EdMikroElektronika

SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD . . . vnalcivg ik sivnple

T P A B Vel S S £8P [
. AD =S4 b A
20
¢
s 5

OO0

DiEs & nm o

O OTOHO
)0QoOoON

OV OOO0O0

f

O 3 — e
o0
° ° ° °
: N ° ° ° °
°) ° ° °
® e ° ° . ° °
° ° ° °
° ° o

Develop your applications quickly and easily with the
world's most intuitive mikroPASCAL for 8051
Microcontrollers.

Highly sophisticated IDE provides the power you need with
the simplicity of a Windows based point-and-click
environment.

With useful implemented tools, many practical code
examples, broad set of built-in routines, and a
comprehensive Help, mikroPASCAL for 8051 makes a fast
and reliable tool, which can satisfy needs of experienced
engineers and beginners alike.

mikroPascal for 8051

January 2009. Reader’s note |

DISCLAIMER:

mikroPascal for 8051 and this manual are owned by mikroElektronika and are protected
by copyright law and international copyright treaty. Therefore, you should treat this manual
like any other copyrighted material (e.g., a book). The manual and the compiler may not be
copied, partially or as a whole without the written consent from the mikroEelktronika. The
PDF-edition of the manual can be printed for private or local use, but not for distribution.
Modifying the manual or the compiler is strictly prohibited.

HIGH RISK ACTIVITIES:

The mikroPascal for 8051 compiler is not fault-tolerant and is not designed, manufactured
or intended for use or resale as on-line control equipment in hazardous environments requir-
ing fail-safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons systems,
in which the failure of the Software could lead directly to death, personal injury, or severe
physical or environmental damage ("High Risk Activities"). mikroElektronika and its suppliers
specifically disclaim any express or implied warranty of fitness for High Risk Activities.

LICENSE AGREEMENT:

By using the mikroPascal for 8051 compiler, you agree to the terms of this agreement.
Only one person may use licensed version of mikroPascal for 8051 compiler at a time.
Copyright © mikroElektronika 2003 - 2009.

This manual covers mikroPascal for 8051 version 1.1 and the related topics. Newer ver-
sions may contain changes without prior notice.

COMPILER BUG REPORTS:
The compiler has been carefully tested and debugged. It is, however, not possible to
guarantee a 100 % error free product. If you would like to report a bug, please contact us at
the address office@mikroe.com. Please include next information in your bug report:

- Your operating system

- Version of mikroPascal for 8051

- Code sample

- Description of a bug

CONTACT Us:
mikroElektronika

Voice: + 381 (11) 36 28 830
Fax: + 381 (11) 36 28 831
Web: www.mikroe.com
E-mail: office@mikroe.com

Windows is a Registered trademark of Microsoft Corp. All other trade and/or services marks
are the property of the respective owners.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Table of Contents

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

Introduction

mikroPascal for 8051 Environment
mikroPascal for 8051 Specifics

8051 Specifics

mikroPascal for 8051 Language Reference

mikroPascal for 8051 Libraries

Table of Contents mikroPascal for 8051

CHAPTER 1
Features 2
Whereto Start 3
mikroElektronika Associates License Statement and Limited Warranty 4
IMPORTANT - READ CAREFULLY 4
LIMITED WARRANTY . ..o e 5
HIGH RISKACTIVITIES 6
GENERAL PROVISIONS e 6
Technical Support 7
How to Register 8
Who Gets the License Key i, 8
How to GetLicense Key i 8
After Receving the License Key 10
CHAPTER 2
IDE OVEIVIEW . . o oot e e 12
Main Menu Options 14
File Menu Options i 15
EditMenu Options 16
Find Text 17
Replace Text 18
FindInFiles 18
GoToLine e 19
Replace Text 19
Regular expressions e 19
View Menu Options e 20
Toolbars 21
File Toolbar 21
Edit Toolbar 21
Advanced Edit Toolbar 22
Find/Replace Toolbar 22
Project Toolbar 23
Build Toolbar 23
Debugger 24

iv MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

Styles Toolbar 24
Tools Toolbar 25
Project Menu Options 26
Run Menu Options e 28
Tools Menu Options e 29
Help Menu Options e 30
Keyboard Shortcuts 31
IDE OVEIVIEWot e 33
Customizing IDE Layout i, 35
Docking WIindows i 35
Saving Layout 36
Auto Hide 37
Advanced Code Editor 38
Advanced Editor Features 38
CodeAssistant i e 40
Code Folding 40
Parameter Assistant 41
Code Templates (Auto Complete) 41
Auto Correct 42
Spell Checker e 42
Bookmarks 42
Goto Line 42
Uncomment/Comment e 42
Code EXplorer 43
Routine List 44
Project Manager 45
Project Settings Window 47
Library Manager e 48
Error Window e 50
Statistics 51
Memory Usage Windows i 51
RAM MemMOrY . . .o e 51
Data Memory 51
XData Memory 52
iData Memory 52
bData Memory 53

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD A

Table of Contents mikroPascal for 8051

PData Memory 53
Special Function Registers L. 54
General Purpose Registers 54
ROM MemMOry ... e 55
ROM Memory Usageo i i e 55
Procedures Windows e 56
Procedures Size Window i 56
Procedures Locations Window 57
Integrated TOOIS e 58
USART Terminal i e 58
ASCII Chart 59
EEPROM Editor e 60
7 Segment Display Decoder 60
UDP Terminal e 61
The mikroPascal for 8051 61
Graphic LCD Bitmap Editor 62
LCD Custom Character i 63
OptiONS . . . e 64
Code editor 64
ToOlS .. 64
Outputsettings ... e 66
Regular EXpressions 67
Introduction 67
Simplematches 67
Escape sequencCes 67
Characterclasses i, 68
Metacharacters 68
Metacharacters - Line separators 69
Metacharacters - Predefined classes 69
Example: 69
Metacharacters - Word boundaries 70
Metacharacters - lterators L 70
Metacharacters - Alternatives 71
Metacharacters - Subexpressions 72
Metacharacters - Backreferences 72
mikroPascal for 8051 Command Line Options 73

Vi MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

Projects ... 74
New Project 74
New Project Wizard Steps 75
Open Project e 78
Customizing Projects 79
Edit Project 79
Managing Project Group 79
Add/Remove Files from Project 79
Source Files 81
Managing Source Files 81
Creatingnew sourcefile i 81
Opening anexistingfile 81
Printinganopenfile 81
Saving file 82
Saving file under a differentname 82
Closing file e 82
Clean Project Folder 83
Clean Project Folder 83
Compilation 84
Output Files 84
Assembly View 84
Error Messages 85
Compiler Error Messages:t 85
Linker Error Messages:t 88
Hint Messages: e 88
Software Simulator Overview e 89
Watch Window 89
Stopwatch Window 91
RAM WINdOWo 92
Software Simulator Options 93
Creating New Library 94
Multiple Library Versions i 94

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD vii

Table of Contents mikroPascal for 8051

CHAPTER 3
Pascal Standard Issues 102
Divergence from the Pascal Standard 102
Pascal Language Extensions 102
Predefined Globals and Constants 103
Math constants 103
Accessing Individual Bits 104
Accessing Individual Bits Of Variables 104
Shit type . .o 104
bit type . .. 105
INterrupts ... 106
Function Calls from Interrupt 106
Interrupt Priority Level 106
Linker Directives e 107
Directive absolute 107
Directive Oorg 108
Built-in Routines 109
o 110
Hi 110
Higher 110
Highest 111
INC 111
DeC . 111
Delay _Us ... 112
Delay ms 112
Vdelay_ms 112
Delay_CyC ..o 113
Clock KHz 113
Clock_MHz 113
SetFuncCall e 114
Uart Init ... 114
Code Optimization 115
Constantfolding 115
Constant propagation 115
Copy propagation 115

viii MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

Value numbering 115
"Dead code" ellimination 115
Stack allocation 115
Local vars optimization 115
Better code generation and local optimization 115
Types Efficiency 117
CHAPTER 4
Nested Calls Limitations 118
8051 Memory Organization e 118
Program Memory (ROM) e 118
Internal Data Memory e 119
External Data Memory 120
SFRIMEMOrY ... e 120
Memory Models 121
Smallmodel 121
Compactmodel 121
Largemodel 122
o7 o - 124
data 124
data 124
bdata 124
Xdata .. 125
pdata 125
CHAPTER 5
Lexical Elements Overviewt 130
Whitespace 130
Whitespace in Strings 131
COMMENtS . . 131
Nestedcomments 131
TOKENS . . 132
Token Extraction Example 132
Literals o e 133

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD iX

Table of Contents mikroPascal for 8051

Integer Literals 133
Floating Point Literals 133
Character Literals 134
String Literals 134
KeyWOrds . . 136
Identifiers 139
Case Sensitivity 139
Uniqueness and SCOPE oo oottt 139
Identifier Examples 139
Punctuators 140
Brackets 140
Parentheses 140
oMM ... 140
Semicolon 141
Colon ... 141
DOt .. 141
Program Organization 142
Organizationof MainUnit 142
Organization of Other Units 143
Scope and Visibility 145
SCOPE . . ot e 145
Visibility 145
UNitS . . e 146
Uses Clauseot e e 146
Main Unit 146
OtherUnits e 147
Interface Section 147
Implementation Section 148
Variables 149
Variables and 8051 e 149
Constants 150
Labels ... 151
Functionsand Procedures i 152
Functions 152
Callingafunction 152
Example 153

X MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

Procedures 153
Callingaprocedure i 154
Example 154
Function Pointers 154
Example: ... 154
Example: 155
Forward declaration 156

TYPES o ot 157
Type Categoriest e 157

Simple TYPeS . . .o 158

A Y S .« oo e 159
Array Declaration 159
Constant Arrays e 159
Multi-dimensional Arrays 160

SHHNGS . . 161
String Concatenating 162
NOte . . 162
@ Operator e 164

ReCords e 165
Accessing Fields 166

Types CONVEISIONS e e e e e 167
Implicit Conversion e 167
Promotion 167
ClpPING .o e e 168
Explicit Conversion 168
Conversions Examples 169

Operators 170

Operators Precedence and Associativity 170

Arithmetic Operators e 171
Division by Zero 171
Unary Arithmetic Operators i 171

Relational Operators i 172
Relational Operators in Expressions 172

Bitwise Operators e 173
Bitwise Operators Overview0t .. 173
Logical Operationson BitLevel 173

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD Xi

Table of Contents mikroPascal for 8051

Bitwise operators and, or, and xor perform logical operation 173
Unsigned and Conversionst 174
Signed and Conversions 174
Bitwise Shift Operators 175
Boolean Operators e 175
EXPressions o 176
Statements 176
Assignment Statements 177
Compound Statements (Blocks) i 177
Conditional Statements 178
If Statement 178
Nestedifstatements 178
Case statement e 179
Usethecasesta i 179
Nested Case statement 180
lteration Statements 181
For Statement 181
Endless LOOp 181
While Statement 182
Repeat Statement 183
Jump Statements 184
Break and Continue Statements 184
Break Statement 184
Continue Statement 185
Exit Statement 185
Goto Statement e 186
asm Statement 187
Directives e 188
Compiler Directives 188
Directives $DEFINE and SUNDEFINE 188
Directives $IFDEF..SELSE 189
Include Directive $1 190
Predefined Flags i 190
Linker Directives e 191
Directive absolute 191
Directive Org i 192

Xii MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

CHAPTER 6
Hardware 8051-specific Libraries 194
Miscellaneous Libraries 194
Library Dependenciest 195
CANSPI Library e 197
External dependecies of CANSPI Library 197
Library Routines 198
CANSPISetOperationMode until this modeisset) 199
CANSPISetOperationMode(CANSPI_MODE_CONFIG, OxFF); 199
CANSPISetOperationMode 199
CANSPIGetOperationMode 199
CANSPIInitialize 200
CANSPISetBaudRate i 202
CANSPISetMask 203
CANSPISetFilter 204
CANSPIRead i 205
CANSPIWIItE . .. e 206
CANSPIConstants i 207
CANSPI_OP_MODE e e e 207
CANSPI_CONFIG_FLAGS e 207
CANSPIL_TX MSG FLAGS e 208
CANSPI_RX_MSG _FLAGS e 209
CANSPI_MASK . . e 209
CANSPI_FILTER e e e e 209
Library Example e 210
HW Connection e i 214
EEPROM Library e e e 215
Library Routines 215
Eeprom_Read 215
Eeprom Write 216
Eeprom _Write Block 217
Library Example 218
Graphic LCD Library 219
External dependencies of Graphic LCD Library 219
Library Routines 220

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD Xiii

Table of Contents mikroPascal for 8051

Gled_Init 221
Gled_Set_Side 222
Gled_Set X ..o 222
Gled Set Page ... 223
Gled_Read_ Data 223
Gled Write Data 224
Gled_Fill .. e 224
Gled_Dot ... 225
Gled Line e 225
Gled_V_Line ... 226
Glecd_H_Line 226
Gled Rectangle 227
Gled_BOX ..ot 227
Gled_Circle e 228
Gled Set Font 228
Gled_Write_Char 229
Gled Write_Text 230
Gled Image e 230
Library Example 231
HW Connection 233
Keypad Library 234
External dependencies of Keypad Library 234
Library Routines 234
Keypad _Init 235
Keypad_Key Press i 235
Keypad_Key Click e 235
Library Example 236
HW Connection 238
LCD Library 239
External dependencies of LCD Library 239
Library Routines 239
Led Init .o 240
Led_Out ..o 241
Led Out Cp ... 241
Led_Chr ..o 242
Led_ Chr Cp ..ot 242

Xiv MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

Table of Contents

Led Cmd .o 243
Available LCD Commandst 243
Library Example 244
HW connection 246
LCD HW cconnecti e e 246
OneWire Library 247
External dependencies of OneWire Library 247
Library Routines 247
Ow Reset 248
Ow_Read 248
Ow _Write e 249
Library Example e 249
This examplereadsthete 249
HW Connection 252
Manchester Code Library 253
External dependencies of Manchester Code Library 253
Library Routines 254
Man_Receive Init 254
Man_Receive 255
Man_Send Init........ 255
Man_Send 256
Man_Synchro 256
Man_Out 257
Library Example 257
Connection Example 260
Port Expander Library 261
External dependencies of Port Expander Library 261
Expander_Init. 262
Expander Read Byte 263
Expander_ Write_Byte 263
Expander_ Read PortA 264
Expander Read PortB 264
Expander_ Read_PortAB 265
Expander Write PortA 265
Expander Write_ PortB 266
Expander_Write_PortAB 266

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

XV

Table of Contents mikroPascal for 8051

Expander_Set DirectionPortA 267
Expander_Set_DirectionPortB oL 267
Expander_Set DirectionPortAB oL 268
Expander_Set PullUpsPortA 268
Expander_Set_PullUpsPortB 269
Expander_Set PullUpsPortAB 269
Library Example e 270
HW Connection 271
PS/2 Library 272
External dependencies of PS/2 Library 272
Library Routines 272
Ps2 Config 273
Ps2_Key Read 274
Special Function Keys 275
Library Example 276
HW Connection 277
RS-485 Library 278
External dependencies of RS-485 Library 278
Library Routines 278
RS485master Init 279
RS485master Receive 279
RS485master Send 280
RS485slave Init. 281
RS485slave Receivet e 282
RS485slave_Send 283
Library Example e 283
This is a simple demonstrationo 283
HW Connection 287
Message format and CRC calculations 288
Software I2C Library 289
External dependecies of Soft_12C Library 289
Library Routines 289
Soft 12C Init 290
Soft 12C_Start 290
Soft 12C Read 290
Soft 12C Write 291

XVi MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

Soft 12C Stop 291
Library Example 292
Software SPI Library 295
External dependencies of Software SPI Library 295
Library Routines 295
Soft_Spi_lnit. 296
Soft Spi Read 296
Soft Spi_ Write 297
Library Example 297
This code demonstrates usinglib 297
Software UART Library e 299
External dependencies of Software UART Library 299
Library Routines 299
Soft Uart_Init 300
Soft Uart Read i 301
Soft_ Uart_Write 302
Library Example 303
var Sound_Play Pin:sbitatPO.B3;............. 304
Sound Library 304
External dependencies of Sound Library 304
Library Routines 304
Sound_Init 304
Sound_Play 305
Library Example 305
The example is a simpledem 305
HW Connection e 308
SPILibrary 309
Library Routines 309
Spi_INit .o 309
Spi_Init_Advanced 310
Spi_Read 31
Spi_Write e 311
Library Example 312
HW Connection 313
SPI Ethernet Library 314
Library Routines 315

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD Xvii

Table of Contents mikroPascal for 8051

Spi_Ethernet Init 316
Spi_Ethernet_Enable 318
Spi_Ethernet Disable, 319
Spi_Ethernet doPacket L 320
Spi_Ethernet_putByte 321
Spi_Ethernet putBytes 321
Spi_Ethernet putConstBytes 322
Spi_Ethernet putString 322
Spi_Ethernet_putConstString 323
Spi_Ethernet_getByte 323
Spi_Ethernet getBytes 324
Spi_Ethernet UserTCP 325
Spi_Ethernet_UserUDP 326
Library Example 326
HW Connection e 334
SPI Graphic LCD Library 335
External dependencies of SPI Graphic LCD Library 335
Library Routines 335
Spi_Gled Init e 336
Spi_Glcd_Set_Side 336
Spi_Gled_Set Page 337
Spi_Glcd_Set X 337
Spi_Gled Read Data 338
Spi_Gled Write Data 338
Spi_Glcd_Fill ... 339
Spi_ Gled Dot 339
Spi_Glcd_Line 340
Spi_Glcd_V_Line 340
Spi_ Gled H Line 341
Spi_Glcd_Rectangle 341
Spi_Glcd_BoX 342
Spi_ Glecd _Circle 342
Spi_Glcd_Set_ Font 343
Spi_Gled Write_ Char 344
Spi_Gled Write_ Text 345
Spi_Glcd_Image ... 346

Xviii MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

Table of Contents

Library Example 346
The example demonstrateshowto 346
HW Connection 348
SPILCD Library 349
External dependencies of SPILCD Library 349
Library Routines 349
Spi_ Led Configo 350
Spi_Led_Out ... 350
Spi Led Out Cp ... 351
Spi_Lcd_Chr .. 351
Spi_Led Chr Cp ... oo 352
Spi_ Led Cmd ... 352
Available LCD Commands ..., 353
Library Example 354
HW Connection e 355
SPI LCD8 (8-bit interface) Library 356
External dependencies of SPILCD Library 356
Library Routines 356
Spi_Lcd8_Config 357
Spi_Lcd8 Out ... 357
Spi Led8 Out Cp ... oo 358
Spi_Lcd8 _Chr ... 358
Spi_Lcd8 Chr_Cp ..ot 359
Spi_Lcd8_Cmd 359
Available LCD Commands 360
Library Example e 361
HW Connection e i 362
SPIT6963C Graphic LCD Library 363
External dependencies of Spi T6963C Graphic LCD Library 363
Library Routines 364
Spi_T6963C_Config 365
Spi_T6963C WriteData i 366
Spi_T6963C_WriteCommand i, 366
Spi_TB963C _SetPtr 367
Spi_T6963C_WaitReady i 367
Spi_TB963C_Fill e 367

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

Xix

Table of Contents mikroPascal for 8051

Spi_TBI63C _Doto 368
Spi_T6963C Write Char 369
Spi_T6963C_Write_Text, 370
Spi_TBI63C_Line 371
Spi_T6963C_Rectangle i 371
Spi_TBI63C _BOX . . . oottt e 372
Spi_TB963C_Circle 372
Spi_T6963C Image 373
Spi_TB963C _Sprite 373
Spi_TBI63C_Set Cursor e 374
Spi_T6963C ClearBit 374
Spi_T6963C _SetBit 374
Spi_T6963C_NegBit 375
Spi_T6963C_DisplayGrPanel 375
Spi_T6963C _DisplayTxtPanel 375
Spi_T6963C_SetGrPanel 376
Spi_T6963C_SetTxtPanel 376
Spi_T6963C_PanelFill i 377
Spi_T6963C GrFill 377
Spi_T6963C_TxtFill 377
Spi_T6963C_Cursor Height 378
Spi_T6963C_Graphics 378
Spi_TBI63C_Textt 378
Spi_TBI63C _CUISOr ... e e e 379
Spi_T6963C_Cursor Blink 379
Library Example e 379
The following drawing demo tests advanced 379
HW Connection 384
T6963C Graphic LCD Library i 385
External dependencies of T6963C Graphic LCD Library 385
Library Routines 386
TBO63C _INit e 387
T6963C WriteData i 388
T6963C WriteCommand 388
TB963C_SetPtr 389
T6963C WaitReady i 389

XX MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051 Table of Contents

TBO63C _Fill . ..o 389
TBO63C Dot ... 390
T6963C _Write_Char i 391
T6963C_Write_Text 392
TBO63C Line ...t 393
T6963C _Rectangle 393
TBO63C _BOX .. vttt 394
TBI63C Circleo 394
TBO63C IMageot 395
TEIB3C_Spriteo oo 395
T6963C_Set Cursor e 396
T6963C ClearBit 396
T6963C_SetBit 396
TE963C NegBit 397
T6963C DisplayGrPanel 397
T6963C_DisplayTxtPanel 397
T6963C_SetGrPanel 398
T6963C_SetTxtPanel i 398
T6963C PanelFill 399
T6963C_GrFill ... 399
TB963C_TxtFill ... 399
T6963C _Cursor Height 400
T6963C _Graphicso 400
TBO63C _TexXt ..ot 400
TBO63C _CUISOr . . .ottt e e e e 401
T6963C Cursor Blink 401
Library Example 401
The following drawing demotestsa 401
vanced routines 401
HW Connection e e i 406
UART Library 407
Library Routines 407
Uart Init ... 407
Uart Data_Ready 408
Uart_Read 408
Uart Write 409

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD XXi

Table of Contents mikroPascal for 8051

Library Example 409
This example demonstrates s L 409
HW Connection 410
Button Library 411
External dependecies of Button Library 411
Library Routines 411
Button ... 412
Conversions Library 413
Library Routines 413
ByteToStr 414
ShortToStr e 414
WordToStr 415
It oSt .. 415
LongintToStr 416
LongWordToStr e 416
FloatToStr 417
DeC2Bcd 418
Bcd2DeC16 418
Dec2BcdlB e 419
Math Library 420
Library Functions 420
AC0S . o it 421
ASIN . 421
atan .. 421
atan?2 .. 421
Ceil .. 421
o7 1= 421
COSh . . e 421
eval_poly ... 422
1= T 422
fabs . 422
floOr 422
XD . o 422
o = o T 422
(Og . 422
10gT10 .. 423

XXii MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

Table of Contents

MO . . 423
POW o e 423
SIN 423
SINN L 423
SNt . e 423
AN . 423
tanh .. 423
String Library 424
Library Functions 424
MEMCNL . 425
7= 017 o 0 425
0 T=Y 02107) 426
MEMMOVE . . o ottt ettt ettt e e e e e e e s 426
MeMSEl 426
Streat .. 426
StrChr 427
S CMP .. 427
SHCPY . o 427
SICSPN . o 427
Strlen .. 428
Strncat 428
StrNCMP . . 428
SINCPY . oo 428
S PbIK . 428
strrchr . . 429
SHSPN . . 429
SUStr . . 429
Time Library 430
Library Routines 430
Time_dateToEpoch 430
Time_epochToDate i 431
Time_ dateDiff 431
Library Example 432
TimeStruct type definition L. 433
Trigonometry Library 434
Library Routines 434

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

XXiii

Table of Contents mikroPascal for 8051

XXiv MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER

Introduction to
mikroPascal for 8051

The mikroPascal for 8051 is a powerful, feature-rich development tool for 8051
microcontrollers. It is designed to provide the programmer with the easiest possi-

ble solution to developing applications for embedded systems, without compromis-
ing performance or control.

CHAPTER 1
Introduction mikroPascal for 8051

['ﬂa'-#‘lll T B0 - CWP g 1 Sl Vi it o mibor AendloroP sl IS N mampden Mool c d mgepan |

B e g fusd ke lek w0

Jok-HD HE & P b a@m = Ei ¥ i, 82 Sy o w
- - - |
T — FET . 20| Timerneamgs F0) 7wk 30
b | v ingd | arrer(”] of b SS = Carampla®r - =% b b ok
.: . i1 b £ Laap Farlahle __. & -) =
- m =
o 47 precednaw Baym Talapil s #¥ FARITiom SEeR Tor CeEm L 8] i Yalnn risakia. b b -
gt - 5[] G 1 B -
- b Pulay_me {3000 A Wom CAN chEpE Che EOFIDg | L Sy S ;
4 z @ i i)
o4 . » =
L L fomme —————
I
tand e " EarpddSAN- Frep—— e R T =
"t = . EEnd pe AL [t] rencrn ey (T e o 10 P e
= . Eand 1 Ceemwlets ey {1 e L HOF b
— I Lod_Ensic i ™ g
{ et e ao = . Lid_Cml [LED_SLEANG § t= o
- | * Ll Ol LCB_CWRSOR_OFF) 2 '
A phe
[- . [T R T o
= . LEB w2, i, uardpa #
@ Deca | Ay
= . Lol | LEB_SLEARS 1 =
. o -y |
= LB 0wt 1, 1, e ba -
L — I] LD SNt |34, bR b =
T Ly | 200 -
o i Jf Waramy taxt
Compari B
- o=y
. Led_CmAPLCH_SHIFT_RIGHT 1
r Bavn Eabepiie
s
L while THER da
[
N Tap 0e0 Le 4 oEa -
F . E | F| oty Cpleam
n 2
[] wwreas e
re LY e -
el N e T P T Wiy e Pl el apmbred e 8l s ok oy s ™ Sl ™ ol Dbl e “Torbrrs. ol |
H]
i I Hodfad Comgind Lo em Fiewi e minioord dbeoh sl B I corpiniiodiod sos
mikroPascal IDE

mikroPascal for 8051 allows you to quickly develop and deploy complex applications:

- Write your Pascal source code using the built-in Code Editor (Code and Parame-
ter Assistants, Code Folding, Syntax Highlighting, Spell Checker, Auto Correct,
Code Templates, and more.)

- Use included mikroPascal libraries to dramatically speed up the development: data
acquisition, memory, displays, conversions, communication etc.

- Monitor your program structure, variables, and functions in the Code Explorer.

- Generate commented, human-readable assembly, and standard HEX compatible
with all programmers.

- Inspect program flow and debug executable logic with the integrated Software
Simulator.

- Get detailed reports and graphs: RAM and ROM map, code statistics, assembly
listing, calling tree, and more.

2 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 1
mikroPascal for 8051 Introduction

- mikroPascal 8051 provides plenty of examples to expand, develop, and use as
building bricks in your projects. Copy them entirely if you deem fit — that's why we
included them with the compiler.

Where to Start

- In case that you're a beginner in programming 8051 microcontrollers, read carefully the
8051 Specifics chapter. It might give you some useful pointers on 8051 constraints, code
portability, and good programming practices.

- If you are experienced in Pascal programming, you will probably want to consult
mikroPascal Specifics first. For language issues, you can always refer to the com-
prehensive Language Reference. A complete list of included libraries is available
at mikroPascal Libraries.

- If you are not very experienced in Pascal programming, don’t panic! mikroPascal
8051 provides plenty of examples making it easy for you to go quickly. We suggest
that you first consult Projects and Source Files, and then start browsing the exam-
ples that you're the most interested in.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 3

CHAPTER 1
Introduction mikroPascal for 8051

MIKROELEKTRONIKA ASSOCIATES LICENSE STATEMENT AND
LIMITED WARRANTY

IMPORTANT - READ CAREFULLY

This license statement and limited warranty constitute a legal agreement (“License
Agreement”) between you (either as an individual or a single entity) and mikroElek-
tronika (“mikroElektronika Associates”) for software product (“Software”) identified
above, including any software, media, and accompanying on-line or printed docu-
mentation.

BY INSTALLING, COPYING, OR OTHERWISE USING SOFTWARE, YOU AGREE
TO BE BOUND BY ALL TERMS AND CONDITIONS OF THE LICENSE
AGREEMENT.

Upon your acceptance of the terms and conditions of the License Agreement,
mikroElektronika Associates grants you the right to use Software in a way provided
below.

This Software is owned by mikroElektronika Associates and is protected by copy-
right law and international copyright treaty. Therefore, you must treat this Software
like any other copyright material (e.g., a book).

You may transfer Software and documentation on a permanent basis provided. You
retain no copies and the recipient agrees to the terms of the License Agreement.
Except as provided in the License Agreement, you may not transfer, rent, lease,
lend, copy, modify, translate, sublicense, time-share or electronically transmit or
receive Software, media or documentation. You acknowledge that Software in the
source code form remains a confidential trade secret of mikroElektronika Associates
and therefore you agree not to modify Software or attempt to reverse engineer,
decompile, or disassemble it, except and only to the extent that such activity is
expressly permitted by applicable law notwithstanding this limitation.

If you have purchased an upgrade version of Software, it constitutes a single prod-
uct with the mikroElektronika Associates software that you upgraded. You may use
the upgrade version of Software only in accordance with the License Agreement.

4 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 1
mikroPascal for 8051 Introduction

LIMITED WARRANTY

Respectfully excepting the Redistributables, which are provided “as is”, without war-
ranty of any kind, mikroElektronika Associates warrants that Software, once updat-
ed and properly used, will perform substantially in accordance with the accompany-
ing documentation, and Software media will be free from defects in materials and
workmanship, for a period of ninety (90) days from the date of receipt. Any implied
warranties on Software are limited to ninety (90) days.

mikroElektronika Associates’ and its suppliers’ entire liability and your exclusive
remedy shall be, at mikroElektronika Associates’ option, either (a) return of the price
paid, or (b) repair or replacement of Software that does not meet mikroElektronika
Associates’ Limited Warranty and which is returned to mikroElektronika Associates
with a copy of your receipt. DO NOT RETURN ANY PRODUCT UNTIL YOU HAVE
CALLED MIKROELEKTRONIKAASSOCIATES FIRST AND OBTAINED ARETURN
AUTHORIZATION NUMBER. This Limited Warranty is void if failure of Software has
resulted from an accident, abuse, or misapplication. Any replacement of Software
will be warranted for the rest of the original warranty period or thirty (30) days,
whichever is longer.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
MIKROELEKTRONIKA ASSOCIATES AND ITS SUPPLIERS DISCLAIM ALL
OTHER WARRANTIES AND CONDITIONS, EITHER EXPRESSED OR IMPLIED,
INCLUDED, BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND
NON-INFRINGEMENT, WITH REGARD TO SOFTWARE, AND THE PROVISION
OF OR FAILURE TO PROVIDE SUPPORT SERVICES.

IN NO EVENT SHALL MIKROELEKTRONIKA ASSOCIATES OR ITS SUPPLIERS
BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS AND BUSINESS INFORMATION, BUSINESS
INTERRUPTION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE
USE OF OR INABILITY TO USE SOFTWARE PRODUCT OR THE PROVISION OF
OR FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF
MIKROELEKTRONIKAASSOCIATES HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. IN ANY CASE, MIKROELEKTRONIKA ASSOCIATES’
ENTIRE LIABILITY UNDER ANY PROVISION OF THIS LICENSE AGREEMENT
SHALL BE LIMITED TO THE AMOUNT ACTUALLY PAID BY YOU FOR
SOFTWARE PRODUCT PROVIDED, HOWEVER, IF YOU HAVE ENTERED INTO
A MIKROELEKTRONIKA ASSOCIATES SUPPORT SERVICES AGREEMENT,
MIKROELEKTRONIKA ASSOCIATES’ ENTIRE LIABILITY REGARDING
SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF THAT
AGREEMENT.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 5

CHAPTER 1
Introduction mikroPascal for 8051

HIGH RISK ACTIVITIES

Software is not fault-tolerant and is not designed, manufactured or intended for use
or resale as on-line control equipment in hazardous environments requiring fail-safe
performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons
systems, in which the failure of Software could lead directly to death, personal injury,
or severe physical or environmental damage (“High Risk Activities”). mikroElektron-
ika Associates and its suppliers specifically disclaim any expressed or implied war-
ranty of fitness for High Risk Activities.

GENERAL PROVISIONS

This statement may only be modified in writing signed by you and an authorised offi-
cer of mikroElektronika Associates. If any provision of this statement is found void
or unenforceable, the remainder will remain valid and enforceable according to its
terms. If any remedy provided is determined to have failed for its essential purpose,
all limitations of liability and exclusions of damages set forth in the Limited Warran-
ty shall remain in effect.

This statement gives you specific legal rights; you may have others, which vary, from
country to country. mikroElektronika Associates reserves all rights not specifically
granted in this statement.

mikroElektronika
Visegradska 1A,
11000 Belgrade,
Europe.

Phone: + 381 11 36 28 830
Fax: +381 11 36 28 831
Web: www.mikroe.com
E-mail: office@mikroe.com

6 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 1
mikroPascal for 8051 Introduction

TECHNICAL SUPPORT

In case you encounter any problem, you are welcome to our support forums at
www.mikroe.com/forum/. Here, you may also find helpful information, hardware tips,
and practical code snippets. Your comments and suggestions on future develop-
ment of the mikroPascal for 8051 are always appreciated — feel free to drop a note
or two on our Wishlist.

In our Knowledge Base www.mikroe.com/en/kb/ you can find the answers to Fre-
quently Asked Questions and solutions to known problems. If you can not find the
solution to your problem in Knowledge Base then report it to Support Desk
www.mikroe.com/en/support/. In this way, we can record and track down bugs more
efficiently, which is in our mutual interest. We respond to every bug report and ques-
tion in a suitable manner, ever improving our technical support.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 7

CHAPTER 1
Introduction mikroPascal for 8051

HOW TO REGISTER

The latest version of the mikroPascal for 8051 is always available for downloading
from our website. It is a fully functional software libraries, examples, and compre-
hensive help included.

The only limitation of the free version is that it cannot generate hex output over 2
KB. Although it might sound restrictive, this margin allows you to develop practical,
working applications with no thinking of demo limit. If you intend to develop really
complex projects in the mikroPascal for 8051, then you should consider the possi-
bility of purchasing the license key.

Before we start you might find this link very useful, regarding the questions related
to registration procedure. Copy and paste this link into your web browser

http://www.mikroe.com/pdf/mikrobasic/compiler_activation.pdf (this file is in
PDF format).

Who Gets the License Key
Buyers of the mikroPascal for 8051 are entitled to the license key. After you have
completed the payment procedure, you have an option of registering your mikroPas-

cal. In this way you can generate hex output without any limitations.

How to Get License Key

After you have completed the payment procedure, start the program. Select Help » How
to Register from the drop-down menu or click the How To Register Icon .. . Fill out the
registration form (figure below), select your distributor, and click the Send button.

8 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 1
mikroPascal for 8051 Introduction

@ How To Register,

Step 1. Fill in the form below. Please, make sure you fill in all required fields.

Step 2. Make sure that you provided a walid email address in the "EMAIL" edit box, This email will be used for
sending you the activation key.

Step 3. Make sure you select a correct distributor which will make the registration process faster. If your
distributor is not on the list then select "other" and type in distributor's email address in the box below,

Step 4. Press the SEND button to send key request, &4 default email client will open with ready-to-send message,
Mote: If email client does not open, you may copy text of the message and paste it manually into a new email
message before sending it to your distributar's ernail.

NAME* [Marko Medic
ACDRESS |Enter wour address
IMWOICE |Enter invice number iF available

E-MAIL* |rnarkn medic@rmikroe, com

COMPANY |Enter COMPanyy Name

| |
| |
| |
| E-MAIL* |marko medic@rmikroe, com |
| |
| |
| |

PRODUCT ID |455F\-6??169-?66564-6?4C10

DISTRIBUTOR™*

* Required fields

1 have made the payment and I wish ko request activation key For mikroPascal for
G051

Name:
Markn Medic

Address:
Invoice number:
Company:
E-Mail:

marko, medic@rmikroe, com

Product key:
455A-677169-700564-674C10

Distributor:
mikroElektronika
kew@mikroe.com

J» Copyto [54] sEND Cancel
= dipboard

This will start your e-mail client with message ready for sending. Review the infor-
mation you have entered, and add the comment if you deem it necessary. Please,
do not modify the subject line.

Upon receiving and verifying your request, we will send the license key to the e-mail
address you specified in the form.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 9

CHAPTER 1
Introduction mikroPascal for 8051

After Receving the License Key

The license key comes as a small autoextracting file — just start it anywhere on your
computer in order to activate your copy of compiler and remove the demo limit. You
do not need to restart your computer or install any additional components. Also,
there is no need to run the mikroPascal for 8051 at the time of activation.

Notes:

- The license key is valid until you format your hard disk. In case you need to format
the hard disk, you should request a new activation key.

- Please keep the activation program in a safe place. Every time you
upgrade the compiler you should start this program again in order to
reactivate the license.

10 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER

mikroPascal for 8051
Environment

The mikroPascal for 8051 is an user-friendly and intuitive environment:

11

CHAPTER 2
Environment mikroPascal for 8051

IDE Overview

[M] mikroPascal for BOS51 - C:WProgram Files\MikroelektronikatmikroPascal BOS1\Examples\ cd\ ed.mpproj

Fle EdR Wew Proct Run Took Heb

NE-08 HE & s BiPRPAR B N b E@ I SOAEBS | B (5 B oo @y 0o igh .2
2 o ol s = e
T Code Explarer B L) edmpas B ([ubrary Manager S E3 | T watch values b:¥% |
W * txtd : array[7] of byte; // = "example": L TS S e Vi i B EE ool | @ H
Guses 3 i : byte: // Loop variable @ Dl Button & Add 3 femove > Properne)
= @main m] can_spi - H
° LCD_RS 46 progedure Bowe Delopil: // Function used for text s @ [onversions Select vaiigble from kst il
o LCD_EN - begin &] ctype uen D4 v o
3 weo.o7 g Delay ms (S00) ; #/ You can change the moving : | WLIEEFROM Sossch s yehoble b oty home; +3
o LCDDe & . wmail &] 6kd |_LCD_D4
@ Lco_Ds ° [5k _Fonts =
°LCD D4 f i [Keypadss =
r begin = at
o er g Bt Mame Vale | Addess St
o txtz LT = Y [¥] Led_cCorstanits
® - " D'\‘ hes LD o7 o OxD0AD e |
s @ txtz = 'EasyB0S1B'; Code Assistant i [] Manchester
. &[] one_wire LCD_EN [00043
tetd = - £XE3 = *lcdehit’; [bultin] procedure Delay_us (Time_n_us: Lo A -
o 3 aaa o i Itin] procedrs Delay_ms (Time_In_ms: L # [] Port_Expander LD_Rs L 00080
xtd := ‘example': main [T 0 0:0080
,,,,,,,,,, ® 50 Led_Initi): LCD_RS: sbit =01
& i 20 - Led_twd (LCD_CLEAR) LCD_EN: sk =0 e g
Froject Settings. ed_Cmd (LCD_|)z LCD_D7: st =00 LD D4 o 00040
S Device. | o} Led_Cwd (LCD_CURSOR_OFF) & LCD_Dé: shit=0
LLD_DS: shit=0
LED D4: shit =0
Mame: | AT2058253 ~lie LED_Out (1,6, txt3) ; e batl: omay[16 1of byte =0
. - LCD_out (£, &, txed) ¢ betZ: e[9] of byte =0
=i Oscilator & - Deloy_ma (2000} 7
. Led_Cod (LCD_CLEAR) = X
— il a0 sPr_Te9sac
Value: 10.000000 | MHz | G Flarin
' e LCD Oucil,1,txcl); -
e <o LED_out (2,4, txt2) ; i [Tesesc
{0 Memory Mods | Al SR &] Time
& Delay ms(500); @[] Trigan
& [usRT
=) Smal oL ,
o * L /7 Noving text
Q Compact & for i:=0 to 3 do @
- & begin
@ . Led Cmed (LCD_SHIFT RIGHT) ;
. REeE R SO
- . end;
70 while TRUE do
begin
L : Tor 1:=0 te & do o
B ET ¥ | o023 Crdem 000
Messages aZ@
[¥] Ervors [#] warrings. [] Hinks.
Line. Me<sage No. Message Text -~
[1 nikroPascalB051 &xe -DBG -MSF -N'C:iProgram celiLed i “System.mel” “Math,mcl" “Math_Doubie.mel” ‘Delays.mef**_|
o 137 ms
)
0 138
0 139
a 103 o
< Ed
46: 39 Insart Mesdifiad Compibed cdiLed.mpas

- The Code Editor features adjustable Syntax Highlighting, Code Folding, Code
Assistant, Parameters Assistant, Spell Checker, Auto Correct for common typos
and Code Templates (Auto Complete).

- The Code Explorer (with Keyboard shortcut browser and Quick Help browser) is at
your disposal for easier project management.

- The Project Manager alows multiple project management

- General project settings can be made in the Project Settings window

- Library manager enables simple handling libraries being used in a project

- The Error Window displays all errors detected during compiling and linking.

- The source-level Software Simulator lets you debug executable logic step-by-step
by watching the program flow.

- The New Project Wizard is a fast, reliable, and easy way to create a project.

- Help files are syntax and context sensitive.

- Like in any modern Windows application, you may customize the layout of
mikroPascal for 8051 to suit your needs best.

12 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

- Spell checker underlines identifiers which are unknown to the project. In this way
it helps the programmer to spot potential problems early, much before the project
is compiled.

Spell checker can be disabled by choosing the option in the Preferences dialog (F12).

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 13

CHAPTER 2
Environment mikroPascal for 8051

MAIN MENU OPTIONS
Available Main Menu options are:
Eile

Edit

| 1=
m
=

roject

=
=
5

1=
fu]
o
L

1T
o
L=

Related topics: Keyboard shortcuts

14 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

FILE MENU OPTIONS

The File menu is the main entry point for manipulation with the source files.

L] Mew Unit Chrl+
= Open Chrl+0

Recent Files r
H zave S
H,_—f Save As
L0 Clase Chrl+Fe
¢ Print.. Ctrl+P
B E:i Al

File Description

Mew Unit Ctrl+h | Open a new editor window.

(e [
ks

Ctrl+3 | Open source file for editing or image file for viewing.

Recent Files } | Reopen recently used file.

|H]
1]
=
(1]

trl+5 || Save changes for active editor.

Save the active source file with the different name or
change the file type.

T
g
5

o

o
]

s Close Alk+F4 || Close active source file.
% Print.. Ctrl+P | Print Preview.
B Exit A+ | Exit IDE.

Related topics: Keyboard shortcuts, File Toolbar, Managing Source Files

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 15

CHAPTER 2
Environment mikroPascal for 8051

EDIT MENU OPTIONS

<A Undo ChrZ
Fr Redo Shift+Ctr+-Z
o Cut Chrl+x
._:g Copy Chrl+C
[5) Ppaste Chrl+
X Delete

Select all Chrl+4
A End... Chrl+F
A Find Next F3
9 Find Previous Shift+F3
)R Replace. .. Chrl+R
]| FndInFiles... Alk+F3
4+ Gotoline... Chrl+G

Advanced 3

Edit Description
4 Undo Ctrl+Z || Undo last change.
fir Redo shift+Ctrl+Z || Redo last change.
j."h Cut Ckrl+% || Cut selected text to clipboard.
._l—E‘| Copy Ctri+C || Copy selected text to clipboard.
3 Paste Ctrl+v || Paste text from clipboard.
X Delete Delete selected text.
Select Al ke || Select all text in active editor.
A2 Find... Ctrl+F || Find text in active editor.
Jel Find Next F3 ||Find next occurence of text in active editor.
‘}} Find Previous shift+F3 || Find previous occurence of text in active editor.
)ﬁ Replace. ., _tr+R || Replace text in active editor.
d ’ | Find text in current file, in all opened files, or in files
i) FndinFles.. A3 | fom desired folder.
+ Gotoline... Ctr+G || Goto to the desired line in active editor.
Adwvanced || Advanced Code Editor options

16 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 2
Environment

Advanced » Description
o : =hiftach] Comment selected code or put single line com-
L.} Commen A I ment if there is no selection.
HE I Uncomment selected code or remove single line

L} Uneomment Shift+Crby, | oonment if there is no selection.

%5 Indent Shift+Ckrl+I | Indent selected code.

=% Outdent shift+Ctr4+U- | Outdent selected code.

As| Lowercase Ctrl+alt+L | Changes selected text case to lowercase.

a8 Uppercase Ckrl+alt+0 | Changes selected text case to uppercase.

@ Titlecasze Ckrl+alk+T | Changes selected text case to titlercase.
Find Text

Dialog box for searching the document for the specified text. The search is per-
formed in the direction specified. If the string is not found a message is displayed.

x|

Search for: ini v
Options Direction
Case sensitivity @ Forward
Whole words only
Search frorm caret - Backward
Selected text anly
Reqular expression Cancel

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

17

CHAPTER 2
Environment

mikroPascal for 8051

Replace Text

Dialog box for searching for a text string in file and replacing it with another text string.

@ Replace™|ext

Search far: | mikroE lektronika

Replace with: |mileE

@ Fomward

E E

Backward

E E

Find In Files
Dialog box for searching for a text string in current file, all opened files, or in files on a disk.

The string to search for is specified in the Text to find field. If Search in directories option
is selected, The files to search are specified in the Files mask and Path fields.

