

Description

Draws a dot in the current graphic panel of GLCD at coordinates (x, y).

Parameters :

- x: dot position on x-axis
- y: dot position on y-axis
- color: color parameter. Valid values: T6963C_BLACK and T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Dot(x0, y0, pcolor);

T6963C_Write_Char

385MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_Write_Char(c, x, y, mode : byte);

Returns Nothing.

Description

Writes a char in the current text panel of GLCD at coordinates (x, y).

Parameters :

- c: char to be written
- x: char position on x-axis
- y: char position on y-axis
- mode: mode parameter. Valid values: T6963C_ROM_MODE_OR,
T6963C_ROM_MODE_XOR, T6963C_ROM_MODE_AND and
T6963C_ROM_MODE_TEXT

Mode parameter explanation:

- OR Mode: In the OR-Mode, text and graphics can be displayed and the data
is logically “OR-ed”. This is the most common way of combining text and
graphics for example labels on buttons.

- XOR-Mode: In this mode, the text and graphics data are combined via the
logical “exclusive OR”. This can be useful to display text in the negative mode,
i.e. white text on black background.

- AND-Mode: The text and graphic data shown on display are combined via the
logical “AND function”.

- TEXT-Mode: This option is only available when displaying just a text. The Text
Attribute values are stored in the graphic area of display memory.

For more details see the T6963C datasheet.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Write_Char('A',22,23,AND);

T6963C_Write_Text

386 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_Write_Text(str : ^byte; x, y, mode : byte);

Returns Nothing.

Description

Writes text in the current text panel of GLCD at coordinates (x, y).

Parameters :

- str: text to be written
- x: text position on x-axis
- y: text position on y-axis
- mode: mode parameter. Valid values: T6963C_ROM_MODE_OR,
T6963C_ROM_MODE_XOR, T6963C_ROM_MODE_AND and
T6963C_ROM_MODE_TEXT

Mode parameter explanation:

- OR Mode: In the OR-Mode, text and graphics can be displayed and the data
is logically “OR-ed”. This is the most common way of combining text and
graphics for example labels on buttons.

- XOR-Mode: In this mode, the text and graphics data are combined via the
logical “exclusive OR”. This can be useful to display text in the negative mode,
i.e. white text on black background.

- AND-Mode: The text and graphic data shown on display are combined via the
logical “AND function”.

- TEXT-Mode: This option is only available when displaying just a text. The Text
Attribute values are stored in the graphic area of display memory.

For more details see the T6963C datasheet.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
T6963C_Write_Text(" GLCD LIBRARY DEMO, WELCOME !", 0, 0,
T6963C_ROM_MODE_XOR);

T6963C_Line

T6963C_Rectangle

387MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_Line(x0, y0, x1, y1 : integer; pcolor : byte);

Returns Nothing.

Description

Draws a line from (x0, y0) to (x1, y1).

Parameters :

- x0: x coordinate of the line start
- y0: y coordinate of the line end
- x1: x coordinate of the line start
- y1: y coordinate of the line end
- pcolor: colajor parameter. Valid values:

T6963C_BLACK and T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Line(0, 0, 239, 127, T6963C_WHITE);

Prototype procedure T6963C_Rectangle(x0, y0, x1, y1 : integer; pcolor : byte)

Returns Nothing.

Description

Draws a rectangle on GLCD.

Parameters :

- x0: x coordinate of the upper left rectangle corner
- y0: y coordinate of the upper left rectangle corner
- x1: x coordinate of the lower right rectangle corner
- y1: y coordinate of the lower right rectangle corner
- pcolor: color parameter. Valid values: T6963C_BLACK and T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Rectangle(20, 20, 219, 107, T6963C_WHITE);

T6963C_Box

T6963C_Circle

388 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_Box(x0, y0, x1, y1 : integer; pcolor : byte);

Returns Nothing.

Description

Draws a box on GLCD

Parameters :

- x0: x coordinate of the upper left box corner
- y0: y coordinate of the upper left box corner
- x1: x coordinate of the lower right box corner
- y1: y coordinate of the lower right box corner
- pcolor: color parameter. Valid values: T6963C_BLACK and T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Box(0, 119, 239, 127, T6963C_WHITE);

Prototype procedure T6963C_Circle(x, y : integer; r : longint; pcolor : byte);

Returns Nothing.

Description

Draws a circle on GLCD.

Parameters :

- x: x coordinate of the circle center
- y: y coordinate of the circle center
- r: radius size
- pcolor: color parameter. Valid values: T6963C_BLACK and T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Circle(120, 64, 110, T6963C_WHITE);

T6963C_Image

T6963C_Sprite

389MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_Image(const pic : ^byte);

Returns Nothing.

Description

Displays bitmap on GLCD.

Parameters :

- pic: image to be displayed. Bitmap array can be located in both code and
RAM memory (due to the mikroPascal for 8051 pointer to const and pointer to
RAM equivalency).

Use the mikroPascal’s integrated GLCD Bitmap Editor (menu option Tools ›
GLCD Bitmap Editor) to convert image to a constant array suitable for display-
ing on GLCD.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Image(mc);

Prototype procedure T6963C_Sprite(px, py, sx, sy : byte; const pic : ^byte);

Returns Nothing.

Description

Fills graphic rectangle area (px, py) to (px+sx, py+sy) with custom size picture.