Grep'search "9
Text to find: |mikroEIektronika
~Options———— —where

I Case sensitive) Current file

" all apened files
@ search in directories

" Whole words

—Search directory options

Files rnask: *.*

| ChDocurnents and Sethingsh,

18 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

Go To Line

Dialog box that allows the user to specify the line number at which the cursor should
be positioned.

IGu To Line

Go To Line Nuber 1 |§

Cancel

Replace Text

Dialog box for searching for a text string in file and replacing it with another text string.

Search for: | mikroE lektronik a

Replace with: |mileE

<

E E E E

Regular expressions

By checking this box, you will be able to advance your search, through Regular
expressions.

Find Text

Search far: |

Direction
@ Farward

E EE EE

Related topics: Keyboard shortcuts, Edit Toolbar, Advanced Edit Toolbar

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 19

CHAPTER 2
Environment mikroPascal for 8051

VIEW MENU OPTIONS

Toolbars k

Debug Windows k

E Routines Lisk
Project Settings
E Code Explarer
Project Manager Chkrl+F1L1

Library Manager

Bookmarks

Messages
Marro Editor

Windows

File Description

Toolbars k| Show/Hide toolbars.
Debug Windaws Show/Hide debug windows.

T | Routines List Show/Hide Routine List in active editor.
Project Setkings Show/Hide Project Settings window.

E Code Explorer Show/Hide Code Explorer window.

Project Manager Shift+ Ctrl+F11 | Show/Hide Project Manager window.

Library Manager Show/Hide Library Manager window.
Bookmarks Show/Hide Bookmarks window.
Messages Show/Hide Error Messages window.
Macrao Editar Show/Hide Macro Editor window.

7 Windows Show Window List window.

20 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2

mikroPascal for 8051 Environment

TOOLBARS
File Toolbar

N&-HS N & &

File Toolbar is a standard toolbar with following options:

Icon Description

|j Opens a new editor window.

@ ~ |Open source file for editing or image file for viewing.

Save changes for active window.

Save changes in all opened windows.

HD|D

Close current editor.

B,

Close all editors.

& Print Preview.

Edit Toolbar
& IE

Edit Toolbar is a standard toolbar with following options:

Description

Undo last change.

Redo last change.

Cut selected text to clipboard.

g 33 E} i} g

Copy selected text to clipboard.

EI Paste text from clipboard.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 21

CHAPTER 2
Environment mikroPascal for 8051

Advanced Edit Toolbar
i MR

Advanced Edit Toolbar comes with following options:

I5
e

L

Icon Description

{} Comment selected code or put single line comment if there is no selection

Uncomment selected code or remove single line comment if there is
Lo no selection.

EEGI

Select text from starting delimiter to ending delimiter.

Go to ending delimiter.

Go to line.

Indent selected code lines.

Outdent selected code lines.

Generate HTML code suitable for publishing current source code on
the web.

El i (712 B

Find/Replace Toolbar
DE-H6 H- &

Find/Replace Toolbar is a standard toolbar with following options:

Description

Find text in current editor.

Find next occurence.

Find previous occurence.

Replace text.

[Bo |0l §

Find text in files.

22 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

Project Toolbar
e o o i 0 Y e N

Project Toolbar comes with following options:

Description

Icon
|_';ﬁ_-| Open new project wizard. wizard.

Open Project

Save Project

Add existing project to project group.

Add File To Project

Remove File From Project

H Remove existing project from project group.

% Close current project.

Build Toolbar

Build Toolbar comes with following options:

Icon Description

Build current project.

Build all opened projects.

Build and program active project.

B
=

s g |

Start programmer and load current HEX file.

Open assembly code in editor.

Bl |l | %

View statistics for current project.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 23

CHAPTER 2
Environment mikroPascal for 8051

Debugger

Eh By w0 ®, 00 2l | @ [i

@

Debugger Toolbar comes with following options:

Description

Start Software Simulator.

!||||I o
(]
=

L]

1 Run/Pause debugger.

Stop debugger.

Step into.

Step over.

Step out.

Run to cursor.

Toggle breakpoint.

Toggle breakpoints.

Clear breakpoints.

%f—“ﬂ@ﬂ%:ﬁ‘%@?

View watch window

-

View stopwatch window

Styles Toolbar

Office 2003 Blue e

»

Office 2003
Dffice 2003 Olive
Office =P
Chocolate

Arctic

Silverfox

Saft zand [V

Styles toolbar allows you to easily customize your workspace.

24 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 2
Environment

Tools Toolbar

E," I_—-I A @

Tools Toolbar comes with following default options:

Icon Description
EI Run USART Terminal

| | EEPROM

/. |ASCII Chart

£

Seven segment decoder tool.

The Tools toolbar can easily be customized by adding new tools in Options(F12)

window.

Related topics: Keyboard shortcuts, Integrated Tools, Debugger Windows

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 25

CHAPTER 2
Environment mikroPascal for 8051

PROJECT MENU OPTIONS

H Build Chrl+Fa
4% Buid All Projects Shift+F9
% Build + Program Chrl+F11

Edit Search Paths. ..

Clean Project Folder. ..

Add File To Project. ..

Remove File From Project

Mew Project... Shift-+Ckrl+n

Open Project,.. Shift+Ctr+O

Open Project Group,..
Clase Project Group

Save Project As...

Recent Projects 4

(& (B 08 08 & oe P by b [0

Close Project

26 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 2

YWiew Assembly

View Assembly.

Environment
Project Description
Buid Ctrl+F3 | Build active project.
;ﬁ- Build Al Shift+F3 | Build all projects.
% Build + Program Ctrl+F11 | Build and program active project.
[E]]

Edit Search Paths. ..

Edit search paths.

Clean Project Folder...

Clean Project Folder

Add File To Project. ..

Add file to project.

Eemove File From Project

Remove file from project.

Mew Project. ..

Open New Project Wizard

Qpen Project,.. Shift+Chrl+0

Open existing project.

Save Project

Save current project.

Open Project Group...

Open project group.

Close Project Group

Close project group.

AR R

Save Project As...

Save active project file with the different name.

Recent Projects

Open recently used project.

Close Project

Close active project.

Related topics: Keyboard shortcuts, Project Toolbar, Creating New Project, Project
Manager, Project Settings

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

27

CHAPTER 2
Environment

mikroPascal for 8051

RUN MENU OPTIONS

é}; Start Debugger Fa
I-E_?H Stop Debugger Chrl+F2
f_%:] | Pause Debugger F&
500 Skep Inko F7
d>[] Step Qver Fa
0 Skep Ouk Chrl+Fa

Jump Tao Inkerrupt Fz

Toggle Breakpoink F5

Breakpoinks Shift-+F4

&
B, Clear Breakpoints Shift+Cr+FS
& watch Wwindow Shift+FS

Wiew Stopeatch

Disassembly made Alt+D
Run Description

=h Start Debugger Fa |Start Software Simulator.
E—E Stop Debugger Ckrl+F2 | Stop debugger.
[_%]J Pause Debugger F& |Pause Debugger.
g0} Step Inta F7 |Step Into.
“, Step Over F5 |Step Over.

Skep Ot iZkrl+Fg | Step Out.

Jurp To Interrupk Fz

Jump to interrupt in current project.

Toqggle Breakpoink F5

Toggle Breakpoint.

Breakpoints.

Clear Breakpoints Shift+Ctrl4+F5

Clear Breakpoints.

Wakch Window Shift+F5

Show/Hide Watch Window

£
=
2= ShowfHide Breakpoints Shift+F4
L
&

Wi Skopiwatch

Show/Hide Stopwatch Window

Disassembly mode Chrl+D

Toggle between Pascal source and disassembly.

Related topics: Keyboard shortcuts, Debug Toolbar

28

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 2
Environment

TOOLS MENU OPTIONS

&

=
El

3N

mE Programmer F11
USART Terminal Chrl+T
EEPROM Editor

Ascii Chart

Seven Segment Conwverkar
Export Code To HTML

LCD Custom Characker

(4 GLCD Bitmap Editor
IUGF Terminal
&l options F12
Tools Description
PicFlash Programmer F11 [Run mikroElektronika Programmer

USART Terminal Chrl+T

Run USART Terminal

EEPR.OM Editar Run EEPROM Editor
A Ascii Chart Run ASCII Chart
@' Sewven Segment Converkar Run 7 Segment Display Decoder
[0 Export Code Ta HTML Generate HTML code suitable for publishing

source code on the web.

LCD Cuskam Character

Generate your own custom LCD characters

'_h GLCD Bitmap Editor Generate bitmap pictures for GLCD
LUDF Terminal UDP communication terminal.
g Opkions Fiz |Open Options window

Related topics: Keyboard shortcuts, Tools Toolbar

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

29

CHAPTER 2
Environment mikroPascal for 8051

HELP MENU OPTIONS
&) Help F1

Check For Updates
mikroElektronika Support Forums
mikroElektronika Web Page

2 How To Regisker

About:
Help Description
@ Help F1 |Open Help File.
Quick Help.
izheck For Updates Check if new compiler version is available.

Open mikroElektronika Support Forums in
a default browser.

Open mikroElektronika Web Page in a
default browser.

mikroElektronika Suppart Forums

mikroElektronika Web Page

2 How To Regisker Information on how to register

About Open About window.

Related topics: Keyboard shortcuts

30 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 2
Environment

KEYBOARD SHORTCUTS

Below is a complete list of keyboard shortcuts available in mikroPascal for 8051 IDE. You

can also view keyboard shortcuts in the Code Explorer window, tab Keyboard.

IDE Shortcuts Ctrl+X Cut

F1 Help Ctrl+Y Delete entire line
Ctrl+N New Unit Ctrl+Z Undo
Ctrl+O Open Ctrl+Shift+Z Redo
Ctrl+Shift+O |Open Project Advanced Editor Shortcuts
Ctrl+Shift+N [Open New Project Ctrl+Space Code Assistant
Ctrl+K Close Project Ctrl+Shift+Space |Parameters Assistant
Ctrl+F9 Compile Ctrl+D Find declaration
Shift+F9 Compile All Ctrl+E Incremental Search
Ctrl+F11 Compile and Program Ctrl+L Routine List
Shift+F4 View breakpoints Ctrl+G Goto line
Ctrl+Shift+F5 [Clear breakpoints Ctrl+J Insert Code Template
F11 Start 8051Flash Programmer | |Ctrl+Shift+. Comment Code
F12 Preferences Ctrl+Shift+, Uncomment Code

Basic Editor Shortcuts Ctrl+number Goto bookmark
F3 Find, Find Next Ctrl+Shift+number | Set bookmark
Shift+F3 Find Previous Ctrl+Shift+l Indent selection
Alt+F3 Grep Search, Find in Files Ctrl+Shift+U Unindent selection
Ctrl+A Select All TAB Indent selection
Ctri+C Copy Shift+TAB Unindent selection
Ctrl+F Find Alt+Select Select columns
CtrI+R Replace Ctri+Alt+Select [Select columns
Ctrl+P Print Ctrl+Alt+L Esvr;\;izsseelection to
Ctrl+S Save unit -
Ctri+Shift+S | Save Al Ctrl+Alt+U Sgg;’ig Selection o
Ctri+V Paste Ctri+AIt+T Convert to Titlecase

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

31

CHAPTER 2

Environment mikroPascal for 8051
Software Simulator Shortcuts

F2 Jump To Interrupt
F4 Run to Cursor
F5 Toggle Breakpoint
F6 Run/Pause Debugger
F7 Step into
F8 Step over
F9 Debug
Ctrl+F2 Reset
Ctrl+F5 Add to Watch List
CtrI+F8 Step out
Alt+D Dissasembly view
Shift+F5 Open Watch Window

32 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

IDE OVERVIEW

The mikroPascal for 8051 is an user-friendly and intuitive environment:

[mikroPascal for BOS1, - C:\Program FilesWMikroelektronikaimikroPascal B051\ExampleslcdiLcd.mpproj

Fle EdR Mew Brofect Bun Took Heb

N&-08 (KK (&6 BILRAPAR B % $ am B0ABE | BB (o0 %00 @3
[P [] o2 e M)
T8 Code Explarer B [2) Ledimpas @ ([T ubrary manager EE3 | T watch values
B 3 Extd i array[7] of byte: // = example!s Lt 00 0 i e [Z B By | o0 % oo oI
Wuses 40 i #/ Leop vaciaple _-.Eeuuuw e add § memove <) Propertiet
& @main 3 i] can_sgi -
9 LCD RS 40 procedure Move Delay(]; // Function used for text 5 # [Conversions Select vaiisble from st
° LCD_EN . begin =0 ctype 1eD D4
°Lcop7 ° T Delay ms(500) ; // ¥ou can change the moving ¢ | © CJEEFROM Seachlor vaiizble by assembly name +3
o LCD_D6 " sad; & (] Gd |LcD_p4
® LCD_DS [sked_Fonts =
9 LCD_D4 3 w0] Keypadxt el
- B begin " - . -
° ter1 E - — WL Mame vae | Addess
® txt2 46 txtl := '‘mikroElekc [¥] Led_Corstants
o Lo o7 o 0x00AD e |
ety ° THEZ i= 'EasyS0S1E' Code Azsistant @10 Mancheste om0 0:0040
? et ° txe3 := ¢ leddbic!: [buitin] procedirs Delay_us (Time _in_us: Lo A @] -
o [l cde Delay_ms (Tue_in s L i@l [Port_Expander LD RS a 00043
- . tatd = ‘example’: re msin m s LwpLs 0 0:0040
.......... & s Led_Inici); {Eg)‘& fitt-uﬂ @ [JRs4as W o 00040
o Project settings 2@ (e Led_Crmd (LCD_CLEAR) 2 m:j:f. e} i [] seftware_12c [T I 00080
g Device |le Led_Cmd (LCD_CURSOR_OFF) ; LCD_D&: soit =10 i (] Softwars_SP1
LED_D5: shit=0 w0] software_Uart
LOD_D4: shit =0)
Name: AT8950253 v | LCD_omt (1, 6,tXE3) ; e bietl: svay] 16 1ofbrte =0 s E:::M I
. o tet2: array(5] ot byte =0 i -
LC_O'I':(v:‘n. bt arra] 7] of biee = 0 R w51 _glcd
=4 Osollator = - Deloy_ma (20000 ; tetd: zrray] 7] of byte =0 @ 0] 5P1_ted
' Led_Cmd (LCD_CLEAR) £ it byte =0 CImECTE]
— il = = RO: byte a [spr_Tessac
Value: 10.000000| MHz | Ri:byte i D string
:| LCD_Out(l,1,TREl): R2Z:byte 4 ?
fe a0 LCD_ o (2, 4, £HE2) £ R bem] Tsaeac
S Memery Modsl | = Ra: byts @[] Time
B - Delay ms(500): RS: byte g () Trioan
. Res e @ JusRT
2 Smal L ite ;
gc"“’ , fda /7 Moving text Hibae=1
ompac! & = 3 : byte =
For o0 te o do const Faibyte =3 v
- o begin
- . Led_Cwal (LCD_SHIFT_RIGET) 3
N ReeE S STl
. . end;
70 while TRUE do
! begin
= - Tor 1:=0 o & do o
e - | pc=0:000223 Cyce=0.00
Messages @
Errors [Warrings: [] Hints:
Ling Message No. Message Text ~
0 1 oB5 exe -DBG HSF N'C:{Program i celiLed mpprof® *System.mcl” "Math, mc” “Math_Doubie.rmcl” ‘Delays.mc_|
0 137 conpiled in 32 ms
o 15
0
0 133 f completed: 155 ms
o 103 suecessfully: 19 un 2008, 12:09:02 ¥
< ¥
46: 39 Insert Modified Compiled Ci\Program cdiLed.mpas

- The Code Editor features adjustable Syntax Highlighting, Code Folding, Code
Assistant, Parameters Assistant, Spell Checker, Auto Correct for common typos
and Code Templates (Auto Complete).

- The Code Explorer (with Keyboard shortcut browser and Quick Help browser) is at
your disposal for easier project management.

- The Project Manager alows multiple project management

- General project settings can be made in the Project Settings window

- Library manager enables simple handling libraries being used in a project

- The Error Window displays all errors detected during compiling and linking.

- The source-level Software Simulator lets you debug executable logic step-by-step
by watching the program flow.

- The New Project Wizard is a fast, reliable, and easy way to create a project.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 33

CHAPTER 2
Environment mikroPascal for 8051

- Help files are syntax and context sensitive.

- Like in any modern Windows application, you may customize the layout of
mikroPascal for 8051 to suit your needs best.

- Spell checker underlines identifiers which are unknown to the project. In this way
it helps the programmer to spot potential problems early, much before the project
is compiled.

Spell checker can be disabled by choosing the option in the Preferences dialog (F12).

34 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

CUSTOMIZING IDE LAYOUT

Docking Windows

You can increase the viewing and editing space for code, depending on how you
arrange the windows in the IDE.

Step 1: Click the window you want to dock, to give it focus.

Project Manager

R EEEENEYEY

o
EI% FirstProject.mpproj I~
=) Saurces

------ FirstPraject. mpas

E] Binaries

E] Project level defines

E] Image Files
I output Files
L) Other Files

Step 2: Drag the tool window from its current location. A guide diamond appears.
The four arrows of the diamond point towards the four edges of the IDE.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 35

CHAPTER 2
Environment mikroPascal for 8051

Step 3: Move the pointer over the corresponding portion of the guide diamond. An
outline of the window appears in the designated area.

Step 4: To dock the window in the position indicated, release the mouse button.

Tip: To move a dockable window without snapping it into place, press CTRL while
dragging it.

Saving Layout

Once you have a window layout that you like, you can save the layout by typing the
name for the layout and pressing the Save Layout Iconﬁ.

To set the layout select the desired layout from the layout drop-down list and click
the Set Layout Icon ﬁ

To remove the layout from the drop-down list, select the desired layout from the list
and click the Delete Layout Icon ﬁ .

36 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 2
Environment

Auto Hide

Auto Hide enables you to see more of your code at one time by minimizing tool win-

dows along the edges of the IDE when not in use.

- Click the window you want to keep visible to give it focus.
- Click the Pushpin Icon 2 on the title bar of the window.

joject Manager _ EE]
BN == = '

= EX

= I_i’)_-, FirstProject.mpproj

=) Sources = 5
% SecondProject.mpas L l_]% %

[Binaries =IN=] I?ﬁ_j FirstPro

) Project level defines e e ey S e 1

] Image Files %1 E

] Qutput Files 1 Binar

] Other Files I Proje
1 ImagQ
] Cukp
] Othe

--.--.--.--.--.i--ui-.*

-

= & Project Mana I

Jabeue |y 30al04q

When an auto-hidden window loses focus, it automatically slides back to its tab on
the edge of the IDE. While a window is auto-hidden, its name and icon are visible
on a tab at the edge of the IDE. To display an auto-hidden window, move your point-
er over the tab. The window slides back into view and is ready for use.

™

[2)

asbeuely paiosd [fT])

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

37

CHAPTER 2
Environment mikroPascal for 8051

ADVANCED CODE EDITOR

The Code Editor is advanced text editor fashioned to satisfy needs of professionals.
General code editing is the same as working with any standard text-editor, including
familiar Copy, Paste and Undo actions, common for Windows environment.

Advanced Editor Features

- Adjustable Syntax Highlighting

- Code Assistant

- Code Folding

- Parameter Assistant

- Code Templates (Auto Complete)
- Auto Correct for common typos

- Spell Checker

- Bookmarks and Goto Line

- Comment / Uncomment

You can configure the Syntax Highlighting, Code Templates and Auto Correct from
the Editor Settings dialog. To access the Settings, click Tools » Options from the
drop-down menu, click the Show Options Icon g or press F12 key.

38 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

Options
Editar

Editor Settings

Project Files

"' Restaore Last Opened Project
" Restare all Opened Files

" Sawe Breakpoints

" Sawve Bookmarks

() Reload file, but do nok prompt

() Ignore externally made changes

Aubo Save
¥ Enable Auto Save
Tirneouk Interval: minukes
Highlighter
¥ Highlight begin..end pairs
W Highlight brackets
Spelling

W Check Spelling

Comment style
@]

0 {single ling)

Advanced Editar Options
E Open options diglog

Code Folding

W Enable code Folding

V' show Ident Guides

J Outpat

0K Apply Cancel

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 39

CHAPTER 2
Environment mikroPascal for 8051

Code Assistant

If you type the first few letters of a word and then press Ctrl+Space, all valid identi-
fiers matching the letters you have typed will be prompted in a floating panel (see
the image below). Now you can keep typing to narrow the choice, or you can select
one from the list using the keyboard arrows and Enter.

Sp

e

Cwariable sfr SPibye
variable sfr SPDR: byte
variable sfr 9SPSR byte
variable sfr SPCR: byte

Code Folding

Code folding is IDE feature which allows users to selectively hide and display sec-
tions of a source file. In this way it is easier to manage large regions of code within
one window, while still viewing only those subsections of the code that are relevant
during a particular editing session.

While typing, the code folding symbols (and) appear automatically. Use the folding
symbols to hide/unhide the code subsections.

L\}hegin

PO := 0O:

P2 = 0:

Led Init():

LCD_Out (1,1, txt[0]);
LCD_Out (2,1, txt[1]]):;
delay ms(1000) ;

Led cmdil):

LCD_out{l,1,txt[1]]:;
LCD_Out iz, 4, txt[2]);
delay m= (500 ;

end.

hegin EI

If you place a mouse cursor over the tooltip box, the collapsed text will be shown in
a tooltip style box.

40 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2

mikroPascal for 8051 Environment
hegin [: o)
. -
begin
PO := 0O;
P2 = 0;

Led Initi):

LCD out{l,1,txc[0]]);
LCD Out 2,1, txt[1]]);
delay ms(1000) ;

Led Cmd(l)

LCD_out(1,1,txc[1]):
LCD out(2,4,txt[2]]);
delay_ms(500) ;

end;

Parameter Assistant

The Parameter Assistant will be automatically invoked when you open parenthesis
“(” or press Shift+Ctrl+Space. If the name of a valid function precedes the parenthe-
sis, then the expected parameters will be displayed in a floating panel. As you type
the actual parameter, the next expected parameter will become bold.

channel : byte
ADC Res

Code Templates (Auto Complete)

You can insert the Code Template by typing the name of the template (for instance,
whiles), then press Ctrl+J and the Code Editor will automatically generate a code.

You can add your own templates to the list. Select Tools > Options from the drop-down
menu, or click the Show Options Icon E and then select the Auto Complete Tab. Here

you can enter the appropriate keyword, description and code of your template.

Autocomplete macros can retreive system and project information:

- $DATES - current system date

- $TIMES - current system time

- ¢+DEVICES - device(MCU) name as specified in project settings
- $DEVICE CLOCKS - clock as specified in project settings

- 3COMPILERS% - current compiler version

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 41

CHAPTER 2
Environment mikroPascal for 8051

These macros can be used in template code, see template ptemplate provided with
mikroPascal for 8051 installation.

Auto Correct
The Auto Correct feature corrects common typing mistakes. To access the list of rec-
ognized typos, select Tools » Options from the drop-down menu, or click the Show

Options Icon g and then select the Auto Correct Tab. You can also add your own

preferences to the list.

Also, the Code Editor has a feature to comment or uncomment the selected code by sim-
ple click of a mouse, using the Comment Icon {1 = and Uncomment Icon i, 1| from
the Code Toolbar.

Spell Checker

The Spell Checker underlines unknown objects in the code, so they can be easily
noticed and corrected before compiling your project.

Select Tools » Options from the drop-down menu, or click the Show Options
Icon g and then select the Spell Checker Tab.

Bookmarks

Bookmarks make navigation through a large code easier. To set a bookmark, use
Ctrl+Shift+number. To jump to a bookmark, use Ctrl+number.

Goto Line

The Goto Line option makes navigation through a large code easier. Use the short-
cut Ctrl+G to activate this option.

Comment / Uncomment
Also, the Code Editor has a feature to comment or uncomment the selected

code by simple click of a mouse, using the Comment Icon {..} | and Uncom-

ment Icon {..} | from the Code Toolbar.

42 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 2
Environment

CODE EXPLORER

The Code Explorer gives clear view of each item declared inside the source code.
You can jump to a declaration of any item by right clicking it. Also, besides the list of
defined and declared objects, code explorer displays message about first error and
it's location in code.

E Code Explorer [% |

-l

Functions

Globals
TypeDef
Tags
Includes

Following options are available in the Code Explorer:

Icon

Description

=4

Expand/Collapse all nodes in tree.

e

Locate declaration in code.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 43

CHAPTER 2

Environment mikroPascal for 8051

ROUTINE LIST

Routine list diplays list of routines, and enables filtering routines by name. Routine
list window can be accessed by pressing Ctrl+L.

You can jump to a desired routine by double clicking on it.

[mikraPascal for BOS1 - C:WProgram Files\MikroalektronikaimikroPascal BOS1\Examples\SPI Ethernet\SpiEthernet.mpproj
File EdR Wiew Project Run Took Heb

D2-B8 | HE & 46 B RPAPRA B % % & 1@ SO04AES =) @ 2 [uhidey v
B 3 o O 2 N N
Code Explarer || spiEthernet mpas = Project Manager
de. 3 | [2) spierhe z@| g 2@ -
P ¢ A mmEe el ad |
@uses g % |, SpiEthernet.mpproj
@main =0 = -]
+ Hhegin o
2oz i o
- * starts ENC2EJE0 with : ¥
* reset bit on Pi_0 =
» Cs it on P12 =
* my MAC & IP address =
* ful) duplex
“ a9
- #pi_Iniv_Advanced (MASTER OSC_DIV1S OR CLE_IDLE_LOV OR IDLE_2_ACTIVE OR DATA ORDER_MSB):
aon #pi_Evhernet_Init (wyMachdde, myIpAddr, Spi_Evhernet FULLDUPLEX) : // full duplex, CRC + MA
while TRUE do ¢/ do rorever
begin
- 3 Libeary Manager a
* if necessary, test the return valus to get error code =
P e] el]]
Spi_Evhernet_doPacket(): // process incoming Ethérnst packets ®] Button A
: @[] can_spi
1 e #® [#] Conwersions
.......... =7 ctype
S Project Settings 310 # add your stuff here if nesded | & [EEPROM
=g Device - * Spi Bthernet doPacket() must be called as often[itt M s [eed
* otherwise packets could be lost " oy] Gled_Fonks
Name: | ATASSEZS3 v “} g: S _EWrst_User 1P £ :jmwadm
end ®] Led
e [Led_constanes
=48 Declbaon | : [Monchester
=[] one_wire
i] Port_Expander
Value: | 10000000 MHz B s
| : ® [rses
(=(TT7) Memony Model o =[] Software_12C
= [Scftware_3P1
1 % [] Software_Liart
@ Smal O Large ®] Sound
O Compaet =[] =1
< =] %1_Gd ¥
[Messages @
Errors [#] Warrings. [#] Hinks.
Line Message Ho. Message Text
< >
29213 Insert Modifed Cilrogram mpas

44

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

PROJECT MANAGER

Project Manager is IDE feature which allows users to manage multiple projects.
Several projects which together make project group may be open at the same time.
Only one of them may be active at the moment.

Setting project in active mode is performed by double click on the desired project in
the Project Manager.

=] Project Manager [% |
by | |58 (B8 3 | (S | 9 |
= Lfl, FirstProject.mpproj
=) Sources
E] FirstProject.mpas
[Binaries
1 Project level defines
1 Image Files
=] Qutput Files
% FirstProject, hex
% FirstPraject. asm
% FirstProject st
[Cither Files

Following options are available in the Project Manager:

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 45

CHAPTER 2
Environment mikroPascal for 8051

Icon Description

Save project Group.

Open project group.

Close the active project.

Close project group.

Add project to the project group.

Remove project from the project group.

Add file to the active project.

Remove selected file from the project.

Build the active project.

Run mikroElektronika's Flash programmer.

9| o | Uy | e [T | e | GBI |G| 08 | £

For details about adding and removing files from project see Add/Remove Files from
Project.

Related topics: Project Settings, Project Menu Options, File Menu Options, Project
Toolbar, Build Toolbar, Add/Remove Files from Project

46

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

PROJECT SETTINGS WINDOW
Following options are available in the Project Settings Window:
- Device - select the appropriate device from the device drop-down list.

- Oscillator - enter the oscillator frequency value.
- Memory Model - Select the desired memory model.

E Project Settings Ly |
Sl Device

Name: | 4758355253

Elc[& Dzcillatar
Value: | 008.000000| MHz
=T Memary Maodel -
%) Smal () Large
) Compact

Related topics: Memory Model, Project Manager

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 47

CHAPTER 2
Environment mikroPascal for 8051

LIBRARY MANAGER

Library Manager enables simple handling libraries being used in a project. Library
Manager window lists all libraries (extencion .mcl) which are instantly stored in the
compiler Uses folder. The desirable library is added to the project by selecting check
box next to the library name.

In order to have all library functions accessible, simply press the button Check All]
and all libraries will be selected. In case none library is needed in a project, press the but-
ton Clear All | | and all libraries will be cleared from the project.

Only the selected libraries will be linked.

|_—| Library Manager x|
& EEE
Button
[conversions
O ctype
[Doprrikf
[popenti
[popentl
aled
[@lcd_Forts
Led
[Led_Constants
[Math
[one_wire
Cp=z
[Irs4as
[5ofware_izc
Sofware_SPI
[5oftware_Jart
[150und
[sprintf
[sprinti
[sprintl
[stdib
[string
1189630
Time
[Trigon
LART

48 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

Icon Description

Refresh Library by scanning files in "Uses" folder.Useful when new
libraries are added by copying files to "Uses" folder.

Rebuild all available libraries. Useful when library sources are available and
need refreshing.

Include all available libraries in current project.

No libraries from the list will be included in current project.

Restore library to the state just before last project saving.

i [[

Related topics: mikroPascal for 8051 Libraries, Creating New Library

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 49

CHAPTER 2
Environment mikroPascal for 8051

ERROR WINDOW

In case that errors were encountered during compiling, the compiler will report them
and won’t generate a hex file. The Error Window will be prompted at the bottom of
the main window by default.

The Error Window is located under message tab, and displays location and type of
errors the compiler has encountered. The compiler also reports warnings, but these
do not affect the output; only errors can interefere with the generation of hex.

Messages

Errors Warnings Hints
Line Message No. Message Text Unit
1] 1 mikroPascaldnsl.exe -MSF -DBG -pAT8958253 E5 -C 011111114 ..,
0 125 All files Preprocessed in 31 ms
0 121 Compilation Started LedBlinking. mpas
21 300 Syntax Error: expected '), but';' found LedBlinking.mpas
21 399 ; expected but 'P2' found LedBlinking.mpas
22 421 'V expected '} found LedBlinking.mpas
31 421 "+ expected ;' found LedBlinking. mpas
0 02 Finished {with errors): 08 Mar 2008, 09:26:5% LedBlinking.mpproj

Double click the message line in the Error Window to highlight the line where the
error was encountered.

Related topics: Error Messages

50 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

STATISTICS

After successful compilation, you can review statistics of your code. Click the Statis-
tics Icon [-

Memory Usage Windows
Provides overview of RAM and ROM usage in the form of histogram.

RAM Memory

Data Memory

Displays Data memory usage in form of histogram.

=~ M_emol_l,l Usage

RaM Memory Usage (locations)

33 Free data RAM
63 Uszed data RAM

(- Procedures
i Size
i Locations

Free data Rk Uszed data RAM

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 51

CHAPTER 2
Environment mikroPascal for 8051

XData Memory

Displays XData memory usage in form of histogram.

(=) Memomny Uzage
E| H_AM Rk Memory Usage (locations)

[H00% of 75 | 75 Free Hdata RAM
0 Used Xdata RAM

i AOM allocation
= Procedures

Size

- Locations

|
Free Xdata Rk Used xdata R

iData Memory

Displays iData memory usage in form of histogram.

=~ M_emol_l,l Usage
RAM Memory Usage (locstions)

128 Free Idsta RAM
0 Used ldsta RAM

- AOM Allocation
= Procedures

Size

- Locations

1
Free Icata R Uszed Ieiata Rk

52 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

bData Memory

Displays bData memory usage in form of histogram.

= Memor_l,l Usage
b RAM Memory Usage (locstions)

[100% of 16 | 16 Free Bata RAM
0 Used Bdata RaM

= F'_locedures
- Size
i Locations

l
Free Bata R Used Bdata A

PData Memory

Displays PData memory usage in form of histogram.

= Memory Usage

E| RAM Memory Uzage (locations)

o0 ot 75 | 75 Free Pdata RAM
0 Lized Pdata RAM

(- Procedures
i Size
i Locations

1
Free Poata RAhd Uzed Polata R

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 53

CHAPTER 2
Environment mikroPascal for 8051

Special Function Registers

Summarizes all Special Function Registers and their addresses.

Special function registers [SFR)

Addiess Register
0=50

0=81 SF
x5z OPL
0=82 CPOL
0=53 CPH

[miES

083 DFOH
= F':locedures O DFIL
- Size
. 0=85 DF1H
i Locations
0426 SFDR
087 FPCOM
083 TCOM
0483 TMOD
OB TLO
0458 TL1
0x8C THO bl

General Purpose Registers

Summarizes all General Purpose Registers and their addresses. Also displays sym-
bolic names of variables and their addresses.

= Memary Usage
. General purpose registers (GPR)
Address Register
0x00
Ox01 R1
0x02 R2
. 0x03 R3
= ROM 004 R4
. AOM Allacation 0405 A5
- Pirocsgdures 06 &
L:c?ations 0x07 ili
0x09C0 advanced2051_bmp [_advanced2051_bmp]
Outa0 GLED_CS1 _GLED_CS1)
Ol GLED_CS2 [_GLED_CSZ)
Oud2 GLED_RS [GLCD_RS)
[GLED_Rw [_GLCD_Rw)
Outi5 GLCD_RST [_GLCD_RST]
Outid GLCD_EM [_GLCD_EN)

54 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

ROM Memory

ROM Memory Usage

Displays ROM memory usage in form of histogram.

[=- Memary Usage
= Rk ROM Memory Usage (locations)
Data
#data
iData
bl ata
Pdata
SFR
GPR
[=E RO
ROM Allocation
[=- Procedures
Size
Locations

9,862 Free ROM
2,425 Used ROM

Free RO Uzed ROM

ROM Memory Allocation

Displays ROM memory allocation.

- Memon Usage 0x0000 Ox0Z0449 -

0x000F 0x0Z0000 =
0x0006 0x00
0x0007 0x00
0x0008 0x00
0x0008 0x00
0x0004 Ox00
0x000E 0x0Z0000
0x000E 0x00
0x000F 0x00
0x0010 0x00

B ! 0x0011 0x00
= Procedures 0x001Z 0x00
i Gize 0x001% 0x0Z0000
. Locations 0x001E Ox00
0x0017 0x00
0x001E 0x00
0x0018 0x00
0x001A Ox00
0x00LE Ox0Z0000
0x001E Ox00
0x00LF 0x00
0x00Z0 0x00 &

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 55

CHAPTER 2
Environment mikroPascal for 8051

Procedures Windows

Provides overview procedures locations and sizes.
Procedures Size Window

Displays size of each procedure.

= Memary Usage
[=- Ram
Data
wdata Glod_Bax - - - - ARRREEREE R SRR ___________
iData
bData
Pdata
SFR
GFR
[=- ROM
ROM Allocation
= Procedures

Glod_|mage

Size

Locations

Stroke gt Rt]

Dy _10us gRate - - Rt]

t
100 200 300 400
ROM locations

56 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

Procedures Locations Window

Displays how functions are distributed in microcontroller’'s memory.

=) Memary Usage

= H'&MD Procedures by ROM location
ata
data Glod_Box -+l TR TN
iData Glod_Rectangle - - - S -
Gled_Image ¢ - - --e-a-
EData Gled_Circle - - - - s===d= L
Pdata Glod_V _Line -~ -- CERCIRRIDEECRRERREY TS
SFR :
Gled_Line - - -
GPF Gloed_Dat
= ROM Glodl_irite_Text
ROk Allocation Glgii_;'\l'r'srteet_(;hla_;
cd_Set_Fo
= F'roce.dules Gicd_int
Size Glee_Fill
s Glod_Wirite_Diata
Glod_Read_Data |
Glod_Zet ¥ |
Glod_Set_Side 4 -

Glod_Set_Page
Delay_a0us

Wul_16:16 4 -
G020

min -~ - -
delay2s 4
T

T T T
200 1,000 1,500 2,000
RO Address

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 57

CHAPTER 2
Environment mikroPascal for 8051

INTEGRATED TOOLS

USART Terminal

The mikroPascal for 8051 includes the USART communication terminal for RS232
communication. You can launch it from the drop-down menu Tools » USART Termi-
nal or by clicking the USART Terminal Icon E from Tools toolbar.

RS232 Terminal =

Settingz Communication

Com Fort: Echo - Send | SendFile

Baud: &ppend: [CR] Send as typing Start Logging

Stop Bits: [LF [Send as number
Farity: Foimat

N & asCll (O HEX (ODEC

S Connected to COM1
P Sent: Echo

Clear Higtory

Commandz
RIS DOTR
) 0if (=) 0if
) 0n) 0n

[Contect Dizconnect

Statug
Send Receive CTS DSR
L+ @ L+ @

Log Files
Bead from:

Write tor

58 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 2
Environment

ASCII Chart

The ASCII Chart is a handy tool, particularly useful when working with LCD display.

You can launch it from the drop-down menu Tools > ASCII chart or by clicking the

View ASCII Chart lcon

from Tools toolbar.

a

16
SPC
32
o
4
@
i
p

1

17
i

B8
1

49
A

65
1]

3

19
#

35
3
51
C
67
S

a3
C

4

20
$
38
El
52
D
65
T
g4
d

5

21
%%

37
5

=6
E

69
u

85
e

101
L

117

133
[]

&

DLE DC1 DC2 DC3 DC4 NAK|SYMN ETB CAN

22
38
6
54
F

70 i

¥

7 5] E)

23 | 24 | o5

o)
39 | 40 | 41
7 8 9

56 | 57
H I

S HEX: Ox47

105 | 104 | 105
W X ¥
119 | 120 | 121
ks T %o

135 | 136 | 157

™

152 | 153
o @

169
1

185

10

26

+*

42

NUL SOH|STX ETx EOT ENQ ACK BEL BS HT | LF | ¥T

i1

EM | SUB ESC

27
+
43
H

59
K

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 59

CHAPTER 2
Environment mikroPascal for 8051

EEPROM Editor

The EEPROM Editor is used for manipulating MCU's EEPROM memory. You can
launch it from the drop-down menu Tools » EEPROM Editor. When Use this
EEPROM definition is checked compiler will generate Intel hex file
project name.ihex that contains data from EEPROM editor.

When you run mikroElektronika programmer software from mikroPascal for 8051
IDE - project name.hex file will be loaded automatically while inhex file must be
loaded manually.

EPROM Editor

Load.. Address: B2 80 Data Memary Size: 2043 Bytes
Walue: |FF

Save.. W Use this EEPROM definition |

0 |1]2 |3 [s |5 |6 |7 |8 |9 |n[Blc o[|F |~
0x80 FF FF FF FF FF FF FF FF FF |[FF [FF FF [FF FF FF
8x81 |FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8x82 |FF FF FF FF FF FF FF FF FF FF [FF FF FF FF FF FF
0:03 |FF FF FF FF [FF FF FF [FF FF FF [FF [FF FF FF FF FF
0x04 |FF FF FF FF [FF [FF FF [FF FF FF |[FF [FF FF [FF FF FF
0x05 |FF FF FF FF [FF [FF FF [FF FF FF |[FF [FF FF |[FF FF FF
0x06 |FF FF FF FF [FF [FF FF [FF FF FF |[FF [FF FF [FF FF FF
8x87 |FF FF FF FF FF FF FF FF FF FF FF [FF FF FF FF FF
8x88 |FF FF FF FF FF FF FF FF FF FF FF [FF FF FF FF FF
8x89 |FF FF FF FF FF FF FF FF FF FF FF [FF FF FF FF FF
9x0a |FF FF FF FF FF FF FF FF FF FF FF [FF FF FF FF FF
0x08 |FF FF FF FF [FF [FF FF [FF FF FF |[FF [FF FF [FF FF FF
0x0C |FF FF FF FF [FF [FF FF [FF FF FF |[FF [FF FF [FF FF FF
0x00 |FF FF FF FF [FF [FF FF [FF FF FF |[FF [FF FF [FF FF FF
8x6E |FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
@x6F |FF FF FF FF FF FF FF FF FF FF FF [FF FF FF FF FF

7 Segment Display Decoder

The 7 Segment Display Decoder is a convenient visual panel which returns deci-
mal/hex value for any viable combination you would like to display on 7seg. Click on
the parts of 7 segment image to get the requested value in the edit boxes. You can
launch it from the drop-down menu Tools » 7 Segment Decoderor by clicking the
Seven Segment Icon @ from Tools toolbar.

60 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

' Common cathode

$CF
Common anode
-—

Decode in:

() decimal value

ARN O

UDP Terminal

The mikroPascal for 8051 includes the UDP Terminal. You can launch it from the
drop-down menu Tools > UDP Terminal.

== UDP Communication Terminal

—Setting —
IP dddress; [192.168.20.60 Conrect I
Part: J100m

—Send:

ImikroEIektmnika
sppend: [~ CR [~ Send az bping
I~ LF [~ Send as number

mikraE lektronika

Clear |

—Feceive

& asC " HEX DEC ‘l

Clear |

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

61

CHAPTER 2
Environment mikroPascal for 8051

Graphic LCD Bitmap Editor

The mikroPascal for 8051 includes the Graphic LCD Bitmap Editor. Output is the
mikroPascal for 8051 compatible code. You can launch it from the drop-down menu
Tools » GLCD Bitmap Editor.

mikroElektronika Graphi D Bitmap generator
KS0108 | 76963 || Makia3110]

File lnaded: truck.bmp

Picture preview —128x64 pix b
[LoadEMPrictue |

[Create CODE |

[wertricure |

GLCD Size | controller
240128 (not imp. wet)
24064 (nok imp, vek)
128128 {not imp. wet)

() 128264 (K50108)
128x32 {nok imp. yet)

rdd A
GLCD Picture name: truck.bnp =1
GLCD Model: KS@A1A8 128xh4d =
o
i CODE to Clipboard
unzigned char const truck bmpl1B24]1 = { [28y, o oeed
- - - » a. a. a. . a. a. a. a. a. a. a, a. OmikroPASCAL code
B. a. - - B. A, B, B, @A, A, B, B, 8. @A, B, A, }
M. @, A. @, . @. B, @, A. @, A. @. A. @, A Q@ O rikroBASIC code
A, @&, B. @A, 8., @A, A, @A, @A, @A, B, B, B, @A, B, A, (®) mikroC code
A, B, @, B, B, @8, 8, @A, BA. B, B, B, B, B, B, B,
B, @8, 8. @, 8. B, @, B8, B, 4. B, B, @, @, @, B,
wer: 2.0.1 - 27012005 System skatus: Win MT like 0S5

62 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 2
Environment

LCD Custom Character

mikroPascal for 8051 includes the LCD Custom Character. Output is mikroPascal
for 8051 compatible code. You can launch it from the drop-down menu Tools > LCD

Custom Character.

=1 LCD custom character

90 | oo s = =
L) 5x10 Save... Load...

Fill all Clear all Invert

= _

CGRAM address:
Char:

Char data row:

 Bx 10+ curzor line -

T
|

GENERATE |

Prewview:

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 63

CHAPTER 2
Environment mikroPascal for 8051

OPTIONS

Options menu consists of three tabs: Code Editor, Tools and Output settings
Code editor

The Code Editor is advanced text editor fashioned to satisfy needs of professionals.
Tools

The mikroPascal for 8051 includes the Tools tab, which enables the use of shortcuts

to external programs, like Calculator or Notepad.
You can set up to 10 different shortcuts, by editing ToolO - Tool9.

64 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 2
Environment

Options

J Editar

Tooll

Toaols

Tool3

J Output

Tools

Taol Mame: |T00|D

File Hame: |Press button to open File dialag

Parameters:

Macro: | s,HEX_FILE_NAME Full path and name of the out...

v | Ingert

Shartcut: |F11

9 Clear all fislds

[s] 4 Apply

Cancel

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 65

CHAPTER 2
Environment mikroPascal for 8051

Output settings

By modifying Output Settings, user can configure the content of the output files.
You can enable or disable, for example, generation of ASM and List file.

Options

Qukput Settings

W Generate A5M file
'E(r-?- q W Include HEX opcodes
Output Settings W Include ROM constants
W Include ROM Addresses
W Generate list file
¥ Include debug infa

¥ Include source lines in output Files

Opkimization level:

Four

Compiler

I Case sensitive

Cancel

66 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

REGULAR EXPRESSIONS

Introduction

Regular Expressions are a widely-used method of specifying patterns of text to
search for. Special metacharacters allow you to specify, for instance, that a particu-
lar string you are looking for, occurs at the beginning, or end of a line, or contains n
recurrences of a certain character.

Simple matches

Any single character matches itself, unless it is a metacharacter with a special
meaning described below. A series of characters matches that series of characters
in the target string, so the pattern "short" would match "short" in the target string.
You can cause characters that normally function as metacharacters or escape
sequences to be interpreted by preceding them with a backslash "\ .

For instance, metacharacter "\" matches beginning of string, but "\ ~" matches
character "~", and "\\ " matches "\ ", etc.

Examples :

integer matches string 'integer'

\"integer matches string '“integer'
Escape sequences

Characters may be specified using a escape sequences: "\ n" matches a newline,
" t" a tab, etc. More generally, \ xnn, where nn is a string of hexadecimal digits,
matches the character whose ASCII value is nn.

If you need wide(Unicode)character code, you can use '\ x{ nnnn} ', where 'nnnn'’
- one or more hexadecimal digits.

\ xnn - char with hex code nn

\ x{ nnnn) - char with hex code nnnn (one byte for plain text and two bytes
for Unicode)

\t - tab (HT/TAB), same as \ x09

\ n - newline (NL), same as \ x0a

\ r - car.return (CR), same as \ x0d

\ f - form feed (FF), same as \ x0c

\a - alarm (bell) (BEL), same as \ x07

\e - escape (ESC), same as \x1b

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 67

CHAPTER 2
Environment

mikroPascal for 8051

Examples:

procedure\x20Write matches 'procedure write' (note space in the
middle)
\tlongint matches '1ongint' (predecessed by tab)

Character classes
You can specify a character class, by enclosing a list of characters in [], which will

match any of the characters from the list. If the first character after the "[" is ",
the class matches any character not in the list.

Examples:
count[aeiou] r finds strings 'countar', 'counter', etc. but not
'countbr', 'countcr', etc.
count[“aeiou] r finds strings 'countbr', 'countcr', etc. but not
"countar', 'counter', etc.

Within a list, the "-" character is used to specify a range, so that a-z represents all
characters between "2" and "z", inclusive.

If you want "-" itself to be a member of a class, put it at the start or end of the list,
or escape it with a backslash.
If you want '] ', you may place it at the start of list or escape it with a backslash.
Examples:

az] matches 'a', 'z'and '-'

az-] matches 'a', 'z‘ and '-'

a\-z] matches 'a', 'z' and '-'

a-z] matches all twenty six small characters from 'a' to '’
\n-\x0D] matches any of #10,#11,#12,#13.

\d-t] matches any digit, '-' or 't".

1-

[-
[
[
[
[
[
[1-a] matches any char from "

Metacharacters

Metacharacters are special characters which are the essence of regular expres-
sions.There are different types of metacharacters, described below.

68 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

Metacharacters - Line separators

~ - start of line

5 - end of line

\ A - start of text

\ z - end of text

. - any character in line

Examples:

~PORTA - matches string ' rorTA ' only if it's at the beginning of line
PORTAS - matches string ' porTA ' only if it's at the end of line
~PORTAS - matches string ' rorTA ' only if it's the only string in line
PORT.r - matches strings like 'pOrRTA', '"PORTR', 'PORT1' and so on

The "~ metacharacter by default is only guaranteed to match beginning of the input
string/text, and the "s" metacharacter only at the end. Embedded line separators
will not be matched by ~" or "s.

You may, however, wish to treat a string as a multi-line buffer, such that the "~ will
match after any line separator within the string, and "s" will match before any line
separator.

Regular expressons works with line separators as recommended at
www.unicode.org (http://www.unicode.org/unicode/reports/tr18/):

Metacharacters - Predefined classes

\w - an alphanumeric character (including " ")
\ W - a nonalphanumeric

\ d - a numeric character

\ D - @ non-numeric

\'s - any space (same as [\t\n\r\f])

\'S - a non space

You may use \w, \d and \s within custom character classes.
Example:

routi\de - matches strings like 'routile’, 'routice' and so on, but not
'routine', 'routime' and so on.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 69

CHAPTER 2
Environment mikroPascal for 8051

Metacharacters - Word boundaries

A word boundary ("\b") is a spot between two characters that has a "\ w" on one
side of it and a "\ w" on the other side of it (in either order), counting the imaginary
characters off the beginning and end of the string as matching a "\ w".

\'b - match a word boundary)
\ B - match a non-(word boundary)

Metacharacters - lterators

Any item of a regular expression may be followed by another type of metacharac-
ters - iterators. Using this metacharacters,you can specify number of occurences of
previous character, metacharacter or subexpression.

* - zero or more ("greedy"), similar to {0,}

+ - one or more ("greedy"), similar to {1,}

2 - zero or one ("greedy"), similar to {0,1}

{n} - exactly ntimes ("greedy")

{n,} -atleastn times ("greedy")

{n,m - atleastn but not more than m times ("greedy")
*72 - zero or more ("non-greedy"), similar to {0,}?

+2 - one or more ("non-greedy"), similar to {1,}?

22 - zero or one ("non-greedy"), similar to {0,1}?

{ n} 2 - exactly n times ("non-greedy")

{n,}? -atleast n times ("non-greedy")

{n,m 2 - atleast n but not more than m times ("non-greedy")

So, digits in curly brackets of the form, { n, n} , specify the minimum number of times
to match the item n and the maximum m. The form { n} is equivalentto (n,n} and
matches exactly n times. The form { n,} matches n or more times. There is no limit
to the size of n or m, but large numbers will chew up more memory and slow down
execution.

If a curly bracket occurs in any other context, it is treated as a regular character.

70 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

Examples:

count.*r B- matches strings like 'counter', 'countelkijdfikjor' and
‘countr'

count . +r - matches strings like 'counter', 'countelkjdf1kjor' but not
'‘countr'

count.? r - matches strings like 'counter’, 'countar' and 'countr' but not
'countelkjor'

countef{ 2} r - matches string 'counteer'

counte{ 2,} r - matches strings like 'counteer’, 'countecer’, 'countecer' efc.
counte{ 2, 3} r - matches strings like 'counteer', or 'counteeer' but not

)]
counteeeer

A little explanation about "greediness". "Greedy" takes as many as possible, "non-
greedy" takes as few as possible.

For example, 'b+' and 'b* ' applied to string 'abbbbe' return 'bobb', "o+2 ' returns o',
'o* 2" returns empty string, "o 2, 3} 2" returns 'bb', 'b{ 2, 3} ' returns "obb'.

Metacharacters - Alternatives

You can specify a series of alternatives for a pattern using " | " to separate them, so
that pit|bat |bot will match any of "bit", "nat", or "bot" in the target string (as
would b (ilalo)t)). The first alternative includes everything from the last pattern
delimiter (" (", [", orthe beginning of the pattern) up to the first " | ", and the last
alternative contains everything from the last "|" to the next pattern delimiter. For this
reason, it's common practice to include alternatives in parentheses, to minimize
confusion about where they start and end.

Alternatives are tried from left to right, so the first alternative found for which the
entire expression matches, is the one that is chosen. This means that alternatives
are not necessarily greedy. For example: when matching roujrout against "rou-
tine", only the "rou" part will match, as that is the first alternative tried, and it suc-
cessfully matches the target string (this might not seem important, but it is important
when you are capturing matched text using parentheses.) Also remember that " | "
is interpreted as a literal within square brackets, so if you write [bit [bat [bot],
you're really only matching [biao|] .

Examples:

rou(tine|te) - matches strings 'routine' or 'route.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 71

CHAPTER 2
Environment mikroPascal for 8051

Metacharacters - Subexpressions

The bracketing construct (...) may also be used for define regular subexpres-
sions. Subexpressions are numbered based on the left to right order of their open-
ing parenthesis. First subexpression has number "1’

Examples:
(int){ 8,10} matches strings which contain 8, 9 or 10 instances of the 'int'

routi ([0-9] |a+)e matches 'routioe', 'routile', 'routine', 'routinne',

'routinnne' etc.
Metacharacters - Backreferences

Metacharacters \ 1 through \ 9 are interpreted as backreferences. \ matches previ-
ously matched subexpression #.

Examples:

(.)\ 1+ matches 'aaz="and 'cc'.

(.+)\ 1+ matches 'abab'and '123123'

([""12) (\d+)\ 1 matches "13" (in double quotes), or "4 (in single quotes)
or 77 (without quotes) etc

72 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

mikroPascal for 8057 COMMAND LINE OPTIONS

UsageilnikroPascal805l [-'opts' [-'opts']] ['infile' [-'opts'l] [-
"opts']] Infile can be of * .mpas and * .mc1 type.

The following parameters and some more (see manual) are valid:
- p : MCU for which compilation will be done.

- Fo : Set oscillator.

sp : Add directory to the search path list.

N : Output files generated to file path specified by filename.

- B : Save compiled binary files (* .mc1) to 'directory’.

0 : Miscellaneous output options.

- DBG : Generate debug info.

-E: Setmemory modelopts (s | ¢ | L (small, compact, large)).
1 : Check and rebuild new libraries.

c : Turn on case sensitivity.

Example:

mikroPascal8051.exe -MSF -DBG -pAT89S8253 -ES -011111114 -fol0
-N"C:\Lcd\ Lcd.mpproj" -SP"C:\ Program
Files\Mikroelektronika\mikroPascal 8051\defs\"
-SP"C:\Program Files\Mikroelektronika\mikroPascal
8051\ uses\"
-SP"C:\Lcd\" "Lcd.mpas" "System.mcl"™ "Math.mcl"
"Math Double.mcl" "Delays.mcl" " Lib Lcd.mcl" " Lib LcdConsts.mcl”

Parameters used in the example:

-MsF : Short Message Format; used for internal purposes by IDE.
- -DBG : Generate debug info.

-pAT8958253 1 MCU AT89S8253 selected.

-Es : Set small memory model.

-011111114 : Miscellaneous output options.

- —-fo10 : Set oscillator frequency [in MHZz].

--N"C:\Lcd\ Lcd.mpproj" =-SP"C:\Program Files\Mikroelektronika\
mikroPascal 8051\defs\" : Output files generated to file path specified
by filename.

- -SP"C:\Program Files\Mikroelektronika\mikroPascal 8051\
defs\ " : Add directory to the search path list.

- -SP"C:\Program Files\Mikroelektronika\mikroPascal 8051\

uses\ " :Add directory to the search path list.

- -sp"c:\Led\ " : Add directory to the search path list.

- "Lcd.mpas" "System.mcl" "Math.mcl" "Math Double.mcl"

"Delays.mcl" " Lib Lecd.mel" " Lib LedConsts.mcl" : Specify input files.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 73

CHAPTER 2
Environment mikroPascal for 8051

PROJECTS

The mikroPascal 8051 organizes applications into projects, consisting of a single
project file (extension .mpproj) and one or more source files (extension .mpas).
mikroPascal for 8051 IDE allows you to manage multiple projects (see Project Man-
ager). Source files can be compiled only if they are part of a project.

The project file contains the following information:

- project name and optional description,

- target device,

- memory model,

- device flags (config word),

- device clock,

- list of the project source files with paths,
- binary files (*.mcl),

- image files,

- other files.

Note that the project does not include files in the same way as preprocessor does,
see Add/Remove Files from Project.

New Project

The easiest way to create a project is by means of the New Project Wizard, drop-
down menu Project > New Project or by clicking the New Project Icon Lﬂ. from
Project Toolbar.

74 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

New Project Wizard Steps

Step One- Provides basic information on settings in the following steps.

| New Project Wizard

Welcome to the New Project Wizard
This wizard helps you:

e Create anew project

s Selectthe device for wour project

* Setup device clock and choose device flags
s Selectdesired memory model

e Add projectfiles

E Cancel]

Step Two - Select the device from the device drop-down list.

I New Project Wizard

Step 176

Device Mame:

4@ Back Mext 5 Cancel

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 75

CHAPTER 2
Environment mikroPascal for 8051

Step Three - enter the oscillator frequency value.

New Project Wizard W

Setup the clock, for example 11,0592 MHz.

Device Clock: m MH=z

4 Back Mext & Cancel

Step Four - Select the desired memory model.

New Project Wizard w

Choose one of the available memory models.

Memary Model
=) small () Compact () Large

4@ Back . Hemw® Cancel

76 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 2
Environment

Step Five - Specify the location where your project will be saved.
New Project Wizard

vl
X
Specify where your project will be saved.

Project File Mamne:

)1 ProjectstFirstProject | FirstProject. mpproj

@ Back Hest o

LCancel

Step Six - Add project file to the project if they are avaiable at this point. You can
always add project files later using Project Manager

New Project Wizard

x|
Add project files if they are awvailable at this paoint.

ou can always add project files later using the Project Manager in IDE.
#dd File To Project:

[:\Projects\FirstProjectDefinit, mpas

Add
File Marne

[1:\Projects\FirstProject Definit. mpas

Remove

Remove All

4 Back Mext &

Cancel

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

77

CHAPTER 2
Environment mikroPascal for 8051

Open Project

You can open existing project by doing the following: go to Project > Open from
drop-down menu (shortcut Shift+Ctrl+QO), and find the location that contains your
project file (extension .mppro7). Select project file and then click on Open button. If
you do not open project file (for instance source file .mpzs only) you will not
be able to compile or program desired code.

Related topics: Project Manager, Project Settings, Memory Model

78 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

CUSTOMIZING PROJECTS
Edit Project

You can change basic project settings in the Project Settings window. You can
change chip, oscillator frequency, and memory model. Any change in the Project
Setting Window affects currently active project only, so in case more than one proj-
ect is open, you have to ensure that exactly the desired project is set as active one
in the Project Manager.

Managing Project Group

mikroPascal for 8051 IDE provides covenient option which enables several projects
to be open simultaneously. If you have several projects being connected in some
way, you can create a project group.

The project group may be saved by clicking the Save Project Group Icon % from
the Project Manager window. The project group may be reopend by clicking the
Open Project Group Icon % . All relevant data about the project group is stored

in the project group file (extension .mpg)

Add/Remove Files from Project
The project can contain the following file types:

- .mpas source files

- .mc1 binary files

.pld project level defines files (future upgrade)

image files

- .hex, .asmand .1st files, see output files. These files can not be added
or removed from project.

- other files

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 79

CHAPTER 2

Environment mikroPascal for 8051
E=| Project Manager a
R®EE A e d
= E\'. Te963C_240x128.mpproj
=) Sources

=] Te963C_240x128. mpas
%1 bitrmap.mpas
| Binaries
bitmapz.mcl
1 Project level defines
=l Image Files
sample. jpg
] Dutput Files
E=| Te963C_240x128. hex
E=| Te963C_240%125, asm
% TEOEIC_240x128 st
=i Other Files
%1 D3 AT3933253 - doc3286, pdf

The list of relevant source files is stored in the project file (extension .mppro7).

To add source file to the project, click the Add File to Project Icon % . Each added
source file must be self-contained, i.e. it must have all necessary definitions after
preprocessing.

To remove file(s) from the project, click the Remove File from Project Icon | (%

See File Inclusion for more information.

Related topics: Project Manager, Project Settings, Memory Model

80 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

SOURCE FILES

Source files containing Pascal code should have the extension .mpas. The list of
source files relevant to the application is stored in project file with extension
.mpproij, along with other project information. You can compile source files only if
they are part of the project.

Managing Source Files
Creating new source file

To create a new source file, do the following:

1. Select File » New Unit from the drop-down menu, or press Ctrl+N, or click the
New File Icon d from the File Toolbar.

2. A new tab will be opened. This is a new source file. Select File » Save from the
drop-down menu, or press Ctrl+S, or click the Save File Icon ﬂ from the File
Toolbar and name it as you want.

If you use the New Project Wizard, an empty source file, named after the project with
extension .mpas, will be created automatically. The mikroPascal 8051 does not
require you to have a source file named the same as the project, it’s just a matter of
convenience.

Opening an existing file

1. Select File » Open from the drop-down menu, or press Ctrl+O, or click the Open
File lcon ,g- from the File Toolbar. In Open Dialog browse to the location of the
file that you want to open, select it and click the Open button.

2. The selected file is displayed in its own tab. If the selected file is already open, its
current Editor tab will become active.

Printing an open file

1. Make sure that the window containing the file that you want to print is the
active window.

2. Select File » Print from the drop-down menu, or press Ctrl+P.

3. In the Print Preview Window, set a desired layout of the document and click the
OK button. The file will be printed on the selected printer.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 81

CHAPTER 2
Environment mikroPascal for 8051

Saving file

1. Make sure that the window containing the file that you want to save is the
active window.
2. Select File » Save from the drop-down menu, or press Ctrl+S, or click the Save

File Icon |4 from the File Toolbar.

Saving file under a different name

1. Make sure that the window containing the file that you want to save is the
active window.

2. Select File » Save As from the drop-down menu. The New File Name dialog will
be displayed.

3. In the dialog, browse to the folder where you want to save the file.

4. In the File Name field, modify the name of the file you want to save.

5. Click the Save button.

Closing file

1. Make sure that the tab containing the file that you want to close is the active tab.

2. Select File » Close from the drop-down menu, or right click the tab of the file that
you want to close and select Close option from the context menu.

3. If the file has been changed since it was last saved, you will be prompted to save
your changes.

Related topics:File Menu, File Toolbar, Project Manager, Project Settings,

82 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

CLEAN PROJECT FOLDER
Clean Project Folder

This menu gives you option to choose which files from your current project you want
to delete.

Files marked in bold can be easily recreated by building a project. Other files should
be marked for deletion only with a great care, because IDE cannot recover them.

Clean Project Folder =

Below is the list of all files in the project folder, Files in bold are those
generated by the compiler and they can be easily recreated when the
project is rebuilt,

Select which files you want to remove from the project folder. Please note
that selected files will be permanently deleted from your disk if you click

& LedElinking.asm

[] LedBlinking. mpas
[LedBlinking.cp
LedBlinking.dbg
LedBlinking.dct
LedBlinking.dIt
[LedBlinking.hex
[LedBlinking.ihex

[LedBlinking.ini
LedBlinking.lst
[LedBlinking. mcl

[LedBlinking. mppro
LedBlinking.mcproj_callertable.txt
LedBlinking.mil
[LedBlinking. user.dic

Clean Cancel

C:\Program Files\MikroelektronikalmikroPascal 805 11ExamplesiLed Blinking),

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 83

CHAPTER 2
Environment mikroPascal for 8051

COMPILATION

When you have created the project and written the source code, it's time to compile
it. Select Project > Build from the drop-down menu, or click the Build Icon | % from
the Project Toolbar. If more more than one project is open you can compile all open
projects by selecting Project » Build All from the drop-down menu, or click the Build
All Icon ﬁ‘j{. from the Project Toolbar.

Progress bar will appear to inform you about the status of compiling. If there are

some errors, you will be notified in the Error Window. If no errors are encountered,
the mikroPascal for 8051 will generate output files.

Output Files
Upon successful compilation, the mikroPascal for 8051 will generate output files in

the project folder (folder which contains the project file .npproj). Output files are
summarized in the table below:

Format Description File Type
Intel style hex records. Use this file to program
Intel HEX 8051 MCU. .hex
Bina mikro Compiled Library. Binary distribution of el
ry application that can be included in other projects. -
List File Overview of 8051 memory allotment: instruction -

addresses, registers, routines and labels.

Assembler File Human readable assembly with symbolic names, e
extracted from the List File. o

Assembly View

After compiling the program in the mikroPascal for 8051, you can click the View
Assembly icon [&| or select Project » View Assembly from the drop-down menu
to review the generated assembly code (.zsm file) in a new tab window. Assembly
is human-readable with symbolic names.

Related topics:Project Menu, Project Toolbar, Error Window, Project Manager, Pro-
ject Settings

84 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

ERROR MESSAGES
Compiler Error Messages:

- "3s" is not valid identifier.

- Unknown type "2s.

- Identifier "=s" was not declared.

- Syntax error: Expected "2s" but "ss" found.

- Argument is out of range "2s".

- Syntax error in additive expression.

- File "<s" not found.

- Invalid command "2s".

- Not enough parameters.

- Too many parameters.

- Too many characters.

- Actual and formal parameters must be identical.

- Invalid ASM instruction: "<s".

- Identifier ">s" has been already declared in "=s".

- Syntax error in multiplicative expression.

- Definition file for "2s" is corrupted.

- ORG directive is currently supported for interrupts only.
- Not enough ROM.

- Not enough RAM.

- External procedure "<s" used in "2s" was not found.
- Internal error: "ss.

- Unit cannot recursively use itself.

- "¢s" cannot be used out of loop.

- Supplied and formal parameters do not match ("2s" to "2s").
- Constant cannot be assigned to.

- Constant array must be declared as global.

- Incompatible types ("%s" to "2sm).

- Too many characters ("2s").

- Soft_Uart cannot be initialized with selected baud rate/device clock.
- Main label cannot be used in modules.

- Break/Continue cannot be used out of loop.

- Preprocessor Error: "2s".

- Expression is too complicated.

- Duplicated label "<s.

- Complex type cannot be declared here.

- Record is empty.

- Unknown type "ss".

- File not found "<s.

- Constant argument cannot be passed by reference.

- Pointer argument cannot be passed by reference.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

85

CHAPTER 2
Environment mikroPascal for 8051

- Operator "<s" not applicable to these operands "2s".
- Exit cannot be called from the main block.

- Array parameter must be passed by reference.

- Error occured while compiling "2s".

- Recursive types are not allowed.

- Adding strings is not allowed, use "strcat" procedure instead.
- Cannot declare pointer to array, use pointer to structure which has array field.
- Return value of the function "2s" is not defined.

- Assignment to for loop variable is not allowed.

- "%s" is allowed only in the main program.

- Start address of "2s" has already been defined.

- Simple constant cannot have a fixed address.

- Invalid date/time format.

- Invalid operator "2s.

- File "<s" is not accessible.

- Forward routine "<s" is missing implementation.

- ";" is not allowed before "else".

- Not enough elements: expected "<s", but "<s" elements found.
- Too many elements: expected "s" elements.

- "external" is allowed for global declarations only.

- Integer const expected.

- Recusion in definition.

- Array corupted.

- Arguments cannot have explicit memory specificator.
- Bad storage class.

- Pointer to function required.

- Function required.

- Pointer required.

- lllegal pointer conversion to double.

- Integer type needed.

- Members can not have memory specifier.

- Members can not be of bit or sbit type.

- Too many initializers.

- Too many initializers of subaggregate.

- Already used | 2s] .

- Address must be greater than 0.

-[2s] Identifier redefined.

- User abort.

- Expression must be greater then 0.

- Invalid declarator expected '(' or identifier.

- Typdef name redefined: [<s] .

- Declarator error.

- Specifer/qualifier list expected.

-[%s] already used.

86 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

- ILevel can be used only with interrupt service routines.
- ;" expected but [2s] found.

- Expected'[{".

-[3s] ldentifier redefined.

- '(" expected but [=s] found.

- ") expected but[2s] found.

- 'case' out of switch.

- """ expected but [2s] found.

- 'default’ label out of switch.

- Switch expression must evaluate to integral type.

- While expected but[%s] found.

- 'continue' outside of loop.

- Unreachable code.

- Label redefined.

- Too many chars.

- Unresolved type.

- Arrays of objects containing zero-size arrays are illegal.
- Invalid enumerator.

- ILevel can be used only with interrupt service routines.
- ILevel value must be integral constant.

- ILevel out of range [0..4].

- '} expected but[2s] found.

- '(" expected but[2s] found.

'- break' outside of loop or switch.

- Empty char.

- Nonexistent field [5] .

- lllegal char representation: [¢s] .

- Initializer syntax error: multidimension array missing subscript.
- Too many initializers of subaggregate.

- At least one Search Path must be specified.

- Not enough RAM for call satck.

- Parameter [2s] must not be of bit or sbit type.

- Function must not have return value of bit or sbit type.
- Redefinition of [<s] already defined in[2s] .

- Main function is not defined.

- System routine not found for initialization of: [2s] .

- Bad agregate definition [¢s] .

- Unresolved extern [2s] .

- Bad function absolute address | =s] .

- Not enough RAM [<s] .

- Compilation Started.

- Compiled Successfully.

- Finished (with errors): 01 Mar 2008, 14:22:26

- Project Linked Successfully.

- All files Preprocessed in[2s] ms.

- All files Compiled in[¢s] ms.

- Linked in[¢s] ms.

- Project[2s] completed: [s] ms.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 87

CHAPTER 2
Environment mikroPascal for 8051

Linker Error Messages:

- Linker error: "ssm mes,

- Warning: Variable "+s" is not initialized.

- Warning: Return value of the function "=s" is not defined.
- Hint: Constant "=s" has been declared, but not used.

- Warning: Identifier "<s" overrides declaration in unit "ss".
- Constant "<s" was not found.

- Address of the routine has already been defined.

- Duplicated label "<s.

- File "<s" not found.

Hint Messages:

- Hint: Variable "+s" has been declared, but not used.

- Warning: Variable "=s" is not initialized.

- Warning: Return value of the function "<s" is not defined.
- Hint: Constant "2s" has been declared, but not used.

- Warning: Identifier "<s" overrides declaration in unit "s".
- Warning: Generated baud rate is "2s" bps (error ="3s" percent).
- Warning: Result size may exceed destination array size.

- Warning: Infinite loop.

- Warning: Implicit typecast performed from "<s" to "2s".
- Hint: Unit "=s" has been recompiled.

- Hint: Variable "=s" has been eliminated by optimizer.

- Warning: Implicit typecast of integral value to pointer

- Warning: Library "=s" was not found in search path.

- Warning: Interrupt context saving has been turned off.

- Hint: Compiling unit "2s".

88 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

SOFTWARE SIMULATOR OVERVIEW

The Source-level Software Simulator is an integral component of the mikroPascal
for 8051 environment. It is designed to simulate operations of the 8051 MCUs and
assist the users in debugging Pascal code written for these devices.

After you have successfully compiled your project, you can run the Software Simu-
lator by selecting Run > Start Debugger from the drop-down menu, or by clicking
the Start Debugger Icon E@, from the Debugger Toolbar. Starting the Software Sim-
ulator makes more options available: Step Into, Step Over, Step Out, Run to Cursor,
etc. Line that is to be executed is color highlighted (blue by default).

Note: The Software Simulator simulates the program flow and execution of instruc-

tion lines, but it cannot fully emulate 8051 device behavior, i.e. it doesn’t update
timers, interrupt flags, etc.

Watch Window

The Software Simulator Watch Window is the main Software Simulator window
which allows you to monitor program items while simulating your program. To show
the Watch Window, select View » Debug Windows » Watch from the drop-down
menu.

The Watch Window displays variables and registers of the MCU, along with their
addresses and values.

There are two ways of adding variable/register to the watch list:

- by its real name (variable's name in "Pascal" code). Just select desired
variable/register from Select variable from list drop-down menu and click the
Add Button == Add

- by its name ID (assembly variable name). Simply type name ID of the variable/reg-
ister you want to display into Search the variable by assemby name box and
click the Add Button == add

Variables can also be removed from the Watch window, just select the variable that
you want to remove and then click the Remove Button 3 Remove

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 89

CHAPTER 2
Environment mikroPascal for 8051

Add All Button . Add All adds all variables.
Remove All Button ks Remove All removes all variables.
You can also expand/collapse complex variables, i.e. struct type variables, strings...

Values are updated as you go through the simulation. Recently changed items are

colored red.
Zh Eh E5 | eo® o0 el | & [G |

wpe Add P& Remove <) Properties g AddAll lel Remove All
Select variable from list:)
r M
Search for wariable by assembly name:
FARG_TEIE3C circle+4

Mame Value Address
pic o 0=0039
panel a 00031
TEI6IC_dataFort o O0x0030
TEIEIC_cntlrst u} 0x0094
TRIEZC_grividth u} 00020
stark il 00045
mmode i} 00034
r o 0=0036

PC= 0x0009FE Cyele= 560,00

Double clicking a variable or clicking the Properties Button <! Froperties opens
the Edit Value window in which you can assign a new value to the selected
variable/register. Also, you can choose the format of variable/register representation
between decimal, hexadecimal, binary, float or character. All representations except
float are unsigned by default. For signed representation click the check box next to
the Signed label.

An item's value can be also changed by double clicking item's value field and typing
the new value directly.

90 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

[Edit Value

| 0100 0000 1000 0011 0001 001001101111 |
Representation

() Dec () Hex (*)Bin () Float () ichar

Signed [Ok, J [Cancel l

Stopwatch Window

The Software Simulator Stopwatch Window is available from the drop-down menu,
View > Debug Windows > Stopwatch.

The Stopwatch Window displays a current count of cycles/time since the last Soft-
ware Simulator action. Stopwatch measures the execution time (number of cycles)
from the moment Software Simulator has started and can be reset at any time. Delta
represents the number of cycles between the lines where Software Simulator action
has started and ended.

Note: The user can change the clock in the Stopwatch Window, which will recalcu-
late values for the latest specified frequency. Changing the clock in the Stopwatch
Window does not affect actual project settings — it only provides a simulation.

Cvcles: Time:
Current Counk: (3 9,60 us
Delta: 2 2.40 us
Skopwatch: a 9.60 us
Reset Ta Zero
Clock: 10 MHz

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 91

CHAPTER 2
Environment mikroPascal for 8051

RAM Window

The Software Simulator RAM Window is available from the drop-down menu, View
> Debug Windows » RAM.

The RAM Window displays a map of MCU’s RAM, with recently changed items col-
ored red. You can change value of any field by double-clicking it.

RAM | Histary

DDlDl|D2|03|D4|DSlDﬁlD?|DS|09|DA|DB|DC|DD|DE|DF|-‘\5CH

aooo) BC an oo] oo ao [ul} ao an oo] oo ao [ul} ao an

oolo oo on oo] oo ao [ul} ao i} i} uli] i} oo i} ao 11 P I
00z0] oo] oo oo oo an on aa an [uli}] ul] ag ali} aa L1
0030) 00] oo oo oo an on aa an [uli}] ul] ag ali} aa L1 P I
ao40) 0o an oo] oo ao [ul} ao an oo] ot ao [ul} ao an

nosof o on oo oo oo ao [ul} u] i} i} uli] oo ao i} ao 11 I
00s0 | 0o on oo] oo ao [ul} ao i} i} uli] i} oo i} ao 11 P I
aoF0 | 0o on oo] oo ao [ul} ao i} i} uli] i} oo i} ao 11 P I
aosa) 00 | BC 55 0E [uln} ao [} oo an [uln} oo [uln} ao [} oo an

090 oo] oo Jula] oo uli] on aa an [uln}]] ag ali} aa L1
O0AD 0o] oo oo oo uli] on Juli] an [uln}] [uln} i} al} aa OO e

Q0BO| 0O on Jali] oo [uln} ao [} un] oo [uln} uli] oo ao a0 a0 11 I

oocal oo on oo] oo ao [ul} u] oo i} uli] oo ao i} ao 11 I

92 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 2
mikroPascal for 8051 Environment

SOFTWARE SIMULATOR OPTIONS

Name Description Function Key Tc;gll:]ar
Start Debugger |Start Software Simulator. [F9] élg,
Run/Pause . =
Debugger Run or pause Software Simulator. [F6] EJ_I
Stop Debugger |Stop Software Simulator. [Ctrl+F2] E—E]

Toggle breakpoint at the current cursor posi-
tion. To view all breakpoints, select Run >
View Breakpoints from the drop—down menu. [F5] (=]
Double clicking an item in the Breakpoints
Window List locates the breakpoint.
Execute all instructions between the current

FETRO SHESeT instruction and cursor position. (F41 vl

Toggle
Breakpoints

Execute the current Pascal (single or
multi—cycle) instruction, then halt. If the instruc-

Step Into tion is a routine call, enter the routine and halt at [F7] ()
the first instruction following the call.

- Execute the current Pascal (single or &

Srep Over multi—cycle) instruction, then halt. [F8] i

Step Out Execute all remaining instructions in the cur- [Ctrl+F8] fa

rent routine, return and then halt.

Related topics: Run Menu, Debug Toolbar

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 93

CHAPTER 2
Environment mikroPascal for 8051

CREATING NEW LIBRARY

mikroPascal for 8051 allows you to create your own libraries. In order to create a
library in mikroPascal for 8051 follow the steps bellow:

1. Create a new Pascal source file, see Managing Source Files

2. Save the file in the compiler's Uses folder:
DriveName:\ Program Files\Mikroelektronika\mikroPascal

8051\ Uses\ Lib Example.mpas

3. Write a code for your library and save it.

4. Add __ Lib_Example.mpas file in some project, see Project Manager. Recompile
the project.

5. Compiled file 1ib Example.mcl should appearin ...\mikroprascal
8051\ Uses\ folder.

6. Open the definition file for the MCU that you want to use. This file is placed in the

compiler's Defs folder:
DriveName:\ Program Files\Mikroelektronika\mikroPascal 8051\ Defs\

and it is named Mcu NAME.m1k, for example AT8958253 . m1k
7.Add the Library aAlias and Library Name at the end of the definition file, for
exanuﬂe #pragma SetLib ([Example Library, Lib Example])

8. Add Library to mlk file for each MCU that you want to use with your library.
9. Click Refresh button in Library Manager

Multiple Library Versions

Library Alias represents unique name that is linked to corresponding Library .mc1
file. For example UART library for AT89S8253 is different from UART library for
AT89S4051 MCU. Therefore, two different UART Library versions were made, see
m1k files for these two MCUs. Note that these two libraries have the same Library
Alias (UART) in both m1k files. This approach enables you to have identical repre-
sentation of UART library for both MCUs in Library Manager.

Related topics: Library Manager, Project Manager, Managing Source Files

94

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER

mikroPascal for 8051
Specifics

The following topics cover the specifics of mikroPascal compiler:

- Pascal Standard Issues

- Predefined Globals and Constants
- Accessing Individual Bits

- Interrupts

- 8051 Pointers

- Linker Directives

- Built-in Routines

- Code Optimization

95

CHAPTER 3
Specifics mikroPascal for 8051

PASCAL STANDARD ISSUES
Divergence from the Pascal Standard

- Function recursion is not supported because of no easily-usable stack and
limited memory 8051 Specific

Pascal Language Extensions

mikroPascal for 8051 has additional set of keywords that do not belong to the stan-
dard Pascal language keywords:

- code

- data

- idata
- bdata
- xdata
- pdata
- small
- compact
- large
-at

- sbit
-bit
-sfr
-ilevel

Related topics: Keywords, 8051 Specific

96 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3
mikroPascal for 8051 Specifics

PREDEFINED GLOBALS AND CONSTANTS

To facilitate programming of 8051 compliant MCUs, the mikroPascal for 8051 imple-
ments a number of predefined globals and constants.

All 8051 SFR registers are implicitly declared as global variables of volatile word.
These identifiers have an external linkage, and are visible in the entire project.
When creating a project, the mikroPascal for 8051 will include an appropriate
(*.mpas) file from defs folder, containing declarations of available SFR registers
and constants.

PO := 1;

Math constants

In addition, several commonly used math constants are predefined in mikroPascal

for 80517:

PI = 3.1415926
PI HALF = 1.5707963
TWO PI = 6.2831853
E = 2.7182818

For a complete set of predefined globals and constants, look for “Defs” in the
mikroPascal for 8051 installation folder, or probe the Code Assistant for specific let-
ters (Ctrl+Space in the Code Editor).

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 97

CHAPTER 3
Specifics mikroPascal for 8051

ACCESSING INDIVIDUAL BITS

The mikroPascal for 8051 allows you to access individual bits of 8-bit variables. It
also supports sbit and bit data types

Accessing Individual Bits Of Variables

Simply use the direct member selector (.) with a variable, preceded with 'B' and fol-
lowed by one of identifiers 0, 1, .. , 15 with 15 being the most significant bit.

There is no need of any special declarations. This kind of selective access is an
intrinsic feature of mikroPascal for 8051 and can be used anywhere in the code.
Identifiers 0-15 are not case sensitive and have a specific namespace. You may
override them with your own members 0-15 within any given structure.

If you are familiar with a particular MCU, you can also access bits by name:

// Clear bit 3 on PortO
P0O.3 := 0;

See Predefined Globals and Constants for more information on register/bit names.
sbit type

The mikroPascal Compiler have sbit data type which provides access to bit-
addressable SFRs. For example:

var LEDA : sbit at P0.BO;

var name : sbit at sfr-name.B<bit-position>;

The previously declared SFR (sfr-name) is the base address for the sbit. It must be
evenly divisible by 8. The bit-position (which must be a number from 0-7) follows the
dot symbol ('.") and specifies the bit position to access. For example:

var OV : sbit at PSW.B2;
var CY : sbit at PSW.B7;

98 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3
mikroPascal for 8051 Specifics

bit type

The mikroPascal Compiler provides a bit data type that may be used for variable
declarations. It can not be used for argument lists, and function-return values.

var bf : bit; // bit variable
All bit variables are stored in a bit addressable portion 0x20-0x2F segment located
in the internal memory area of the 8051. Because this area is only 16 bytes long, a

maximum of 128 bit variables may be declared within any one scope.

There are no pointers to bit variables:

I ptr—*b1t; // invalid

An array of type bit is not valid:

et S——bits // invalid

Bit variables can not be initialized nor they can be members of records.

Related topics: Predefined globals and constants

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 99

CHAPTER 3
Specifics mikroPascal for 8051

INTERRUPTS

8051 derivates acknowledges an interrupt request by executing a hardware gener-
ated LCALL to the appropriate servicing routine ISRs. ISRs are organized in IVT.
ISR is defined as a standard function but with the org directive afterwards which
connects the function with specific interrupt vector. For example org 0x000B is IVT
address of Timer 0 Overflow interrupt source of the AT89S8253.

For more information on interrupts and IVT refer to the specific data sheet.

Function Calls from Interrupt

Calling functions from within the interrupt routine is allowed. The compiler takes care
about the registers being used, both in "interrupt" and in "main" thread, and performs
"smart" context-switching between them two, saving only the registers that have
been used in both threads. It is not recommended to use function call from interrupt.
In case of doing that take care of stack depth.

Interrupt Priority Level

8051 MCUs has possibilty to assign different priority level trough setting appropriate
values to coresponding SFRs. You should also assign ISR same priority level by
ilevel keyword followed by interrupt priority number.

Available interrupt priority levels are: 0 (default), 1, 2 and 3.

procedure TimerOISR(); org 0x000B; ilevel 2;
begin
//set Timer0OISR to be ISR for Timer 0 Overflow priority level 2.

end;

Related topics: Pascal standard issues

100 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3
mikroPascal for 8051 Specifics

LINKER DIRECTIVES

mikroPascal for 8051 uses internal algorithm to distribute objects within memory. If
you need to have a variable or a routine at the specific predefined address, use the
linker directives absolute and org.

Note: You must specify an even address when using the linker directives.
Directive absolute

Directive absolute specifies the starting address in RAM for a variable. If the vari-
able spans more than 1 word (16-bit), the higher words will be stored at the consec-
utive locations.

Directive absolute is appended to the declaration of a variable:

var x : word; absolute 3532;
// Variable x will occupy 1 word (16 bits) at address $32

y : longint; absolute $34;
// Variable y will occupy 2 words at addresses $34 and $36

Be careful when using the absolute directive because you may overlap two vari-
ables by accident. For example:

var 1 : word; absolute $42;
// Variable i will occupy 1 word at address $42;

J3 : longint; absolute $40;

// Variable will occupy 2 words at $40 and $42; thus,

// changing i changes 7jJj at the same time and vice versa

Note: You must specify an even address when using the absolute directive.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 101

CHAPTER 3
Specifics

mikroPascal for 8051

Directive org

Directive org specifies the starting address of a routine in ROM. It is appended to
the declaration of a routine. For example:

procedure proc(par : byte); org $200;
begin

// Procedure will start at address $200;
end;

org directive can be used with main routine too. For example:

program Led Blinking;

procedure some proc();
begin

end;
org 0x800; // main procedure starts at 0x800
begin

ADPCFG := SFFFE;

TRISB := $0000;

while TRUE do

begin
LATB := $0000;
Delay ms (500) ;
LATB := SFFFF;
Delay ms (500) ;
end;

end.

Note: You must specify an even address when using the org directive.

102 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3
mikroPascal for 8051 Specifics

BUILT-IN ROUTINES
The mikroPascal for 8051 compiler provides a set of useful built-in utility functions.

The Delay_us and Delay_ms routines are implemented as “inline”; i.e. code is gen-
erated in the place of a call, so the call doesn’t count against the nested call limit.

The Vdelay _ms, Delay_Cyc and Get Fosc_kHz are actual Pascal routines. Their
sources can be found in Delays.mpas file located in the uses folder of the compiler.

-Lo
- Hi
- Higher
- Highest

-Inc
- Dec

- Delay _us
- Delay_ms
- Vdelay_ms
- Delay_Cyc

- Clock_Khz
- Clock_Mhz

- SetFuncCall
- Uart_Init

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 103

CHAPTER 3

Specifics mikroPascal for 8051
Lo
Prototype function Lo (number: longint): byte;
Returns Lowest 8 bits (byte)of number, bits 7..0.
Function returns the lowest byte of number. Function does not interpret bit pat-
terns of number — it merely returns 8 bits as found in register.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.
Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).
E I d := 0x1AC30F4;
xample tmp := Lo(d); // Equals O0xF4
Hi
Prototype function Hi (number: longint): byte;
Returns Returns next to the lowest byte of number, bits 8..15.
Function returns next to the lowest byte of number. Function does not interpret
bit patterns of number — it merely returns 8 bits as found in register.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.
Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).
E I d := 0x1AC30F4;
xample tmp := Hi(d); // Equals 0x30
Higher
Prototype function Higher (number: longint): byte;
Returns Returns next to the highest byte of number, bits 16..23.
Function returns next to the highest byte of number. Function does not interpret
bit patterns of number — it merely returns 8 bits as found in register.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.
Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).
E I d := 0x1AC30F4;
xample tmp := Higher(d); // Equals O0xAC

104

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3

Specifics

mikroPascal for 8051

Highest

Prototype function Highest (number: longint): byte;

Returns Returns the highest byte of number, bits 24..31.
Function returns the highest byte of number. Function does not interpret bit pat-
terns of number — it merely returns 8 bits as found in register.

Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Arguments must be variable of scalar type (i.e. Arithmetic Types and Pointers).

E I d := 0x1AC30F4;

Xample tmp := Highest (d); // Equals 0x01

Inc

Prototype procedure Inc(var par : longint);

Returns Nothing.

Description [Increases parameter par by 1.

Requires Nothing.
p = 4;

Example Inc(p); // p is now 5

Dec

Prototype procedure Dec (var par : longint);

Returns Nothing.

Description |Decreases parameter par by 1.

Requires Nothing.
o = 4;

Example Dec(p); // p is now 3

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

105

CHAPTER 3
Specifics mikroPascal for 8051

Delay_us

Prototype procedure Delay us(time in us: const longword);

Returns Nothing.

Creates a software delay in duration of time in us microseconds (a constant).
Range of applicable constants depends on the oscillator frequency.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Nothing.

Example Delay us(1000); /* One millisecond pause */

Delay_ms

Prototype procedure Delay ms(time in ms: const longword);

Returns Nothing.

Creates a software delay in duration of time in ms milliseconds (a constant).
Range of applicable constants depends on the oscillator frequency.
Description
This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Nothing.

Example Delay ms (1000); /* One second pause */

Vdelay_ms

Prototype |procedure Vdelay ms(time in ms: word);

Returns Nothing.

Creates a software delay in duration of time in ms milliseconds (a variable).
Generated delay is not as precise as the delay created by Delay_ms.
Description
Note that vdelay ms is library function rather than a built-in routine; it is pre-
sented in this topic for the sake of convenience.

Requires Nothing.

pause := 1000;
Example //
Vdelay ms(pause); // ~ one second pause

106 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3

Specifics

mikroPascal for 8051

Delay_Cyc

Prototype procedure Delay Cyc(Cycles div by 10: byte);

Returns Nothing.

Creates a delay based on MCU clock. Delay lasts for 10 times the input param-
eter in MCU cycles.

Description Note that pe1ay cyc is library function rather than a built-in routine; it is pre-
sented in this topic for the sake of convenience. There are limitations for
Cycles_div_by 10 value. Value Cycles_div_by 10 must be between 2 and 257.

Requires Nothing.

Example Delay Cyc(10); /* Hundred MCU cycles pause */

Clock_KHz

Prototype function Clock KHz (): word;

Returns Device clock in KHz, rounded to the nearest integer.

Function returns device clock in KHz, rounded to the nearest integer.

Description This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Nothing.

Example clk := Clock kHz();

Clock_MHz

Prototype |[function Clock MHz(): byte;

Returns Device clock in MHz, rounded to the nearest integer.

Function returns device clock in MHz, rounded to the nearest integer.

Description This is an “inline” routine; code is generated in the place of the call, so the call
doesn’t count against the nested call limit.

Requires Nothing.

Example clk := Clock MHz();

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

107

CHAPTER 3
Specifics mikroPascal for 8051

SetFuncCall

Prototype procedure SetFuncCall (FuncName: string);

Returns Nothing.

Function informs the linker about a specific routine being called. SetFuncCall
has to be called in a routine which accesses another routine via a pointer.
Description
Function prepares the caller tree, and informs linker about the procedure usage,
making it possible to link the called routine.

Requires Nothing.

procedure first(p, g: byte);
begin

Example SetFuncCall (second); // let linker know that we will call the
routine 'second'

end

Uart_Init

Prototype procedure Uart Init (baud rate: longword);

Returns Nothing.

Configures and initializes the UART module.
The internal UART module module is set to:
- 8-bit data, no parity

- 1 STOP bit

- disabled automatic address recognition
- timer1 as baudrate source (mod2 = autoreload 8bit timer)

Description
Parameters :
- baud rate: requested baud rate

Refer to the device data sheet for baud rates allowed for specific Fosc.
Requires MCU with the UART module and TIMER1 to be used as baudrate source.