Parameters :

- px: x coordinate of the upper left picture corner. Valid values: multiples of the
font width

- py: y coordinate of the upper left picture corner
- pic: picture to be displayed
- sx: picture width. Valid values: multiples of the font width
- sy: picture height

Note: If px and sx parameters are not multiples of the font width they will be
scaled to the nearest lower number that is a multiple of the font width.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Sprite(76, 4, einstein, 88, 119); // draw a sprite

T6963C_Set_Cursor

T6963C_ClearBit

T6963C_SetBit

390 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_Set_Cursor(x, y : byte);

Returns Nothing.

Description

Sets cursor to row x and column y.

Parameters :

- x: cursor position row number
- y: cursor position column number

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Set_Cursor(cposx, cposy);

Prototype procedure T6963C_ClearBit(b : byte);

Returns Nothing.

Description

Clears control port bit(s).

Parameters :

- b: bit mask. The function will clear bit x on control port if bit x in bit mask is set to 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// clear bits 0 and 1 on control port
T6963C_ClearBit(0x03);

Prototype procedure T6963C_SetBit(b : byte);

Returns Nothing.

Description

Sets control port bit(s).

Parameters :

- b: bit mask. The function will set bit x on control port if bit x in bit mask is set to 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// set bits 0 and 1 on control port
T6963C_SetBit(0x03);

T6963C_NegBit

T6963C_DisplayGrPanel

T6963C_DisplayTxtPanel

391MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_NegBit(b : byte);

Returns Nothing.

Description

Negates control port bit(s).

Parameters :

- b: bit mask. The function will negate bit x on control port if bit x in bit mask is
set to 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// negate bits 0 and 1 on control port
T6963C_NegBit(0x03);

Prototype procedure T6963C_DisplayGrPanel(n : byte);

Returns Nothing.

Description

Display selected graphic panel.

Parameters :

- n: graphic panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// display graphic panel 1
T6963C_DisplayGrPanel(1);

Prototype procedure T6963C_DisplayTxtPanel(n : byte);

Returns Nothing.

Description

Display selected text panel.

Parameters :

- n: text panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// display text panel 1
T6963C_DisplayTxtPanel(1);

T6963C_SetGrPanel

T6963C_SetTxtPanel

392 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_SetGrPanel(n : byte);

Returns Nothing.

Description

Compute start address for selected graphic panel and set appropriate internal
pointers. All subsequent graphic operations will be preformed at this graphic
panel.

Parameters :

- n: graphic panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// set graphic panel 1 as current graphic panel.
T6963C_SetGrPanel(1);

Prototype procedure T6963C_SetTxtPanel(n : byte);

Returns Nothing.

Description

Compute start address for selected text panel and set appropriate internal point-
ers. All subsequent text operations will be preformed at this text panel.

Parameters :

- n: text panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// set text panel 1 as current text panel.
T6963C_SetTxtPanel(1);

T6963C_PanelFill

T6963C_GrFill

T6963C_TxtFill

393MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_PanelFill(v : byte);

Returns Nothing.

Description

Fill current panel in full (graphic+text) with appropriate value (0 to clear).

Parameters :

- v: value to fill panel with.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
clear current panel
T6963C_PanelFill(0);

Prototype procedure T6963C_GrFill(v : byte);

Returns Nothing.

Description

Fill current graphic panel with appropriate value (0 to clear).

Parameters :

- v: value to fill graphic panel with.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// clear current graphic panel
T6963C_GrFill(0);

Prototype procedure T6963C_TxtFill(v : byte);

Returns Nothing.

Description

Fill current text panel with appropriate value (0 to clear).

Parameters :

- v: this value increased by 32 will be used to fill text panel.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// clear current text panel
T6963C_TxtFill(0);

T6963C_Cursor_Height

T6963C_Graphics

T6963C_Text

394 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_Cursor_Height(n : byte);

Returns Nothing.

Description

Set cursor size.

Parameters :

- n: cursor height. Valid values: 0..7.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Cursor_Height(7);

Prototype procedure T6963C_Graphics(n : byte);

Returns Nothing.

Description

Enable/disable graphic displaying.

Parameters :

- n: on/off parameter. Valid values: 0 (disable graphic dispaying) and 1 (enable
graphic displaying).

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// enable graphic displaying
T6963C_Graphics(1);

Prototype procedure T6963C_Text(n : byte);

Returns Nothing.

Description

Enable/disable text displaying.

Parameters :

- n: on/off parameter. Valid values: 0 (disable text dispaying) and 1 (enable text
displaying).

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// enable text displaying
T6963C_Text(1);

T6963C_Cursor

T6963C_Cursor_Blink

Library Example

The following drawing demo tests advanced routines of the T6963C GLCD library. Hardware con-
figurations in this example are made for the T6963C 240x128 display, Easy8051B board and
AT89S8253.

395MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure T6963C_Cursor(n : byte);

Returns Nothing.

Description

Set cursor on/off.

Parameters :

- n: on/off parameter. Valid values: 0 (set cursor off) and 1 (set cursor on).

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// set cursor on
T6963C_Cursor(1);

Prototype procedure T6963C_Cursor_Blink(n : byte);

Returns Nothing.

Description

Enable/disable cursor blinking.

Parameters :

- n: on/off parameter. Valid values: 0 (disable cursor blinking) and 1 (enable
cursor blinking).