// Initialize hardware UART and establish communication at 2400

Example bps
Uart Init(2400);

108 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 3
mikroPascal for 8051 Specifics

CODE OPTIMIZATION

Optimizer has been added to extend the compiler usability, cut down the amount of
code generated and speed-up its execution. The main features are:

Constant folding

All expressions that can be evaluated in the compile time (i.e. are constant) are
being replaced by their results. (3 + 5 -> 8);

Constant propagation

When a constant value is being assigned to a certain variable, the compiler recog-
nizes this and replaces the use of the variable by constant in the code that follows,
as long as the value of a variable remains unchanged.

Copy propagation

The compiler recognizes that two variables have the same value and eliminates one
of them further in the code.

Value numbering

The compiler "recognizes" if two expressions yield the same result and can there-
fore eliminate the entire computation for one of them.

"Dead code" ellimination

The code snippets that are not being used elsewhere in the programme do not affect
the final result of the application. They are automatically removed.

Stack allocation

Temporary registers ("Stacks") are being used more rationally, allowing VERY com-
plex expressions to be evaluated with a minimum stack consumption.

Local vars optimization

No local variables are being used if their result does not affect some of the global or
volatile variables.

Better code generation and local optimization

Code generation is more consistent and more attention is payed to implement spe-
cific solutions for the code "building bricks" that further reduce output code size.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 109

CHAPTER 3
Specifics mikroPascal for 8051

110 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER

8051 Specifics

Types Efficiency

First of all, you should know that 8051 ALU, which performs arithmetic operations,
is optimized for working with bytes. Although mikroPascal is capable of handling
very complex data types, 8051 may choke on them, especially if you are working on
some of the older models. This can dramatically increase the time needed for per-
forming even simple operations. Universal advice is to use the smallest possible
type in every situation. It applies to all programming in general, and doubly so with
microcontrollers. Types efficiency is determined by the part of RAM memory that is
used to store a variable/constant. See the example.

111

CHAPTER 4
8051 Specifics mikroPascal for 8051

Nested Calls Limitations

There are no Nested Calls Limitations, except by RAM size. A Nested call repre-
sents a function call to another function within the function body. With each function
call, the stack increases for the size of the returned address. Number of nested calls
is equel to the capacity of RAM which is left out after allocation of all variables.

Note: There are many different types of derivates, so it is necessary to be familiar
with characteristics and special features of the microcontroller in you are using.

8051 MEMORY ORGANIZATION

The 8051 microcontroller's memory is divided into Program Memory and Data
Memory. Program Memory (ROM) is used for permanent saving program being exe-
cuted, while Data Memory (RAM) is used for temporarily storing and keeping inter-
mediate results and variables.

Program Memory (ROM)

Program Memory (ROM) is used for permanent saving program (CODE) being exe-
cuted. The memory is read only. Depending on the settings made in compiler, pro-
gram memory may also used to store a constant variables. The 8051 executes pro-
grams stored in program memory only. code memory type specifier is used to refer
to program memory.

8051 memory organization alows external program memory to be added.
How does the microcontroller handle external memory depends on the pin EA logi-
cal state.

112 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 4
mikroPascal for 8051 8051 Specifics

Address FFFF hex

EA pin=1 *
EA pin=0 Additional ROM

' Memory
(64K max.)

Address FFFF hex

External ROM
Memory Address 4000 hex

11111

Embedded ROM

Memory
(4K)

(64K max.)

Internal Data Memory

Up to 256 bytes of internal data memory are available depending on the 8051 deriv-
ative. Locations available to the user occupy addressing space from 0 to 7Fh, i.e.
first 128 registers and this part of RAM is divided in several blocks. The first 128
bytes of internal data memory are both directly and indirectly addressable. The
upper 128 bytes of data memory (from 0x80 to OxFF) can be addressed only indi-
rectly.

Since internal data memory is used for CALL stack also and there is only 256 bytes
splited over few different memory areas fine utilizing of this memory is crucial for fast
and compact code. See types efficiency also.

Memory block in the range of 20h to 2Fh is bit-addressable, which means that each
bit being there has its own address from 0 to 7Fh. Since there are 16 such registers,
this block contains in total of 128 bits with separate addresses (Bit 0 of byte 20h
has the bit address 0, and bit 7 of byte 2Fh has the bit address 7Fh).

Three memory type specifiers can be used to refer to the internal data memory:
data, idata, and bdata.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 113

CHAPTER 4

8051 Specifics mikroPascal for 8051
co T Accessedby . N
| dimg&:r:sgr}ggect dirtzfieazze::stgng indI::gte:;'z?eziing |
| Y I." Y s \-. |
I Bank 0 00 hex | I 80 hex] |
| Bank 1 I
| Bank 2 |

Bank 3
| T 4Fhex |
I 16 bit addressable Nl"% ?gﬁ o \‘],%G I
registers (=] &
- 2F hex ‘\ \e e\\ |
I \009 @L o |
.
I 80 free I
| registers |
| |
| 7F hexI I FF hex I I |
I I
I |

RAM memory

External Data Memory

Access to external memory is slower than access to internal data memory. There
may be up to 64K Bytes of external data memory. Several 8051 devices provide on-
chip XRAM space that is accessed with the same instructions as the traditional
external data space. This XRAM space is typically enabled via proper setting of SFR
register and overlaps the external memory space. Setting of that register must be
manualy done in code, before any access to external memory or XRAM space is
made.

The mikroPascal for 8051 has two memory type specifiers that refers to external
memory space: xdata and pdata.

SFR Memory

The 8051 provides 128 bytes of memory for Special Function Registers (SFRs).
SFRs are bit, byte, or word-sized registers that are used to control timers, counters,
serial 1/0, port I/O, and peripherals.

Refer to Special Function Registers for more information. See sbit also.

Related topics: Accessing individual bits, SFRs, Memory type specifiers, Memory models

114 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 4
mikroPascal for 8051 8051 Specifics

MEMORY MODELS

The memory model determines the default memory type to use for function argu-
ments, automatic variables, and declarations that include no explicit memory type.
The mikroPascal for 8051 provides three memory models:

- Small
- Compact
- Large

You may also specify the memory model on a function-by-function basis by adding
the memory model to the function declaration.

Small memory model generates the fastest, most efficient code. This is default
memory model. You may override the default memory type imposed by the memo-
ry model by explicitly declaring a variable with a memory type specifier.

Small model

In this model, all variables, by default, reside in the internal data memory of the 8051
system—as if they were declared explicitly using the data memory type specifier.
In this memory model, variable access is very efficient. However, all objects (that are
not explicitly located in another memory area) and the call stack must fit into the
internal RAM.

Call Stack size is critical because the stack space used depends on the nesting
depth of the various functions.

Compact model

Using the compact model, by default, all variables are allocated in a single page 256
bytes of external data memory of the 8051 system—as if they were explicitly
declared using the pdata memory type specifier. This memory model can accommo-
date a maximum of 256 bytes of variables. The limitation is due to the addressing
scheme used which is indirect through registers RO and R1 (@R0, @R1). This
memory model is not as efficient as the small model and variable access is not as
fast. However, the compact model is faster than the large model. mikroPascal for
8051 uses the @R0 and @R 1 operands to acess external memory with instructions
that use 8 bit wide pointers and provide only the low-order byte of the address. The
high-order address byte (or page) is provided by Port 2 on most 8051 derivates (see
data sheet for details).

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 115

CHAPTER 4
8051 Specifics mikroPascal for 8051

Large model

In the large model all variables reside in external data memory (which may be up to
64K Bytes). This is the same as if they were explicitly declared using the xdata
memory type specifier. The DPTR is used to address external memory. Instruction
set is not optimized for this memory model(access to external memory) so it neeeds
more code than the small or compact model to manipulate with the variables.

function xadd(al : byte; a2 : byte) : byte; large; // allocate param-
eters and local variables in xdata space
begin
result := al+a2;
end;

Related topics: Memory type specifiers, 8051 Memory Organization, Accessing indi-
vidual bits, SFRs, Project Settings

116 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 4
mikroPascal for 8051 8051 Specifics

Memory Type Specifiers

The mikroPascal for 8051 supports usage of all memory areas. Each variable may
be explicitly assigned to a specific memory space by including a memory type spec-
ifier in the declaration, or implicitly assigned (based on a memory model).

The following memory type specifiers can be used:

- code
- data
- idata
- bdata
- xdata
- pdata

Memory type specifiers can be included in svariable declaration.

For example:

data data buffer : byte; // puts data buffer in data ram
xdata x _data : arrayl 100] of char; // puts array in external memory
idata ibuffer : real; // puts ibuffer in idata ramm

If no memory type is specified for a variable, the compiler locates the variable in the
memory space determined by the memory model: Small, Compact, or Large.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 117

CHAPTER 4

8051 Specifics mikroPascal for 8051
code
Program memory (64 KBytes); accessed by opcode MOVC @A+DPTR.

Description The code memory type may be used for constants and functions. This memory
is accessed using 16-bit addresses and may be on-chip or external.
// puts txt in program memory

Example code const txt : string [11] = 'Enter text:';

data
Directly addressable internal data memory; fastest access to variables (128
bytes).

Description This memory is directly accessed using 8-bit addresses and is the on-chip RAM
of the 8051. It has the shortest (fastest) access time but the amount of data is
limited in size (to 128 bytes or less).

// puts x in data ram

Example data x : byte;

idata
Indirectly addressable internal data memory; accessed across the full internal
address space (256 bytes).

Description This memory is indirectly accessed using 8-bit addresses and is the on-chip
RAM of the 8051. The amount of idata is limited in size (to 128 bytes or less) it
is upper 128 addresses of RAM
// puts x in idata ram

Example idata x : byte;

bdata
Bit-addressable internal data memory; supports mixed bit and byte access (16
bytes).

This memory is directly accessed using 8-bit addresses and is the on-chip bit-

Description |addressable RAM of the 8051. Variables declared with the bdata type are bit-
addressable and may be read and written using bit instructions.

For more information about the bdata type refer to the Accessing Individual Bits.
// puts x in bdata
Example bdata x : byte;

118 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 4

8051 Specifics

xdata
External data memory (64 KBytes); accessed by opcode MOVX @DPTR.
Description This memory is indirectly accessed using 16-bit addresses and is the external
data RAM of the 8051. The amount of xdata is limited in size (to 64K or less).
// puts x in xdata
Example xdata x : byte;
pdata
Paged (256 bytes) external data memory; accessed by opcode MOVX @Rn.
Description | This memory is indirectly accessed using 8-bit addresses and is one 256-byte
page of external data RAM of the 8051. The amount of pdata is limited in size
(to 256 bytes).
// puts x in pdata
Example pdata x : byte;

Related topics: 8051 Memory Organization, Memory models, Accessing individual bits, SFRs,

Constants, Functions

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

119

CHAPTER 4
8051 Specifics mikroPascal for 8051

120 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER

mikroPascal for 8051
Language Reference

The mikroPascal for 8051 Language Reference describes the syntax, semantics and
implementation of the mikroPascal for 8051 language.

The aim of this reference guide is to provide a more understandable description of
the mikroPascal for 8051 language to the user.

121

CHAPTER 5
Language Reference mikroPascal for 8051

- Lexical Elements

Whitespace
Comments
Tokens

Literals
Keywords
Identifiers
Punctuators

- Program Organization

Program Organization
Scope and Visibility
Units

- Variables

- Constants

- Labels

- Functions and Procedures

Functions
Procedures

- Types

Simple Types
Arrays

Strings

Pointers

Records

Types Conversions

Implicit Conversion
Explicit Conversion

- Operators

Introduction to Operators

Operators Precedence and Associativity
Arithmetic Operators

Relational Operators

Bitwise Operators

Boolean Operators

122 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

- Expressions
Expressions

- Statements
Introduction to Statements
Assignment Statements
Compound Statements (Blocks)

Conditional Statements

If Statement
Case Statement

Iteration Statements (Loops)
For Statement
While Statement
Repeat Statement
Jump Statements
Break and Continue Statements
Exit Statement
Goto Statement
asm Statement

- Directives

Compiler Directives
Linker Directives

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 123

CHAPTER 5
Language Reference mikroPascal for 8051

LEXICAL ELEMENTS OVERVIEW

The following topics provide a formal definition of the mikroPascal for 8051 lexical
elements. They describe different categories of word-like units (tokens) recognized
by mikroPascal for 8051.

In the tokenizing phase of compilation, the source code file is parsed (i.e. broken
down) into tokens and whitespace. The tokens in mikroPascal for 8051 are derived
from a series of operations performed on your programs by the compiler.

WHITESPACE

Whitespace is a collective name given to spaces (blanks), horizontal and vertical
tabs, newline characters and comments. Whitespace can serve to indicate where
tokens start and end, but beyond this function, any surplus whitespace is discarded.
For example, two sequences

var i : char;
J ¢ word;
and
var
i : char;
J ¢ word;

are lexically equivalent and parse identically to give nine tokens:

var
i

char

word

124 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

Whitespace in Strings

The ASCII characters representing whitespace can occur within string literals, in
which case they are protected from the normal parsing process (they remain a part
of the string). For example,

some string := 'mikro foo';
parses into four tokens, including a single string literal token:

some string

'mikro foo!'

COMMENTS

Comments are pieces of a text used to annotate a program, and are technically
another form of whitespace. Comments are for the programmer’s use only. They are
stripped from the source text before parsing.

There are two ways to create comments in mikroPascal. You can use multi-line com-
ments which are enclosed with braces or (+ and *):

{ All text between left and right brace
constitutes a comment. May span multiple lines. }

(* Comment can be

written in this way too. *)
or single-line comments:

// Any text between a double-slash and the end of the
// line constitutes a comment spanning one line only.

Nested comments

mikroPascal doesn’t allow nested comments. The attempt to nest a comment like this
{ 1 { 1identifier } : word; }

fails, because the scope of the first open brace “ ” ends at the first closed brace “ ”.
This gives us

. word; }

which would generate a syntax error.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 125

CHAPTER 5
Language Reference mikroPascal for 8051

TOKENS

Token is the smallest element of the Pascal program that compiler can recognize.
The parser separates tokens from the input stream by creating the longest token
possible using the input characters in a left—to—right scan.

mikroPascal for 8051 recognizes the following kinds of tokens:

- keywords
- identifiers
- constants
- operators
- punctuators (also known as separators)

Token Extraction Example

Here is an example of token extraction. Take a look at the following example code
sequence:

end flag := 0;

First, note that end 129 would be parsed as a single identifier, rather than as the
keyword end followed by the identifier f1ag.

The compiler would parse it as the following four tokens:

end flag // variable identifier
1= // assignment operator
0 // literal

; // statement terminator

Note that ;= parses as one token (the longest token possible), not as token : fol-
lowed by token =.

126 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

LITERALS

Literals are tokens representing fixed numeric or character values.

The data type of a constant is deduced by the compiler using such clues as numer-
ic value and format used in the source code.

Integer Literals

Integral values can be represented in decimal, hexadecimal, or binary notation.

In decimal notation, numerals are represented as a sequence of digits (without com-
mas, spaces, or dots), with optional prefix + or - operator to indicate the sign. Values

default to positive (6258 is equivalent to +6258).

The dollar-sign prefix ($) or the prefix Ox indicates a hexadecimal numeral (for
example, $8F or 0x8F).

The percent-sign prefix (%) indicates a binary numeral (for example, <01010000).

Here are some examples:

11 // decimal literal

$11 // hex literal, equals decimal 17
0x11 // hex literal, equals decimal 17
$11 // binary literal, equals decimal 3

The allowed range of values is imposed by the largest data type in mikroPascal for
8051 — 1ongint. Compiler will report an error if the literal exceeds 2147483647
(S7FFFFFFF).

Floating Point Literals
A floating-point value consists of:
- Decimal integer
- Decimal point
- Decimal fraction
- e or £ and a signed integer exponent (optional)

You can omit either the decimal integer or decimal fraction (but not both).

Negative floating constants are taken as positive constants with the unary operator
minus (-) prefixed.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 127

CHAPTER 5
Language Reference mikroPascal for 8051

mikroPascal for 8051 limits floating-point constants to range +1.17549435082 * 10-
38 .. £6.80564774407 * 1038.

Here are some examples:

0. // = 0.0

-1.23 // = -1.23
23.45e6 // = 23.45 * 1076
2e-5 // = 2.0 * 107-5
3E+10 // = 3.0 * 10710

.09E34 // = 0.09 * 1034
Character Literals

Character literal is one character from the extended ASCII character set, enclosed
with apostrophes.

Character literal can be assigned to variables of the byte and char type (variable of
byte will be assigned the ASCII value of the character). Also, you can assign char-
acter literal to a string variable.

Note: Quotes (" ") have no special meaning in mikroPascal for 8051.

String Literals

String literal is a sequence of characters from the extended ASCII character set,
written in one line and enclosed with apostrophes. Whitespace is preserved in string
literals, i.e. parser does not “go into” strings but treats them as single tokens.
Length of string literal is a number of characters it consists of. String is stored inter-
nally as the given sequence of characters plus a final nu11 character. This nul1l
character is introduced to terminate the string, it does not count against the string’s
total length.

String literal with nothing in between the apostrophes (null string) is stored as a sin-
gle nul1 character.

You can assign string literal to a string variable or to an array of char.

Here are several string literals:

128 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5

mikroPascal for 8051 Language Reference

'Hello world!' // message, 12 chars long

'Temperature is stable' // message, 21 chars long
// two spaces, 2 chars long

// letter, 1 char long
// null string, 0 chars long

v v
el

[

The apostrophe itself cannot be a part of the string literal, i.e. there is no escape
sequence. You can use the built-in function Chr to print an apostrophe: chr (39).

Also, see String Splicing.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 129

CHAPTER 5
Language Reference mikroPascal for 8051

KEYWORDS

Keywords are the words reserved for special purposes and must not be used as nor-
mal identifier names.

Beside standard Pascal keywords, all relevant SFRs are defined as global variables
and represent reserved words that cannot be redefined (for example: wo, TMRI,
T1con, etc). Probe the Code Assistant for specific letters (Ctrl+Space in Editor) or
refer to Predefined Globals and Constants.

Here is the alphabetical listing of keywords in Pascal:

- absolute

- abstract

- and

- array

- as

- asm

- assembler
- at

- automated
- bdata

- begin

- bit

- case

- cdecl

- class

- code

- compact

- const

- constructor
- contains

- data

- default

- deprecated
- destructor
- dispid

- dispinterface
- div

- do

- downto

- dynamic

- end

- except

- export

- exports

- external

130

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 5

Language Reference

far
file
final
finalization
finally
for
forward
goto
helper
idata
if
ilevel

implementation

implements
in

index
inherited

initialization

inline
interface
is

label
library
message
mod

name

near

nil
nodefault
not
object

of

on
operator
or

org

out
overload
override
package
packed
pascal
pdata
platform
private
procedure
program
property
protected

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 131

CHAPTER 5
Language Reference mikroPascal for 8051

- public

- published
- raise

- read

- readonly
- record

- register
- reintroduce
- repeat

- requires
- safecall
- sbit

- sealed

- set

- shl

- shr

- small

- stdcall

- stored

- string

- threadvar
- to

- try

- type

- unit

- until

- uses

- var

- virtual

- volatile
- while

- with

- write

- writeonly
- xdata

- XOr

Also, mikroPascal includes a number of predefined identifiers used in libraries. You
can replace them by your own definitions, if you plan to develop your own libraries.
For more information, see mikroPascal Libraries.

132 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

IDENTIFIERS

Identifiers are arbitrary names of any length given to functions, variables, symbolic
constants, user-defined data types and labels. All these program elements will be
referred to as objects throughout the help (don't get confused about the meaning of
object in object-oriented programming).

Identifiers can contain the letters a to z and A to Z, underscore character “ ”, and
digits from 0 to 9. The only restriction is that the first character must be a letter or an
underscore.

Case Sensitivity
Pascal is not case sensitive, so sum, sum, and suM are an equivalent identifier.
Uniqueness and Scope

Although identifier names are arbitrary (according to the stated rules), if the same
name is used for more than one identifier within the same scope then error arises.
Duplicated names are illegal within same scope. For more information, refer to
Scope and Visibility.

Identifier Examples

Here are some valid identifiers:

temperature V1
Pressure

no hit
dat2string
SUM3

_vtext

... and here are some invalid identifiers:

7Ttemp // NO -- cannot begin with a numeral

$higher // NO -- cannot contain special characters

x0T // NO -- cannot match reserved word

323.07.04 // NO -- cannot contain special characters (dot)

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 133

CHAPTER 5
Language Reference mikroPascal for 8051

PUNCTUATORS
The mikroPascal punctuators (also known as separators) are:
- [] — Brackets
- () — Parentheses
-,—Comma
- ; — Semicolon
- :— Colon
- . — Dot
Brackets
Brackets [] indicate single and multidimensional array subscripts:
var alphabet : arrayl 1..30] of byte;
//
alphabet[3] := 'c';
For more information, refer to Arrays.

Parentheses

Parentheses () are used to group expressions, isolate conditional expressions and
indicate function calls and function declarations:

d := c * (a + b); // Override normal precedence

if (d = z) then ... // Useful with conditional statements
func () ; // Function call, no arguments
function func2(n : word); // Function declaration with parameters

For more information, refer to Operators Precedence and Associativity, Expressions
and Functions and Procedures.

Comma

Comma (,) separates the arguments in function calls:

LCD Out (1, 1, txt);

Further, the comma separates identifiers in declarations:

var i, J, k : byte;

The comma also separates elements of array in initialization lists:

const MONTHS : array[1..12] of byte =
(31,28,31,30,31,30,31,31,30,31,30,31);

134 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

Semicolon

Semicolon (;) is a statement terminator. Every statement in Pascal must be termi-
nated with a semicolon. The exceptions are: the last (outer most) end statement in
the program which is terminated with a dot and the last statement before end which
doesn't need to be terminated with a semicolon.

For more information, see Statements.

Colon

Colon (:) is used in declarations to separate identifier list from type identifier. For
example:

var
i, j : byte;
k : word;
In the program, use the colon to indicate a labeled statement:
start: nop;
goto start;
For more information, refer to Labels.

Dot

Dot (.) indicates an access to a field of a record. For example:
person.surname := 'Smith';

For more information, refer to Records.

Dot is a necessary part of floating point literals. Also, dot can be used for accessing
individual bits of registers in mikroPascal.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 135

CHAPTER 5
Language Reference mikroPascal for 8051

PROGRAM ORGANIZATION

Pascal imposes quite strict program organization. Below you can find models for
writing legible and organized source files. For more information on file inclusion and
scope, refer to Units and Scope and Visibility.

Organization of Main Unit

Basically, the main source file has two sections: declaration and program body. Dec-
larations should be in their proper place in the code, organized in an orderly man-
ner. Otherwise, the compiler may not be able to comprehend the program correctly.

When writing code, follow the model presented below. The main unit should look like this:

program { program name }
uses { include other units }

//**

//* Declarations (globals):
//**‘k*‘k******‘k******‘k*‘k****‘k*‘k******‘k***************‘k*****

{ constants declarations }
const

{ types declarations }
type

{ wvariables declarations }
var Name[, Name?2...] : ["] type; [absolute 0x123;] [external;]
[volatile;] [register;] [sfr;]

{ labels declarations }
label

{ procedures declarations }

procedure procedure name (parameter list);
{ local declarations }
begin
end;

{ functions declarations }

function function name (parameter list) : return type;
{ local declarations }
begin
end;

136 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

//****************************‘k***************************

//* Program body:

//**

begin
{ write your code here }
end.

Organization of Other Units

Units other than main start with the keyword unit. Implementation section starts
with the keyword implementation. Follow the model presented below:

unit { unit name }
uses { include other units }

//**

//* Interface (globals):

//**

{ constants declarations }
const

{ types declarations }
type

{ wvariables declarations }
var Name[, Name2...] : ["] type; [absolute 0x123;] [external;]
[volatile;] [register;] [sfr;]

{ procedures prototypes }
procedure procedure name ([var] [const] ParamName : [%] type; [var]
[const] ParamName2, ParamName3 : ["] type);

{ functions prototypes }
function function name ([var] [const] ParamName : ["] type; [var]
[const] ParamName2, ParamName3 : [*] type) : ["] type;

//**

//* Implementation:
//***‘k******‘k*‘k‘k****‘k‘k******‘k*‘k*****‘k‘k******‘k******‘k‘k‘k****

implementation

{ constants declarations }
const

{ types declarations }
type

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 137

CHAPTER 5
Language Reference mikroPascal for 8051

{ variables declarations }
var Name[, Name?2...] : ["] type; [absolute 0x123;] [external;]
[volatile;] [register;] [sfr;]

{ labels declarations }
label

{ procedures declarations }

procedure procedure name ([var] [const] ParamName : ["] type; [var]
[const] ParamName2, ParamName3 : ["] type); [ilevel 0x123;] [over-
load;] [forward;]

{ local declarations }

begin

end;

{ functions declarations }
function function name ([var] [const] ParamName : [7] type; [var]
[const] ParamName2, ParamName3 : ["] type) : ["] type; [ilevel 0x123;]
[overload;] [forward;]

{ local declarations }

begin

end;

end.

Note: constants, types and variables used in the implementation section are inac-
cessible to other units. This feature is not applied to the procedures and functions in
the current version, but it will be added to the future ones.

Note: Functions and procedures must have the same declarations in the interface
and implementation section. Otherwise, compiler will report an error.

138 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

SCOPE AND VISIBILITY

Scope

The scope of an identifier is a part of the program in which the identifier can be used
to access its object. There are different categories of scope, which depends on how
and where identifiers are declared:

Place of declaration Scope

Scope extends from the point where it is declared to
Identifier is declared in the |the end of the current block, including all blocks
declaration of a program, [enclosed within that scope. Identifiers in the outer-
function, or procedure most scope (file scope) of the main unit are referred
to as globals, while other identifiers are locals.

Scope extends the interface section of a unit from
the point where it is declared to the end of the unit,
and to any other unit or program that uses that unit.

Identifier is declared in the
interface section of a unit

Identifier is declared in the
implementation section of |Scope extends from the point where it is declared to
a unit, but not within the the end of the unit. The identifier is available to any
block of any function or function or procedure in the unit.

procedure

Visibility
The visibility of an identifier is that region of the program source code from which

legal access to the identifier’s associated object can be made.

Scope and visibility usually coincide, though there are circumstances under which
an object becomes temporarily hidden by the appearance of a duplicate identifier,
i.e. the object still exists but the original identifier cannot be used to access it until
the scope of the duplicate identifier is ended.

Technically, visibility cannot exceed scope, but scope can exceed visibility.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 139

CHAPTER 5
Language Reference mikroPascal for 8051

UNITS

In mikroPascal for 8051, each project consists of a single project file and one or
more unit files. Project file, with extension .mppro contains information about the
project, while unit files, with extension .mpas, contain the actual source code.

Units allow you to:

- break large programs into encapsulated parts that can be edited separately,
- create libraries that can be used in different projects,
- distribute libraries to other developers without disclosing the source code.

Each unit is stored in its own file and compiled separately. Compiled units are linked
to create an application. In order to build a project, the compiler needs either a
source file or a compiled unit file (.mc1 file) for each unit.

Uses Clause

mikroPascal for 8051 includes units by means of the uses clause. It consists of the
reserved word uses, followed by one or more comma-delimited unit names, followed
by a semicolon. Extension of the file should not be included. There can be at most
one uses clause in each source file, and it must appear immediately after the pro-
gram (or unit) name.

Here’s an example:

uses utils, strings, Unit2, MyUnit;For the given unit name, the compiler will check for
the presence of .mcl and .mpas files, in order specified by the search paths.

- If both .mpas and .mc1 files are found, the compiler will check their dates and
include the newer one in the project. If the .mpas file is newer than .mc1, a new
library will be written over the old one;

- If only .mpzs file is found, the compiler will create the .mc1 file and include it in the
project;

- If only .mc1 file is present, i.e. no source code is available, the compiler will include
it as it is found;

- If none found, the compiler will issue a “File not found” warning.

Main Unit
Every project in mikroPascal for 8051 requires a single main unit file. The main unit

file is identified by the keyword program at the beginning; it instructs the compiler
where to “start”.

140 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

After you have successfully created an empty project with the Project Wizard, the
Code Editor will display a new main unit. It contains the bare-bones of the Pascal
program:

program MyProject;
{ main procedure }
begin

{ Place program code here }

end.

Nothing should precede the keyword program except comments. After the program
name, you can optionally place the uses clause.

Place all global declarations (constants, variables, types, labels, routines) before the
keyword begin.

Other Units

Units other than main start with the keyword unit. Newly created blank unit contains
the bare-bones:

unit MyUnit;
implementation

end.

Other than comments, nothing should precede the keyword unit. After the unit
name, you can optionally place the uses clause.

Interface Section

Part of the unit above the keyword implementation is referred to as interface sec-
tion. Here, you can place global declarations (constants, variables, labels and types)
for the project.

You do not define routines in the interface section. Instead, state the prototypes of
routines (from implementation section) that you want to be visible outside the unit.
Prototypes must match the declarations exactly.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 141

CHAPTER 5
Language Reference mikroPascal for 8051

Implementation Section

Implementation section hides all irrelevant innards from other units, allowing encap-
sulation of code.

Everything declared below the keyword implementation is private, i.e. has its
scope limited to the file. When you declare an identifier in the implementation sec-
tion of a unit, you cannot use it outside the unit, but you can use it in any block or
routine defined within the unit.

By placing the prototype in the interface section of the unit (above the implementa-
tion) you can make the routine public, i.e. visible outside of unit. Prototypes must
match the declarations exactly.

142 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

VARIABLES

Variable is object whose value can be changed during the runtime. Every variable is
declared under unique name which must be a valid identifier. This name is used for
accessing the memory location occupied by a variable.

Variables are declared in the declaration part of the file or routine — each variable
needs to be declared before being used. Global variables (those that do not belong
to any enclosing block) are declared below the uses statement, above the keyword
begin.

Specifying a data type for each variable is mandatory. Syntax for variable declara-
tion is:

var identifier list : type;

identifier list is a comma-delimited list of valid identifiers and type can be any
data type.

For more details refer to Types and Types Conversions. For more information on
variables’ scope refer to the chapter Scope and Visibility.

Pascal allows shortened syntax with only one keyword var followed by multiple vari-
able declarations. For example:

var i, J, k : byte;
counter, temp : word;

samples : array| 100] of word;
Variables and 8051

Every declared variable consumes part of RAM. Data type of variable determines
not only allowed range of values, but also the space variable occupies in RAM. Bear
in mind that operations using different types of variables take different time to be
completed. mikroPascal for 8051 recycles local variable memory space — local vari-
ables declared in different functions and procedures share the same memory space,
if possible.

There is no need to declare SFRs explicitly, as mikroPascal for 8051 automatically
declares relevant registers as global variables of volatile word see SFR for details.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 143

CHAPTER 5
Language Reference mikroPascal for 8051

CONSTANTS

Constant is a data whose value cannot be changed during the runtime. Using a con-
stant in a program consumes no RAM. Constants can be used in any expression,
but cannot be assigned a new value.

Constants are declared in the declaration part of a program or routine. You can
declare any number of constants after the keyword const:

const constant name [: type] = value;

Every constant is declared under unique constant name which must be a valid
identifier. It is a tradition to write constant names in uppercase. Constant requires
you to specify value, which is a literal appropriate for the given type. ype is option-
al and in the absence of type, the compiler assumes the “smallest” of all types that
can accommodate value.

Note: You cannot omit - ype when declaring a constant array.

Pascal allows shorthand syntax with only one keyword const followed by multiple
constant declarations. Here’s an example:

const
MAX : longint = 10000;
MIN = 1000; // compiler will assume word type
SWITCH = 'n'; // compiler will assume char type
MSG = 'Hello'; // compiler will assume string type

MONTHS : arrayl 1..12] of byte = (31,28,31,30,31,30,31,31,30,31,30,31);

144 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

LABELS

Labels serve as targets for goto statements. Mark the desired statement with a label
and colon like this:

label identifier : statement

Before marking a statement, you must declare a label. Labels are declared in dec-
laration part of unit or routine, similar to variables and constants. Declare labels
using the keyword 1zbel:

label labell, ..., labeln;

Name of the label needs to be a valid identifier. The label declaration, marked state-
ment, and goto statement must belong to the same block. Hence it is not possible
to jump into or out of a procedure or function. Do not mark more than one statement
in a block with the same label.

Here is an example of an infinite loop that calls the Beep procedure repeatedly:
label loop;
loop:

Beep;

goto loop;

Note: label should be followed by end of line (CR) otherwise compiler will report an error:
label loop;

loop: Beep; // compiler will report an error

loop: // compiler will report an error

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 145

CHAPTER 5
Language Reference mikroPascal for 8051

FUNCTIONS AND PROCEDURES

Functions and procedures, collectively referred to as routines, are subprograms
(self-contained statement blocks) which perform a certain task based on a number
of input parameters. When executed, a function returns a value while procedure
does not.

mikroPascal for 8051 does not support inline routines.
Functions

A function is declared like this:

function function name (parameter list) : return type;
{ local declarations }

begin
{ function body }

end;

function name represents a function’s name and can be any valid identifier.
return type is a type of return value and can be any simple type. Within parenthe-
ses, parameter list is @ formal parameter list very similar to variable declaration.
In Pascal, parameters are always passed to a function by the value — to pass an
argument by address, add the keyword var ahead of identifier.

Local declarations are optional declarations of variables and/or constants, local
for the given function. Function body is a sequence of statements to be executed
upon calling the function.

Calling a function

A function is called by its name, with actual arguments placed in the same sequence
as their matching formal parameters. The compiler is able to coerce mismatching
arguments to the proper type according to implicit conversion rules. Upon a function
call, all formal parameters are created as local objects initialized by values of actu-
al arguments. Upon return from a function, a temporary object is created in the place
of the call and it is initialized by the value of the function result. This means that func-
tion call as an operand in complex expression is treated as the function result.

In standard Pascal, a function name is automatically created local variable that
can be used for returning a value of a function. mikroPascal for 8051 also allows you
to use the automatically created local variable result to assign the return value of
a function if you find function name to be too ponderous. If the return value of a func-
tion is not defined the compiler will report an error.

146 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

Function calls are considered to be primary expressions and can be used in situa-
tions where expression is expected. A function call can also be a self-contained
statement and in that case the return value is discarded.

Example

Here’s a simple function which calculates x" based on input parameters < and n (n

> 0):
function power(x, n : byte) : longint;
var i : byte;
begin

i := 0; result := 1;

if n > 0 then

for 1 := 1 to n do result := result*x;

end;

Now we could call it to calculate 312 for example:
tmp := power (3, 12);

PROCEDURES

Procedure is declared like this:

procedure procedure name (parameter list);
{ local declarations }

begin
{ procedure body }

end;

procedure name represents a procedure’s name and can be any valid identifier.
Within parentheses, parameter 1ist is a formal parameter list very similar to vari-
able declaration. In Pascal, parameters are always passed to a procedure by the
value — to pass an argument by address, add the keyword var ahead of identifier.

Local declarations are optional declaration of variables and/or constants, local for
the given procedure. procedure body is @ sequence of statements to be executed
upon calling the procedure.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 147

CHAPTER 5
Language Reference mikroPascal for 8051

Calling a procedure

A procedure is called by its name, with actual arguments placed in the same
sequence as their matching formal parameters. The compiler is able to coerce mis-
matching arguments to the proper type according to implicit conversion rules. Upon
procedure call, all formal parameters are created as local objects initialized by the
values of actual arguments.

Procedure call is a self-contained statement.
Example

Here’s an example procedure which transforms its input time parameters, preparing
them for output on LCD:

procedure time prep(var sec, min, hr : byte);

begin
sec := ((sec and $F0) shr 4)*10 + (sec and S50F);
min := ((min and $F0) shr 4)*10 + (min and S$0F);
hr := ((hr and $F0) shr 4)*10 + (hr and S$OF);

end;

Function Pointers

Function pointers are allowed in mikroPascal for 8051. The example shows how to
define and use a function pointer:

Example:

Example demonstrates the usage of function pointers. It is shown how to declare a
procedural type, a pointer to function and finally how to call a function via pointer.

program Example;

type TMyFunctionType = function (paraml, param2: byte; param3: word)
word; // First, define the procedural type
var MyPtr: "TMyFunctionType;
// This 1is a pointer to previously defined type
Sample: word;

function Funcl (pl, p2: byte; p3: word): word; // Now,
define few functions which will be pointed to. Make sure that param-
eters match the type definition
begin
result := pl and p2 or p3; // return something
end;

148 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5

mikroPascal for 8051 Language Reference
function Func?2 (abc: byte; def: byte; ghi: word): word; // Another
function of the same kind. Make sure that parameters match the type
definition
begin
result abc * def + ghi; // return something
end;
function Func3 (first, yellow: byte; monday: word): word; // Yet
another function. Make sure that parameters match the type defini-
tion
begin
result := monday - yellow - first; // return something
end;

// main program:

begin
MyPtr := @Funcl; // MyPtr now points to Funcl
Sample := MyPtr” (1, 2, 3); // Perform function call via
pointer, call Funcl, the return value is 3
MyPtr := QFunc2; // MyPtr now points to Func2
Sample := MyPtr~ (1, 2, 3); // Perform function call via
pointer, call Func2, the return value is 5
MyPtr := @QFunc3; // MyPtr now points to Func3
Sample := MyPtr~ (1, 2, 3); // Perform function call via
pointer, call Func3, the return value is 0
end.

A function can return a complex type. Follow the example bellow to learn how to
declare and use a function which returns a complex type.

Example:

This example shows how to declare a function which returns a complex type.
program Example;
type TCircle = record // Record
CenterX, CenterY: word;
Radius: byte;
end;

var MyCircle: TCircle; // Global variable

function DefineCircle(x, y: word; r: byte): TCircle; // DefineCircle
function returns a Record

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 149

CHAPTER 5

Language Reference mikroPascal for 8051

begin

result.CenterX := x;

result.CenterY := vy;

result.Radius 1= r;
end;
begin

MyCircle := DefineCircle (100, 200, 30); //
Get a Record via function call

MyCircle.CenterX := DefineCircle (100, 200, 30).CenterxX + 20; //
Access a Record field wvia function call

// |- \ | ————- |

// | \

// Function returns TCircle Access to one
field of TCircle
end.

Forward declaration

A function can be declared without having it followed by it's implementation, by hav-
ing it followed by the forward procedure. The effective implementation of that func-
tion must follow later in the unit. The function can be used after a forward declara-
tion as if it had been implemented already. The following is an example of a forward
declaration:

program Volume;

var Volume : word;
function First(a, b : word) : word; forward;
function Second(c : word) : word;
var tmp : word;
begin
tmp := First(2, 3);
result := tmp * c;
end;
function First(a, b : word) : word;
begin
result := a * b;
end;
begin
Volume := Second(4);
end.

150 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

TYPES

Pascal is strictly typed language, which means that every variable and constant
need to have a strictly defined type, known at the time of compilation.

The type serves:

- to determine correct memory allocation required,
- to interpret the bit patterns found in the object during subsequent accesses,
- in many type-checking situations, to ensure that illegal assignments are trapped.

mikroPascal supports many standard (predefined) and user-defined data types,
including signed and unsigned integers of various sizes, arrays, strings, pointers
and records.

Type Categories
Types can be divided into:

- simple types
- arrays

- strings

- pointers

- records

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 151

CHAPTER 5
Language Reference mikroPascal for 8051

SIMPLE TYPES

Simple types represent types that cannot be divided into more basic elements and
are the model for representing elementary data on machine level. Basic memory
unit in mikroPascal for 8051 has 16 bits.

Here is an overview of simple types in mikroPascal for 80517

Type Size Range
byte, char 8-bit 0..255
short 8—bit -127 .. 128
word 16—bit 0 .. 65535
integer 16-bit -32768 .. 32767
dword 32—-bit 0 .. 4294967295
longint 32—-bit -2147483648 .. 2147483647
e 105
bit 1-bit Oor1
sbit 1-bit Oor1

You can assign signed to unsigned or vice versa only using the explicit conversion.
Refer to Types Conversions for more information.

152 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

ARRAYS

An array represents an indexed collection of elements of the same type (called the
base type). Because each element has a unique index, arrays, unlike sets, can
meaningfully contain the same value more than once.

Array Declaration

Array types are denoted by constructions in the following form:

arrayl index start .. index end] of type

Each of the elements of an array is numbered from index start through
index end. The specifier index start can be omitted along with dots, in which

case it defaults to zero.

Every element of an array is of t ype and can be accessed by specifying array name
followed by element’s index within brackets.

Here are a few examples of array declaration:

var
weekdays : arrayl 1..7] of byte;
samples : arrayf 50] of word;
begin
// Now we can access elements of array variables, for example:
samples[0] := 1;
if samples[371 = 0 then ...

Constant Arrays

Constant array is initialized by assigning it a comma-delimited sequence of values
within parentheses. For example:

// Declare a constant array which holds number of days in each month:
const MONTHS : array[1..12] of byte =

(31,28,31,30,31,30,31,31,30,31,30,31);

The number of assigned values must not exceed the specified length. The opposite
is possible, when the trailing “excess” elements are assigned zeroes.

For more information on arrays of char, refer to Strings.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 153

CHAPTER 5
Language Reference mikroPascal for 8051

Multi-dimensional Arrays

Multidimensional arrays are constructed by declaring arrays of array type. These
arrays are stored in memory in such way that the right most subscript changes
fastest, i.e. arrays are stored “in rows”. Here is a sample 2-dimensional array:

m : arrayl 5] of arrayl 10] of byte; // 2-dimensional array of size 5x10
Avariable nm is an array of 5 elements, which in turn are arrays of 10 byte each. Thus,

we have a matrix of 5x10 elements where the first element is [01[0] and last one
is [41 9. The first element of the 4th row would be [317 0].

154 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

STRINGS

A string represents a sequence of characters equivalent to an array of char. It is
declared like this:

string name : stringl length]

The specifier 1ength is a number of characters the string consists of. String is stored
internally as the given sequence of characters plus a final nu11 character which is
introduced to terminate the string. It does not count against the string’s total length.

A null string (") is stored as a single nu11 character.

You can assign string literals or other strings to string variables. String on the right
side of an assignment operator has to be shorter or of equal length than the one on
the right side. For example:

var
msgl : stringl 20] ;
msg2 : stringl 19] ;

begin
msgl := 'This is some message';
msg2 := 'Yet another message';
msgl := msg2; // this is ok, but vice versa would be illegal

Alternately, you can handle strings element—by—element. For example:
var s : string] 5] ;

:= 'mik';

n -

is char literal 'm'

9]

is char literal 'i

N 0

is char literal 'k'

0]

is zero
is undefined
is undefined

R R R R Rl

0
g w N PO

Be careful when handling strings in this way, since overwriting the end of a string will
cause an unpredictable behavior.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 155

CHAPTER 5
Language Reference mikroPascal for 8051

String Concatenating

mikroPascal for 8051 allows you to concatenate strings by means of plus operator.
This kind of concatenation is applicable to string variables/literals, character vari-
ables/literals. For control characters, use the non-quoted hash sign and a numeral
(e.g. #13 for CR).

Here is an example:

var msg : stringf 20] ;
res txt : stringf 5] ;
res, channel : word;
begin
/]

// Get result of ADC
res := Adc_ Read(channel);

// Create string out of numeric result
WordToStr (res, res txt);

// Prepare message for output
msg := 'Result is ' + // Text "Result is"
res txt : // Result of ADC

VA

Note: In current version plus operator for concatenating strings will accept at most
two operands.

Note

mikroPascal for 8051 includes a String Library which automatizes string related tasks.

156 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

Pointers

A pointer is a data type which holds a memory address. While a variable accesses
that memory address directly, a pointer can be thought of as a reference to that
memory address.

To declare a pointer data type, add a carat prefix (») before type. For example, in
order to create a pointer to an integer, write:

~“integer;

In order to access data at the pointer’s memory location, add a carat after the vari-
able name. For example, let’'s declare variable » which points to a word, and then
assign value 5 to the pointed memory location:

var p : “word;

A pointer can be assigned to another pointer. However, note that only the address,
not the value, is copied. Once you modify the data located at one pointer, the other
pointer, when dereferenced, also yields modified data.

Pointers to program memory space are declared using the keyword const:
program const ptr;

// constant array will be stored in program memory

const b array: arrayl 5 of byte = (1,2,3,4,5);
const ptr: "byte; // ptr is pointer to program memory space
begin
ptr := @b _array; // ptr now points to b_arrayl 0]
PO := ptr”™;
ptr = ptr + 3; // ptr now points to b_arrayl 3]
PO := ptr”";
end.

Pointers to procedures are currently under construction.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 157

CHAPTER 5
Language Reference mikroPascal for 8051

@ Operator

The @ operator returns the address of a variable or routine, i.e. @ constructs a point-
er to its operand. The following rules are applied to @:

- If x is a variable, ¢x returns the address of x.
- If ¥ is a routine (a function or procedure), @r returns F’s entry point (the result is
of longint).

158 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

RECORDS

A record (analogous to a structure in some languages) represents a heterogeneous
set of elements. Each element is called a field. The declaration of the record type
specifies a name and type for each field. The syntax of a record type declaration is

type recordTypeName = record
fieldListl : typel;

fieldListn : typen;

end;

where recordTypeName is a valid identifier, each type denotes a type, and each
fieldList is a valid identifier or a comma-delimited list of identifiers. The scope of
a field identifier is limited to the record in which it occurs, so you don’t have to worry
about naming conflicts between field identifiers and other variables.

Note: In mikroPascal for 8051, you cannot use the record construction directly in
variable declarations, i.e. without «ype.