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example
// enable cursor blinking
T6963C_Cursor_Blink(1);

program T6963C_240x128;

uses __Lib_T6963C_Consts, bitmap, bitmap2;

var
// T6963C module connections

T6963C_dataPort : byte at P0; sfr ; // DATA port
T6963C_cntlPort : byte at P1; sfr ; // CONTROL port

T6963C_cntlwr : sbit at P1.B2; // WR write signal
T6963C_cntlrd : sbit at P1.B1; // RD read signal
T6963C_cntlcd : sbit at P1.B0; // CD command/data signal
T6963C_cntlrst : sbit at P1.B4; // RST reset signal

// End T6963C module connections

var panel : byte; // current panel
i : word; // general purpose register

curs : byte; // cursor visibility
cposx,
cposy : word; // cursor x-y position
txtcols : byte; // number of text coloms
txt, txt1 : string[29]; idata ;

begin
txt1 := ' EINSTEIN WOULD HAVE LIKED mC';
txt := ' GLCD LIBRARY DEMO, WELCOME !';

P2 := 255; // all inputs
// Clear T6963C ports
P1 := 0; // control bus
P0 := 0; // data bus

{
* init display for 240 pixel width and 128 pixel height
* 8 bits character width
* data bus on P0
* control bus on P1
* bit 2 is !WR
* bit 1 is !RD
* bit 0 is !CD
* bit 4 is RST

}
T6963C_init(240, 128, 8) ;

{
*
* enable both graphics and text display at the same time
*

}

396 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

T6963C_graphics(1) ;
T6963C_text(1) ;

panel := 0 ;
i := 0 ;
curs := 0 ;
cposx := 0 ;
cposy := 0 ;
txtcols := 240 div 8; // calculate number of

text colomns
// (grafic display

width divided by font width)
{
*
* text messages
*

}
T6963C_write_text(txt, 0, 0, T6963C_ROM_MODE_XOR) ;
T6963C_write_text(txt1, 0, 15, T6963C_ROM_MODE_XOR) ;

{
*
* cursor
*

}
T6963C_cursor_height(8) ; // 8 pixel height
T6963C_set_cursor(0, 0) ; // move cursor to top left
T6963C_cursor(0) ; // cursor off

{
*
* draw rectangles
*

}
T6963C_rectangle(0, 0, 239, 127, T6963C_BLACK) ;
T6963C_rectangle(20, 20, 219, 107, T6963C_BLACK) ;
T6963C_rectangle(40, 40, 199, 87, T6963C_BLACK) ;
T6963C_rectangle(60, 60, 179, 67, T6963C_BLACK) ;

{
*
* draw a cross
*

}
T6963C_line(0, 0, 239, 127, T6963C_BLACK) ;
T6963C_line(0, 127, 239, 0, T6963C_BLACK) ;

{

397MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

*
* draw solid boxes
*

}
T6963C_box(0, 0, 239, 8, T6963C_BLACK) ;
T6963C_box(0, 119, 239, 127, T6963C_BLACK) ;

{
*
* draw circles
*

}
T6963C_circle(120, 64, 10, T6963C_BLACK) ;
T6963C_circle(120, 64, 30, T6963C_BLACK) ;
T6963C_circle(120, 64, 50, T6963C_BLACK) ;
T6963C_circle(120, 64, 70, T6963C_BLACK) ;
T6963C_circle(120, 64, 90, T6963C_BLACK) ;
T6963C_circle(120, 64, 110, T6963C_BLACK) ;
T6963C_circle(120, 64, 130, T6963C_BLACK) ;

T6963C_sprite(76, 4, @einstein, 88, 119) ;
// draw a sprite

T6963C_setGrPanel(1) ; // select other graphic panel

T6963C_Image(@banner_bmp);

while true do
begin

{*
* if P2_0 is pressed, toggle the display between graphic panel

0 and graphic 1
*}
if(P2_0 = 0) then

begin
panel := panel + 1;
panel := panel and 1 ;
T6963C_displayGrPanel(panel) ;
Delay_ms(300) ;

end

{*
* if P2_1 is pressed, display only graphic panel
*}
else

if(P2_1 = 0) then
begin

T6963C_graphics(1) ;
T6963C_text(0) ;
Delay_ms(300) ;

end

398 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

{*
* if P2_3 is pressed, display text and graphic panels
*}

else
if(P2_3 = 0) then

begin
T6963C_graphics(1) ;
T6963C_text(1) ;
Delay_ms(300) ;

end

{*
* if P2_4 is pressed, change cursor
*}

else
if(P2_4 = 0) then

begin
curs := curs + 1;
if(curs = 3) then

curs := 0 ;
case curs of

0:
T6963C_cursor(0) ;

1:
begin

T6963C_cursor(1) ;
T6963C_cursor_blink(1) ;

end;

2:
begin

T6963C_cursor(1) ;
T6963C_cursor_blink(0) ;

end;
end;
Delay_ms(300) ;

end;
{*
* move cursor, even if not visible
*}

cposx := cposx + 1;
if(cposx = txtcols) then

begin
cposx := 0 ;
cposy := cposy + 1;
if(cposy = (128 div T6963C_CHARACTER_HEIGHT)) then //

if y end
cposy := 0 ; // grafic height (128) div character height

end;
T6963C_set_cursor(cposx, cposy) ;
Delay_ms(100) ;

end;
end.

399MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

HW Connection

T6963C GLCD HW connection

400 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

UART LIBRARY

The UART hardware module is available with a number of 8051 compliant MCUs. The mikroPas-
cal for 8051 UART Library provides comfortable work with the Asynchronous (full duplex) mode.

Library Routines

- Uart_Init
- Uart_Data_Ready
- Uart_Read
- Uart_Write

Uart_Init

401MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Uart_Init(baud_rate: longint);

Returns Nothing.

Description

Configures and initializes the UART module.

The internal UART module module is set to:

- 8-bit data, no parity
- 1 STOP bit
- disabled automatic address recognition
- timer1 as baudrate source (mod2 = autoreload 8bit timer)

Parameters :

- baud_rate: requested baud rate

Refer to the device data sheet for baud rates allowed for specific Fosc.

Requires MCU with the UART module and TIMER1 to be used as baudrate source.

Example
// Initialize hardware UART and establish communication at 2400
bps
Uart_Init(2400);

Uart_Data_Ready

Uart_Read

402 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype function Uart_Data_Ready(): byte;

Returns
- 1 if data is ready for reading
- 0 if there is no data in the receive register

Description The function tests if data in receive buffer is ready for reading.

Requires

MCU with the UART module.

The UART module must be initialized before using this routine. See the
Uart_Init routine.

Example

var receive: byte;
...
// read data if ready
if (Uart_Data_Ready()=1) then

receive := Uart_Read();

Prototype function Uart_Read(): byte;

Returns Received byte.

Description
The function receives a byte via UART. Use the Uart_Data_Ready function to
test if data is ready first.

Requires

MCU with the UART module.

The UART module must be initialized before using this routine. See Uart_Init
routine.

Example

var receive: byte;
...
// read data if ready
if (Uart_Data_Ready()=1) then

receive := Uart_Read();

Uart_Write

Library Example

This example demonstrates simple data exchange via UART. If MCU is connected to the PC, you
can test the example from the mikroPascal for 8051 USART Terminal.

program UART;

var uart_rd : byte;

begin

Uart_Init(4800); // Initialize UART module at 4800 bps
Delay_ms(100); // Wait for UART module to stabilize

while TRUE do // Endless loop
begin
if (Uart_Data_Ready() <> 0) then // Check if UART module has received

data
begin

uart_rd := Uart_Read(); // Read data
Uart_Write(uart_rd); // Send the same data back

end;
end;

end.

403MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Uart_Write(TxData: byte);

Returns Nothing.

Description

The function transmits a byte via the UART module.

Parameters :

- TxData: data to be sent

Requires

MCU with the UART module.

The UART module must be initialized before using this routine. See Uart_Init
routine.

Example

var data: byte;
...
data := 0x1E
Uart_Write(data);

HW Connection

UART HW connection

404 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

BUTTON LIBRARY

The Button library contains miscellaneous routines useful for a project development.

External dependecies of Button Library

Library Routines

- Button

405MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

The following variable
must be defined in all
projects using Button

library:

Description: Example :

var Button_Pin :
sbit; external;

Declares Button_Pin,
which will be used by But-
ton Library.

var Button_Pin: sbit
at P0.0;

Button

406 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype function Button(time_ms : byte; active_state : byte) : byte;

Returns
- 255 if the pin was in the active state for given period.
- 0 otherwise

Description

The function eliminates the influence of contact flickering upon pressing a but-
ton (debouncing). The Button pin is tested just after the function call and then
again after the debouncing period has expired. If the pin was in the active state
in both cases then the function returns 255 (true).

Parameters :

- time_ms : debouncing period in milliseconds
- active_state: determines what is considered as active state. Valid values: 0

(logical zero) and 1 (logical one)

Requires
Button_Pin variable must be defined before using this function.

Button pin must be configured as input.

Example

P2 is inverted on every P0.B0 one-to-zero transition :

program Button_Test;

// button connections
var Button_Pin : sbit at P0.B0; // declare Button_Pin.
It will be used by Button Library.
// end Button connections

oldstate : bit;

begin
P0 := 255; // configure PORT0 as input
P2 := 0xAA; // initial PORT2 value

while TRUE do
begin

if (Button(1, 1) <> 0) then // detect logical one
oldstate := 1; // update flag

if (oldstate and Button(1, 0)) then // detect one-to-zero
transition

begin
P2 := not P2; // invert PORT2
oldstate := 0; // update flag

end;
end; // endless loop

end.

CONVERSIONS LIBRARY

mikroPascal for 8051 Conversions Library provides routines for numerals to strings
and BCD/decimal conversions.

Library Routines

You can get text representation of numerical value by passing it to one of the follow-
ing routines:

- ByteToStr
- ShortToStr
- WordToStr
- IntToStr
- LongintToStr
- LongWordToStr
- FloatToStr

The following functions convert decimal values to BCD and vice versa:

- Dec2Bcd
- Bcd2Dec16
- Dec2Bcd16

407MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

ByteToStr

ShortToStr

408 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure ByteToStr(input : word; var output : string[2]);

Returns Nothing.

Description

Converts input byte to a string. The output string is right justified and remaining
positions on the left (if any) are filled with blanks.

Parameters :

- input: byte to be converted
- output: destination string

Requires Nothing.

Example

var t : word;
txt : string[2];

...
t := 24;
ByteToStr(t, txt); // txt is " 24" (one blank here)

Prototype procedure ShortToStr(input : short; var output : string[3]);

Returns Nothing.

Description

Converts input short (signed byte) number to a string. The output string is right
justified and remaining positions on the left (if any) are filled with blanks.