For example, the following declaration creates a record type called Tpot:

type
TDhot = record
X, y : real;

end;

Each Tpot contains two fields: x and y coordinates. Memory is allocated when you
declare the record, like this:

var m, n: TDot;
This variable declaration creates two instances of Tpot, called m and n.
A field can be of previously defined record type. For example:

// Structure defining a circle:

type
TCircle = record
radius : real;
center : TDot;

end;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 159

CHAPTER 5
Language Reference mikroPascal for 8051

Accessing Fields

You can access the fields of a record by means of dot (.) as a direct field selector. If we
have declared variables circlel and circle2 of previously defined type Tcircile:

var circlel, circle2 : TCircle;

we could access their individual fields like this:

circlel.radius := 3.7;
circlel.center.x := 0;
circlel.center.y := 0;

You can also commit assignments between complex variables, if they are of the
same type:

circle?2 := circlel; // This will copy values of all fields

160 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

TYPES CONVERSIONS

Conversion of variable of one type to a variable of another type is typecasting.
mikroPascal for 8051 supports both implicit and explicit conversions for built-in
types.

Implicit Conversion
Compiler will provide an automatic implicit conversion in the following situations:

- statement requires an expression of particular type (according to language
definition), and we use an expression of different type,

- operator requires an operand of particular type, and we use an operand of
different type,

- function requires a formal parameter of particular type, and we pass it an object of
different type,

- result does not match the declared function return type.

Promotion

When operands are of different types, implicit conversion promotes the less com-
plex type to more complex type taking the following steps:

byte/char = word

short * integer
short * longint
integer =+ longint
integer * real

Higher bytes of extended unsigned operand are filled with zeroes. Higher bytes of
extended signed operand are filled with bit sign (if number is negative, fill higher
bytes with one, otherwise with zeroes). For example:

var a : byte; b : word;
a := SFF;
b := a; // a is promoted to word, b becomes S$00FF

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 161

CHAPTER 5
Language Reference mikroPascal for 8051

Clipping

In assignments and statements that require an expression of particular type, desti-
nation will store the correct value only if it can properly represent the result of
expression, i.e. if the result fits in destination range.

If expression evaluates to a more complex type than expected, excess of data will
be simply clipped (higher bytes are lost).

var 1 : byte; J : word;
j := S$FFOF;
i = 35 // i becomes $0F, higher byte S$FF is lost

Explicit Conversion

Explicit conversion can be executed at any point by inserting type keyword (byte,
word, short, integer, longint Of real)ahead of an expression to be convert-
ed. The expression must be enclosed in parentheses. Explicit conversion can be
performed only on the operand right of the assignment operator.

Special case is conversion between signed and unsigned types. Explicit conversion
between signed and unsigned data does not change binary representation of data
— it merely allows copying of source to destination.

For example:

var a : byte; b : short;

b = -1;

a := byte(b); // a is 255, not 1

// This 1is because binary representation remains
// 11111111; it's just interpreted differently now

You can’t execute explicit conversion on the operand left of the assignment operator:

word(b) := a; // Compiler will report an error

162 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

Conversions Examples

Here is an example of conversion:

var a, b, c : byte;

d : word;
a := 241;
b := 128;
c = a + b; // equals 113
c = word(a + b); // equals 113
d :=a + b; // equals 369

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 163

CHAPTER 5
Language Reference mikroPascal for 8051

OPERATORS

Operators are tokens that trigger some computation when being applied to variables
and other objects in an expression.

There are four types of operators in mikroPascal for 8051:

- Arithmetic Operators
- Bitwise Operators

- Boolean Operators

- Relational Operators

OPERATORS PRECEDENCE AND ASSOCIATIVITY

There are 4 precedence categories in mikroPascal for 8051. Operators in the same
category have equal precedence with each other.

Each category has an associativity rule: left-to-right (-, or right-to-left («). In the
absence of parentheses, these rules resolve the grouping of expressions with oper-
ators of equal precedence.

Precedence | Operands Operators Associativity
4 1 @ not + - e
* / div mod and
3 2 shl shr -
2 2 + - or XOr -
1 2 = <> < > <= >= N

164 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 5
Language Reference

ARITHMETIC OPERATORS

Arithmetic operators are used to perform mathematical computations. They have numer-
ical operands and return numerical results. Since the char operators are technically
bytes, they can be also used as unsigned operands in arithmetic operations.

All arithmetic operators associate from left to right.

Operator Operation Operands Result
byte, hort, d,
. byte, short, word, inte- Y €, Shor Wor
addition er, longint, dword, real integer, longint,
gery g ! ! dword, real
byte, short, d,
. byte, short, word, inte- Y SroShor WOI
- subtraction er. lonaint. dword. real integer, longint,
gery g ! ! dword, real
T . byte, short, word, inte- |word, integer, longint,
*
rnUMphcauon ger, longint, dword, real dword, real
L . . byte, short, word, inte-
-) 1
/ division, floating-point gor, longint, dword, real rea
div division, rounds down to| byte, short, word, inte- byte, short, word,
neamﬁthﬂeger ger, longint, dword integer, longint, dword
modulus, returns the
remainder of integer ,
L. byte, short, word, inte- byte, short, word,
mod division (cannot be : . .
. . ger, longint, dword integer, longint, dword
used with floating
points)

Division by Zero

If 0 (zero) is used explicitly as the second operand (i.e. x div 0), the compiler will
report an error and will not generate code.
But in case of implicit division by zero: = div vy, where v is 0 (zero), the result will
be the maximum integer (i.e 255, if the result is byte type; 655356, if the result is word

type, etc.).

Unary Arithmetic Operators

Operator - can be used as a prefix unary operator to change sign of a signed value.
Unary prefix operator + can be used, but it doesn’t affect data.

For example:

-a;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

165

CHAPTER 5
Language Reference mikroPascal for 8051

RELATIONAL OPERATORS

Use relational operators to test equality or inequality of expressions. All relational
operators return TRUE Or FALSE.

Operator Operation
= equal
<> not equal
> greater than
< less than
>= greater than or equal
<= less than or equal

All relational operators associate from left to right.
Relational Operators in Expressions

Precedence of arithmetic and relational operators is designated in such a way to
allow complex expressions without parentheses to have expected meaning:

a+ 5> ¢ -1.0/ e // ? (a + 5) >= (c - (1.0 / e))

166 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 5
Language Reference

BITWISE OPERATORS

Use bitwise operators to modify individual bits of numerical operands. Operands

need to be either both signed or both unsigned.

Bitwise operators associate from left to right. The only exception is the bitwise com-

plement operator not which associates from right to left.

Bitwise Operators Overview

Operator

Operation

and

bitwise AND; compares pairs of bits and generates a 1 result if
both bits are 1, otherwise it returns 0

bitwise (inclusive) OR; compares pairs of bits and generates a 1
result if either or both bits are 1, otherwise it returns 0

bitwise exclusive OR (XOR); compares pairs of bits and generates a
1 result if the bits are complementary, otherwise it returns 0

bitwise complement (unary); inverts each bit

bitwise shift left; moves the bits to the left, discards the far left bit
and assigns 0 to the right most bit.

bitwise shift right; moves the bits to the right, discards the far right bit
and if unsigned assigns 0 to the left most bit, otherwise sign extends

Logical Operations on Bit Level

and| 0 or| 0|1 xor| 0 | 1 not| 0 | 1
0|0 0|01 0|01 110
110 111 1 11110

Bitwise operators znd, or, and xor perform logical operations on the appropriate pairs of

bits of their operands. not operator complements each bit of its operand. For example:

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

167

CHAPTER 5
Language Reference mikroPascal for 8051

$1234 and $5678 // equals $1230
{ Dbecause

$1234 : 0001 0010 0011 0100
$5678 : 0101 0110 0111 1000

and : 0001 0010 0011 0000

that is, $1230 }// Similarly:

$1234 or $5678 // equals $567C
$1234 xor $5678 // equals $444C
not $1234 // equals S$EDCB

Unsigned and Conversions

If a number is converted from less complex to more complex data type, the upper
bytes are filled with zeroes. If a number is converted from more complex to less
complex data type, the data is simply truncated (the upper bytes are lost).

For example:
var a : byte; b : word;
a := S$SAA;
b := SFOFO;
b := b and a;
{

a is extended with zeroes; b becomes $00A0 }
Signed and Conversions

If number is converted from less complex data type to more complex, upper bytes
are filled with ones if sign bit is 1 (number is negative); upper bytes are filled with
zeroes if sign bit is 0 (number is positive). If number is converted from more com-
plex data type to less complex, data is simply truncated (upper bytes are lost).

For example:

var a : byte; b : word;
a := -12;
b := $T70FF;
b := b and a;

{ a i1s sign extended, with the upper byte equal to S$FF;
b becomes $70F4 }

168 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

Bitwise Shift Operators

Binary operators sh1 and shr move the bits of the left operand by a number of posi-
tions specified by the right operand, to the left or right, respectively. Right operand
has to be positive and less than 255.

With shift left (sh1), left most bits are discarded, and “new” bits on the right are
assigned zeroes. Thus, shifting unsigned operand to the left by n positions is equiv-

alent to multiplying it by 2" if all discarded bits are zero. This is also true for signed
operands if all discarded bits are equal to the sign bit.

With shift right (shr), right most bits are discarded, and the “freed” bits on the left
are assigned zeroes (in case of unsigned operand) or the value of the sign bit (in
case of signed operand). Shifting operand to the right by n positions is equivalent to

dividing it by 2".
BOOLEAN OPERATORS

Although mikroPascal for 8051 does not support boolean type, you have Boolean
operators at your disposal for building complex conditional expressions. These
operators conform to standard Boolean logic and return either TrUE (all ones) or
FALSE (zero):

Operator Operation
and logical AND
or logical OR
xor logical exclusive OR (XOR)
not logical negation

Boolean operators associate from left to right. Negation operator not associates
from right to left.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 169

CHAPTER 5
Language Reference mikroPascal for 8051

EXPRESSIONS

An expression is a sequence of operators, operands and punctuators that returns a
value.

The primary expressions include: literals, constants, variables and function calls.
More complex expressions can be created from primary expressions by using oper-
ators. Formally, expressions are defined recursively: subexpressions can be nested
up to the limits of memory.

Expressions are evaluated according to certain conversion, grouping, associativity
and precedence rules which depend on the operators in use, presence of parenthe-
ses and data types of the operands. The precedence and associativity of the oper-
ators are summarized in Operator Precedence and Associativity. The way operands
and subexpressions are grouped does not necessarily specify the actual order in
which they are evaluated by mikroPascal for 8051.

STATEMENTS

Statements define algorithmic actions within a program. Each statement needs to
be terminated with a semicolon (;). In the absence of specific jump and selection
statements, statements are executed sequentially in the order of appearance in the
source code.

The most simple statements are assignments, procedure calls and jump state-
ments. These can be combined to form loops, branches and other structured state-
ments.

Refer to:

- Assignment Statements

- Compound Statements (Blocks)
- Conditional Statements

- Iteration Statements (Loops)

- Jump Statements

- asm Statement

170 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

ASSIGNMENT STATEMENTS

Assignment statements have the form:

variable := expression;

The statement evaluates expression and assigns its value to variable. All the
rules of implicit conversion are applied. variable can be any declared variable or
array element, and expression can be any expression.

Do not confuse the assignment with relational operator = which tests for equality.
Also note that, although similar, the construction is not related to the declaration of
constants.

COMPOUND STATEMENTS (BLOCKS)

Compound statement, or block, is a list of statements enclosed by keywords begin
and end:

begin
statements
end;

Syntactically, a block is considered to be a single statement which is allowed to be
used when Pascal syntax requires a single statement. Blocks can be nested up to
the limits of memory.

For example, the while loop expects one statement in its body, so we can pass it a
compound statement:

while i < n do

begin
temp := a[i] ;
al i] := bl 1] ;
bl 1] := temp;
i =1 + 1;
end;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 171

CHAPTER 5
Language Reference mikroPascal for 8051

CONDITIONAL STATEMENTS

Conditional or selection statements select one of alternative courses of action by
testing certain values. There are two types of selection statements:

- if
- case

If Statement
Use if to implement a conditional statement. The syntax of if statement has the form:
if expression then statementl [else statement?]

If expression evaluates to true then statement1 executes. If expression is false
then statement2 executes. The expression must convert to a boolean type; other-
wise, the condition is ill-formed. The c1se keyword with an alternate statement
(statement?2) is optional.

There should never be a semicolon before the keyword else.
Nested if statements

Nested if statements require additional attention. A general rule is that the nested
conditionals are parsed starting from the innermost conditional, with each cise
bound to the nearest available i on its left:

if expressionl then
if expression2 then statementl
else statement2

The compiler treats the construction in this way:

if expressionl then

begin
if expression? then statementl
else statement2

end

In order to force the compiler to interpret our example the other way around, we
have to write it explicitly:

if expressionl then
begin
if expression? then statementl
end
else statement2

172 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

CASE STATEMENT

Use the case statement to pass control to a specific program branch, based on a
certain condition. The case statement consists of a selector expression (a condition)
and a list of possible values. The syntax of the case statement is:

case selector of
value 1 : statement 1

value n : statement n
[else default statement]

end;

selector is an expression which should evaluate as integral value. va1ues can be
literals, constants, or expressions, and statements can be any statements.

The <1se clause is optional. If using the e1se branch, note that there should never
be a semicolon before the keyword c1se.

First, the selector expression (condition) is evaluated. Afterwards the case state-
ment compares it against all available values. If the match is found, the statement
following the match evaluates, and the case statement terminates. In case there are
multiple matches, the first matching statement will be executed. If none of values
matches selector, then default statement in the else clause (if there is some)
is executed.

Here’s a simple example of the case statement:

case operator of

'*' : result := nl * n2;
'/' : result := nl / n2;
'+' : result := nl + n2;
'-' : result := nl - n2
else result := 0;
end;

Also, you can group values together for a match. Simply separate the items by commas:

case reg of

0: opmode := 0;

1,2,3,4: opmode := 1;

5,6,7 opmode := 2;
end;

In mikroPascal for 8051, values in the case statement can be variables too:

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 173

CHAPTER 5
Language Reference mikroPascal for 8051

case byte variable of

byte varl: opmode := 0; // this will be compiled correctly
byte var2:
opmode := 1; // avoid this case, compiler will parse
// a variable followed by colon sign as
label
byte var3: // adding a comment solves the parsing
problem
opmode := 2;
end;

Nested Case statement

Note that the case statements can be nested — values are then assigned to the
innermost enclosing case statement.

174 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

ITERATION STATEMENTS

Iteration statements let you loop a set of statements. There are three forms of iter-
ation statements in mikroPascal for 8051:

- for
- while
- repeat

You can use the statements break and continue to control the flow of a loop state-

ment. break terminates the statement in which it occurs, while continue begins
executing the next iteration of the sequence.

FOR STATEMENT

The for statement implements an iterative loop and requires you to specify the
number of iterations. The syntax of the for statement is:

for counter := initial value to final value do statement
// or
for counter := initial value downto final value do statement

counter is a variable which increments (or decrements if you use downto) with each
iteration of the loop. Before the first iteration, counter is setto initial value and
will increment (or decrement) until it reaches final value. With each iteration,
statement Will be executed.

initial value and final value should be expressions compatible with counter;
statement can be any statement that does not change the value of counter.

Here is an example of calculating scalar product of two vectors, = and b, of length
n, using the for statement:

for i := 0 to n-1 do

s = s + a[il * p[i] ;
Endless Loop

The ror statement results in an endless loop if final value equals or exceeds the
range of the counter’s type.

More legible way to create an endless loop in Pascal is to use the statement while
TRUE do.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 175

CHAPTER 5
Language Reference mikroPascal for 8051

WHILE STATEMENT

Use the whi1e keyword to conditionally iterate a statement. The syntax of the while
statement is:

while expression do statement

statement is executed repeatedly as long as expression evaluates true. The test
takes place before the statement is executed. Thus, if expression evaluates false
on the first pass, the loop does not execute.

Here is an example of calculating scalar product of two vectors, using the while

statement:

s := 0; 1 := 0;

while i < n do

begin
s := s + a[i] * D[i];
i i+ 1;

end;

Probably the easiest way to create an endless loop is to use the statement:

while TRUE do ...:;

176 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

REPEAT STATEMENT

The repeat statement executes until the condition becomes false. The syntax of the
repeat statement is:

repeat statement until expression

statement is executed repeatedly as long as expression evaluates true. The
expression is evaluated after each iteration, so the loop will execute statement at
least once.

Here is an example of calculating scalar product of two vectors, using the repeat

statement:
s := 0; 1 := 0;
repeat
begin
s := s + a[i] * D[1]
i =i + 1;
end;
until i = n;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 177

CHAPTER 5
Language Reference mikroPascal for 8051

JUMP STATEMENTS

A jump statement, when executed, transfers control unconditionally. There are four
such statements in mikroPascal for 8051:

- break

- continue
- exit

- goto

BREAK AND CONTINUE STATEMENTS
Break Statement

Sometimes, you might need to stop the loop from within its body. Use the break
statement within loops to pass control to the first statement following the innermost
loop (for, while, or repeat block).

For example:
Led Out (1,1, "Insert CF card');

// Wait for CF card to be plugged; refresh every second
while TRUE do
begin
if Cf Detect() = 1 then break;
Delay ms (1000) ;
end;

// Now we can work with CF card ...
Lcd Out (1,1, 'Card detected ')

178 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

Continue Statement
You can use the continue statement within loops to “skip the cycle”:

- continue statement in for loop moves program counter to the line with keyword for

- continue statement in while loop moves program counter to the line with loop
condition (top of the loop),

- continue statement in repeat loop moves program counter to the line with loop
condition (bottom of the loop).

// continue jumps // continue jumps repeat
here here begin
for i := ... do while condition do ce
begin begin continue;
continue; continue; // continue Jjumps
here
end; end; until condition;

EXIT STATEMENT

The exit statement allows you to break out of a routine (function or procedure). It
passes the control to the first statement following the routine call.

Here is a simple example:

procedure Procl();
var error: byte;
begin
// we're doing something here
if error = TRUE then exit;
// some code, which won't be executed if error 1is true

end;

Note: If breaking out of a function, return value will be the value of the local variable
result at the moment of exit.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 179

CHAPTER 5
Language Reference mikroPascal for 8051

GOTO STATEMENT

Use the goto statement to unconditionally jump to a local label — for more informa-
tion, refer to Labels. Syntax of goto statement is:

goto label name;

This will transfer control to the location of a local label specified by 1abel name. The
goto line can come before or after the label.

The label declaration, marked statement and goto statement must belong to the
same block. Hence it is not possible to jump into or out of a procedure or function.

You can use goto to break out from any level of nested control structures. Never
jump into a loop or other structured statement, since this can have unpredictable
effects.

Use of goto statement is generally discouraged as practically every algorithm can
be realized without it, resulting in legible structured programs. One possible appli-
cation of goto statement is breaking out from deeply nested control structures:

for (...) do
begin
for (...) do
begin

if (disaster) then goto Error;

end;
end;

Error: // error handling code

180 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

asm STATEMENT

mikroPascal for 8051 allows embedding assembly in the source code by means of
the asm statement. Note that you cannot use numerals as absolute addresses for
register variables in assembly instructions. You may use symbolic names instead
(listing will display these names as well as addresses).

You can group assembly instructions with the zsm keyword:

asm
block of assembly instructions

end;

If you plan to use a certain Pascal variable in embedded assembly only, be sure to
at least initialize it (assign it initial value) in Pascal code; otherwise, the linker will
issue an error. This is not applied to predefined globals such as PO.

For example, the following code will not be compiled because the linker won'’t be
able to recognize the variable myvar:

program test;

var myvar : word;
begin
asm
MOV #10, WO
MOV w0, myvar
end;
end.

Adding the following line (or similar one) above the asm block would let linker know
that variable is used:

myvar := 20;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 181

CHAPTER 5
Language Reference mikroPascal for 8051

DIRECTIVES

Directives are words of special significance which provide additional functionality
regarding compilation and output.

The following directives are available for use:

- Compiler directives for conditional compilation,
- Linker directives for object distribution in memory.

COMPILER DIRECTIVES

mikroPascal for 8051 treats comments beginning with a “s” immediately following an
opening brace as a compiler directive; for example, { s£1.sE} . The compiler direc-
tives are not case sensitive.

You can use a conditional compilation to select particular sections of code to com-
pile, while excluding other sections. All compiler directives must be completed in the
source file in which they have begun.

Directives $DEFINE and $UNDEFINE

Use directive spErINE to define a conditional compiler constant (“flag”). You can use
any identifier for a flag, with no limitations. No conflicts with program identifiers are
possible because the flags have a separate name space. Only one flag can be set
per directive.

For example:

{ SDEFINE Extended format}
Use sunperINE to undefine (“clear”) previously defined flag.

Note: Pascal does not support macros; directives sperTnE and SUNDEFTNE do not cre-
ate/destroy macros. They only provide flags for directive s TrpEF to check against.

182 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

Directives $IFDEF..$ELSE

Conditional compilation is carried out by the s1rDEF directive. sTrDEF tests whether
a flag is currently defined or not, i.e. whether a previous $perINE directive has been
processed for that flag and is still in force.

Directive s1rDEF is terminated with the senD1F directive, and can have an optional
SELSE clause:

{ SIFDEF flag}
<block of code>
{ SELSE}
<alternate block of code>

{ SENDIF}

First, strDEF checks if flag is defined by means of sperTNE. If so, only <block of
code> Will be compiled. Otherwise, <alternate block of code> will be compiled.
sENDTF ends the conditional sequence. The result of the preceding scenario is that
only one section of code (possibly empty) is passed on for further processing.

The processed section can contain further conditional clauses, nested to any depth;
each sTrFDEF must be matched with a closing $EnDTF.

Here is an example:

// Uncomment the appropriate flag for your application:
//{ SDEFINE resolutionlO0}
//{ SDEFINE resolutionl?2}

{ SIFDEF resolutionlO0}
// <code specific to 10-bit resolution>
{ SELSE}
{ SIFDEF resolutionl?2}
// <code specific to 12-bit resolution>
{ SELSE}
// <default code>
{ SENDIF}
{ SENDIF}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 183

CHAPTER 5
Language Reference mikroPascal for 8051

Include Directive $I

The s1 parameter directive instructs mikroPascal for 8051 to include the named text
file in the compilation. In effect, the file is inserted in the compiled text right after the
{51 filename} directive. If filename does not specify a directory path, then, in addi-
tion to searching for the file in the same directory as the current unit, mikroPascal
for 8051 will search for file in order specified by the search paths.

To specify a filename that includes a space, surround the file name with quotation
marks: { ST "My file"}.

There is one restriction to the use of include files: An include file can't be specified
in the middle of a statement part. In fact, all statements between the begin and end
of a statement part must exist in the same source file.

Predefined Flags

The compiler sets directives upon completion of project settings, so the user does-
n't need to define certain flags.
Here is an example:

{ SIFDEF AT89S8253} // If AT89S8253 MCU is selected
{ SIFDEF P30} AT89S8253 and P30 flags will be automatically
defined

184 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 5
mikroPascal for 8051 Language Reference

LINKER DIRECTIVES

mikroPascal for 8051 uses internal algorithm to distribute objects within memory. If
you need to have a variable or a routine at the specific predefined address, use the
linker directives absolute and org.

Note: You must specify an even address when using the linker directives.
Directive absolute

Directive absolute specifies the starting address in RAM for a variable. If the vari-
able spans more than 1 word (16-bit), the higher words will be stored at the consec-
utive locations.

Directive absolute is appended to the declaration of a variable:

var x : word; absolute 3532;
// Variable x will occupy 1 word (16 bits) at address $32

y : longint; absolute $34;
// Variable y will occupy 2 words at addresses $34 and $36

Be careful when using the absolute directive because you may overlap two vari-
ables by accident. For example:

var 1 : word; absolute $42;
// Variable i will occupy 1 word at address $42;

J3 : longint; absolute $40;

// Variable will occupy 2 words at $40 and $42; thus,

// changing i changes 7jJj at the same time and vice versa

Note: You must specify an even address when using the absolute directive.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 185

CHAPTER 5
Language Reference mikroPascal for 8051

Directive org

Directive org specifies the starting address of a routine in ROM. It is appended to
the declaration of a routine. For example:

procedure proc(par : byte); org $200;

begin
// Procedure will start at address $200;

end;

org directive can be used with main routine too. For example:

program Led Blinking;

procedure some proc();
begin

end;
org 0x800; // main procedure starts at 0x800
begin

ADPCFG := SFFFE;

TRISB := $0000;

while TRUE do

begin
LATB := $0000;
Delay ms (500) ;
LATB := SFFFF;
Delay ms(500) ;
end;

end.

Note: You must specify an even address when using the org directive.

186 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER

mikroPascal for 8051
Libraries

mikroPascal for 8051 provides a set of libraries which simplify the initialization and
use of 8051 compliant MCUs and their modules:

Use Library manager to include mikroPascal for 8051 Libraries in you project.

187

CHAPTER 6
Libraries mikroPascal for 8051

Hardware 8051-specific Libraries

- CANSPI Library

- EEPROM Library

- Graphic LCD Library

- Keypad Library

- LCD Library

- Manchester Code Library
- OneWire Library

- Port Expander Library

- PS/2 Library

- RS-485 Library

- Software 12C Library

- Software SPI Library

- Software UART Library

- Sound Library

- SPI Library

- SPI Ethernet Library

- SPI Graphic LCD Library
- SPI LCD Library

- SPI LCDS8 Library

- SPI1 T6963C Graphic LCD Library
- T6963C Graphic LCD Library
- UART Library

Miscellaneous Libraries

- Button Library

- Conversions Library
- Math Library

- String Library

- Time Library

- Trigonometry Library

See also Built-in Routines.

188 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

LIBRARY DEPENDENCIES

Certain libraries use (depend on) function and/or variables, constants defined in

other libraries.
Image below shows clear representation about these dependencies.

For example, SPI_Glcd uses Glcd_Fonts and Port_Expander library which uses SPI
library.

This means that if you check SPI_Glcd library in Library manager, all libraries on
which it depends will be checked too.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 189

CHAPTER 6

Libraries mikroPascal for 8051
[cAnsPI J—spI]
[GLCcD |—| GLCD_Fonts]
LCD ——| LCD_Constants
L J—1]
| Port_Expander |—[sPI |
[Rs-485 |—[UART |
P
SPI_Ethernet -
\“*| String |
Port_Expander |——+[sPI
_Lport]
SPI_Glcd
\\[Glcd_Fonts]
__~| Port_Expander J——=[sPI]
SPI_Lcd f
[Led_Constants
/| Port_Expander |—-[SPI]
SPI_LCD8 |
\‘*[_Lcd_f.:anstants J
/,| Port_Expander |—>{ sPi
SPI_T6963C |
\“‘[Trigon |
[Sprintf |—[Ctype]
[Sprintl |—| Ctype |
[Sprinti |— ctype]
[Te963C |——+[Trigon |

Related topics: Library manager, 8051 Libraries

190 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

CANSPI LIBRARY

The SPI module is available with a number of the 8051 compliant MCUs. The
mikroPascal for 8051 provides a library (driver) for working with mikroElektronika's
CANSPI Add-on boards (with MCP2515 or MCP2510) via SPI interface.

The CAN is a very robust protocol that has error detection and signalization,
self-checking and fault confinement. Faulty CAN data and remote frames are re-
transmitted automatically, similar to the Ethernet.

Data transfer rates depend on distance. For example, 1 Mbit/s can be achieved at
network lengths below 40m while 250 Kbit/s can be achieved at network lengths
below 250m. The greater distance the lower maximum bitrate that can be achieved.
The lowest bitrate defined by the standard is 200Kbit/s. Cables used are shielded
twisted pairs.

CAN supports two message formats:

- Standard format, with 11 identifier bits and
- Extended format, with 29 identifier bits

Note:

- Consult the CAN standard about CAN bus termination resistance.

- An effective CANSPI communication speed depends on SPI and certainly is
slower than “real” CAN.

- CANSPI module refers to mikroElektronika's CANSPI Add-on board connected to
SPI module of MCU.

External dependecies of CANSPI Library

The following variables

must be defined in all

projects using CANSPI
Library:

Description: Example :

var CanSpi CS: sbit;
external;

var CanSpi CS: sbit
at P1.BO;
var CanSpi RST: sbit; Reset line var CanSpi Rst: sbit
external; : at P1.B2;

Chip Select line.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 191

CHAPTER 6
Libraries mikroPascal for 8051

Library Routines

- CANSPISetOperationMode
- CANSPIGetOperationMode
- CANSPIInitialize

- CANSPISetBaudRate

- CANSPISetMask

- CANSPISetFilter

- CANSPIread

- CANSPIWrite

The following routines are for an internal use by the library only:

- RegsToCANSPIID
- CANSPIIDToRegs

Be sure to check CANSPI constants necessary for using some of the functions.

192 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

CANSPISetOperationMode

Prototype procedure CANSPISetOperationMode (mode: byte; WAIT: byte);

Returns Nothing.
Sets the CANSPI module to requested mode.

Parameters :

- mode: CANSPI module operation mode. Valid values: canspr op MODE

Description | constants (see CANSPI constants).

- watT: CANSPI mode switching verification request. If watT = 0, the call is
non-blocking. The function does not verify if the CANSPI module is switched to
requested mode or not. Caller must use CANSPIGetOperationMode to verify
correct operation mode before performing mode specific operation. If watT 1= 0,
the call is blocking — the function won't “return” until the requested mode is set.

The CANSPI routines are supported only by MCUs with the SPI module.

Requires MCU has to be properly connected to mikroElektronika's CANSPI Extra Board

or similar hardware. See connection example at the bottom of this page.

// set the CANSPI module into configuration mode (wait inside
Example CANSPISetOperationMode until this mode is set)
CANSPISetOperationMode (CANSPI MODE CONFIG, OxFF);

CANSPIGetOperationMode

Prototype function CANSPIGetOperationMode (): byte;

Returns Current operation mode.

The function returns current operation mode of the CANSPI module. Check
Description |[cansp1 op MoDE constants (see CANSPI constants) or device datasheet for
operation mode codes.

The CANSPI routines are supported only by MCUs with the SPI module.

Requires . .
9 MCU has to be properly connected to mikroElektronika's CANSPI Extra Board

or similar hardware. See connection example at the bottom of this page.
// check whether the CANSPI module is in Normal mode and if it
is do something.
if (CANSPIGetOperationMode () = CANSPI MODE NORMAL) then

Example . - -
begin
end;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 193

CHAPTER 6
Libraries mikroPascal for 8051

CANSPIInitialize

procedure CANSPIInitialize (SJW: byte; BRP: byte; PHSEGl: byte;
PHSEG2: byte; PROPSEG: byte; CAN CONFIG FLAGS: byte);

Prototype

Returns Nothing.

Initializes the CANSPI module.
Stand-Alone CAN controller in the CANSPI module is set to:

- Disable CAN capture

- Continue CAN operation in Idle mode

- Do not abort pending transmissions

- Fcan clock: 4*Tcy (Fosc)

- Baud rate is set according to given parameters

- CAN mode: Normal

- Filter and mask registers IDs are set to zero

Description |- Filter and mask message frame type is set according to can conrFIG FLAGS value

SAM, SEG2PHTS, WAKFIL and DBEN bits are set according to can coNFIG FLAGS value.
Parameters:

- sgw as defined in CAN controller's datasheet

- Brp as defined in CAN controller's datasheet

- puseG1 as defined in CAN controller's datasheet

- pHSEG2 as defined in CAN controller's datasheet

- proPsEG as defined in CAN controller's datasheet

- CAN CONFIG FLAGS is formed from predefined constants (see CANSPI constants)

canspi csand canspi Rst variables must be defined before using this function.
The CANSPI routines are supported only by MCUs with the SPI module.

Requires The SPI module needs to be initialized. See the Spi_Init and Spi_Init_Advanced
routines.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

194 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

// initialize the CANSPI module with the appropriate baud rate
and message acceptance flags along with the sampling rules
var Can Init Flags: byte;

Can_Init Flags := CAN CONFIG SAMPLE THRICE and // form value
to be used

CAN CONFIG PHSEG2 PRG ON and // with

E I CANSPIInitialize
xample CAN CONFIG XTD MSG and
CAN CONFIG DBL BUFFER ON and
CAN CONFIG VALID XTD MSG;
Spi Init(); // initialize
SPI module
CANSPIInitialize(1,3,3,3,1,Can Init Flags); // initialize

external CANSPI module

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 195

CHAPTER 6
Libraries mikroPascal for 8051

CANSPISetBaudRate

procedure CANSPISetBaudRate (SJW: byte; BRP: byte; PHSEGl: byte;

PrOtOtype PHSEG2: byte; PROPSEG: byte; CAN CONFIG FLAGS: byte);

Returns Nothing.

Sets the CANSPI module baud rate. Due to complexity of the CAN protocol,
you can not simply force a bps value. Instead, use this function when the
CANSPI module is in Config mode.

saM, sSEG2PHTS and WAKFIL bits are set according to can conrIG FLAGS value.
Refer to datasheet for details.

Description |Parameters:

- sgw as defined in CAN controller's datasheet

- Brp as defined in CAN controller's datasheet

- pHsEGL as defined in CAN controller's datasheet

- puseG2 as defined in CAN controller's datasheet

- proPsEG as defined in CAN controller's datasheet

- CaN CONFIG FLAGS is formed from predefined constants (see CANSPI constants)

The CANSPI module must be in Config mode, otherwise the function will be
ignored. See CANSPISetOperationMode.

Requires The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

// set required baud rate and sampling rules
var can config flags: byte;

CANSPISetOperationMode (CANSPI MODE CONFIG, OxXFF) ; //
set CONFIGURATION mode (CANSPI module mast be in config mode for
baud rate settings)
Example can_config flags := CANSPI CONFIG SAMPLE THRICE and

CANSPIi(;ONFIGiPHSEG27PRGioN and

CANSPI CONFIG STD MSG and

CANSPI CONFIG DBL BUFFER ON and

CANSPI CONFIG VALID XTD MSG and

CANSPI CONFIG LINE FILTER OFF;
CANSPISetBaudRate(1l, 1, 3, 3, 1, can config flags);

196 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

CANSPISetMask

procedure CANSPISetMask (CAN MASK: byte; wval: longint; CAN CON-
FIG FLAGS: byte);

Prototype

Returns Nothing.

Configures mask for advanced filtering of messages. The parameter value is
bit-adjusted to the appropriate mask registers.

Parameters:

- can Mask: CANSPI module mask number. Valid values: cansp1 Mask costants
(see CANSPI constants)

Description |- va1: mask register value

- CAN CONFIG FLAGS: selects type of message to filter. Valid values:

CANSPI CONFIG ALL VALID MSG,
CANSPI_CONFIG MATCH MSG TYPE and CANSPI CONFIG STD MSG,

CANSPI CONFIG MATCH MSG TYPE and CANSPI CONFIG XTD MSG.

(see CANSPI constants)

The CANSPI module must be in Config mode, otherwise the function will be
ignored. See CANSPISetOperationMode.

Requires The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

// set the appropriate filter mask and message type value
CANSPISetOperationMode (CANSPI MODE CONFIG, O0xFF) ; /7
set CONFIGURATION mode (CANSPI module must be in config mode for
mask settings)

Example // Set all Bl mask bits to 1 (all filtered bits are relevant):
// Note that -1 is just a cheaper way to write OxFFFFFFFF.

// Complement will do the trick and fill it up with ones.
CANSPISetMask (CANSPI MASK B1l, -1, CANSPI CONFIG MATCH MSG TYPE
and CANSPI CONFIG XTD MSG) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 197

CHAPTER 6
Libraries mikroPascal for 8051

CANSPISetFilter

procedure CANSPISetFilter (CAN FILTER: byte; wal: longint;

Prototype CAN CONFIG FLAGS: byte);

Returns Nothing.

Configures message filter. The parameter va1ue is bit-adjusted to the appropri-
ate filter registers.

Parameters:

- can FILTER: CANSPI module filter number. Valid values: CANSPT FILTER
constants (see CANSPI constants)

Description |- .. 1: filter register value

- CAN CONFIG FLAGS: selects type of message to filter. Valid values:

CANSPI CONFIG ALL VALID MSG,
CANSPI CONFIG MATCH MSG TYPE and CANSPI CONFIG STD MSG,

CANSPI CONFIG MATCH MSG TYPE and CANSPI CONFIG XTD MSG.

(see CANSPI constants)

The CANSPI module must be in Config mode, otherwise the function will be
ignored. See CANSPISetOperationMode.

Requires The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

// set the appropriate filter value and message type
CANSPISetOperationMode (CANSPI MODE CONFIG, OxFF);

// set CONFIGURATION mode (CANSPI module must be in config mode
Example for filter settings)

/* Set id of filter Bl F1 to 3: */
CANSPISetFilteI(CANSPIiFILTERiBliFl, 3, CANSP17CQNFIG7XTD7MSG);

198 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroPascal for 8051
CANSPIRead
Prototype function CANSPIRead(wvar id: longint; wvar rd data: arrayf 20] of
yp byte; data len: byte; CAN RX MSG FLAGS: byte): byte;
- 0 if nothing is received
Returns
- oxrr if one of the Receive Buffers is full (message received)
If at least one full Receive Buffer is found, it will be processed in the following
way:
- Message ID is retrieved and stored to location provided by the id parameter
- Message data is retrieved and stored to a buffer provided by the rd data parameter
- Message length is retrieved and stored to location provided by the
data len parameter
Description |- Message flags are retrieved and stored to location provided by the
CAN RX MSG FLAGS parameter
Parameters:
- id: message identifier storage address
- rd data: data buffer (an array of bytes up to 8 bytes in length)
-data len: data length storage address.
- CAN RX MSG FLAGS: message flags storage address
The CANSPI module must be in a mode in which receiving is possible. See
CANSPISetOperationMode.

Requires The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

// check the CANSPI module for received messages. If any was
received do something.
var msg rcvd, rx flags, data len: byte;
rd data: arrayl 8] of byte;
msg_id: longint;
CANSPISetOperationMode (CANSPI MODE NORMAL, OxFF) ;
// set NORMAL mode (CANSPI module must be in mode in which

Example . . ‘
receive is possible)
rx flags := 0;

// clear message flags

if (msg_rcvd = CANSPLRead(msqiid, rd data, data len, rx flags)
begin

end;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

199

CHAPTER 6

Libraries mikroPascal for 8051
CANSPIWrite
Prokﬂype function CANSPIWrite (id: longint; var wr data: arrayl 20] of byte;

data_len: byte; CAN TX MSG_FLAGS: byte): byte;

- 0 if all Transmit Buffers are busy

Returns - 0xrr if at least one Transmit Buffer is available
If at least one empty Transmit Buffer is found, the function sends message in
the queue for transmission.
Parameters:

Description

- id:CAN message identifier. Valid values: 11 or 29 bit values, depending on
message type (standard or extended)

-wr data: data to be sent (an array of bytes up to 8 bytes in length)

- data len: data length. Valid values: 1 to 8

- CAN RX MSG FLAGS: message flags

The CANSPI module must be in mode in which transmission is possible. See
CANSPISetOperationMode.

Requires The CANSPI routines are supported only by MCUs with the SPI module.

MCU has to be properly connected to mikroElektronika's CANSPI Extra Board
or similar hardware. See connection example at the bottom of this page.

// send message extended CAN message with the appropriate ID and
data
var tx flags: byte;

rd data: array| 8] of byte;

msg_id: longint;

Exanuﬂe CANSPISetOperationMode (CAN MODE NORMAL, OxFF);
// set NORMAL mode (CANSPI must be in mode in which transmission
is possible)

tx_flags := CANSPI TX PRIORITY 0 ands CANSPI TX XTD FRAME;
// set message flags
CANSPIWrite (msg id, rd data, 2, tx flags);

200 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

CANSPI Constants

There is a number of constants predefined in the CANSPI library. You need to be
familiar with them in order to be able to use the library effectively. Check the exam-
ple at the end of the chapter.

CANSPI_OP_MODE

The CANSPI_OP_MODE constants define CANSPI operation mode. Function
CANSPISetOperationMode expects one of these as it's argument:

const
CANSPI MODE BITS = 0xEOQ; // Use this to access opmode bits
CANSPI MODE NORMAL = 0x00;
CANSPI MODE SLEEP = 0x20;
CANSPI MODE LOOP = 0x40;

CANSPI MODE LISTEN = 0x60;
CANSPI MODE_CONFIG = 0x80;

CANSPI_CONFIG_FLAGS

The CANSPI_CONFIG_FLAGS constants define flags related to the CANSPI mod-
ule configuration. The functions CANSPIInitialize, CANSPISetBaudRate,
CANSPISetMask and CANSPISetFilter expect one of these (or a bitwise combina-
tion) as their argument:

const
CANSPI CONFIG_DEFAULT = OxFF; // 11111111
CANSPI CONFIG PHSEG2 PRG BIT = 0xO01;
CANSPI CONFIG PHSEGZ PRG ON = 0xFF; // XXXXXXX1
CANSPI CONFIG PHSEG2 PRG OFF = OxFE; // XXXXXXX0

CANSPI CONFIG_LINE FILTER BIT = 0x02;

CANSPI CONFIG LINE FILTER ON = OxFF; // XXXXXX1X
CANSPI CONFIG LINE FILTER OFF = 0xFD; // XXXXXX0X
CANSPI CONFIG SAMPLE BIT = 0x04;

CANSPI CONFIG SAMPLE ONCE = OxFF; // XXXXX1XX
CANSPI CONFIG SAMPLE THRICE = OxFB; // XXXXXOXX
CANSPI CONFIG MSG TYPE BIT = 0x08;

CANSPI CONFIG_STD MSG = OxFF; // XXXXLIXXX
CANSPI CONFIG XTD MSG = O0xF7; // XXXXO0XXX

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 201

CHAPTER 6
Libraries

mikroPascal for 8051

CANSPI CONFIG DBL BUFFER BIT 0x10;
CANSPI CONFIG DBL BUFFER ON = OxFF;
CANSPI CONFIG DBL BUFFER OFF = OxEF;
CANSPI CONFIG_MSG BITS = 0x60;
CANSPI CONFIG ALL MSG = OxFF;
CANSPI CONFIG VALID XTD MSG = OxDF;
CANSPI CONFIG VALID STD MSG = OxBF;
CANSPI CONFIG ALL VALID MSG = 0x9F;

// XXXLXXXX
// XXXOXXXX

// X1I1XXXXX
// X10XXXXX
// X0O1XXXXX
// XOOXXXXX

You may use bitwise and to form config byte out of these values. For example:

init := CANSPI CONFIG_SAMPLE THRICE and
CANSPI CONFIG PHSEG2 PRG ON and
CANSPI_CONFIG STD MSG and
CANSPI_CONFIG DBL BUFFER ON and
CANSPI CONFIG VALID XTD MSG and

CANSPI CONFIG LINE FILTER OFF;

CANSPIInitialize(1, 1, 3, 3, 1, init);

CANSPI_TX_MSG_FLAGS

// initialize CANSPI

CANSPI_TX_MSG_FLAGS are flags related to transmission of a CAN message:

const
CANSPI TX PRIORITY BITS = 0x03;
CANSPI TX PRIORITY 0 = 0xFC; // XXXXXX00
CANSPI TX PRIORITY 1 = OxFD; // XXXXXX01
CANSPI TX PRIORITY 2 = OxFE; // XXXXXX10
CANSPI TX PRIORITY 3 = OxFF; // XXXXXX11
CANSPI TX FRAME BIT = 0x08;
CANSPI TX STD FRAME = OxFF; // XXXXX1XX
CANSPI TX XTD FRAME = 0xF7; // XXXXX0XX
CANSPI TX RTR BIT = 0x40;
CANSPI TX NO RTR FRAME = OxFF; // XIXXXXXX
CANSPI TX RTR FRAME = O0xBF; // XOXXXXXX

You may use bitwise and to adjust the appropriate flags. For example:

/* form value to be used as sending message flag: */

send config := CANSPI TX PRIORITY 0 and
CANSPT TX XTD FRAME and
CANSPT TX NO RTR FRAME;

CANSPIWrite (id, data, 1, send config);

202 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

CANSPI_RX_MSG_FLAGS

CANSPI_RX_MSG_FLAGS are flags related to reception of CAN message. If a par-
ticular bit is set then corresponding meaning is TRUE or else it will be FALSE.

const
CANSPI RX FILTER BITS = 0x07; // Use this to access filter bits
CANSPI RX FILTER 1 = 0x00;
CANSPI RX FILTER 2 = 0x01;
CANSPI RX FILTER 3 = 0x02;
CANSPI RX FILTER 4 = 0x03;
CANSPI RX FILTER 5 = 0x04;
CANSPI RX FILTER 6 = 0x05;
CANSPI RX OVERFLOW = 0x08; // Set if Overflowed else cleared
CANSPI_RX_ INVALID MSG = 0x10; // Set if invalid else cleared
CANSPI RX XTD FRAME = 0x20; // Set if XTD message else cleared
CANSPI RX RTR_FRAME = 0x40; // Set if RTR message else cleared

CANSPI RX DBL BUFFERED = 0x80; // Set if this message was hard-
ware double-buffered

You may use bitwise and to adjust the appropriate flags. For example:

if (MsgFlag and CANSPI RX OVERFLOW <> 0) then
begin

// Receiver overflow has occurred.
// We have lost our previous message.
end;

CANSPI_MASK
The CANSPI_MASK constants define mask codes. Function CANSPISetMask

expects one of these as it's argument:

const
CANSPI MASK Bl
CANSPI MASK B2

CANSPI_FILTER

0;
1;

The CANSPI_FILTER constants define filter codes. Functions CANSPISetFilter
expects one of these as it's argument:

const
CANSPI FILTER Bl F1 =
CANSPI FILTER Bl F2 =
CANSPI FILTER B2 F1 =
CANSPI FILTER B2 F2 =
CANSPI FILTER B2 F3 =
CANSPI FILTER B2 F4 =

Ne Ne Ne Ne oS

g W N O
~

~.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 203

CHAPTER 6
Libraries mikroPascal for 8051

Library Example

This is a simple demonstration of CANSPI Library routines usage. First node initi-
ates the communication with the second node by sending some data to its address.
The second node responds by sending back the data incremented by 1. First node
then does the same and sends incremented data back to second node, etc.