Parameters :

- input: short number to be converted
- output: destination string

Requires Nothing.

Example

var t : short;
txt : array[4];

...
t := -24;
ByteToStr(t, txt); // txt is " -24" (one blank here)

WordToStr

IntToStr

409MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure WordToStr(input : word; var output : string[4])

Returns Nothing.

Description

Converts input word to a string. The output string is right justified and the
remaining positions on the left (if any) are filled with blanks.

Parameters :

- input: word to be converted
- output: destination string

Requires Nothing.

Example

var t : word;
txt : string[4];

...
t := 437;
WordToStr(t, txt); // txt is " 437" (two blanks here)

Prototype procedure IntToStr(input : integer; var output : string[5]);

Returns Nothing.

Description

Converts input integer number to a string. The output string is right justified and
the remaining positions on the left (if any) are filled with blanks.

Parameters :

- input: integer number to be converted
- output: destination string

Requires Nothing.

Example

var input : integer;
txt : string[5];

//...
begin
input := -4220;
IntToStr(input, txt); // txt is ' -4220'

LongintToStr

LongWordToStr

410 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure LongintToStr(input : longint; var output : string[10]);

Returns Nothing.

Description

Converts input longint number to a string. The output string is right justified and
the remaining positions on the left (if any) are filled with blanks.

Parameters :

- input: longint number to be converted
- output: destination string

Requires Nothing.

Example

var input : longint;
txt : string[10];

//...
begin
input := -12345678;
IntToStr(input, txt); // txt is ' -12345678'

Prototype procedure LongWordToStr(input : dword; var output : string[9]);

Returns Nothing.

Description

Converts input double word number to a string. The output string is right justi-
fied and the remaining positions on the left (if any) are filled with blanks.

Parameters :

- input: double word number to be converted
- output: destination string

Requires Nothing.

Example

var input : longint;
txt : string[9];

//...
begin
input := 12345678;
IntToStr(input, txt); // txt is ' 12345678'

FloatToStr

411MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function FloatToStr(input : real; var output : string[22]);

Returns

- 3 if input number is NaN
- 2 if input number is -INF
- 1 if input number is +INF
- 0 if conversion was successful

Description

Converts a floating point number to a string.

Parameters :

- input: floating point number to be converted
- output: destination string

The output string is left justified and null terminated after the last digit.

Note: Given floating point number will be truncated to 7 most significant digits
before conversion.

Requires Nothing.

Example

var ff1, ff2, ff3 : real;
txt : string[22];

...
ff1 := -374.2;
ff2 := 123.456789;
ff3 := 0.000001234;

FloatToStr(ff1, txt); // txt is "-374.2"
FloatToStr(ff2, txt); // txt is "123.4567"
FloatToStr(ff3, txt); // txt is "1.234e-6"

Dec2Bcd

Bcd2Dec16

412 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype function Dec2Bcd(decnum : byte) : byte;

Returns Converted BCD value.

Description

Converts input number to its appropriate BCD representation.

Parameters :

- decnum: number to be converted

Requires Nothing.

Example

var a, b : byte;
...
a := 22;
b := Dec2Bcd(a); // b equals 34

Prototype function Bcd2Dec16(bcdnum : word) : word;

Returns Converted decimal value.

Description

Converts 16-bit BCD numeral to its decimal equivalent.

Parameters :

- bcdnum: 16-bit BCD numeral to be converted

Requires Nothing.

Example

var a, b : word;
...
a := 0x1234; // a equals 4660
b := Bcd2Dec16(a); // b equals 1234

Dec2Bcd16

413MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function Dec2Bcd16(decnum : word) : word;

Returns Converted BCD value.

Description

Converts decimal value to its BCD equivalent.

Parameters :

- decnum decimal number to be converted

Requires Nothing.

Example

var a, b : word;
...
a := 2345;
b := Dec2Bcd16(a); // b equals 9029

MATH LIBRARY

The mikroPascal for 8051 provides a set of library functions for floating point math
handling. See also Predefined Globals and Constants for the list of predefined math
constants.

Library Functions

- acos
- asin
- atan
- atan2
- ceil
- cos
- cosh
- eval_poly
- exp
- fabs
- floor
- frexp
- dexp
- log
- log10
- modf
- pow
- sin
- sinh
- sqrt
- tan
- tanh

414 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

acos

asin

atan

atan2

ceil

cos

cosh

415MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function acos(x : real) : real;

Description
The function returns the arc cosine of parameter x; that is, the value whose
cosine is x. The input parameter x must be between -1 and 1 (inclusive). The
return value is in radians, between 0 and Π (inclusive).

Prototype function asin(x : real) : real;

Description
The function returns the arc sine of parameter x; that is, the value whose sine is
x. The input parameter x must be between -1 and 1 (inclusive). The return value
is in radians, between - Π/2 and Π /2 (inclusive).

Prototype function atan(arg : real) : real;

Description
The function computes the arc tangent of parameter arg; that is, the value
whose tangent is arg. The return value is in radians, between -Π/2 and Π/2
(inclusive).

Prototype function atan2(y : real; x : real) : real;

Description

This is the two-argument arc tangent function. It is similar to computing the arc
tangent of y/x, except that the signs of both arguments are used to determine
the quadrant of the result and x is permitted to be zero. The return value is in
radians, between -Π and Π (inclusive).

Prototype function ceil(x : real) : real;

Description The function returns value of parameter x rounded up to the next whole number.

Prototype function cos(arg : real) : real;

Description The function returns the cosine of arg in radians. The return value is from -1 to 1.

Prototype function cosh(x : real) : real;

Description
The function returns the hyperbolic cosine of x, defined mathematically as

(ex+e-x)/2. If the value of x is too large (if overflow occurs), the function fails.

eval_poly

exp

fabs

floor

frexp

ldexp

log

416 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype
function eval_poly(x : real; var d : array[10] of real; n : inte-
ger) : real;

Description
Function Calculates polynom for number x, with coefficients stored in d[], for
degree n.

Prototype function exp(x : real) : real;

Description
The function returns the value of e — the base of natural logarithms — raised to

the power x (i.e. ex).

Prototype function fabs(d : real) : real;

Description The function returns the absolute (i.e. positive) value of d.

Prototype function floor(x : real) : real;

Description The function returns the value of parameter x rounded down to the nearest integer.

Prototype function frexp(value : real; var eptr : integer) : real;

Description
The function splits a floating-point value value into a normalized fraction and an
integral power of 2. The return value is a normalized fraction and the integer
exponent is stored in the object pointed to by eptr.

Prototype function ldexp(value : real; newexp : integer) : real;

Description
The function returns the result of multiplying the floating-point number value by

2 raised to the power newexp (i.e. returns value * 2newexp).

Prototype function log(x : real) : real;

Description The function returns the natural logarithm of x (i.e. loge(x)).

log10

modf

pow

sin

sinh

sqrt

tan

tanh

417MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function log10(x : real) : real;

Description The function returns the base-10 logarithm of x (i.e. log10(x)).

Prototype function modf(val : real; var iptr : real) : real;

Description
The function returns the signed fractional component of val, placing its whole
number component into the variable pointed to by iptr.

Prototype function pow(x : real; y : real) : real;

Description
The function returns the value of x raised to the power y (i.e. xy). If x is nega-
tive, the function will automatically cast y into longint.

Prototype function sin(arg : real) : real;

Description The function returns the sine of arg in radians. The return value is from -1 to 1.

Prototype function sinh(x : real) : real;

Description
The function returns the hyperbolic sine of x, defined mathematically as (ex-e-x)/2.
If the value of x is too large (if overflow occurs), the function fails.

Prototype function sqrt(x : real) : real;

Description The function returns the non negative square root of x.

Prototype function tan(x : real) : real;

Description
The function returns the tangent of x in radians. The return value spans the
allowed range of floating point in mikroPascal for 8051.

Prototype function tanh(x : real) : real;

Description
The function returns the hyperbolic tangent of x, defined mathematically as
sinh(x)/cosh(x).

STRING LIBRARY

The mikroPascal for 8051 includes a library which automatizes string related tasks.

Library Functions

- memchr
- memcmp
- memcpy
- memmove
- memset
- strcat
- strchr
- strcmp
- strcpy
- strlen
- strncat
- strncpy
- strspn
- strcspn
- strncmp
- strpbrk
- strrchr
- strstr

418 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

memchr

memcmp

419MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function memchr(p : ^byte; ch : byte; n : byte) : byte;

Description

The function locates the first occurrence of the word ch in the initial n words of
memory area starting at the address p. The function returns the offset of this
occurrence from the memory address p or 0xFF if ch was not found.

For the parameter p you can use either a numerical value (literal/variable/con-
stant) indicating memory address or a dereferenced value of an object, for
example @mystring or @PORTB.

Prototype function memcmp(p1, p2 : ^byte; n : word) : short;

Description

The function returns a positive, negative, or zero value indicating the relation-
ship of first n words of memory areas starting at addresses p1 and p2.

This function compares two memory areas starting at addresses p1 and p2 for n
words and returns a value indicating their relationship as follows:

Value Meaning
< 0 p1 "less than" p2
= 0 p1 "equal to" p2
> 0 p1 "greater than" p2

The value returned by the function is determined by the difference between the
values of the first pair of words that differ in the strings being compared.

For parameters p1 and p2 you can use either a numerical value (literal/vari-
able/constant) indicating memory address or a dereferenced value of an object,
for example @mystring or @PORTB.

memcpy

memmove

memset

strcat

420 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype procedure memcpy(p1, p2 : ^byte; nn : word);

Description

The function copies nn words from the memory area starting at the address p2
to the memory area starting at p1. If these memory buffers overlap, the memcpy
function cannot guarantee that words are copied before being overwritten. If
these buffers do overlap, use the memmove function.

For parameters p1 and p2 you can use either a numerical value (literal/vari-
able/constant) indicating memory address or a dereferenced value of an object,
for example @mystring or @PORTB.

Prototype procedure memmove(p1, p2 : ^byte; nn : word);

Description

The function copies nn words from the memory area starting at the address p2 to the
memory area starting at p1. If these memory buffers overlap, the Memmove function
ensures that the words in p2 are copied to p1 before being overwritten.

For parameters p1 and p2 you can use either a numerical value (literal/vari-
able/constant) indicating memory address or a dereferenced value of an object,
for example @mystring or @PORTB.

Prototype procedure memset(p : ^byte; character : byte; n : word);

Description

The function fills the first n words in the memory area starting at the address p
with the value of word character.

For parameter p you can use either a numerical value (literal/variable/constant)
indicating memory address or a dereferenced value of an object, for example
@mystring or @PORTB.