Code for the first CANSPI node:

program Can Spi 1lst;

var Can Init Flags, Can_Send Flags, Can Rcv_Flags : byte; // CAN
flags
Rx Data Len : byte; // Received data length in bytes
RxTx Data : arrayl 8] of byte; // CAN rx/tx data buffer
Msg Rcvd : byte; // Reception flag
Tx ID, Rx ID : longint; // CAN rx and tx ID

// CANSPI module connections

var CanSpi CS : sbit at P1.BO;
var CanSpi Rst : sbit at P1.B2;
// End CANSPI module connections

begin

Can_Init Flags := 0; //
Can_Send Flags := 0; // Clear flags
Can_Rcv_Flags = 0; //

Can_Send Flags := CAN TX PRIORITY 0 and // Form value to be used
CAN_TX XTD FRAME and // with CANSPIWrite
CAN TX NO RTR FRAME;

Can Init Flags := CAN CONFIG SAMPLE THRICE and // Form
value to be used
CAN CONFIG PHSEG2 PRG ON and // with
CANSPIInit
CAN CONFIG XTD MSG and
CAN CONFIG DBL BUFFER ON and
CAN CONFIG VALID XTD MSG;
Spi Init(); // Initialize SPI module
CANSPIInitialize(1,3,3,3,1,Can_Init Flags); // Initialize

external CANSPI module

CANSPISetOperationMode (CAN MODE CONFIG, OxFF) ; // Set CONFIG-
URATION mode

204 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries
CANSPISetMask (CAN MASK Bl,-1,CAN CONFIG XTD MSG); // Set all
maskl bits to ones
CANSPISetMask (CAN MASK B2,-1,CAN CONFIG XTD MSG) ; //
Set all mask2 bits to ones
CANSPISetFilter (CAN FILTER B2 F4,3,CAN CONFIG XTD MSG); // Set

id of filter B2 F4 to 3

CANSPISetOperationMode (CAN_MODE NORMAL, 0xFF) ; // Set NORMAL mode
RxTx Datal 0] := 9; // Set initial data to be sent
Tx ID := 12111; // Set transmit ID
CANSPIWrite (Tx_ID, RxTx Data, 1, Can_Send Flags); //

Send initial message

while (TRUE) do

begin // Endless loop
Msg Rcvd := CANSPIRead(Rx ID , RxTx Data , Rx Data Len,
Can_Rcv_Flags); // Receive message
if ((Rx_ID = 3) and Msg Rcvd) then
begin // If message received check id
PO = RxTx Data[0] ;

// ID correct, output data at PORTO
Inc (RxTx Datal 0]);
// Increment received data
Delay ms(10);
CANSPIWrite (Tx ID, RxTx Data, 1, Can Send Flags);
// Send incremented data back
end;
end;
end.

Code for the second CANSPI node:

program Can Spi 2nd;

var Can Init Flags, Can Send Flags, Can Rcv_Flags : byte; // CAN
flags
Rx Data Len : byte; // Received data length in bytes
RxTx Data : arrayl 8] of byte; // CAN rx/tx data buffer
Msg Rcvd : byte; // Reception flag
Tx ID, Rx ID : longint; // CAN rx and tx ID

// CANSPI module connections

var CanSpi CS : sbit at P1.BO;
var CanSpi Rst : sbit at P1.B2;
// End CANSPI module connections

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 205

CHAPTER 6
Libraries mikroPascal for 8051

206 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051

Libraries
begin
Can Init Flags := 0; //
Can_Send Flags := 0; // Clear flags
Can_Rcv_Flags := 0; //
Can_Send Flags := CAN TX PRIORITY 0 and // Form value to be used

CAN TX XTD FRAME and // with CANSPIWrite
CAN TX NO RTR FRAME;

Can Init Flags := CAN CONFIG SAMPLE THRICE and !/
Form value to be used
CAN CONFIG PHSEG2 PRG ON and // with CANSPIInit
CAN CONFIG XTD MSG and
CAN CONFIG DBL BUFFER ON and
CAN CONFIG VALID XTD MSG and
CAN CONFIG _LINE FILTER OFF;

Spi Init(); // Initialize SPI module
CANSPIInitialize(1l,3,3,3,1,Can Init Flags); //
Initialize CAN-SPI module

CANSPISetOperationMode (CAN MODE CONFIG, OxFF) ; //
Set CONFIGURATION mode

CANSPISetMask (CAN MASK B1l,-1,CAN CONFIG XTD MSG); !/
Set all maskl bits to ones
CANSPISetMask (CAN MASK B2,-1,CAN CONFIG XTD MSG); /7

Set all mask2 bits to ones
CANSPISetFilter (CAN FILTER B2 F3,12111,CAN CONFIG XTD MSG); //

Set id of filter B2 F3 to 12111

CANSPISetOperationMode (CAN MODE NORMAL, OxFF) ; // Set NORMAL mode

Tx _ID := 3; // Set tx ID

while (TRUE) do

begin // Endless loop
Msg Rcvd := CANSPIRead(Rx ID , RxTx Data , Rx Data Len,
Can_Rcv_Flags); // Receive message
if ((Rx_ID = 12111) and Msg Rcvd) then
// If message received check id
begin
PO := RxTx Datal 0] ; // ID correct, output data at PORTO
Inc (RxTx Datal 0]) // Increment received data
CANSPIWrite (Tx_ID, RxTx Data, 1, Can_Send Flags); //
Send incremented data back
end;
end;

end.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 207

CHAPTER 6
Libraries mikroPascal for 8051

HW Connection

!

\.J 18
T Vdd }—]

w1]
CLKO c_s]w
K S0]IS
™ sl]H L

THZ SCK |—|13
0sC2 INT]i
05C1 RXI8 :IL
Ves RX1B]l

MCP2510 _
10R
_DBCILLATOR

1 A 7 8 [
||}—z[:4?;:: b M*—[XTAL

|

P10 VGG

[T

| o |

@

P12

rs

-

|
orarr—

w

P15
P16
PiT

I

£€G28S681V

5

|
z
F

e e B s B B s e e B s 1 e

g s s g o -

3 GHD
Ve 0—4[VEC CANL
| rxp vres

MCP2551

T

-—

Shielded =~ |
twisted pair =

Example of interfacing CAN transceiver MCP2510 with MCU via SPI interface

208 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6
Libraries

EEPROM LIBRARY

EEPROM data memory is available with a number of 8051 family. The mikroPascal for 8051
includes a library for comfortable work with MCU's internal EEPROM.

Note: EEPROM Library functions implementation is MCU dependent, consult the appropriate
MCU datasheet for details about available EEPROM size and address range.

Library Routines

- Eeprom_Read
- Eeprom_Write
- Eeprom_Write_Block

Eeprom_Read

Prototype function Eeprom Read (address: word): byte;
Returns Byte from the specified address.

Reads data from specified address.
Description |Parameters :

- address: address of the EEPROM memory location to be read.
Requires Nothing.

var eeAddr : word;

temp : byte;
Example o

eeAddr := 2

temp := Eeprom Read (eeAddr) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 209

CHAPTER 6
Libraries mikroPascal for 8051

Eeprom_Write

Prototype function Eeprom Write (address: word; wrdata: byte): byte;

- 0 writing was successful

Returns .
- 1 if error occured
Writes wrdata to specified address.
Parameters :
Description

- address: address of the EEPROM memory location to be written.
- wrdata: data to be written.

Note: Specified memory location will be erased before writing starts.

Requires Nothing.

var eeWrite : byte = 0x55;
wrAddr : word = 0x732;

Example eeWrite := 0x55;

wrAddr 0x732;

Eeprom Write (wrAddr, eeWrite);

210 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Eeprom_Write_Block

Prototype function Eeprom Write Block(address: word; var ptrdata: byte): byte;

- 0 writing was successful

Returns .
- 1 if error occured

Writes one EEPROM row (32 bytes block) of data.

Parameters :
Description | address: starting address of the EEPROM memory block to be written.
- ptrdata: data block to be written.

Note: Specified memory block will be erased before writing starts.

EEPROM module must support block write operations.

Requires It is the user's responsibility to maintain proper address alignment. In this case,
address has to be a multiply of 32, which is the size (in bytes) of one row of
MCU's EEPROM memory.

var

wrAddr : word;
iArr : string] 16] ;
Example o
wrAddr : 0x0100;

iArr := 'mikroElektronika';
Eeprom Write Block(wrAddr, iArr);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 211

CHAPTER 6
Libraries mikroPascal for 8051

Library Example
This example demonstrates using the EEPROM Library with AT89S8253 MCU.

First, some data is written to EEPROM in byte and block mode; then the data is read
from the same locations and displayed on PO, P1 and P2.

program Eeprom;

var dat : array [32] of byte; // Data buffer, loop vari-

able
ii : byte;

begin

for ii := 31 downto dat[ii] do nop; // Fill data buffer
Eeprom Write (2, 0xARA); // Write some data at address 2
Eeprom Write (0x732,0x55); // Write some data at address 0x732
Eeprom Write Block(0x100,dat); // Write 32 bytes block at

address 0x100

Delay ms (1000); // Blink PO and Pl diodes

PO := OxFF; // to indicate reading start
Pl := OXxFF;

Delay ms(1000);

PO := 0x00;

Pl := 0x00;

Delay ms(1000);

PO := Eeprom Read(2); // Read data from address
2 and display it on PORTO
Pl := Eeprom Read(0x732); // Read data from address

0x732 and display it on PORT1
Delay ms (1000);

for ii := 0 to 31 do // Read 32 bytes block from address 0x100
begin
P2 := Eeprom Read(0x100+ii); // and display data
on PORT2

Delay ms(500) ;
end;
end.

212 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

GRAPHIC LCD LIBRARY

The mikroPascal for 8051 provides a library for operating Graphic LCD 128x64 (with
commonly used Samsung KS108/KS107 controller).

For creating a custom set of GLCD images use GLCD Bitmap Editor Tool.

External dependencies of Graphic LCD Library

The following variables
must be defined in all

projects using Graphic Description: Example :
LCD Library:

var GLCD DataPort: GLCD DataPort :

byte; external; LCD Data Port. ver —ararort:

at PO; sfr;
volatile; sfr; byte at 0 Str

var GLCD CSl: sbit;

. . var GLCD CSl: sbit at
Chip Select 1 line. -

external; P2.BO;

var GLCD CS2: sbit; . . var GLCD CS2: sbit at
external; Chip Select 2 line. P2 .BO;

var GLCD RS: sbit; Reaister select line var GLCD RS: sbit at
external; g ’ P2.BO;

var GLCD RW: sbit; . . var GLCD RW: sbit at

- Read/Write line. -

external; P2.BO;

var GLCD RST: sbit; Reset line var GLCD RST: sbit at
external;) P2.BO0;

var GLCD EN: sbit; Enable line var GLCD EN: sbit at
external; ' P2.BO;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 213

CHAPTER 6
Libraries mikroPascal for 8051

Library Routines
Basic routines:

- Gled_Init

- Glcd_Set_Side

- Gled_Set X

- Glcd_Set_Page
- Glcd_Read_Data
- Glcd_Write_Data

Advanced routines:

- Glcd_Fill

- Glcd_Dot

- Gled_Line

- Gled_V_Line

- Gled_H_Line

- Glcd_Rectangle
- Gled_Box

- Gled_Circle

- Glcd_Set_Font
- Glcd_Write_Char
- Glcd_Write_Text
- Gled_Image

214 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6
Libraries

Gled_Init

Prototype

procedure Glcd Init();

Returns

Nothing.

Description

Initializes the GLCD module. Each of the control lines is both port and pin con-
figurable, while data lines must be on a single port (pins <0:7>).

Requires

Global variables :

- GLCD_cs1 : chip select 1 signal pin
- GLCD_cs2 : chip select 2 signal pin
- GLCD RS : register select signal pin
- GLCD RW : read/write signal pin

- GLCD EN : enable signal pin

- GLCD RST : reset signal pin

- GLCD DataPort : data port

must be defined before using this function.

Example

glcd pinout settings

var GLCD CS1 : sbit at P2.BO;
GLCD CS2 : sbit at P2.Bl;

GLCD RS : sbit at P2.B2;

GLCD RW : sbit at P2.B3;

GLCD RST : sbit at P2.B5;

GLCD EN : sbit at P2.B4;
Glcd Init();

var GLCD DataPort: byte at PO; sfr;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 215

CHAPTER 6
Libraries mikroPascal for 8051

Glcd_Set_Side

Prototype procedure Glcd Set Side(x pos: byte);

Returns Nothing.
Selects GLCD side. Refer to the GLCD datasheet for detailed explaination.

Parameters :

- x_pos: position on x-axis. Valid values: 0..127
Description
The parameter x pos specifies the GLCD side: values from 0 to 63 specify the
left side, values from 64 to 127 specify the right side.

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires GLCD needs to be initialized, see Glcd_Init routine.

The following two lines are equivalent, and both of them select the left side of

GLCD:
Example
Glcd Select Side(0);
Glcd Select Side(10);
Glcd_Set_X

Prototype procedure Glcd Set X(x pos: byte);

Returns Nothing.

Sets x-axis position to = pos dots from the left border of GLCD within the
selected side.

Parameters :
Description
- x_pos: position on x-axis. Valid values: 0..63

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example Glcd Set X(25);

216 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Glcd_Set_Page

Prototype procedure Glcd Set Page (page: byte);

Returns Nothing.
Selects page of the GLCD.

Parameters :

Description - page: page number. Valid values: 0..7

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Example Glcd_Set Page(5);

Glcd_Read_Data

Prototype |[function Glcd Read Data(): byte;

Returns One byte from GLCD memory.

Reads data from from the current location of GLCD memory and moves to the

Description next location.
GLCD needs to be initialized, see Glcd_Init routine.

Requires GLCD side, x-axis position and page should be set first. See functions
Glcd_Set_Side, Glcd_Set X, and Glcd_Set_Page.
var data: byte;

Example

data := Glcd Read Data();

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 217

CHAPTER 6
Libraries mikroPascal for 8051

Glcd_Write_Data

Prototype |[procedure Glcd Write Data(ddata: byte);
Returns Nothing.
Writes one byte to the current location in GLCD memory and moves to the next
location.
Description Parameters :
- ddata: data to be written
GLCD needs to be initialized, see Glcd_Init routine.
Requires GLCD side, x-axis position and page should be set first. See functions
Glcd_Set_Side, Glcd_Set X, and Glcd_Set_Page.
var data: byte;
Example S
Glcd Write Data(data);
Glcd_Fill

Prototype procedure Glcd Fill (pattern: byte);

Returns Nothing.

Fills GLCD memory with the byte pattern.
Parameters :

Description |- pattern: byte to fill GLCD memory with

To clear the GLCD screen, use Glcd Fill(0).

To fill the screen completely, use Glcd Fill (0xFF).

Requires GLCD needs to be initialized, see Glcd_Init routine.

' Clear screen

Example () 4 ri11(0);

218 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Glcd_Dot

Prototype procedure Glcd Dot (x pos: byte; y pos: byte; color: byte);

Returns Nothing.

Draws a dot on GLCD at coordinates (x pos, v pos).
Parameters :

- x_pos: X position. Valid values: 0..127
- v pos: Yy position. Valid values: 0..63

Description .
P - color: color parameter. Valid values: 0..2
The parameter color determines a dot state: 0 clears dot, 1 puts a dot, and 2
inverts dot state.
Note: For x and y axis layout explanation see schematic at the bottom of this page.
Requires GLCD needs to be initialized, see Glcd_Init routine.
Example ' Invert the dot in the upper left corner
P Glcd Dot (0, 0, 2);
Glcd_Line
Protot pe procedure Glcd Line(x start: integer; y start: integer; x end
Yy integer; y end integer; color: byte);

Returns Nothing.

Draws a line on GLCD.
Parameters :

- x_start: X coordinate of the line start. Valid values: 0..127
-y start:y coordinate of the line start. Valid values: 0..63
- x_end: x coordinate of the line end. Valid values: 0..127

- v_end: y coordinate of the line end. Valid values: 0..63

- color: color parameter. Valid values: 0..2

Description

The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.

Requires GLCD needs to be initialized, see Glcd_Init routine.

' Draw a line between dots (0,0) and (20,30)

Example 1., 1inc0, 0, 20, 30, 1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 219

CHAPTER 6

Libraries mikroPascal for 8051
Glcd_V_Line
procedure Glcd V Line(y start: byte; y end: byte; x pos: byte;
PrOtOtype color: byte);
Returns Nothing.
Draws a vertical line on GLCD.
Parameters :
-y start:y coordinate of the line start. Valid values: 0..63
Description |- v end: y coordinate of the line end. Valid values: 0..63
- x_pos: X coordinate of vertical line. Valid values: 0..127
- color: color parameter. Valid values: 0..2
The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.
Requires GLCD needs to be initialized, see Glcd_Init routine.
E I ' Draw a vertical line between dots (10,5) and (10,25)
xample Gled V Line(5, 25, 10, 1);
Glcd_H_Line
procedure Glcd V Line(x start: byte; x end: byte; y pos: byte;
PrOtOtype color: byte);
Returns Nothing.
Draws a horizontal line on GLCD.
Parameters :
- x_start: X coordinate of the line start. Valid values: 0..127
Description |- = end: x coordinate of the line end. Valid values: 0..127
- v pos: y coordinate of horizontal line. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.
Requires GLCD needs to be initialized, see Glcd_Init routine.
E I ' Draw a horizontal line between dots (10,20) and (50,20)
xample Glcd H Line (10, 50, 20, 1);

220 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Glcd_Rectangle

procedure Glcd Rectangle (x upper left: byte; y upper left: byte;

Prototype X bottom right: byte; y bottom right: byte; color: byte);

Returns Nothing.

Draws a rectangle on GLCD.
Parameters :

- x_upper left:X coordinate of the upper left rectangle corner. Valid values: 0..127

-v upper left:y coordinate of the upper left rectangle corner. Valid values: 0..63

- x_bottom right: X coordinate of the lower right rectangle corner. Valid
values: 0..127

-y bottom right:y coordinate of the lower right rectangle corner. Valid
values: 0..63

- color: color parameter. Valid values: 0..2

Description

The parameter color determines the color of the rectangle border: 0 white, 1
black, and 2 inverts each dot.

Requires GLCD needs to be initialized, see Glcd_Init routine.

' Draw a rectangle between dots (5,5) and (40,40)

Example 1., rectangle(s, 5, 40, 40, 1);
Glcd_Box
Prototype procecllure Glcd Box (xiupperii.eft: by.te; y upper left: byte; x bot-
tom right: byte; y bottom right: byte; color: byte);
Returns Nothing.
Draws a box on GLCD.
Parameters :
- x upper left: X coordinate of the upper left box corner. Valid values: 0..127
b ioti -y upper left:y coordinate of the upper left box corner. Valid values: 0..63
escription |_ .. ,ottom riont: x coordinate of the lower right box corner. Valid values: 0..127
- v bottom right:y coordinate of the lower right box corner. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the box fill: 0 white, 1 black, and 2
inverts each dot.
Requires GLCD needs to be initialized, see Glcd_Init routine.
Example ' Draw a box between dots (5,15) and (20,40)
P Gled Box (5, 15, 20, 40, 1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 221

CHAPTER 6

Libraries mikroPascal for 8051
Glcd_Circle
procedure Glcd Circle(x center: integer; y center: integer;
Proknype radius: integer; color: byte);
Returns Nothing.

Draws a circle on GLCD.
Parameters :

- x_center: X coordinate of the circle center. Valid values: 0..127
Description |- v center:y coordinate of the circle center. Valid values: 0..63
- radius: radius size

- color: color parameter. Valid values: 0..2

The parameter color determines the color of the circle line: 0 white, 1 black,
and 2 inverts each dot.

Requires GLCD needs to be initialized, see Glcd_Init routine.

' Draw a circle with center in (50,50) and radius=10

Example () 4 circie(s0, 50, 10, 1);

Glcd_Set_Font

procedure Glcd Set Font (const ActiveFont: “byte; FontWidth: byte;

Prokﬂype FontHeight: byte; FontOffs: word);

Returns Nothing.

Sets font that will be used with Glcd_Write_Char and Glcd_Write_Text routines.
Parameters :

- activeront: font to be set. Needs to be formatted as an array of byte

- arontwidth: width of the font characters in dots.

- arontHeight: height of the font characters in dots.

Description |- aFontoffs: number that represents difference between the mikroPascal for
8051 character set and regular ASCII set (eg. if ‘A" is 65 in ASCII character,
and 'A' is 45 in the mikroPascal for 8051 character set, aFontOffs is 20). Demo
fonts supplied with the library have an offset of 32, which means that they start
with space.

The user can use fonts given in the file “__Lib_ GLCDFonts.mpas” file located in
the Uses folder or create his own fonts.

Requires GLCD needs to be initialized, see Glcd_Init routine.

' Use the custom 5x7 font "myfont" which starts with space (32):

Exan““e Glcd Set Font (myfont, 5, 7, 32);

222 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Glcd_Write_Char

procedure Glcd Write Char (chr: byte; x pos: byte; page num: byte;
color: byte);

Prototype

Returns Nothing.
Prints character on the GLCD.

Parameters :

- chr: character to be written

- x_pos: character starting position on x-axis. Valid values: 0..(127-FontWidth)
- page num: the number of the page on which character will be written. Valid
Description | values: 0..7

- color: color parameter. Valid values: 0..2

The parameter color determines the color of the character: 0 white, 1 black,
and 2 inverts each dot.

Note: For x axis and page layout explanation see schematic at the bottom of
this page.
GLCD needs to be initialized, see Glcd_Init routine. Use Glcd_Set_Font to

Requires specify the font for display; if no font is specified, then default 5x8 font supplied
with the library will be used.

' Write character 'C' on the position 10 inside the page 2:

Example Glcd Write Char('C', 10, 2, 1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 223

CHAPTER 6
Libraries

mikroPascal for 8051

Glcd_Write_Text

procedure Glcd Write Text (var text: string[19] ; x pos: byte;
Proknype page num: byte; color: byte);
Returns Nothing.
Prints text on GLCD.
Parameters :
- text: text to be written
- x pos: text starting position on x-axis.
. - page num: the number of the page on which text will be written. Valid values: 0..7

Description . ,)

- color: color parameter. Valid values: 0..2

The parameter color determines the color of the text: 0 white, 1 black, and 2
inverts each dot.

Note: For x axis and page layout explanation see schematic at the bottom of
this page.

GLCD needs to be initialized, see Glcd_Init routine. Use Glcd_Set Font to

Requires specify the font for display; if no font is specified, then default 5x8 font supplied
with the library will be used.

E I ' Write text "Hello world!" on the position 10 inside the page 2:

xample Glcd Write Text("Hello world!", 10, 2, 1);

Glcd_Image

Prototype procedure Glcd Image (const image: “byte);

Returns Nothing.

Displays bitmap on GLCD.
Parameters :

Description | image: image to be displayed. Bitmap array must be located in code memory.
Use the mikroPascal for 8051 integrated GLCD Bitmap Editor to convert image
to a constant array suitable for displaying on GLCD.

Requires GLCD needs to be initialized, see Glcd_Init routine.

Exanuﬂe ' Draw image my image on GLCD

Glcd Image (my image);

224 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6
Libraries

Library Example

The following example demonstrates routines of the GLCD library: initialization,
clear(pattern fill), image displaying, drawing lines, circles, boxes and rectangles, text

displaying and handling.

program GLCD Test;

declarations

// Glcd module connections

var GLCD CS1 : sbit at P2.BO; // GLCD chip select 1 signal
var GLCD CS2 : sbit at P2.BI; // GLCD chip select 2 signal
var GLCD RS : sbit at P2.B2; // GLCD register select signal
var GLCD RW : sbit at P2.B3; // GLCD read/write signal
var GLCD RST : sbit at P2.B5; // GLCD reset signal
var GLCD _EN : sbit at P2.B4; // GLCD enable signal
// End Glcd module connections
procedure delay2S(); // 2 seconds delay function
begin
Delay ms (2000);
end;
var ii : word;
someText : arrayl 17] of byte;
begin
Glcd_Init(); // Initialize GLCD

Glcd Fill(0x00);

while (TRUE) do

begin
Glcd Image (@advanced8051 bmp) ;
Delay2S(); Delay2S();

Glcd Fill (0x00);

Glcd Box(62,40,124,56,1);
Glcd Rectangle(5,5,84,35,1);
Glcd Line (0, 63, 127, 0,1);

delay2S();

// Clear GLCD

// Draw image

// Draw box
// Draw rectangle
// Draw line

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 225

CHAPTER 6
Libraries mikroPascal for 8051

for ii := 5 to 59 do // Draw horizontal and vertical lines
begin
Delay ms (250) ;
Glcd V Line (2, 54, 1ii, 1);
Glcd H Line(2, 120, ii, 1);
end;

Delay2S () ;

Glcd Fill (0x00);

Glcd Set Font (@Character8x8, 8, 8, 32); // Choose font, see
_ Lib GLCDFonts.c in Uses folder

Glcd Write Text('mikroE', 5, 7, 2); // Write string

for 1ii := 1 to 10 do // Draw circles

Glcd Circle(63,32, 3*ii, 1);

Delay2S () ;

Glcd Box (12,20, 70,57, 2); // Draw box

Delay2S();

Glcd Set Font (@FontSystembx8, 5, 8, 32); // Change font

someText := 'BIG:ONE';
Glcd Write Text (someText, 5,3, 2); // Write string
Delay2S () ;
someText := 'SMALL:NOT:SMALLER';
Glcd Write Text (someText, 20,5, 1); // Write string
Delay2S () ;

end;

end.

226 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

C

HAPTER 6
Libraries

HW Connection

Left side Right side 12y X aXis

=63 |x=0 *=63

GLCD BCH

sw

=g
M= =
wd

=00 VCC
oy]
-l

=]

] qessynIne

8% Dbrescrrrer

EERERERFERERERERERES

MIKROELERTRONIKA

£ASYB0518
OEVELOPMENT SYSTEN

_OSCILLATOR

',
i e e s e s e e s e e s s

GLCD HW connection

XTAL1
GND

q

€G28S681V

VCC
P0.O
PO.1
P02
P03
P04
P05
P06
PO.7

P25
P24
P23
P22
P21
P2.0

TERTCEFRTREEEr

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 227

CHAPTER 6
Libraries mikroPascal for 8051

KEYPAD LIBRARY

The mikroPascal for 8051 provides a library for working with 4x4 keypad. The library
routines can also be used with 4x1, 4x2, or 4x3 keypad. For connections explana-
tion see schematic at the bottom of this page.

Note: Since sampling lines for 8051 MCUs are activated by logical zero Keypad
Library can not be used with hardwares that have protective diodes connected with
anode to MCU side, such as mikroElektronika's Keypad extra board HW.Rev v1.20

External dependencies of Keypad Library

The following variable
must be defined in all . L.
. . Description: Example :
projects using Keypad
Library:
var keypadPort: byte; var keypadPort: byte
external; sfr; Keypad Port. at PO; sfr;

Library Routines

- Keypad_Init
- Keypad_Key_ Press
- Keypad_Key Click

228 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroPascal for 8051
Keypad_Init
Prototype procedure Keypad Init();
Returns Nothing.
Description |lInitializes port for working with keypad.
Requires keypadpPort variable must be defined before using this function.
// Initialize PO for communication with keypad
Example var keypadPort : byte at PO; sfr;

Keypad Init();

Keypad_Key_Press

Prototype function Keypad Key Press(): byte;
The code of a pressed key (1..16).
Returns
If no key is pressed, returns 0.
Description [Reads the key from keypad when key gets pressed.
Requires Port needs to be initialized for working with the Keypad library, see Keypad_ Init.
var kp : byte;
Example -
kp := Keypad Key Press();

Keypad_Key_Click

Prototype function Keypad Key Click(): byte;
The code of a clicked key (1..16).
Returns
If no key is clicked, returns 0.
Call to keypad Key Click is a blocking call: the function waits until some key is
pressed and released. When released, the function returns 1 to 16, depending
Description |on the key. If more than one key is pressed simultaneously the function will wait
until all pressed keys are released. After that the function will return the code of
the first pressed key.
Requires Port needs to be initialized for working with the Keypad library, see Keypad_|Init.
var kp : byte;
Example S
kp := Keypad Key Click();

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

229

CHAPTER 6
Libraries

mikroPascal for 8051

Library Example

This is a simple example of using the Keypad Library. It supports keypads with 1..4
rows and 1..4 columns. The code being returned by Keypad_Key_Click() function is
in range from 1..16. In this example, the code returned is transformed into ASCII
codes [0..9,A..F] and displayed on LCD. In addition, a small single-byte counter dis-
plays in the second LCD row number of key presses.

program Keypad Test;

var

kp, cnt, oldstate : byte;
txt : array| 5] of byte;

// Keypad module connections

var

keypadPort : byte at PO; sfr

// End Keypad module connections

// lcd pinout definition

var
var

var
var
var
var

LCD RS : sbit at P2.BO;
LCD_EN : sbit at P2.BI;

LCD D7 : sbit at P2.B5;
LCD D6 : sbit at P2.B4;
LCD D5 : sbit at P2.B3;
LCD D4 : sbit at P2.B2;

// end lcd definitions

begin
oldstate := 0;
cnt := 0; // Reset counter
Keypad Init(); // Initialize Keypad
Led Init () // Initialize LCD
Lcd Cmd (LCD _CLEAR) ; // Clear display
Lcd Cmd (LCD _CURSOR OFF) ; // Cursor off
Lcd Out (1, 1, 'Key ') // Write message text on LCD

Led Out (2, 1, 'Times:');

while TRUE do
begin
kp := 0; // Reset key code variable

// Wait for key to be pressed and released
while (kp = 0)do
kp := Keypad Key Click();// Store key code in kp variable

230 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

// Prepare value for output, transform key to it's ASCII value
case kp of
//case 10: kp = 42; /] // Uncomment this
block for keypaddx3
//case 11: kp = 48; // 'O
//case 12: kp = 35; /] T
//default: kp += 48;

1: kp := 49; // 1// Uncomment this block for keypad4x4
2: kp := 50; // 2
3: kp := 51; // 3
4: kp := 65; // A
5: kp := 52; // 4
6: kp := 53; // 5
7: kp := 54; // 6
8: kp := 66; // B
9: kp := 55; // 7
10: kp := 56; // 8
11: kp := 57; // 9
12: kp := 67; // C
13: kp := 42; // *
14: kp := 48; // O
15: kp := 35; // #
16: kp := 68; // D

end; //case

if (kp <> oldstate) then // Pressed key differs from previous

begin
cnt = 1;
oldstate := kp;
end
else // Pressed key is same as previous

Inc(cnt);

Lcd Chr(l, 10, kp); // Print key ASCII value on LCD
if (cnt = 255) then // If counter varialble overflow
begin
cnt := 0;
Led Out (2, 10, ' ")
end;
WordToStr (cnt, txt); // Transform counter value to string
Lcd Out (2, 10, txt); // Display counter value on LCD
end;

end.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 231

CHAPTER 6
Libraries mikroPascal for 8051

HW Connection

vee [eVOd
P [}
o 1

po.2 []
Po.a [}
P4 []
pos [F—
Po.E [}
Py []

5?;[
1

€G28S681V

p2.s [1

P24]

[i i ; p2a [}
L1

LCD 2X16

4x4 Keypad connection scheme

232 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6
Libraries

LCD LIBRARY

The mikroPascal for 8051 provides a library for communication with LCDs (with
HD44780 compliant controllers) through the 4-bit interface. An example of LCD con-
nections is given on the schematic at the bottom of this page.

For creating a set of custom LCD characters use LCD Custom Character Tool.

External dependencies of LCD Library

The following variables
must be defined in all e
. . Description: Example :
projects using LCD
Library:

var LCD RS: sbit; Reqister Select line var LCD RS: sbit at
external; 9) P2.B0;

var LCD EN: sbit; Enable li var LCD EN: sbit at
external; nable fine. P2.B1;

var LCD D7: sbit; Data 7 line var LCD D7: sbit at
external; ' P2 .B5;

var LCD D6: sbit; Data 6 line var LCD D6: sbit at
external; ' P2.B4;

var LCD D5: sbit; Data 5 line var LCD D5: sbit at
external; ' P2.B3;

var LCD D4: sbit; Data 4 li var LCD D4: sbit at
external; ata 4 fine. P2.B2;

Library Routines

- Led_Init

- Led_Out
-Led _Out Cp
- Led_Chr

- Led_Chr_Cp
-Led Cmd

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 233

CHAPTER 6
Libraries mikroPascal for 8051

Lcd_Init

Prototype procedure Lcd Init ()

Returns Nothing.

Description |Initializes LCD module.

Global variables:

- LCcD D7 : data bit 7

- LCD D6 : data bit 6

- LCD D5 : data bit 5

- LCD D4 : data bit 4

- rS: register select (data/instruction) signal pin
- EN: enable signal pin

Requires

must be defined before using this function.

// lcd pinout settings

var

LCD RS : sbit at P2.BO;
LCD EN : sbit at P2.B1;
LCD D7 : sbit at P2.B5;
Example LCD D6 : sbit at P2.B4;
LCD D5 : sbit at P2.B3;
LCD D4 : sbit at P2.B2;

LcdiLnit();

234 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Lcd_Out

Prototype procedure Lcd Out (row: byte; column: byte; var text: stringl 19]);

Returns Nothing.

Prints text on LCD starting from specified position. Both string variables and lit-
erals can be passed as a text.

I Parameters :
Description
- row: starting position row number

- column: starting position column number
- text: text to be written

Requires The LCD module needs to be initialized. See Lcd_Init routine.

// Write text "Hello!" on LCD starting from row 1, column 3:

Example Lcd Out(l, 3, "Hello!™);

Lcd _Out_Cp

Prototype |procedure Lcd Out Cp(var text: stringl 19]);

Returns Nothing.

Prints text on LCD at current cursor position. Both string variables and literals
can be passed as a text.

Description Parameters :

- text: text to be written

Requires The LCD module needs to be initialized. See Lcd_|Init routine.

// Write text "Here!" at current cursor position:

Example Lcd Out Cp("Here!");

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 235

CHAPTER 6
Libraries mikroPascal for 8051

Lcd_Chr

Prototype procedure Lcd Chr(row: byte; column: byte; out char: byte);

Returns Nothing.

Prints character on LCD at specified position. Both variables and literals can be
passed as a character.

s Parameters :
Description
- row: Writing position row number
- column: writing position column number
- out char: character to be written

Requires The LCD module needs to be initialized. See Lcd_Init routine.

nwan

// Write character "i" at row 2, column 3:

Example Led Chr(2, 3, 'i');

Lcd_Chr_Cp

Prototype procedure Lcd Chr Cp(out char: byte);

Returns Nothing.

Prints character on LCD at current cursor position. Both variables and literals
can be passed as a character.

Description Parameters :

- out char: character to be written

Requires The LCD module needs to be initialized. See Lcd_Init routine.

// Write character "e" at current cursor position:

Example Lcd Chr Cp('e');

236 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
Libraries

mikroPascal for 8051

Lcd_Cmd

Prototype procedure Lcd Cmd(out char: byte);

Returns Nothing.
Sends command to LCD.
Parameters :

Description |_ out char: command to be sent
Note: Predefined constants can be passed to the function, see Available LCD
Commands.

Requires The LCD module needs to be initialized. See Lcd_Init table.
// Clear LCD display:

Example Lcd Cmd (LCD CLEAR) ;

Available LCD Commands

Lcd Command

Purpose

LCD_FIRST ROW

Move cursor to the 1st row

LCD SECOND ROW

Move cursor to the 2nd row

LCD_THIRD ROW

Move cursor to the 3rd row

LCD_FOURTH ROW

Move cursor to the 4th row

LCD CLEAR

Clear display

LCD_RETURN HOME

Return cursor to home position, returns a shifted display to its original
position. Display data RAM is unaffected.

LCD CURSOR OFF

Turn off cursor

LCD_UNDERLINE ON

Underline cursor on

LCD BLINK CURSOR ON

Blink cursor on

LCD_MOVE_CURSOR_LEFT

Move cursor left without changing display data RAM

LCD_MOVE_CURSOR RIGHT

Move cursor right without changing display data RAM

LCD_TURN ON

Turn LCD display on

LCD TURN OFF

Turn LCD display off

LCD_SHIFT LEFT

Shift display left without changing display data RAM

LCD_SHIFT RIGHT

Shift display right without changing display data RAM

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

237

CHAPTER 6
Libraries mikroPascal for 8051

Library Example

The following code demonstrates usage of the LCD Library routines:
program Lcd Test;

// LCD module connections
var LCD RS : sbit at P2.BO;
var LCD EN : sbit at P2.Bl;

var LCD D7 : sbit at P2.B5;
var LCD D6 : sbit at P2.B4;
var LCD D5 : sbit at P2.B3;
var LCD D4 : sbit at P2.B2;
// End LCD module connections

var txtl : arrayl 16] of byte;
txt2 : arrayl 9] of byte;
txt3 : arrayl 71 of byte;
txt4 : arrayl 7] of byte;
i : byte; // Loop variable

procedure Move Delay(); // Function used for text
moving
begin
Delay ms (500); // You can change the mov-
ing speed here
end;
begin
txtl := 'mikroElektronika';
txt2 := 'Easy8051B';
txt3 := 'lcddbit';
txtd := 'example';
Led Init(); // Initialize LCD
Led Cmd (LCD CLEAR) ; // Clear display
Lcd Cmd (LCD_CURSOR_OFF) ; // Cursor off
LCD Out (1,6,txt3); // Write text in first row
LCD Out(2,6,txtd); // Write text in second row
Delay ms (2000) ;
Lcd Cmd (LCD_CLEAR) ; // Clear display
LCD Out (1,1,txtl); // Write text in first row
LCD Out (2,4, txt2); // Write text in second row

Delay ms (500) ;

238 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

// Moving text
for i:=0 to 3 do // Move text to the right 4 times
begin
Led Cmd (LCD SHIFT RIGHT) ;
Move Delay();
end;

while TRUE do // Endless loop
begin
for i:=0 to 6 do // Move text to the left 7 times
begin
Led Cmd (LCD SHIFT LEFT) ;
Move Delay();
end;

for i:=0 to 6 do // Move text to the right 7 times
begin
Led Cmd (LCD SHIFT RIGHT) ;
Move Delay();
end;

end;
end.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 239

CHAPTER 6
Libraries mikroPascal for 8051

HW connection

{

E vee VCC
(
1
| »
I
i o
i (Lo
1 @ |
1 (@] I
i 5 °
(8 pas [F—
I P24 [F—
DsciatoR -} P23 [F——
UL P22
- XTAL1 P2.1
—E[GND P2.0 }—‘

VCC

LCD 2X16

LCD HW connection

240 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

ONEWIRE LIBRARY

The OneWire library provides routines for communication via the Dallas OneWire
protocol, e.g. with DS18x20 digital thermometer. OneWire is a Master/Slave proto-
col, and all communication cabling required is a single wire. OneWire enabled
devices should have open collector drivers (with single pull-up resistor) on the
shared data line.

Slave devices on the OneWire bus can even get their power supply from data line.
For detailed schematic see device datasheet.

Some basic characteristics of this protocol are:

- single master system,

- low cost,

- low transfer rates (up to 16 kbps),

- fairly long distances (up to 300 meters),
- small data transfer packages.

Each OneWire device has also a unique 64-bit registration number (8-bit device
type, 48-bit serial number and 8-bit CRC), so multiple slaves can co-exist on the
same bus.

Note: Oscillator frequency Fosc needs to be at least 8MHz in order to use the rou-
tines with Dallas digital thermometers.

External dependencies of OneWire Library

This variable must be
defined in any project

. . . Description: Example :
that is using OneWire P P
Library:
var OW Bit: sbit; . . var OW Bit: sbit; at
- OneWire line. -

external; P2.B7;

Library Routines

- Ow_Reset
- Ow_Read
- Ow_Write

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 241

CHAPTER 6

Libraries mikroPascal for 8051
Ow_Reset
Prototype function Ow Reset (): word;
Returns - 0 if the device is present
- 1 if the device is not present
Issues OneWire reset signal for DS18x20.
Description |Parameters :
- None.
Devices compliant with the Dallas OneWire protocol.
Requires
Global variable ow Bit must be defined before using this function.
// Issue Reset signal on One-Wire Bus
Example Ow Reset () ;
Ow_Read
Prototype |function Ow Read(): byte;
Returns Data read from an external device over the OneWire bus.
Description [Reads one byte of data via the OneWire bus.
Devices compliant with the Dallas OneWire protocol.
Requires
Global variable ow Bit must be defined before using this function.
// Read a byte from the One-Wire Bus
Example var read data : byte;
J.féé(iidata := Ow_Read();

242 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
Libraries

mikroPascal for 8051
Ow_Write
Proknype procedure Ow Write (par: byte);
Returns Nothing.
Writes one byte of data via the OneWire bus.
Description |Parameters :
- par: data to be written
Devices compliant with the Dallas OneWire protocol.
Requires
Global variable ow 5it must be defined before using this function.
E I // Send a byte to the One-Wire Bus
Xxample Ow Write (0xCC);

Library Example

This example reads the temperature using DS18x20 connected to pin P1.2. After reset, MCU
obtains temperature from the sensor and prints it on the LCD. Make sure to pull-up P1.2 line and
to turn off the P1 leds.

program OneWire;

// lcd pinout definition

var
var

var
var
var
var

LCD_RS
LCD_EN

LCD_D7
LCD D6
LCD D5
LCD D4

: sbit at P2.BO0;
sbit at P2.B1;

sbit at P2.B5;
sbit at P2.B4;
: sbit at P2.BR3;
: sbit at P2.B2;

// end lcd definition

// OneWire
var OW Bit
// end OneWire definition

//
//
//

pinout
sbit at P1.B2;

Set TEMP RESOLUTION to the corresponding resolution of used DS18x20 sensor:

18s20:
18B20:

9 (default setting; can be 9,10,11,o0r 12)
12

const TEMP RESOLUTION : byte = 9;

var

text
temp

array| 8] of byte;
word;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 243

CHAPTER 6
Libraries mikroPascal for 8051

procedure Display Temperature(tempZwrite : word) ;
const RES SHIFT : byte = TEMP RESOLUTION - 8;
var temp whole : byte;

tempifraction . word;
begin
text := '000.0000"';

// check if temperature is negative
if (temp2write and 0x8000) then

begin

text[0] := '-';

temp2write := not temp2write + 1;
end;

// extract temp whole
temp whole := temp2write shr RES SHIFT ;

// convert temp whole to characters
if (temp whole/100) then

text[0] := temp whole/100 + 48;
text[1] := (temp whole/10)mod 10 + 48; // Extract
tens digit
text[2] := temp whole mod 10 + 48; // Extract

ones digit

// extract temp fraction and convert it to unsigned int

temp fraction := temp2write shl (4-RES SHIFT);
temp fraction := temp fraction and 0x000F;
temp fraction := temp fraction * 625;

// convert temp fraction to characters

text[4] := temp fraction/1000 + 48; // Extract
thousands digit

text[5] := (temp fraction/100) mod 10 + 48; // Extract
hundreds digit

text[6] := (temp fraction/10) mod 10 + 48; // Extract
tens digit

text[7] := temp fraction mod 10 + 48; // Extract

ones digit
// print temperature on LCD
Lcd Out (2, 5, text);

end;

begin

244 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries
Led Init(); // Initialize LCD
Lcd Cmd (LCD_CLEAR) ; // Clear LCD
Lcd Cmd (LCD_CURSOR _OFF) ; // Turn cursor off
Lecd Out (1, 1, ' Temperature: '),
// Print degree character, 'C' for Centigrades

Led Chr(2,13,223);
Lcd Chr(2,14,'C');

//--- main loop
while TRUE do
begin
//--- perform temperature reading
Ow_Reset () ; // Onewire reset signal
Ow Write (0xCC); // Issue command SKIP_ ROM
Ow_Write (0x44); // Issue command CONVERT T
(

Delay us(120);

Ow Reset () ;

Ow Write (0xCC) ; // Issue command SKIP ROM

Ow Write (0OxBE) ; // Issue command READ SCRATCHPAD
temp := Ow_Read();

temp := (Ow_Read() shl 8) + temp;

//--- Format and display result on Lcd

Display Temperature (temp) ;

Delay ms (500) ;
end;
end.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 245

CHAPTER 6
Libraries mikroPascal for 8051

HW Connection

] 125°C

VCC

C

VCC

P12

=TT T

=
8]
N

10K -
|—|I|—u—| -

RST

Resel

-

P25
P24
P23
P22

]

]

]

]

}—

]—

]_
XTAL1 P2.1)—‘

€G28S681V

OSGILLATOR

e B e B e e B e B e e B

i:

GND P2.0

LCD 2X16

Example of DS1820 connection

246 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

MANCHESTER CODE LIBRARY

The mikroPascal for 8051 provides a library for handling Manchester coded signals.
The Manchester code is a code in which data and clock signals are combined to
form a single self-synchronizing data stream; each encoded bit contains a transition
at the midpoint of a bit period, the direction of transition determines whether the bit
is 0 or 1; the second half is the true bit value and the first half is the complement of
the true bit value (as shown in the figure below).