Prototype procedure strcat(var s1, s2 : string[100]);

Description
The function appends the value of string s2 to string s1 and terminates s1 with
a null character.

strchr

strcmp

strcpy

strcspn

421MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function strchr(var s : string[100]; ch : byte) : byte;

Description

The function searches the string s for the first occurrence of the character ch.
The null character terminating s is not included in the search.

The function returns the position (index) of the first character ch found in s; if no
matching character was found, the function returns 0xFF.

Prototype function strcmp(var s1, s2 : string[100]) : integer;

Description

The function lexicographically compares the contents of the strings s1 and s2
and returns a value indicating their relationship:

Value Meaning
< 0 s1 "less than" s2
= 0 s1 "equal to" s2
> 0 s1 "greater than" s2

The value returned by the function is determined by the difference between the
values of the first pair of words that differ in the strings being compared.

Prototype procedure strcpy(var s1, s2 : string[100]);

Description
The function copies the value of the string s2 to the string s1 and appends a
null character to the end of s1.

Prototype function strcspn(var s1, s2 : string[100]) : word;

Description

The function searches the string s1 for any of the characters in the string s2.

The function returns the index of the first character located in s1 that matches
any character in s2. If the first character in s1 matches a character in s2, a
value of 0 is returned. If there are no matching characters in s1, the length of
the string is returned (not including the terminating null character).

strlen

strncat

strncmp

strncpy

strpbrk

422 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype function strlen(var s : string[100]) : word;

Description
The function returns the length, in words, of the string s. The length does not
include the null terminating character.

Prototype procedure strncat(var s1, s2 : string[100]; size : byte);

Description
The function appends at most size characters from the string s2 to the string s1
and terminates s1 with a null character. If s2 is shorter than the size charac-
ters, s2 is copied up to and including the null terminating character.

Prototype function strncmp(var s1, s2 : string[100]; len : byte) : integer;

Description

The function lexicographically compares the first len words of the strings s1 and
s2 and returns a value indicating their relationship:

Value Meaning
< 0 s1 "less than" s2
= 0 s1 "equal to" s2
> 0 s1 "greater than" s2

The value returned by the function is determined by the difference between the
values of the first pair of words that differ in the strings being compared (within
first len words).

Prototype procedure strncpy(var s1, s2 : string[100]; size : byte);

Description
The function copies at most size characters from the string s2 to the string s1.
If s2 contains fewer characters than size, s1 is padded out with null characters
up to the total length of the size characters.

Prototype function strpbrk(var s1, s2 : string[100]) : byte;

Description

The function searches s1 for the first occurrence of any character from the
string s2. The null terminator is not included in the search. The function returns
an index of the matching character in s1. If s1 contains no characters from s2,
the function returns 0xFF.

strrchr

strspn

strstr

423MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function strrchr(var s : string[100]; ch : byte) : byte;

Description

The function searches the string s for the last occurrence of the character ch.
The null character terminating s is not included in the search. The function
returns an index of the last ch found in s; if no matching character was found,
the function returns 0xFF.

Prototype function strspn(var s1, s2 : string[100]) : word;

Description

The function searches the string s1 for characters not found in the s2 string.

The function returns the index of first character located in s1 that does not
match a character in s2. If the first character in s1 does not match a character in
s2, a value of 0 is returned. If all characters in s1 are found in s2, the length of
s1 is returned (not including the terminating null character).

Prototype function strstr(var s1, s2 : string[100]) : word;

Description

The function locates the first occurrence of the string s2 in the string s1 (exclud-
ing the terminating null character).

The function returns a number indicating the position of the first occurrence of
s2 in s1; if no string was found, the function returns 0xFF. If s2 is a null string,
the function returns 0.

TIME LIBRARY

The Time Library contains functions and type definitions for time calculations in the UNIX time for-
mat which counts the number of seconds since the "epoch". This is very convenient for programs
that work with time intervals: the difference between two UNIX time values is a real-time differ-
ence measured in seconds.

What is the epoch?
Originally it was defined as the beginning of 1970 GMT. (January 1, 1970 Julian day) GMT,
Greenwich Mean Time, is a traditional term for the time zone in England.

The TimeStruct type is a structure type suitable for time and date storage.

Library Routines

- Time_dateToEpoch
- Time_epochToDate
- Time_datediff

Time_dateToEpoch

424 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype function Time_dateToEpoch(var ts : TimeStruct) : longint;

Returns Number of seconds since January 1, 1970 0h00mn00s.

Description

This function returns the UNIX time : number of seconds since January 1, 1970
0h00mn00s.

Parameters :

- ts: time and date value for calculating UNIX time.

Requires Nothing.

Example

var ts1 : TimeStruct;
Epoch : longint;

...
// what is the epoch of the date in ts ?
epoch := Time_dateToEpoch(ts1) ;

Time_epochToDate

Time_dateDiff

425MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype procedure Time_epochToDate(e: longint; var ts : TimeStruct);

Returns Nothing.

Description

Converts the UNIX time to time and date.

Parameters :

- e: UNIX time (seconds since UNIX epoch)
- ts: time and date structure for storing conversion output

Requires Nothing.

Example

var ts2 : TimeStruct;
epoch : longint;

...
//what date is epoch 1234567890 ?
epoch := 1234567890 ;
Time_epochToDate(epoch,ts2);

Prototype
function Time_dateDiff(t1 : ^TimeStruct; t2 : ^TimeStruct) :
longint ;

Returns Time difference in seconds as a signed long.