Manchester RF_Send_Byte format

St1|St2|Ctr |B7 | B6|B5 | B4 | B3| B2|B1|BO

Bi-phase coding
AN
1 0

2ms Example of transmission

117000100011

Notes: The Manchester receive routines are blocking calls (Man Receive Initand
Man Synchro). This means that MCU will wait until the task has been performed
(e.g. byte is received, synchronization achieved, etc).

External dependencies of Manchester Code Library

The following variables
must be defined in all
projects using Man-
chester Code Library:

var MANRXPIN : sbit; Receive line var MANRXPIN : sbit
external; Ive line. at P0.BO;

var MANTXPIN : sbit; Transmit line var MANTXPIN : sbit
external;) at P1.B1l;

Description: Example :

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 247

CHAPTER 6
Libraries mikroPascal for 8051

Library Routines

- Man_Receive_Init
- Man_Receive

- Man_Send_Init

- Man_Send

- Man_Synchro

- Man_Out

The following routines are for the internal use by compiler only:
- Manchester 0
- Manchester_1

- Manchester_Out

Man_Receive_lInit

Prototype function Man Receive Init(): word;

- 0 - if initialization and synchronization were successful.

Returns ...
- 1 - upon unsuccessful synchronization.

The function configures Receiver pin and performs synchronization procedure in
order to retrieve baud rate out of the incoming signal.

Description
Note: In case of multiple persistent errors on reception, the user should call this
routine once again or Man_Synchro routine to enable synchronization.
Requires MANRXPIN variable must be defined before using this function.
// Initialize Receiver
var MANRXPIN : sbit at P0.BO;
Example

Man Receive Init();

248 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Man_Receive

Prototype function Man Receive (var error: byte): byte;

Returns A byte read from the incoming signal.

The function extracts one byte from incoming signal.

A Parameters :
Description

- error: error flag. If signal format does not match the expected, the error flag
will be set to non-zero.

To use this function, the user must prepare the MCU for receiving. See
Man_Receive_|Init.

var data, error : byte

Requires

data := 0
error := 0
data := Man Receive (&error);
Example -
if (error <> 0) then
begin
// error handling
end;

Man_Send_lInit

Prototype |[procedure Man Send Init();

Returns Nothing.

Description |The function configures Transmitter pin.

Requires MANTXPIN variable must be defined before using this function.

// Initialize Transmitter:

var MANTXPIN : sbit at P1.Bl;
Example

Man Send Init();

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 249

CHAPTER 6
Libraries mikroPascal for 8051

Man_Send

Prototype procedure Man Send(tr data: byte);

Returns Nothing.

Sends one byte.

Parameters :
Description
- tr data: data to be sent
Note: Baud rate used is 500 bps.
. To use this function, the user must prepare the MCU for sending. See
Requires .
Man_Send_Init.
var msg : byte;
Example

Man Send(msg) ;

Man_Synchro

Prototype function Man Synchro(): word;

- 0 - if synchronization was not successful.
Returns - Half of the manchester bit length, given in multiples of 10us - upon
successful synchronization.

Description |Measures half of the manchester bit length with 10us resolution.

To use this function, you must first prepare the MCU for receiving. See

Requires . .
9 Man_Receive_Init.
var man_ half bit len : word ;
Example -
man__half bit len := Man Synchro();

250 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Man_Out

Proknype procedure Man Out (BitValue: byte);

Returns Nothing.

Sends one byte in Manchester format.
Description |Parameters :

- Bitvalue: data to be sent

To use this function, the user must prepare the MCU for sending. See
Man_Send_Init.

var BitValue : byte;

Requires

Example

Man Out (BitValue);

Library Example

The following code is code for the Manchester receiver, it shows how to use the Manchester
Library for receiving data:

program Manchester Receiver;

// LCD module connections
var LCD RS : sbit at P2.BO;
var LCD EN : sbit at P2.B1;

var LCD D7 : sbit at P2.B5;
var LCD D6 : sbit at P2.B4;
var LCD D5 : sbit at P2.B3;
var LCD D4 : sbit at P2.B2;
// End LCD module connections

// Manchester module connections

var MANRXPIN : sbit at P0.BO;

var MANTXPIN : sbit at P1.Bl;

// End Manchester module connections

var error, ErrorCount, temp : byte;
begin
ErrorCount := 0;
Led Init(); // Initialize LCD
Lcd Cmd (LCD _CLEAR) ; // Clear LCD display

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 251

CHAPTER 6

Libraries mikroPascal for 8051
Man Receive Init(); // Initialize Receiver
while TRUE do // Endless loop
begin
Lcd Cmd (LCD_FIRST ROW) ; // Move cursor to the 1lst row
while TRUE do // Wait for the "start" byte
begin
temp := Man Receive (error); // Attempt byte receive
if (temp = 0x0B) then // "Start" byte, see
Transmitter example
exit; // We got the starting sequence
if (error <> 0) then // Exit so we do not loop forever
exit;
end;

while (temp <> O0x0E) do

begin
temp := Man Receive (error); // Attempt byte receive
if (error <> 0) then // If error occured
begin
Led Chr CP('?'); // Write question mark on LCD
Inc (ErrorCount) ; // Update error counter
if (ErrorCount > 20) then // In case of
multiple errors
begin
temp := Man Synchro(); // Try to syn-
chronize again
//Man_Receive Init(); // Alternative,
try to Initialize Receiver again
ErrorCount := 0; // Reset error counter
end;
end
else // No error occured
begin
if (temp <> 0xOE) then // If "End"
byte was received(see Transmitter example)
Lcd Chr CP(temp) ; // do not
write received byte on LCD
end;
Delay ms (25);
end;
end; // If "End" byte was received exit do loop

end.

The following code is code for the Manchester transmitter, it shows how to use the
Manchester Library for transmitting data:

252 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6
Libraries

program Manchester Transmitter;

// Manchester module connections
var MANRXPIN sbit at PO0.BO;
var MANTXPIN sbit at P1.B1;

// End Manchester module connections

var index, character byte;
sl : arrayl 16] of byte;
begin
sl := 'mikroElektronika';

Man Send Init();

while TRUE do
begin
Man Send (0x0B) ;
Delay ms (100);

character := sl1[0] ;
index := 0;
while (character <> 0) do

begin
Man Send(character) ;
Delay ms (90);
Inc (index) ;
character :=
end;
Man Send (0xO0E) ;
Delay ms (1000);
end;
end.

sl[index] ;

// Initialize transmitter
// Endless loop

// Send "start" byte
// Wait for a while

// Take first char from string
// Initialize index variable
// String ends with zero

// Send character

// Wait for a while

// Increment index variable
// Take next char from string

// Send

"end" byte

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

253

CHAPTER 6
Libraries mikroPascal for 8051

Connection Example

— T
= aVCC

Transmitter RF vee

module

P11

Antenna
g

\
\ ’ VCC

|

vcce

A RT4 out

GND

Simple Transmitter connection

€G28S68.1V

OECILLATOR

l_|l_|l_|l_|l_|l_|l_'l_|l_|’_|l_|l_|l_|l_|l_ll_|‘|_|l_|

XTAL1
GND

| NS [N N N S S S S_— S_— S S S_— S S_— S_— — _—) — y

'uE

Voo aVCC

P00

Receiver RF
module

€G28S681V

T DECLLATOR

A RR4

XTALY
GMD

I_I_II'_'H_II_II_II_II_I'_"_II_II_II_II_II_I_"_II—H.l—IL.J

F

GND

1

Simple Receiver connection

254 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

PORT EXPANDER LIBRARY

The mikroPascal for 8051 provides a library for communication with the Microchip’s
Port Expander MCP23S17 via SPI interface. Connections of the 8051 compliant
MCU and MCP23S17 is given on the schematic at the bottom of this page.

Note: Library uses the SPI module for communication. The user must initialize SPI
module before using the Port Expander Library.

Note: Library does not use Port Expander interrupts.

External dependencies of Port Expander Library

The following variables
must be defined in all
projects using Port
Expander Library:

Description: Example :

var SPExpanderCS :
sbit; external;

var SPExpanderCsS :
sbit at P1.B1l;

var SPExpanderRST : Reset line var SPExpanderRST :
sbit; external; Ine. sbit at P1.BRO;

Chip Select line.

Library Routines

- Expander_Init

- Expander_Read_Byte

- Expander_Write_Byte

- Expander_Read_PortA

- Expander_Read_PortB

- Expander_Read_PortAB

- Expander_Write_PortA

- Expander_Write_PortB

- Expander_Write_PortAB

- Expander_Set DirectionPortA
- Expander_Set_DirectionPortB
- Expander_Set_DirectionPortAB
- Expander_Set_PullUpsPortA
- Expander_Set PullUpsPortB
- Expander_Set_PullUpsPortAB

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 255

CHAPTER 6
Libraries mikroPascal for 8051

Expander_lInit

Prokﬂype procedure Expander Init (ModuleAddress : byte);

Returns Nothing.

Initializes Port Expander using SPI communication.

Port Expander module settings :

- hardware addressing enabled

- automatic address pointer incrementing disabled (byte mode)
Description |- BANK O register adressing

- slew rate enabled

Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

sPExpandercs and SPExpanderRST variables must be defined before using
this function.

Requires
SPI module needs to be initialized. See Spi_Init and Spi_Init_Advanced routines.
// port expander pinout definition
var SPExpanderCS : sbit at P1.B1;
SPExpanderRST : sbit at P1.BO;
Example
Spi Init(); // initialize SPI module
Expander Init (0); // initialize port expander

256 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Expander_Read_Byte

function Expander Read Byte (ModuleAddress : byte; RegAddress :
Prototype - -
byte) : byte;
Returns Byte read.
The function reads byte from Port Expander.
Parameters :
Description
- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- Reghddress: Port Expander's internal register address
Requires Port Expander must be initialized. See Expander_|Init.
// Read a byte from Port Expander's register
Example var read data : byte;
read data := Expander Read Byte(0,1);

Expander_Write_Byte

procedure Expander Write Byte (ModuleAddress: byte; RegAddress:

PrOtOtype byte; Data : byte);
Returns Nothing.
Routine writes a byte to Port Expander.
Parameters :
Description | ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- Reghddress: Port Expander's internal register address
- Data : data to be written
Requires Port Expander must be initialized. See Expander_Init.
Example // Write a byte to the Port Expander's register

Expander Write Byte (0,1, 0xFF);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 257

CHAPTER 6
Libraries mikroPascal for 8051

Expander_Read_PortA

Prototype function Expander Read PortA (ModuleAddress: byte): byte;

Returns Byte read.

The function reads byte from Port Expander's PortA.

i Parameters :

Description

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

Port Expander must be initialized. See Expander_|Init.

Requires Port Expander's PortA should be configured as input. See Expander_Set_Direc-
tionPortA and Expander_Set_DirectionPortAB routines.
// Read a byte from Port Expander's PORTA
var read data : byte;

Exan“ﬂe ﬁéﬁander7SetiDirectionPortA(O,OXFF); // set expander's

porta to be input

read data := ExpanderiReadiPortA(O);

Expander_Read_PortB

Prototype function Expander Read PortB (ModuleAddress: byte): byte;

Returns Byte read.

The function reads byte from Port Expander's PortB.

i Parameters :

Description

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

Port Expander must be initialized. See Expander_|Init.

Requires Port Expander's PortB should be configured as input. See Expander_Set_Direc-
tionPortB and Expander_Set DirectionPortAB routines.
// Read a byte from Port Expander's PORTB
var read data : byte;

Example ﬁ%éanderisetiDirectionPortB(O,OXFF); // set expander's

portb to be input

read data := Expander Read PortB(0);

258 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

Expander_Read_ PortAB

Prokﬂype function Expander Read PortAB (ModuleAddress: byte): word;

Returns Word read.

The function reads word from Port Expander's ports. PortA readings are in the
higher byte of the result. PortB readings are in the lower byte of the result.

Description |Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
Port Expander must be initialized. See Expander_|Init.

Requires Port Expander's PortA and PortB should be configured as inputs. See
Expander_Set_DirectionPortA, Expander_Set_DirectionPortB and
Expander_Set_DirectionPortAB routines.

// Read a byte from Port Expander's PORTA and PORTB
var read data : word;
Exan“ﬂe ﬁgﬁanderisetiDirectionPortAB(0,0XFFFF); // set expander's

porta and portb to be input

read data := ExpanderiReadiPortAB(O);

Expander_Write_PortA

Prototype

procedure Expander Write PortA (ModuleAddress: byte; Data : byte);

Returns

Nothing.

Description

The function writes byte to Port Expander's PortA.
Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page
- Data : data to be written

Requires

Port Expander must be initialized. See Expander_|Init.

Port Expander's PortA should be configured as output. See
Expander_Set_DirectionPortA and Expander_Set_DirectionPortAB routines.

Example

// Write a byte to Port Expander's PORTA

Expander Set DirectionPortA(0,0x00); // set expander's
porta to be output

Expander Write PortA (0, OxAA);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

259

CHAPTER 6
Libraries mikroPascal for 8051

Expander_Write_PortB

Prototype procedure Expander Write PortB(ModuleAddress: byte; Data : byte);

Returns Nothing.

The function writes byte to Port Expander's PortB.

Parameters :

Description .
- ModuleAddress: Port Expander hardware address, see schematic at the

bottom of this page
- Data : data to be written

Port Expander must be initialized. See Expander_|Init.

Requires Port Expander's PortB should be configured as output. See
Expander_Set_DirectionPortB and Expander_Set_DirectionPortAB routines.
// Write a byte to Port Expander's PORTB

Exan“ﬂe Expander Set DirectionPortB(0,0x00); // set expander's
portb to be output

Expander Write PortB(0, 0x55);

Expander_Write_PortAB

Prototype procedure Expander Write PortAB (ModuleAddress: byte; Data : word);

Returns Nothing.

The function writes word to Port Expander's ports.
Parameters :

Description |- uoduienddress: Port Expander hardware address, see schematic at the
bottom of this page

- Data : data to be written. Data to be written to PortA are passed in Data's
higher byte. Data to be written to PortB are passed in Data's lower byte

Port Expander must be initialized. See Expander_Init.

Requires Port Expander's PortA and PortB should be configured as outputs. See
Expander_Set_DirectionPortA, Expander_Set_DirectionPortB and
Expander_Set_DirectionPortAB routines.

// Write a byte to Port Expander's PORTA and PORTB

Exan“ﬂe Expander Set DirectionPortAB(0,0x0000); // set expander's
porta and portb to be output

Expander Write PortAB(0, OxAA55);

260 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Expander_Set_DirectionPortA

procedure Expander Set DirectionPortA (ModuleAddress: byte; Data :

Prototype byte) ;

Returns Nothing.

The function sets Port Expander's PortA direction.
Parameters :

Description |- Moduleaddress: Port Expander hardware address, see schematic at the
bottom of this page

- Data : data to be written to the PortA direction register. Each bit corresponds
to the appropriate pin of the PortA register. Set bit designates corresponding
pin as input. Cleared bit designates corresponding pin as output.

Requires Port Expander must be initialized. See Expander_|Init.

// Set Port Expander's PORTA to be output

Exan““e Expander Set DirectionPortA(0,0x00);

Expander_Set_DirectionPortB

procedure Expander Set DirectionPortB(ModuleAddress: byte; Data :

Prototype byte) ;

Returns Nothing.

The function sets Port Expander's PortB direction.
Parameters :

Description |- Moduleaddress: Port Expander hardware address, see schematic at the
bottom of this page

- Data : data to be written to the PortB direction register. Each bit corresponds
to the appropriate pin of the PortB register. Set bit designates corresponding
pin as input. Cleared bit designates corresponding pin as output.

Requires Port Expander must be initialized. See Expander_|Init.

// Set Port Expander's PORTB to be input

Exanuﬂe Expander Set DirectionPortB (0, OxFF);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 261

CHAPTER 6
Libraries mikroPascal for 8051

Expander_Set_DirectionPortAB

procedure Expander Set DirectionPortAB (ModuleAddress: byte;
Direction: word) ;

Prototype

Returns Nothing.

The function sets Port Expander's PortA and PortB direction.
Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the
bottom of this page

- Direction: data to be written to direction registers. Data to be written to the
PortA direction register are passed in Direction's higher byte. Data to be
written to the PortB direction register are passed in birection's lower byte.
Each bit corresponds to the appropriate pin of the PortA/PortB register. Set bit
designates corresponding pin as input. Cleared bit designates corresponding
pin as output.

Description

Requires Port Expander must be initialized. See Expander_|Init.

// Set Port Expander's PORTA to be output and PORTB to be input

Exan“ﬂe Expander Set DirectionPortAB(0,0x00FF) ;

Expander_Set_ PullUpsPortA

procedure Expander Set PullUpsPortA (ModuleAddress: byte; Data :

Prototype byte) ;

Returns Nothing.

The function sets Port Expander's PortA pull up/down resistors.
Parameters :

Description |- Moduleaddress: Port Expander hardware address, see schematic at the
bottom of this page

- bata : data for choosing pull up/down resistors configuration. Each bit
corresponds to the appropriate pin of the PortA register. Set bit enables pull-up
for corresponding pin.

Requires Port Expander must be initialized. See Expander_|Init.

// Set Port Expander's PORTA pull-up resistors

Example Expander Set PullUpsPortA (0, OxFF);

262 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Expander_Set PullUpsPortB

procedure Expander Set PullUpsPortB(ModuleAddress: byte; Data :
byte);

Prototype

Returns Nothing.

The function sets Port Expander's PortB pull up/down resistors.
Parameters :

Description |- Modulerddress: Port Expander hardware address, see schematic at the
bottom of this page

- bata : data for choosing pull up/down resistors configuration. Each bit
corresponds to the appropriate pin of the PortB register. Set bit enables
pull-up for corresponding pin.

Requires Port Expander must be initialized. See Expander_Init.

// Set Port Expander's PORTB pull-up resistors

Example Expander Set PullUpsPortB (0, OxFF);

Expander_Set_PullUpsPortAB

procedure Expander Set PullUpsPortAB (ModuleAddress: byte;

Prototype PullUps: word);

Returns Nothing.

The function sets Port Expander's PortA and PortB pull up/down resistors.
Parameters :

- ModuleAddress: Port Expander hardware address, see schematic at the

Description | bottom of this page

- pullUps: data for choosing pull up/down resistors configuration. PortA pull
up/down resistors configuration is passed in rul1Ups's higher byte. PortB pull
up/down resistors configuration is passed in pul1Ups's lower byte. Each bit
corresponds to the appropriate pin of the PortA/PortB register. Set bit enables
pull-up for corresponding pin.

Requires Port Expander must be initialized. See Expander_|Init.

// Set Port Expander's PORTA and PORTB pull-up resistors

Example Expander_ Set PullUpsPortAB (0, OxFFFF);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 263

CHAPTER 6
Libraries mikroPascal for 8051

Library Example
The example demonstrates how to communicate with Port Expander MCP23S17.

Note that Port Expander pins A2 A1 AO are connected to GND so Port Expander
Hardware Address is 0.

program PortExpander;

var i1 : byte;

// Port Expander module connections
var SPExpanderRST : sbit at P1.BO;

var SPExpanderCS : sbit at P1.Bl;
// End Port Expander module connections

begin
i := 0;
Spi Init(); // Initialize SPI module
Expander Init(0); // Initialize Port Expander
Expander Set DirectionPortA (0, 0x00); // Set Expander's

PORTA to be output

Expander Set DirectionPortB (0, 0xFF) ; // Set Expander's
PORTB to be input
Expander Set PullUpsPortB (0, 0xFF); // Set pull-ups to

all of the Expander's PORTB pins

while TRUE do // Endless loop
begin
Expander Write PortA(0, 1); // Write 1 to
expander's PORTA
Inc (i) ;
PO := Expander Read PortB(0); // Read expander's

PORTB and write it to PORTO
Delay ms(100);
end;
end.

264 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

HW Connection

MCP23517
1 ~ 28
—1[GRED GRAT Dz?—
z[[z::; mﬂﬂ :: ——] :.? ~ el Ell-—om
4|‘ GPB3 GRAL |7“ [E : i
—|5 GeB4 GPAD |—2;l i i
—|7 GPES GRAZ |—zz [il
—————[Jeres eem[}— —Ilpis > 1
—————{|cPer cPAs I—“ r—r1s —I I
8 o—';[VoD INTA |]l LT 00 1
= Il ves wre [J— [w I
E &= REsET || 18 FLD I m i
FLT 12 1 r 1 [
——] scK az o) i
P15 13 - A1 18 [
Pii[:l:m - 16 E M :l
i &8 o
N CSECILLATOR [u]
i %
—|—|-|—|-|-_’—[XTAL1 1l
Lo [
e & i a
5 = & 5 =) [
7 =0 7|2 By
—E —E G

E
:

or. PORTA =

E:'-)
[+l

S

el

jar]

m

1

Port Expander HW connection

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 265

CHAPTER 6
Libraries mikroPascal for 8051

PS/2 LIBRARY

The mikroPascal for 8051 provides a library for communication with the common
PS/2 keyboard.

Note: The library does not utilize interrupts for data retrieval, and requires the oscil-
lator clock to be at least 6MHz.

Note: The pins to which a PS/2 keyboard is attached should be connected to the
pull-up resistors.

Note: Although PS/2 is a two-way communication bus, this library does not provide
MCU-to-keyboard communication; e.g. pressing the Caps Lock key will not turn on
the Caps Lock LED.

External dependencies of PS/2 Library

The following variables
must be defined in all

. . Description: Example :
projects using PS/2 P P
Library:
var PS2 DATA: sbit; . var PS2 DATA: sbit at
- PS/2 Data line. i
external; P0.BO;
var PS2 CLOCK: sbit; . var PSZﬁCLOCK: sbit
external; PS/2 Clock line. at PO.B1;

Library Routines

- Ps2_Config
- Ps2_Key_ Read

266 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6
Libraries

Ps2_Config

Prototype

procedure Ps2 Config();

Returns

Nothing.

Description

Initializes the MCU for work with the PS/2 keyboard.

Requires

Global variables :

- ps2 paTa : Data signal pin
- ps2 crock : Clock signal pin

must be defined before using this function.

Example

// PS2 pinout definition
var PS2 DATA : sbit at P0.BO;
PS2 CLOCK : sbit at P0.B1;

Ps2 Config(); // Init PS/2

Keyboard

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 267

CHAPTER 6
Libraries mikroPascal for 8051

Ps2_Key_Read

function Ps2 Key Read(var value: byte; var special: byte; var

Prokﬁype pressed: byte): byte;
- 1 if reading of a key from the keyboard was successful
Returns .
- 0 if no key was pressed
The function retrieves information on key pressed.
Parameters :
- value: holds the value of the key pressed. For characters, numerals,
. punctuation marks, and space va1ue will store the appropriate ASCII code.
Description

Routine “recognizes” the function of Shift and Caps Lock, and behaves
appropriately. For special function keys see Special Function Keys Table.

- special: is a flag for special function keys (F1, Enter, Esc, etc). If key pressed
is one of these, special will be set to 1, otherwise 0.

- pressed: is set to 1 if the key is pressed, and 0 if it is released.

Requires PS/2 keyboard needs to be initialized. See Ps2_Config routine.

var value, special, pressed: byte;

// Press Enter to continue:
Example repeat
if (Ps2 Key Read(value, special, pressed)) then
if ((value = 13) and (special = 1)) then break;
until (0=1);

268 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Special Function Keys

Key Value returned Num Lock 29
F1 1 Left Arrow 30
F2 2 Right Arrow 31
F3 3 Up Arrow 32
F4 4 Down Arrow 33
F5 5 Escape 34
F6 6 Tab 35
F7 7
F8 8
F9 9
F10 10
F11 11
F12 12
Enter 13
Page Up 14
Page Down 15
Backspace 16
Insert 17
Delete 18
Windows 19
Ctrl 20
Shift 21
Alt 22
Print Screen 23
Pause 24
Caps Lock 25
End 26
Home 27
Scroll Lock 28

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 269

CHAPTER 6
Libraries

mikroPascal for 8051

Library Example

This simple example reads values of the pressed keys on the PS/2 keyboard and
sends them via UART.

program PS2 Example;

var keydata, special, down : byte;
// PS2 module connections

var PS2 DATA : sbit at P0.BO;

PS2 CLOCK : sbit at P0.B1;
// End PS2 module connections

begin
keydata := 0;
special := 0;
down := 0;
Uart Init (4800); // Initialize UART module at 4800 bps
Ps2 Config(); // Initialize PS/2 Keyboard
Delay ms (100); // Wait for keyboard to finish
while TRUE do // Endless loop
begin

if (Ps2 Key Read(keydata, special, down)) then // If data
was read from PS/2

begin
if (down and (keydata = 16)) then // Backspace read
Uart Write (0x08) // Send Backspace to usart terminal
else
if (down and (keydata = 13)) then // Enter read
Uart Write(13) // Send
carriage return to usart terminal
//Uart Write (10); // Uncomment
this line if usart terminal also expects line feed
// for new line transition
else
if (down and not special and keydata) then // Common
key read
Uart Write(keydata); // Send key to usart terminal
end;
Delay ms(10); // Debounce period
end;
end.

270 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

HW Connection

1 i vCC
[FO.0
[PO.1
{
| >
I =] i
| & é
i o
1 O
[o0 i
[N]
| 8 |
[L |
I._DEC.ILLATCE . |: :|
{ (|
|| xTAL1]
1] enD]

oVCC

Psz
CONNECTOR .-y

NC

Example of PS2 keyboard connection

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 271

CHAPTER 6
Libraries mikroPascal for 8051

RS-485 LIBRARY

RS-485 is a multipoint communication which allows multiple devices to be connect-
ed to a single bus. The mikroPascal for 8051 provides a set of library routines for
comfortable work with RS485 system using Master/Slave architecture. Master and
Slave devices interchange packets of information. Each of these packets contains
synchronization bytes, CRC byte, address byte and the data. Each Slave has
unique address and receives only packets addressed to it. The Slave can never ini-
tiate communication.

It is the user’s responsibility to ensure that only one device transmits via 485 bus at
a time.

The RS-485 routines require the UART module. Pins of UART need to be attached
to RS-485 interface transceiver, such as LTC485 or similar (see schematic at the
bottom of this page).

Library constants:
- START byte value = 150
- STOP byte value = 169

- Address 50 is the broadcast address for all Slaves (packets containing address 50
will be received by all Slaves except the Slaves with addresses 150 and 169).

External dependencies of RS-485 Library

The following variable

must be defined in all

projects using RS-485
Library:

Description: Example :

Control RS-485 Trans-
mit/Receive operation
mode

var rs485 transceive: var rs485 transceive:

sbit; external; sbit at P3.B2;

Library Routines

- RS485master_Init

- RS485master_Receive
- RS485master_Send

- RS485slave_Init

- RS485slave_Receive
- RS485slave_Send

272 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

RS485master_Init

Prototype procedure Rs485master Init();

Returns Nothing.

Description |Initializes MCU as a Master for RS-485 communication.

rs485 transceive variable must be defined before using this function. This pin
is connected to RE/DE input of RS-485 transceiver(see schematic at the bottom
of this page). RE/DE signal controls RS-485 transceiver operation mode. Valid

Requires e o
q values: 1 (for transmitting) and o (for receiving)

UART HW module needs to be initialized. See Uart_|Init.
// rs485 module pinout
var rs485 transceive : sbit at P3.B2; // transmit/receive con-
trol set to port3.bit2

Example S
Uart Init (9600); // initialize usart module
Rs48bmaster Init(); // intialize mcu as a

Master for RS-485 communication

RS485master_Receive

Prototype procedure Rs485master Receive (var data buffer: arrayl 20] of byte);

Returns Nothing.

Receives messages from Slaves. Messages are multi-byte, so this routine must
be called for each byte received.

Parameters :

- data buffer: 7 byte buffer for storing received data, in the following manner:

Description - datal 0..2] : message content
- datal 3] : number of message bytes received, 1-3
- datal 4] : is set to 255 when message is received
- datal 5] : is set to 255 if error has occurred
- datal 6] : address of the Slave which sent the message
The function automatically adjusts data[4] and datal 5] upon every received
message. These flags need to be cleared by software.
Requires MCU must be ini’_tialized as a Master for RS-485 communication. See
RS485master_Init.
var msg : arrayl 20] of byte;
Example

RS485master Receive (msg);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 273

CHAPTER 6
Libraries mikroPascal for 8051

RS485master_Send

Prototype procedure Rs485master Send(var data buffer: arrayl 20] of byte;
yp datalen: byte; slave address: byte);
Returns Nothing.
Sends message to Slave(s). Message format can be found at the bottom of this
page.
e Parameters :
Description
- data buffer: data to be sent
- datalen: number of bytes for transmition. Valid values: 0...3.
- slave address: Slave(s) address
MCU must be initialized as a Master for RS-485 communication. See
RS485master_|Init.
Requires
It is the user’s responsibility to ensure (by protocol) that only one device sends
data via 485 bus at a time.
var msg : arrayl 20] of byte;
Example // send 3 bytes of data to slave with address 0x12
RS485master Send(msg, 3, 0x12);

274 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

RS485slave_Init

Prototype procedure Rs485slave Init(slave address: byte);

Returns Nothing.

Initializes MCU as a Slave for RS-485 communication.
Description |Parameters :

- slave address: Slave address

rs485 transceive variable must be defined before using this function. This pin
is connected to RE/DE input of RS-485 transceiver(see schematic at the bottom
of this page). RE/DE signal controls RS-485 transceiver operation mode. Valid

Requires i o
a values: 1 (for transmitting) and o (for receiving)

UART HW module needs to be initialized. See Uart_|Init.
// rs485 module pinout
var rs485 transceive : sbit at P3.B2; // transmit/receive
control set to port3.bit2

Example o
Uart Init (9600); // 1initialize usart module
Rs485slave Init (160); // intialize mcu as a Slave

for RS-485 communication with address 160

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 275

CHAPTER 6
Libraries mikroPascal for 8051

RS485slave Receive

Prototype procedure RS485slave Receive (var data buffer: arrayl 20] of byte);

Returns Nothing.

Receives messages from Master. If Slave address and Message address field
don't match then the message will be discarded. Messages are multi-byte, so
this routine must be called for each byte received.

Parameters :

- data buffer: 6 byte buffer for storing received data, in the following manner:

Description
- datal 0..2] : message content
- datal 3] : number of message bytes received, 1-3
- datal 4] : is set to 255 when message is received
- datal 5] : is set to 255 if error has occurred
The function automatically adjusts datal 4] and datal 5] upon every received
message. These flags need to be cleared by software.
Requires MCU must be initialized as a Slave for RS-485 communication. See
q RS485slave_Init.
var msg : array| 20] of byte;
Example

RS485slave Read (msq) ;

276 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

RS485slave_Send

Prototype

procedure Rs485slave Send(var data buffer: arrayl 20] of byte;
datalen : byte);

Returns

Nothing.

Description

Sends message to Master. Message format can be found at the bottom of this
page.

Parameters :

- data buffer: data to be sent
- datalen: number of bytes for transmition. Valid values: 0...3.

Requires

MCU must be initialized as a Slave for RS-485 communication. See
RS485slave_|Init. It is the user’s responsibility to ensure (by protocol) that only
one device sends data via 485 bus at a time.

Example

var msg : arrayl 8] of byte;

// send 2 bytes of data to the master
RS485slave Send(msg, 2);

Library Example

This is a simple demonstration of RS485 Library routines usage.

Master sends message to Slave with address 160 and waits for a response. The Slave accepts
data, increments it and sends it back to the Master. Master then does the same and sends incre-

mented data back to Slave, etc.

Master displays received data on PO, while error on receive (0xAA) and number of consecutive
unsuccessful retries are displayed on P1. Slave displays received data on PO, while error on
receive (0xAA) is displayed on P1. Hardware configurations in this example are made for the

Easy8051B board and AT89S8253.

RS485 Master code:

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

277

CHAPTER 6
Libraries

mikroPascal for 8051

program RS485 Master;
uses Lib UART t1;

var dat : arrayl 10] of byte ; // Buffer for receving/sending messages
counter, J : byte;
count : longint;

// RS485 module connections

var rs485 transceive : sbit at P3.B2; // Transmit/Receive
control set to P3.2

// End RS485 module connections

/)= Interrupt routine
procedure UartRxHandler (); ORG 0x23;
begin
EA := 0; // Clear global interrupt enable flag
if (RI <> 0) then // Test UART receive interrupt flag
begin
Rs485master Receive(dat);// UART receive interrupt detected,
// receive data using RS485 communication
RI := 0; // Clear UART interrupt flag
end;
EA := 1; // Set global interrupt enable flag
end;
begin
count := 0;
PO := 0; // Clear ports
Pl := 0;
Uart Init(9600); // Initialize UART module at 9600 bps

Delay ms (100);

Rs485master Init(); // Intialize MCU as RS485 master
dat[0] := 0x55; // Fill buffer
dat[1] := 0x00;

dat[2] := 0x00;

dat[4] := 0; // Ensure that message received flag is 0
dat[5] := 0; // Ensure that error flag is 0
dat[6] := 0;

Rs485master Send(dat,1,160); // Send message to slave with

address 160
// message data is stored in dat
// message is 1 byte long

278 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries

ES := 1; // Enable UART interrupt
RI := 0; // Clear UART RX interrupt flag
EA := 1; // Enable interrupts
while TRUE do // Endless loop

begin // Upon completed valid message receiving

// datal 4] is set to 255
Inc (count) ; // Increment loop pass counter

if (dat[5] <> 0) then // If error detected, signal it by
P1 := OxAA; // setting PORT1 to OxAA

if (dat[4] <> 0) then // If message received successfully

begin
count := 0; // Reset loop pass counter
dat[4] := 0; // Clear message received flag
j := dat[3] ; // Read number of message received bytes
for counter := 1 to j do
PO := dat[counter-1]; // Show received data on PORTO
dat[0] := dat[0] + 1; // Increment first

received byte dat[0]

Delay ms (10);

Rs485master Send(dat,1,160); // And send it back
to Slave
end;
if (count > 10000) then // If loop is passed
100000 times with
begin // no message received
Inc (P1l); // Signal receive message failure on PORTL
count := 0; // Reset loop pass counter
Rs485master Send(dat,1,160); // Retry send message
if (pP1 > 10) then // If sending failed 10 times
begin
Pl := 0; // Clear PORT1
Rs485master Send(dat,1,50); // Send message on

broadcast address
end;
end;
end;
end.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 279

CHAPTER 6
Libraries mikroPascal for 8051

RS485 Slave code:
program RS485 Slave;

uses Lib UART tl1;
var dat : arrayl 9] of byte; // Buffer for receving/sending messages
counter, j : byte;

// RS485 module connections

var rs485 transceive : sbit at P3.B2; // Transmit/Receive control
set to P3.2

// End RS485 module connections

[)==mmm Interrupt routine
procedure UartRxHandler (); ORG 0x23;
begin
EA := 0; // Clear global interrupt enable flag
if(RI <> 0) then // Test UART receive interrupt flag
begin
Rs485slave Receive (dat);// UART receive interrupt detected,
// receive data using RS485 communication
RI := 0; // Clear UART interrupt flag
end;
EA := 1; // Set global interrupt enable flag
end;
begin
PO := 0; // Clear ports
Pl := 0;
Uart Init (9600); // Initialize UART module at 9600 bps
Delay ms (100);
Rs485slave Init (160); // Intialize MCU as slave, address 160
dat[4] := 0; // ensure that message received flag is 0
dat[5] := 0; // ensure that error flag is 0
ES := 1; // Enable UART interrupt
RI := 0; // Clear UART RX interrupt flag
EA := 1; // Enable interrupts
while TRUE do // Endless loop
begin

// Upon completed valid message receiving
// datal 4] is set to 255
if (dat[5] <> 0) then // If error detected, signal it by
Pl := OxAA; // setting PORT1 to OxAA

280 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries
if (dat[4] <> 0) then // If message received successfully
begin
dat[4] := 0; // Clear message received flag
J = dat[3] ; // Read number of message received bytes
for counter 1 to j do
PO := dat[counter-1]; // Show received data on PORTO
dat[0] := dat[0] + 1; // Increment received dat[0]
Delay ms (10);
Rs485slave Send(dat,1); // And send back to Master
end;

end;
end.

HW Connection

Shielded pair
no longer than 300m

/

=
]
I3
E
n
]
11

vee [FoVCC

1GE
1GER
| Paz

€G28S681V

T e e e § e § e e e e e e e

Example of interfacing PC to 8051 MCU via RS485 bus with LTC485 as
RS-485 transceiver

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 281

CHAPTER 6
Libraries mikroPascal for 8051

Message format and CRC calculations

Q: How is CRC checksum calculated on RS485 master side?

START BYTE := 0x96; // 10010110
STOP BYTE := O0xA9; // 10101001
PACKAGE:

START BYTE 0x96

ADDRESS

DATALEN

[DATA1] // 1f exists
[DATA2] // 1if exists
[DATA3] // if exists
CRC

STOP BYTE O0xA9

DATALEN bits

bit7 := 1 MASTER SENDS
0 SLAVE SENDS
bit6 := 1 ADDRESS WAS XORed with 1, IT WAS EQUAL TO START BYTE or
STOP BYTE
0 ADDRESS UNCHANGED
bit5 := 0 FIXED
bit4 := 1 DATA3 (if exists) WAS XORed with 1, IT WAS EQUAL TO

START BYTE or STOP BYTE

0 DATA3 (if exists) UNCHANGED
bit3 := 1 DATA2 (if exists) WAS XORed with 1, IT WAS EQUAL TO
START BYTE or STOP BYTE

0 DATA2 (if exists) UNCHANGED
bit2z := 1 DATAl (if exists) WAS XORed with 1, IT WAS EQUAL TO
START BYTE or STOP BYTE

0 DATAl (if exists) UNCHANGED
pbitlbit0 := 0 to 3 NUMBER OF DATA BYTES SEND

CRC generation

crc_send := datalen xor address;

crc _send := crc send xor data[l 0] ; // 1f exists
crc_send := crc_send xor datal 1] ; // if exists
crc_send := crc_send xor data[2] ; // if exists
crc_send := not crc_send;

if ((crc_send = START BYTE) or (crc send = STOP BYTE)) then
Inc(crc_send);

NOTE : DATALEN<4..0> can not take the START_BYTE<4..O> or
STOP BYTE<4..0> values.

282 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

SOFTWARE I’C LIBRARY

The mikroPascal for 8051 provides routines for implementing Software | C commu-
nication. These routines are hardware independent and can be used with any MCU.
The Software | C library enables you to use MCU as Master in | C communication.
Multi-master mode is not supported.

Note: This library implements time-based activities, so interrupts need to be dis-
abled when using Software | C.

Note: All | C Library functions are blocking-call functions (they are waiting for | C
clock line to become logical one).

Note: The pins used for | C communication should be connected to the pull-up
resistors. Turning off the LEDs connected to these pins may also be required.

External dependecies of Soft_I2C Library

The following variables
must be defined in all
projects using Soft_I2C
Library:
var Soft I2C Scl:

sbit; eXEerngl;
var Soft I2C Sda:
sbit; exgerngl;

Description: Example :

var Soft I2C Scl:
sbit at P1.B3;
var Soft I2C Sda:
sbit at P1.B4;

Soft | C Clock line.

Soft | C Data line.

Library Routines

- Soft_12C_Init

- Soft_12C_Start
- Soft_12C_Read
- Soft_12C_Write
- Soft_12C_Stop

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 283

CHAPTER 6
Libraries mikroPascal for 8051

Soft_I2C_Init

Prototype |[procedure soft I2C Init();

Returns Nothing.

Description |Configures the software | C module.

Ssoft 12C scl and soft 12C sda variables must be defined before using this

Requires :
q function.
// soft i2c pinout definition
var Soft I2C Scl : sbit at P1.B3;
Example Soft I2C Sda : sbit at P1.B4;

Soft I2C Init();

Soft_I2C_Start

Prototype procedure Soft I2C Start();

Returns Nothing.

Description |Determines if the | C bus is free and issues START signal.

Software | C must be configured before using this function. See Soft_I2C _Init

Requires .
9 routine.
Example // Issue START signal
P Soft I2C Start();
Soft_12C_Read

Prototype function Soft I2C Read(ack: word): byte;

Returns One byte from the Slave.

Reads one byte from the slave.

e Parameters :
Description
- ack: acknowledge signal parameter. If the ack==0 not acknowledge signal will
be sent after reading, otherwise the acknowledge signal will be sent.
Soft I12C must be configured before using this function. See Soft_lzC_Init routine.
Requires
Also, START signal needs to be issued in order to use this function. See
Soft_12C_Start routine.
var take : word;
Example // . Read data and send the not acknowledge signal

take := Soft I2C Read(0);

284 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Soft_12C_Write

Prototype function Soft I2C Write(Data: byte): byte;

- 0 if there were no errors.
Returns e .. 2
- 1 if write collision was detected on the 14C bus.

Sends data byte via the 12C bus.
Description |Parameters :

- Data: data to be sent

Soft I12C must be configured before using this function. See Soft_I2C_Init routine.

Requires ,
Also, START signal needs to be issued in order to use this function. See
Soft_12C_Start routine.
var data, error : byte;
Exan“ﬂe error := Soft I2C Write (data):;
error := Soft I2C Write (0OxA3);
Soft_I12C_Stop

Prototype |[procedure Soft I2C Stop();

Returns Nothing.

Description [Issues STOP signal.

Requires Soft 12C must be configured before using this function. See Soft_lzc_lnit routine.

// Issue STOP signal
Soft I2C Stop();

Example

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 285

CHAPTER 6
Libraries

mikroPascal for 8051

Library Example

The example demonstrates Software | C Library routines usage. The 8051 MCU is
connected (SCL, SDA pins) to PCF8583 RTC (real-time clock). Program reads date
and time are read from the RTC and prints it on LCD.

program RTC Read;

var seconds, minutes, hours, day, month, year : byte; // Global
date/time variables

// Software I2C connections

var Soft I2C Scl : sbit at P1.B3;
var Soft I2C Sda : sbit at P1.B4;
// End Software I2C connections

// LCD module connections
var LCD RS : sbit at P2.BO;
var LCD EN : sbit at P2.Bl1;

var LCD D7 : sbit at P2.B5;
var LCD D6 : sbit at P2.B4;
var LCD D5 : sbit at P2.B3;
var LCD D4 : sbit at P2.B2;
// End LCD module connections

[/ ==~ Reads time and date information from RTC
(PCF8583)
procedure Read Time () ;
begin
Soft I2C Start(); // Issue start signal
Soft I2C Write (0xA0); // Address PCF8583, see PCF8583
datasheet
Soft I2C Write(2); // Start from address 2
Soft I2C Start(); // Issue repeated start signal
Soft I2C Write (0xAl); // Address PCF8583 for reading
R/W=1
seconds := Soft I2C Read(l); // Read seconds byte
minutes := Soft I2C Read(l); // Read minutes byte
hours := Soft I2C Read(l); // Read hours byte
day := Soft I2C Read(1l); // Read year/day byte
month := Soft I2C Read(0); // Read weekday/month byte
Soft I2C_Stop(); // Issue stop signal
end;
[/ Formats date and time
procedure Transform Time () ;

286 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries
begin
seconds = ((seconds and 0xF0) shr 4)*10 + (seconds and 0x0F);
// Transform seconds
minutes = ((minutes and O0xF0) shr 4)*10 + (minutes and O0xO0F);

// Transform

hour

// Transform

year
day

// Transform
month
// Transform

months

s = ((hours and 0xFO0) shr 4)*10 + (hours and 0xO0F) ;
hours
= (day and 0xC0O) shr 6; // Transform year
= ((day and 0x30) shr 4)*10 + (day and O0xO0F);
day
= ((month and 0x10) shr 4)*10 + (month and O0xOF);
month

end;
[/=mmmmm s Output values to LCD
procedure Display Time () ;
begin
Led Chr(l, 6, (day / 10) + 48); // Print tens digit of
day variable
Led Chr(l, 7, (day mod 10) + 48); // Print oness digit of
day variable
Led Chr (1, 9, (month / 10) + 48);
Lcd Chr (1,10, (month mod 10) + 48);
Lcd Chr (1,15, year + 56); // Print year vaiable +
8 (start from year 2008)
Led Chr (2, 6, (hours / 10) + 48);
Lcd Chr(2, 7, (hours mod 10) + 48);
Lcd Chr (2, 9, (minutes / 10) + 48);
Lecd Chr(2,1 (minutes mod 10) + 48);
Lcd Chr (2, 12 (seconds / 10) + 48);
Lcd Chr (2,13, (seconds mod 10) + 48);
end;
/)= ——— Performs project-wide init

procedure Init Main();

begin

Soft I2C Init();

Led
_Cmd (LCD_CLEAR) ;
Cmd (LCD_CURSOR OFF) ;

Lcd
Lcd

LCD
LCD

LCD

LCD

LCD_
LCD_
LCD

end;

Out

// Initialize Soft I2C communication

// Initialize LCD
// Clear LCD display
// Turn cursor off

Init () ;

,'Date // Prepare and output static text on LCD

);
Pt
,'Tlme
7);
1,':");
2,'200) ;

’ ')
Chr
Chr
Oout
Chr

Chr

(1
(1,
(1,
(2, ")
(21
(21
(1

1
8,
11
1
8
1
1

Oout

4

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

287

CHAPTER 6

Libraries mikroPascal for 8051
/)= ———— Main procedure
begin
Init Main(); // Perform initialization
while TRUE do // Endless loop
begin
Read Time () ; // Read time from RTC (PCF8583)
Transform Time () ; // Format date and time
Display Time(); // Prepare and display on LCD
Delay ms (1000); // Wait 1 second
end;
end.