Description

This function compares two dates and returns time difference in seconds as a
signed long. The result is positive if t1 is before t2, null if t1 is the same as t2
and negative if t1 is after t2.

Parameters :

- t1: time and date structure (the first comparison parameter)
- t2: time and date structure (the second comparison parameter)

Requires Nothing.

Example

var ts1, ts2 : TimeStruct;
diff : longint;

...
//how many seconds between these two dates contained in ts1 and
ts2 buffers?
diff := Time_dateDiff(ts1, ts2);

Library Example

Demonstration of Time library routines usage for time calculations in UNIX time format.

program Time_Demo;

program Time_Demo;

var epoch, diff : longint;

ts1, ts2 : TimeStruct;

begin
ts1.ss := 0 ;
ts1.mn := 7 ;
ts1.hh := 17 ;
ts1.md := 23 ;
ts1.mo := 5 ;
ts1.yy := 2006 ;

{*
* What is the epoch of the date in ts ?
*}

epoch := Time_dateToEpoch(ts1) ;

{*
* What date is epoch 1234567890 ?
*}

epoch := 1234567890 ;
Time_epochToDate(epoch, ts2) ;

{*
* How much seconds between this two dates ?
*}

diff := Time_dateDiff(ts1, ts2) ;
end.

426 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

TimeStruct type definition

type TimeStruct = record

ss : byte ; // seconds
mn : byte ; // minutes
hh : byte ; // hours
md : byte ; // day in month, from 1 to 31
wd : byte ; // day in week, monday=0, tuesday=1,

sunday=6
mo : byte ; // month number, from 1 to 12 (and not from

0 to 11 as with unix C time !)
yy : word ; // year Y2K compliant, from 1892 to 2038
end;

427MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

TRIGONOMETRY LIBRARY

The mikroPascal for 8051 implements fundamental trigonometry functions. These functions are
implemented as look-up tables. Trigonometry functions are implemented in integer format in order
to save memory.

Library Routines

- sinE3
- cosE3

sinE3

428 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Libraries mikroPascal for 8051
CHAPTER 6

Prototype function sinE3(angle_deg : word): integer;

Returns The function returns the sine of input parameter.

Description

The function calculates sine multiplied by 1000 and rounded to the nearest integer:

result := round(sin(angle_deg)*1000)

Parameters:

- angle_deg: input angle in degrees

Note: Return value range: -1000..1000.

Requires Nothing.

Example
var res : integer;
...
res := sinE3(45); // result is 707

cosE3

429MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

LibrariesmikroPascal for 8051
CHAPTER 6

Prototype function cosE3(angle_deg : word): integer;

Returns The function returns the cosine of input parameter.

Description

The function calculates cosine multiplied by 1000 and rounded to the nearest
integer:

result := round(cos(angle_deg)*1000)

Parameters:

- angle_deg: input angle in degrees

Note: Return value range: -1000..1000.

Requires Nothing.

Example
var res: integer;
...
res := cosE3(196); // result is -193

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 mikroElektronika:

 MIKROE-404 MIKROE-740

http://www.mouser.com/mikroelektronika
http://www.mouser.com/access/?pn=MIKROE-404
http://www.mouser.com/access/?pn=MIKROE-740

 Tел: +7 (812) 336 43 04 (многоканальный)
 Email: org@lifeelectronics.ru

 www.lifeelectronics.ru

ООО “ЛайфЭлектроникс” “LifeElectronics” LLC
ИНН 7805602321 КПП 780501001 Р/С 40702810122510004610 ФАКБ "АБСОЛЮТ БАНК" (ЗАО) в г.Санкт-Петербурге К/С 30101810900000000703 БИК 044030703

 Компания «Life Electronics» занимается поставками электронных компонентов импортного и
отечественного производства от производителей и со складов крупных дистрибьюторов Европы,
Америки и Азии.

С конца 2013 года компания активно расширяет линейку поставок компонентов по направлению
коаксиальный кабель, кварцевые генераторы и конденсаторы (керамические, пленочные,
электролитические), за счёт заключения дистрибьюторских договоров

 Мы предлагаем:

 Конкурентоспособные цены и скидки постоянным клиентам.

 Специальные условия для постоянных клиентов.

 Подбор аналогов.

 Поставку компонентов в любых объемах, удовлетворяющих вашим потребностям.

 Приемлемые сроки поставки, возможна ускоренная поставка.

 Доставку товара в любую точку России и стран СНГ.

 Комплексную поставку.

 Работу по проектам и поставку образцов.

 Формирование склада под заказчика.

 Сертификаты соответствия на поставляемую продукцию (по желанию клиента).

 Тестирование поставляемой продукции.

 Поставку компонентов, требующих военную и космическую приемку.

 Входной контроль качества.

 Наличие сертификата ISO.

 В составе нашей компании организован Конструкторский отдел, призванный помогать
разработчикам, и инженерам.

 Конструкторский отдел помогает осуществить:

 Регистрацию проекта у производителя компонентов.

 Техническую поддержку проекта.

 Защиту от снятия компонента с производства.

 Оценку стоимости проекта по компонентам.

 Изготовление тестовой платы монтаж и пусконаладочные работы.

mailto:org@lifeelectronics.ru
http://lifeelectronics.ru/