288 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries

SOFTWARE SPI LIBRARY

The mikroPascal for 8051 provides routines for implementing Software SPI commu-
nication. These routines are hardware independent and can be used with any MCU.
The Software SPI Library provides easy communication with other devices via SPI:
A/D converters, D/A converters, MAX7219, LTC1290, etc.

Library configuration:

- SPI to Master mode

- Clock value = 20 kHz.

- Data sampled at the middle of interval.
- Clock idle state low.

- Data sampled at the middle of interval.
- Data transmitted at low to high edge.

Note: The Software SPI library implements time-based activities, so interrupts need
to be disabled when using it.

External dependencies of Software SPI Library

The following variables
must be defined in all -
. . Description: Example :
projects using Software
SPI Library:

var SoftSpi SDI: Data In line var SoftSpi SDI: sbit
sbit; external; ' at P0.B4;

var SoftSpi SDO: . var SoftSpi SDO: sbit
sbit; external; Data Out line. at P0.B5;

var SoftSpi CLK: . var SoftSpi CLK: sbit
sbit; external; Clock line. at P0.B3;

Library Routines

- Soft_Spi_Init
- Soft_Spi_Read
- Soft_Spi_Write

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 289

CHAPTER 6

Libraries mikroPascal for 8051
Soft_Spi_Init
Prototype |[procedure Soft SPI Init();
Returns Nothing.
Description |Configures and initializes the software SPI module.
. SoftSpi CLK, SoftSpi SDI and softSpi SDO variables must be defined before
Requires . . . - -
using this function.
// soft spi pinout definition
var SoftSpi SDI : sbit at P0.B4;
Example SoftSpi SDO : sbit at P0.B5;
P SoftSpi CLK : sbit at P0.B3;
Soft_SPI_Init(); // Init Soft_SPI
Soft_Spi_Read

Prototype function Soft Spi Read(sdata: byte): byte;

Returns Byte received via the SPI bus.

This routine performs 3 operations simultaneously. It provides clock for the Soft-
ware SPI bus, reads a byte and sends a byte.

Description

Parameters :
- sdata: data to be sent.
Requires Soft SPI must be initialized before using this function. See Soft_Spi_Init routine.
var data read : byte;
data send : byte;
Example // Read a byte and assign it to data read variable
// (data_send byte will be sent via SPI during the Read opera-
tion)

data read :

Soft Spi Read(data send);

290 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Soft_Spi_Write

Prototype procedure Soft Spi Write(sdata: byte);

Returns Nothing.

This routine sends one byte via the Software SPI bus.
Description |Parameters :

- sdata: data to be sent.

Requires Soft SPI must be initialized before using this function. See Soft_Spi_Init routine.

// Write a byte to the Soft SPI bus

Example Soft Spi Write (0xAR);

Library Example

This code demonstrates using library routines for Soft. SPI communication. Also, this example
demonstrates working with Microchip's MCP4921 12-bit D/A converter.

program Soft SPI;

// DAC module connections

var Chip Select : sbit at P3.B4;
SoftSpi CLK : sbit at P1.B7;
SoftSpi SDI : sbit at P1.B6;
SoftSpi SDO : sbit at P1.B5;

// End DAC module connections

var value : word;

procedure InitMain();

begin
PO := 255; // Set PORTO as input
Soft SPI Init(); // Initialize Soft SPI
end;
// DAC increments (0..4095) --> output voltage (0..Vref)

procedure DAC Output (valueDAC : word);
var temp : byte;
begin
Chip Select := 0; // Select DAC chip

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 291

CHAPTER 6
mikroPascal for 8051

Libraries
// Send High Byte
temp := (valueDAC shr 8) and 0xO0F; // Store valueDAC[11..8]
to templ 3..0]
temp := temp or 0x30; // Define DAC setting, see MCP4921 datasheet
Soft SPI Write (temp); // Send high byte via Soft SPI

// Send Low Byte

temp := valueDAC; // Store valueDAC[7..0] to temp[7..0]
Soft SPI Write (temp); // Send low byte via Soft SPI
Chip Select := 1; // Deselect DAC chip
end;
begin
InitMain () ; // Perform main initialization
value := 2048; // When program starts, DAC gives
// the output in the mid-range
while TRUE do // Endless loop
begin
if ((P0O_O = 0) and (value < 4095)) then // If PO.0 is
connected to GND
Inc (value) // increment value
else
begin
if ((P01 = 0) and (value > 0)) then // If PO.1 is
connected to GND
Dec (value) ; // decrement value
end;
DAC_Output (value) ; // Perform output
Delay ms (10); // Slow down key repeat pace
end;
end.

292 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6
Libraries

SOFTWARE UART LIBRARY

The mikroPascal for 8051 provides routines for implementing Software UART com-
munication. These routines are hardware independent and can be used with any
MCU. The Software UART Library provides easy communication with other devices

via the RS232 protocol.

Note: The Software UART library implements time-based activities, so interrupts
need to be disabled when using it.

External dependencies of Software UART Library

The following variables
must be defined in all

sbit; external;

. . Description: Example :
projects using Software P P
UART Library:
var Soft Uart RX: . . var Soft Uart RX:
- - Receive line. = -

sbit at P3.BO;

var Soft Uart TX:
sbit; external;

Transmit line.

var Soft Uart TX:

sbit at P3.B1;

Library Routines

- Soft_Uart_Init
- Soft_Uart_Read
- Soft_Uart_Write

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 293

CHAPTER 6
Libraries mikroPascal for 8051

Soft_Uart_Init

Prototype function Soft Uart Init (baud rate: dword; inverted: byte): word;

Returns Nothing.

Configures and initializes the software UART module.

Parameters :

Description |_ baud rate: baud rate to be set. Maximum baud rate depends on the MCU’s
clock and working conditions.

- inverted: inverted output flag. When set to a non-zero value, inverted logic
on output is used.

Global variables:

- Soft Uart RX receiver pin

Requires : ;
- Soft Uart Tx transmiter pin

must be defined before using this function.

// Initialize Software UART communication on pins Rx, Tx, at 9600
Example bps
Soft Uart Init (9600, 0);

294 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

Soft_Uart_Read

Prototype

function Soft Uart Read(var error: byte): byte;

Returns

Byte received via UART.

Description

The function receives a byte via software UART. This is a blocking function call
(waits for start bit).

Parameters :
- error: Error flag. Error code is returned through this variable. Upon successful

transfer this flag will be set to zero. An non zero value indicates communication
error.

Requires

Software UART must be initialized before using this function. See the
Soft_Uart_Init routine.

Example

var data : byte;
error : byte;

// wait until data is received
repeat

data := Soft Uart Read(error);
until (error=0);

// Now we can work with data:
if (data) then
begin

end

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

295

CHAPTER 6
Libraries mikroPascal for 8051

Soft_Uart_Write

Prototype procedure Soft Uart Write (udata: byte);

Returns Nothing.

This routine sends one byte via the Software UART bus.
Description |Parameters :

- udata: data to be sent.

Software UART must be initialized before using this function. See the
Soft_Uart_Init routine.

Requires Be aware that during transmission, software UART is incapable of receiving
data — data transfer protocol must be set in such a way to prevent loss of infor-
mation.

var some byte : byte;

Example // Write a byte via Soft Uart
some byte := 0x0A;
Soft Uart Write(some byte);

296 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Library Example

This example demonstrates simple data exchange via software UART. If MCU is
connected to the PC, you can test the example from the mikroPascal for 8051
USART Terminal Tool.

program Soft UART;

// Soft UART connections

var Soft Uart RX : sbit at P3.BO;
var Soft Uart TX : sbit at P3.Bl;
// End Soft UART connections

var i, error, byte read : byte; // Auxiliary variables
begin
Soft Uart Init (4800, 0); // Initialize Soft UART
at 4800 bps
for 1 := 'z' downto i >= 'A' do // Send bytes from 'z'
downto 'A'
begin

Soft Uart Write(i);
Delay ms (100);

end;
while TRUE do // Endless loop
begin
byte read := Soft Uart Read (error); // Read byte, then
test error flag
if (error <> 0) then // 1If error was detected
PO := 0xAA // signal it on PORTO
else
Soft Uart Write (byte read); // If error was not
detected, return byte read
end;

end.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 297

CHAPTER 6
Libraries mikroPascal for 8051

SOUND LIBRARY

The mikroPascal for 8051 provides a Sound Library to supply users with routines necessary for
sound signalization in their applications. Sound generation needs additional hardware, such as
piezo-speaker (example of piezo-speaker interface is given on the schematic at the bottom of this
page).

External dependencies of Sound Library

The following variables
must be defined in all
projects using Sound

Library:

Description: Example :

var Sound Play Pin:
sbit; external;

var Sound Play Pin:

Sound output pin. sbit at PO.B3:

Library Routines

- Sound_Init
- Sound_Play

Sound_Init

Prototype [procedure Sound Init();

Returns Nothing.

Description |Configures the appropriate MCU pin for sound generation.

Requires Sound_Play_Pin variable must be defined before using this function.

// Initialize the pin P0.3 for playing sound

var Sound Play Pin : sbit at PO0.B3;
Example - -

Sound Init();

298 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
Libraries

mikroPascal for 8051

Sound_Play

Prototype procedure Sound Play(var freq in Hz: word; var duration ms: word);

Returns Nothing.
Generates the square wave signal on the appropriate pin.

i Parameters :

Description
- freq in Hz: signal frequency in Hertz (Hz)
- duration ms: signal duration in miliseconds (ms)
In order to hear the sound, you need a piezo speaker (or other hardware) on

Requires designated port. Also, you must call Sound_Init to prepare hardware for output
before using this function.

E I // Play sound of 1KHz in duration of 100ms

xample Sound_Play (1000, 100);

Library Example

The example is a simple demonstration of how to use the Sound Library for playing tones on a

piezo speaker.

program Sound;

// Sound connections
var Sound Play Pin
// End Sound connections

procedure Tonel () ;

sbit at P0.B3;

begin

Sound Play (500,

end;

200) ; // Frequency = 500Hz, Duration = 200ms

procedure Tone2 () ;

begin

Sound Play (555,

end;

200) ; // Frequency = 555Hz, Duration = 200ms

procedure Tone3 () ;

begin

Sound Play (625,

end;

procedure Melody () ;

begin

200) ; // Frequency = 625Hz, Duration = 200ms

// Plays the melody "Yellow house"

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

299

CHAPTER 6
Libraries mikroPascal for 8051

; Tone3();
; Tone3 () ;

; Tone3();

; Tone2(); Tonel();

procedure ToneA() ; // Tones used in Melody2 function
begin
Sound Play (1250, 20);
end;

procedure ToneC() ;
begin
Sound Play (1450, 20);
end;
procedure ToneE () ;
begin
Sound Play (1650, 80);
end;

procedure Melody2() ; // Plays Melody?2
var i : word;
begin
while i <> 1 do
begin
Dec (1) ;
ToneA () ;
ToneC () ;
ToneE ()
end;

end;
begin
Pl := 255; // Configure PORT1 as input

Sound Init(); // Initialize sound pin

Sound Play (2000, 1000); // Play starting sound, 2kHz, 1 second

while TRUE do // endless loop
begin
if (P17 = 0) then // If P1l.7 is pressed play Tonel
begin
Tonel () ;
while (P1_7 = 0) do nop ; // Wait for button to

be released
end;

300 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries
if (P1 6 = 0) then // If Pl.6 is pressed play Tone2
begin
Tone2 () ;
while (P1 6 = 0) do nop; // Wait for button to
be released
end;
if (P1 5 = 0) then // If P1.5 is pressed play Tone3
begin
Tone3 () ;
while (P1 5 = 0) do nop ; // Wait for button to
be released
end;
if (P1 4 = 0) then // If Pl.4 is pressed play Melody?2
begin
Melody2 () ;
while (P1 4 = 0) do nop; // Wait for button to
be released
end;
if (P1_3 = 0) then // If P1.3 is pressed play Melody
begin
Melody () ;
while (P1 3 = 0) do nop; // Wait for button to
be released
end;
end;
end.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

301

CHAPTER 6
Libraries mikroPascal for 8051

HW Connection

44
| W= g
PIEZO — A
SPEAKER
= 1 ~ e VCC
1
— 1
=l " pi.B3 [P13
— {le1.4 P03
| e P1BA [|Fis >
{lp16 _l
":.;_l_'.:; F1.B5 —| P17 m
— ' P1.BE
a o i m i
6"‘.:. P1.B7 E % %
i o |
2
R0]
vgc [MI—[XTAL1 |
] eno]

Example of Sound Library sonnection

302 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051

Libraries

SPI LIBRARY

mikroPascal for 8051 provides a library for comfortable with SPI work in Master mode. The 8051
MCU can easily communicate with other devices via SPIl: A/D converters, D/A converters,
MAX7219, LTC1290, etc.

Library Routines

- Spi_Init
- Spi_Init_Advanced
- Spi_Read
- Spi_Write
Spi_Init
Prototype procedure Spi Init();
Returns Nothing.
This routine configures and enables SPI module with the following settings:
- master mode
Describtion |~ clock idle low
P - 8 bit data transfer
- most significant bit sent first
- serial output data changes on idle to active transition of clock state
- serial clock = fosc/128 (fosc/64 in x2 mode)
Requires MCU must have SPI module.
// Initialize the SPI module with default settings
Example . . .
Spi Init();

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 303

CHAPTER 6
Libraries

mikroPascal for 8051

Spi_Init_Advanced

Prototype procedure Spi Init Advanced(adv_setting: byte)
Returns Nothing.
This routine configures and enables the SPI module with the user defined settings.
Parameters :
- adv_setting: SPI module configuration flags. Predefined library constants
(see the table below) can be ORed to form appropriate configuration value.
. - Predefined libra
Bit | Mask Description y
const
Master/slave [4] and clock rate select| 1:0] bits
0x10 Sck = Fosc/4 (Fosc/2 in x2 MASTER OSC DIVA
mode), Master mode - -
Sck = F 16 (f/8 i 2 de),
4, 1, | ox11 |>° osc/ (£/8 in x2 mode) MASTER OSC DIV16
0 Master mode - -
0x12 Sck = Fosc/64 (f/32 in x2 mode), MASTER 0OSC DIV64
Master mode
Description Sck = Fosc/128 (f/64 in x2
0x13 MASTER OSC DIV128
mode), Master mode — —
SPI clock phase
Data changes on idle to active
2 0x00 C IDLE 2 ACTIVE
transition of the clock
Data changes on active to idle
0x04 C ACTIVE 2 IDLE
transition of the clock - =
SPI clock polarity
3 0x00 |Clock idle level is low CLK_IDLE LOW
0x08 |Clock idle level is high CLK_IDLE HIGH
Data order
5 0x00 |Most significant bit sent first |DATA ORDER MSB
0x20 |Least significant bit sent first |DATA ORDER LSB
Requires MCU must have SPI module.
// Set SPI to the Master Mode, clock = Fosc/4 , clock IDLE state
Example low and data transmitted at low to high clock edge:
P Spi Init Advanced(MASTER OSC DIV4 or DATA ORDER MSB or
CLK_IDLE LOW or IDLE 2 ACTIVE);

304 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroPascal for 8051
Spi_Read
Prototype function Spi Read(buffer: byte): byte;
Returns Received data.
Reads one byte from the SPI bus.
Description Parameters :
- buffer: dummy data for clock generation (see device Datasheet for SPI
modules implementation details)
. SPI module must be initialized before using this function. See Spi_lInit and
Requires R .
Spi_Init_Advanced routines.
// read a byte from the SPI bus
Example var take, dummyl : byte ;
éaill;e := Spi Read(dummyl) ;
Spi_Write
Prototype |[procedure Spi Write(wrdata: byte);
Returns Nothing.
Writes byte via the SPI bus.
Description |Parameters :
- wrdata: data to be sent
. SPI module must be initialized before using this function. See Spi_Init and
Requires R .
Spi_Init_Advanced routines.
// write a byte to the SPI bus
Example var buffer : byte;
Spl Write (buffer):;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

305

CHAPTER 6
Libraries mikroPascal for 8051

Library Example

The code demonstrates how to use SPI library functions for communication between SPI
module of the MCU and MAX7219 chip. MAX7219 controls eight 7 segment displays.

program SPI;

// Serial 7-seg Display connections
var CHIP SEL : sbit at P1.BO; // Chip Select pin definition
// End Serial 7-seg Display connections

procedure Select max () ; // Function for selecting MAX7219
begin
CHIP SEL := 0;
Delay us(1);
end;

procedure Deselect max () ; // Function for deselecting MAX7219
begin
Delay us(1);
CHIP SEL := 1;
end;

procedure Max7219 init() ; // Initializing MAX7219
begin
Select max();
Spi Write (0x09); // BCD mode for digit decoding
Spi Write (OxFF);
Deselect max();

Select max();

Spi Write (0x0A);

Spi Write (0xOF); // Segment luminosity intensity
Deselect max();

Select max();

Spi Write (0x0B);

Spi Write (0x07); // Display refresh
Deselect max();

Select max();

Spi Write (0x0C);

Spi Write (0x01); // Turn on the display
Deselect max();

Select max();
Spi Write (0x00);

Spi Write (0xFF); // No test
Deselect max();
end;

306 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

var digit position, digit value : byte;
begin
Spi Init(); // Initialize SPI module, standard configuration
// Instead of SPI init, you can use SPI_init Advanced
as shown below
// Spi Init Advanced(MASTER OSC DIV4 or
DATA ORDER MSB or CLK_IDLE LOW or IDLE 2 ACTIVE);
Max7219 init(); // Initialize max7219

while TRUE do

begin // Endless loop
for digit value := 0 to 9 do
begin
for digit position := 8 downto 1 do
begin
Select max(); // Select max7219
Spi Write(digit position); // Send digit position
Spi Write(digit value); // Send digit wvalue
Deselect max(); // Deselect max7219
Delay ms (300);
end;
end;
end;

end.

HW Connection

V{?C
DIS7T DIs6 DISS DIS4
.
L:[)]:: —E po " wee %lI—GVCC
P11 Pr.O
E Fa N foe ol
13
| '[DIGE EEGC ;!%‘ ——{lris > po.s [1
=g e v = m WCC :[[:.1;1 - o5 %
| 'f3§ ;:;%i o [ast b Eﬁ:
*H oo SEGH]E\ [rap g Ea [J
Sow et IO
“[oIzt SEGA ;!1—1\ [paa M azz [0
[ettes o |f eas eyy p2all
Tz R
[par pas]
XTAL Pz]
1 _;{MD pzo [1

SPI HW connection

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 307

CHAPTER 6

Libraries mikroPascal for 8051

SPI ETHERNET LIBRARY

The Enc28J60 is a stand-alone Ethernet controller with an industry standard Serial
Peripheral Interface (SPI™). It is designed to serve as an Ethernet network interface
for any controller equipped with SPI.

The eEnc28J60 meets all of the IEEE 802.3 specifications. It incorporates a number
of packet filtering schemes to limit incoming packets. It also provides an internal
DMA module for fast data throughput and hardware assisted IP checksum calcula-
tions. Communication with the host controller is implemented via two interrupt pins
and the SPI, with data rates of up to 10 Mb/s. Two dedicated pins are used for LED
link and network activity indication.

This library is designed to simplify handling of the underlying hardware (ENC28J60).
It works with any 8051 MCU with integrated SPI and more than 4 Kb ROM memo-

ry.
SPI Ethernet library supports:

- IPv4 protocol.

- ARP requests.

- ICMP echo requests.

- UDP requests.

- TCP requests (no stack, no packet reconstruction).
- packet fragmentation is NOT supported.

Note: The appropriate hardware SPI module must be initialized before using any of
the SPI Ethernet library routines. Refer to Spi Library.

The following variables
must be defined in all
projects using SPI Eth-
ernet Library:

Description: Example :

var Spi Ethernet CS
sbit; external; sfr;

: |ENC28J60 chip select

pin.

var Spi Ethernet CS :
sbit at P1.Bl; sfr;

var Spi Ethernet RST :

sbit; external; sfr;

ENC28J60 reset pin.

var Spi Ethernet RST
: sbit at P1.BO; sfr;

308 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

The following routines

must be defined in all

project using SPI Eth-
ernet Library:

Description: Example :

function
Spi Ethernet UserTCP
remoteHost : "“byte, .
(Y Refer to the library
example at the bottom
remotePort : word,) .
TCP request handler. of this page
for code
localPort : word,

implementation.

regqLength : word):

word;
function
Spi Ethernet UserUDP
remoteHost : “byte .
(Y&, Refer to the library
example at the bottom
remotePort : word,)
UDP request handler. of this page
for code
destPort : word,))
implementation.

reglength : word):

word;

Library Routines

- Spi_Ethernet_Init

- Spi_Ethernet_Enable

- Spi_Ethernet_Disable

- Spi_Ethernet_doPacket

- Spi_Ethernet_putByte

- Spi_Ethernet_putBytes

- Spi_Ethernet_putString

- Spi_Ethernet_putConstString
- Spi_Ethernet_putConstBytes
- Spi_Ethernet_getByte

- Spi_Ethernet_getBytes

- Spi_Ethernet_UserTCP

- Spi_Ethernet_UserUDP

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 309

CHAPTER 6
Libraries mikroPascal for 8051

Spi_Ethernet_Init

procedure Spi Ethernet Init(mac: "“byte; ip: “byte; fullDuplex:
byte);

Prototype

Returns Nothing.

This is MAC module routine. It initializes enc28J60 controller. This function is
internaly splited into 2 parts to help linker when coming short of memory.

ENC28J60 controller settings (parameters not mentioned here are set to default):

- receive buffer start address : 0x0000.

- receive buffer end address : 0x19AD.

- transmit buffer start address: 0x192E.

- transmit buffer end address : 0x1FFF.

- RAM buffer read/write pointers in auto-increment mode.

- receive filters set to default: CRC + MAC Unicast + MAC Broadcast in OR mode.

- flow control with TX and RX pause frames in full duplex mode.

- frames are padded to 60 bytes + CRC.

- maximum packet size is setto 1518.

- Back-to-Back Inter-Packet Gap: 0x15 in full duplex mode; 0x12 in half duplex

Description | mode.

- Non-Back-to-Back Inter-Packet Gap: 0x0012 in full duplex mode; 0x0c12 in
half duplex mode.

- Collision window is set to 3 in half duplex mode to accomodate some
ENC28J60 revisions silicon bugs.

- CLKOUT output is disabled to reduce EMI generation.

- half duplex loopback disabled.

- LED configuration: default (LEDA-link status, LEDB-link activity).

Parameters:

- mac: RAM buffer containing valid MAC address.

- ip: RAM buffer containing valid IP address.

- fullbuplex: ethernet duplex mode switch. Valid values: 0 (half duplex mode)
and 1 (full duplex mode).

Requires The appropriate hardware SPI module must be previously initialized.

310 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6
Libraries

Example

const SpiiEthernetiHALFDUPLEX 0;
const Spi Ethernet FULLDUPLEX = 1;

var
myMacAddr : arrayl 6] of byte; // my MAC address
myIpAddr : array| 4] of byte; // my IP addr
myMacAddr{ 0] := 0x00;
myMacAddr[1] := 0x14;
myMacAddr[2] := 0xA5;
myMacAddx[3] := 0x76;
myMacAddr] 4] := 0x19;
myMacAddr[5] := 0x3F;
myIpAddr[0] = 192;
myIpAddr| 1] := 168;
myIpAddr| 2] = 1;
myIpAddr[3] := 60;

Spi Init();
Spi Ethernet Init (PORTC, 0, PORTC,
SpigEthernetiFULLDUPLEX);

lI

myMacAddr,

myIpAddr,

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 311

CHAPTER 6
Libraries mikroPascal for 8051

Spi_Ethernet_Enable

Prototype procedure Spi Ethernet Enable (enFlt: byte);

Returns Nothing.

This is MAC module routine. This routine enables appropriate network traffic on
the Enc28J60 module by the means of it's receive filters (unicast, multicast,
broadcast, crc). Specific type of network traffic will be enabled if a correspon-
ding bit of this routine's input parameter is set. Therefore, more than one type of
network traffic can be enabled at the same time. For this purpose, predefined
library constants (see the table below) can be ORed to form appropriate input
value.

Parameters:

- enr1t: network traffic/receive filter flags. Each bit corresponds to the
appropriate network traffic/receive filter:

Bit | Mask Description Predefined library const

MAC Broadcast traffic/receive filter
0 | 0x01 |flag. When set, MAC broadcast traf- [spi Ethernet BROADCAST
fic will be enabled.

MAC Multicast traffic/receive filter

Description 1 | 0x02 |flag. When set, MAC multicast traffic |Spi Ethernet MULTICAST
will be enabled.

2 0204 |not used none
3 0x08 |not used none
4 | 0x10 |not used none

CRC check flag. When set, packets
with invalid CRC field will be discarded.

6 0x40 |not used none

5 0x20 Spi Ethernet CRC

MAC Unicast traffic/receive filter flag.
7 | 0280 |When set, MAC unicast traffic will be |Spi Ethernet UNICAST
enabled.

Note: Advance filtering available in the £Enc28760 module such as pattern
Match, Magic Packet and Hash Table can not be enabled by this routine. Addi-
tionaly, all filters, except CRC, enabled with this routine will work in OR mode,
which means that packet will be received if any of the enabled filters accepts it.

312 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroPascal for 8051
Note: This routine will change receive filter configuration on-the-fly. It will not, in
Descriotion |27 Way, mess with enabling/disabling receive/transmit logic or any other part of
P the Enc28760 module. The Enc28760 module should be properly cofigured by
the means of Spi_Ethernet_Init routine.
Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.
Spi Ethernet Enable (Spi Ethernet CRC or Spi Ethernet UNICAST); //
Example enable CRC checking and Unicast traffic

Spi_Ethernet_Disable

Prototype procedure Spi Ethernet Disable (disFlt: byte);
Returns Nothing.
This is MAC module routine. This routine disables appropriate network traffic on the
ENC28J60 module by the means of it's receive filters (unicast, multicast, broadcast,
crc). Specific type of network traffic will be disabled if a corresponding bit of this rou-
tine's input parameter is set. Therefore, more than one type of network traffic can be
disabled at the same time. For this purpose, predefined library constants (see the
table below) can be ORed to form appropriate input value.
Parameters:
- disFlt: network traffic/receive filter flags. Each bit corresponds to the
appropriate network traffic/receive filter:
Bit | Mask Description Predefined library
const
o | oxo1 MAC Broadcast traffic/receive filter flag. When [spi Ethernet BRO
Description set, MAC broadcast traffic will be disabled. ADCAST
w0 MAC Multicast traffic/receive filter flag. When |spi Ethernet MUL
set, MAC multicast traffic will be disabled. TICAST
2 | 0x04 [not used none
3 | 0x08 |not used none
4 | 0x10 [not used none
CRC check flag. When set, CRC check will
5 | 0x20 |be disabled and packets with invalid CRC Spi Ethernet CRC
field will be accepted.
6 | 0x40 |not used none
2 | owao MAC Unicast traffic/receive filter flag. When |spi Ethernet UNT
set, MAC unicast traffic will be disabled. CAST

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

313

CHAPTER 6
Libraries mikroPascal for 8051

Note: Advance filtering available in the Enc28760 module such as pattern
Match, Magic Packet and Hash Table can not be disabled by this routine.

Description [Note: This routine will change receive filter configuration on-the-fly. It will not, in
any way, mess with enabling/disabling receive/transmit logic or any other part of
the Enc28760 module. The Enc28760 module should be properly cofigured by
the means of Spi_Ethernet_Init routine.

Requires Ethernet module has to be initialized. See Spi_Ethernet_lInit.

Spi Ethernet Disable(Spi Ethernet CRC or Spi Ethernet UNICAST);

Example // disable CRC checking and Unicast traffic

Spi_Ethernet_doPacket

Prototype function Spi Ethernet doPacket (): byte;

- 0 - upon successful packet processing (zero packets received or received
packet processed successfully).

- 1 - upon reception error or receive buffer corruption. Enc28760 controller

Returns needs to be restarted.

- 2 - received packet was not sent to us (not our IP, nor IP broadcast address).

- 3 - received IP packet was not IPv4.

- 4 - received packet was of type unknown to the library.

This is MAC module routine. It processes next received packet if such exists.
Packets are processed in the following manner:

- ARP & ICMP requests are replied automatically.
- upon TCP request the Spi_Ethernet_UserTCP function is called for further

Description .
processing.
- upon UDP request the Spi_Ethernet_UserUDP function is called for further
processing.
Note: spi Ethernet doPacket must be called as often as possible in user's code.
Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.
while TRUE do
Exambl begin
xample Spi Ethernet doPacket(); // process received packets
end

314 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Spi_Ethernet_putByte

Prototype procedure Spi Ethernet putByte(v: byte);

Returns Nothing.

This is MAC module routine. It stores one byte to address pointed by the cur-
rent Enc28J60 write pointer (EWRPT).

Description

Parameters:
- v: value to store

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.
var data as byte;

Example

Spi Ethernet putByte(data); // put an byte into ENC28J60 buffer

Spi_Ethernet_putBytes

Prototype procedure Spi Ethernet putBytes (ptr : “byte; n : byte);

Returns Nothing.

This is MAC module routine. It stores requested number of bytes into znc28760
RAM starting from current enc28J60 write pointer (EwrpT) location.

Description |Parameters:

- ptr: RAM buffer containing bytes to be written into enc28760 RAM.
- n: number of bytes to be written.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

var
buffer : arrayl 17] of byte;

Example pbuffer := 'mikroElektronika';

Spi Ethernet putBytes (buffer, 16); // put an RAM array into
ENC28J60 buffer

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 315

CHAPTER 6
Libraries mikroPascal for 8051

Spi_Ethernet_putConstBytes

Prototype procedure Spi Ethernet putConstBytes(const ptr : “byte; n : byte);

Returns Nothing.

This is MAC module routine. It stores requested number of const bytes into
ENC28760 RAM starting from current Enc28760 write pointer (EwrpT) location.

Description |Parameters:

- ptr: const buffer containing bytes to be written into enc28J60 RAM.
- n: number of bytes to be written.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

const
buffer : arrayl 17] of byte;

Example buffer := 'mikroElektronika';

Spi Ethernet putConstBytes (buffer, 16); // put a const array
into ENC28J60 buffer

Spi_Ethernet_putString

Prototype function Spi Ethernet putString("ptr : byte) : word;

Returns Number of bytes written into enc28J60 RAM.

This is MAC module routine. It stores whole string (excluding null termination) into
ENC28J60 RAM starting from current Enc28J60 write pointer (EwreT) location.

Description Parameters:
- ptr: string to be written into Enc28J60 RAM.
Requires Ethernet module has to be initialized. See Spi_Ethernet_lInit.
var
buffer : stringl 16] ;
Exanuﬂe buffer := 'mikroElektronika';

Spi Ethernet putString(buffer); // put a RAM string into
ENC28J60 buffer

316 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

Spi_Ethernet_putConstString

Prototype function Spi Ethernet putConstString(const ptr : “byte): word;
Returns Number of bytes written into enc28g60 RAM.
This is MAC module routine. It stores whole const string (excluding null termination)
into Enc28760 RAM starting from current Enc28760 write pointer (EwrpT) location.
Description
P Parameters:
- ptr: const string to be written into Enc28J60 RAM.
Requires Ethernet module has to be initialized. See Spi_Ethernet_|Init.
const
buffer : string] 16] ;
Example buffer := 'mikroElektronika';
Spi Ethernet putConstString(buffer); // put a const string into
ENC28J60 buffer

Spi_Ethernet_getByte

Prototype function Spi Ethernet getByte(): byte;
Returns Byte read from enc28g60 RAM.
.. This is MAC module routine. It fetches a byte from address pointed to by cur-

Description .
rent ENC28J60 read pointer (ERDPT).

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.
var buffer : byte;

Example buffer := Spi Ethernet getByte(); // read a byte from ENC28J60
buffer

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

317

CHAPTER 6
Libraries mikroPascal for 8051

Spi_Ethernet_getBytes

Prototype procedure Spi Ethernet getBytes(ptr : “byte; addr : word; n : byte);

Returns Nothing.

This is MAC module routine. It fetches equested number of bytes from
ENC28760 RAM starting from given address. If value of 0xrrrF is passed as the
address parameter, the reading will start from current enc28J60 read pointer
(ErDPT) location.

Description Parameters:

- ptr: buffer for storing bytes read from enc2gg60 RAM.
- addr: ENC28J60 RAM start address. Valid values: 0. .8192.
- n: number of bytes to be read.

Requires Ethernet module has to be initialized. See Spi_Ethernet_Init.

var
buffer : arrayl 16] of byte;
Example S
Spi Ethernet getBytes (buffer, 0x100, 16); // read 16 bytes,
starting from address 0x100

318 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

Spi_Ethernet_UserTCP

Protot function Spi Ethernet UserTCP(remoteHost : “byte; remotePort :
rototype word; localPort : word; reqglLength : word) : word;
Returns - 0 - there should not be a reply to the request.
- Length of TCP/HTTP reply data field - otherwise.
This is TCP module routine. It is internally called by the library. The user access-
es to the TCP/HTTP request by using some of the Spi_Ethernet_get routines. The
user puts data in the transmit buffer by using some of the Spi_Ethernet_put rou-
tines. The function must return the length in bytes of the TCP/HTTP reply, or O if
there is nothing to transmit. If there is no need to reply to the TCP/HTTP requests,
just define this function with return(0) as a single statement.
Description Parameters:
- remoteHost ! client's IP address.
- remotePort : client's TCP port.
- localport : port to which the request is sent.
- reqLength : TCP/HTTP request data field length.
Note: The function source code is provided with appropriate example projects.
The code should be adjusted by the user to achieve desired reply.
Requires Ethernet module has to be initialized. See Spi_Ethernet_lInit.
This function is internally called by the library and should not be called by the
Example '
user's code.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

319

CHAPTER 6
Libraries mikroPascal for 8051

Spi_Ethernet_UserUDP

Protot function Spiih‘thernet;UserJDP (remoteHost : "“byte; remotePort :
rototype word; destPort : word; reglength : word) : word;

Returns - 0 - there should not be a reply to the request.
- Length of UDP reply data field - otherwise.
This is UDP module routine. It is internally called by the library. The user
accesses to the UDP request by using some of the Spi_Ethernet_get routines.
The user puts data in the transmit buffer by using some of the Spi_Ethernet_put
routines. The function must return the length in bytes of the UDP reply, or 0O if
nothing to transmit. If you don't need to reply to the UDP requests, just define
this function with a return(0) as single statement.

o Parameters:

Description
- remoteHost : client's IP address.
- remotePort : client's port.
- destport : port to which the request is sent.
- reqLength : UDP request data field length.
Note: The function source code is provided with appropriate example projects.
The code should be adjusted by the user to achieve desired reply.

Requires Ethernet module has to be initialized. See Spi_Ethernet_lInit.
This function is internally called by the library and should not be called by the

Example ,
user's code.

Library Example
This code shows how to use the 8051 mini Ethernet library :

- the board will reply to ARP & ICMP echo requests
- the board will reply to UDP requests on any port :

returns the request in upper char with a header made of remote host IP & port number
- the board will reply to HTTP requests on port 80, GET method with pathnames :

/ will return the HTML main page

/s will return board status as text string

1t0 ... /t7 will toggle P3.b0 to P3.b7 bit and return HTML main page
all other requests return also HTML main page.

320 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

// duplex config flags
#define Spi Ethernet HALFDUPLEX 0x00 // half duplex
#define Spi Ethernet FULLDUPLEX 0x01 // full duplex

// mE ehternet NIC pinout

sfr sbit Spi Ethernet RST at P1.BO;
sfr sbit Spi Ethernet CS at P1.Bl;
// end ethernet NIC definitions

/**

* ROM constant strings

*/
const code byte httpHeader[] = "HTTP/1.1 200 OK\nContent-type: " ;
// HTTP header
const code byte httpMimeTypeHTMI[] = "text/html\n\n" ; //
HTML MIME type
const code byte httpMimeTypeScript[] = "text/plain\n\n" ; //
TEXT MIME type
idata byte httpMethod] = "GET /";

/*

* web page, splited into 2 parts

* when coming short of ROM, fragmented data is handled more effi-
ciently by linker

*

* this HTML page calls the boards to get its status, and builds
itself with javascript

*/

const code char *indexPage = // Change the IP
address of the page to be refreshed

"<meta http-equiv=\"refresh\"

content=\"3;url=http://192.168.1.60\ ">\
<HTML><HEAD></HEAD><BODY>\

<h1>8051 + ENC28J60 Mini Web Server</hl>\

Reload\

<script src=/s></script>\

<table><tr><td><table border=1 style=\"font-size:20px ;font-family:
terminal ;\ ">\

<tr><th colspan=2>P0</th></tr>\

<script>\

var str,i;\

str=\"\";\

for (i=0; i<8;i++)\

{ str+=\"<tr><td bgcolor=pink>BUTTON #\ "+i+\"</td>\";\
if (PO& (1<<i)){ str+=\"<td bgcolor=red>ON\";}\

else { str+=\"<td bgcolor=#cccccc>OFF\ ";}\
str+=\"</td></tr>\";}\

document.write (str) ;\

</script>\

LU
’

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 321

CHAPTER 6
Libraries mikroPascal for 8051

const char *indexPage?2 = "</table></td><td>\

<table border=1 style=\"font-size:20px ;font-family: terminal ;\">\
<tr><th colspan=3>P3</th></tr>\

<script>\

var str,i;\

str=\"\";\

for (1=0;1<8;i++)\

{ str+=\"<tr><td bgcolor=yellow>LED #\"+i+\"</td>\";\

if (P3&(1<<i)){ str+=\"<td bgcolor=red>ON\";}\

else {str+=\"<td bgcolor=#cccccc>OFF\";}\
str+=\"</td><td>Toggle</td></tr>\";}\
document.write (str) ;\

</script>\
</table></td></tr></table>\
This is HTTP request

#<script>document.write (REQ)</script></BODY></HTML>\

LU
’

/***********************************

* RAM variables

*/

idata byte myMacAddr| 6] = {0x00, 0x14, O0OxA5, 0Ox76, 0x19, O0x3f} ;
// my MAC address

idata byte myIpAddr[4] = {192, 168, 1, 60} ; //
my IP address

idata byte getRequest[15] ; //
HTTP request buffer

idata byte dynal 29] ; //
buffer for dynamic response
idata unsigned long httpCounter = 0 ;
// counter of HTTP requests

/***k*‘k*‘k***k**k*‘k‘k****k***********************‘k

* functions

*/
/*
* put the constant string pointed to by s to the ENC transmit buffer.
*/
/*unsigned int putConstString(const code char *s)
{
unsigned int ctr = 0 ;
while (*s)

{
Spi Ethernet putByte (*s++) ;
ctr++ ;

}

return (ctr) ;

}x/
322 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries

/*
* it will be much faster to use library Spi Ethernet putConstString
routine

* instead of putConstString routine above. However, the code will
be a little

* bit bigger. User should choose between size and speed and pick the
implementation that

* suites him best. If you choose to go with the putConstString def-
inition above

* the #define line below should be commented out.

*

*/

#define putConstString Spi Ethernet putConstString

/*
* put the string pointed to by s to the ENC transmit buffer
*/

/*unsigned int putString (char *s)
{
unsigned int ctr = 0 ;
while (*s)

{
Spi Ethernet putByte (*s++) ;

ctr++ ;
}
return (ctr) ;
}p*/
/*
* it will be much faster to use library Spi Ethernet putString rou-
tine
* 1instead of putString routine above. However, the code will be a
little
* bit bigger. User should choose between size and speed and pick the
implementation that
* suites him best. If you choose to go with the putString defini-
tion above
* the #define line below should be commented out.
*
*/
#define putString Spi Ethernet putString

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 323

CHAPTER 6
Libraries mikroPascal for 8051

/*
* this function is called by the library

* the user accesses to the HTTP request by successive calls to
Spi Ethernet getByte()

* the user puts data in the transmit buffer by successive calls to
Spi Ethernet putByte ()

* the function must return the length in bytes of the HTTP reply,
or 0 if nothing to transmit

*

* 1f you don't need to reply to HTTP requests,

* Jjust define this function with a return(0) as single statement

*

*/
unsigned int Spi Ethernet UserTCP(byte *remoteHost, unsigned int
remotePort, unsigned int localPort, unsigned int reqglLength)

{
idata unsigned int len; // my reply length

if (localPort != 80) // I listen
only to web request on port 80

{

return(0)

}

// get 10 first bytes only of the request, the rest does not

matter here
for(len = 0 ; len < 10 ; len++)

{

getRequest[len] = Spi Ethernet getByte() ;
getRequesl[len] =0 ;
len = 0;
if (memcmp (getRequest, httpMethod, 5)) // only GET

method is supported here

{

return (0) ;

}
httpCounter++ ; // one more request done
if (getRequest[5] == 's') // if request

path name starts with s, store dynamic data in transmit buffer

{
// the text string replied by this request can be

interpreted as javascript statements
// by browsers

324 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

len = putConstString(httpHeader) ; // HTTP header
len += putConstString(httpMimeTypeScript) ; //
with text MIME type

// add P3 wvalue (buttons) to reply
len += putConstString("var P3=") ;
WordToStr (P3, dyna) ;

len += putString(dyna) ;

len += putConstString(";") ;

// add PO value (LEDs) to reply
len += putConstString("var P0=")
WordToStr (PO, dyna) ;

len += putString(dyna) ;

len += putConstString(";") ;

// add HTTP requests counter to reply
WordToStr (httpCounter, dyna) ;
len += putConstString("var REQ=") ;
len += putString(dyna) ;
len += putConstString(";") ;
}
else if (getRequest[5] == 't') // if request
path name starts with t, toggle P3 (LED) bit number that comes after

{
byte bitMask = 0 ; // for bit mask

if (isdigit (getRequest[6])) // 1if 0
<= bit number <= 9, bits 8 & 9 does not exist but does not matter

{

bitMask = getRequest[6] - '0' ; //
convert ASCII to integer

bitMask = 1 << bitMask ; //
create bit mask

P3 "= bitMask ; //

toggle P3 with xor operator
}

if (len == 0) // what do to by default

{

len = putConstString(httpHeader) ; //
HTTP header

len += putConstString (httpMimeTypeHTML) ; //
with HTML MIME type

len += putConstString(indexPage) ; //
HTML page first part

len += putConstString(indexPage2) ; //

HTML page second part
}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 325

CHAPTER 6
Libraries

mikroPascal for 8051

return (len) ; //
return to the library with the number of bytes to transmit

}

/*
* this function is called by the library
* the user accesses to the UDP request by successive calls to
Spi Ethernet getByte()
* the user puts data in the transmit buffer by successive calls to
Spi Ethernet putByte ()
* the function must return the length in bytes of the UDP reply, or
0 if nothing to transmit
*
* 1f you don't need to reply to UDP requests,
* Just define this function with a return(0) as single statement
*
*/
unsigned int Spi Ethernet UserUDP (byte *remoteHost, unsigned int
remotePort, unsigned int destPort, unsigned int reglLength)
{
idata unsigned int len ; // my reply length
idata byte * ptr ; // pointer to the dynamic buffer

// reply is made of the remote host IP address in human read-
able format

ByteToStr (remoteHost[0] , dyna) ; // first IP address byte
dynal 3] = '.'

ByteToStr (remoteHost[1], dyna + 4) ; // second
dynal 7] = '.' ;

ByteToStr (remoteHost[2] , dyna + 8) ; // third
dynal 11] = '.' ;

ByteToStr (remoteHost[3] , dyna + 12) ; // fourth
dynal 15] = ':' ; // add separator

// then remote host port number
WordToStr (remotePort, dyna + 16) ;

dynal 21] = '[' ;

WordToStr (destPort, dyna + 22) ;
dyna[27] = ']

dyna[28] = 0 ;

// the total length of the request is the length of the
dynamic string plus the text of the request
len = 28 + reqlLength;

// puts the dynamic string into the transmit buffer
Spi Ethernet putBytes(dyna, 28) ;

326 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

// then puts the request string converted into upper char into the
transmit buffer
while (regLength--)
{
Spi Ethernet putByte (toupper (Spi Ethernet getByte()))

}

return (len) ; // back to the library with the
length of the UDP reply
}

/*
* main entry
x/
procedure main ()
{
/*
* starts ENC28J60 with
* reset bit on P1 0
* CS bit on P1 1
* my MAC & IP address
* full duplex
*/

Spi Init Advanced (MASTER OSC DIV16 or CLK IDLE LOW or
IDLE 2 ACTIVE or DATA ORDER MSB);
Spi Ethernet Init (myMacAddr, myIpAddr, Spi Ethernet FULLDU-

PLEX) ; // full duplex, CRC + MAC Unicast + MAC Broadcast filtering
while (1) // do forever

{

/*

* if necessary, test the return value to get error
code

*/
Spi Ethernet doPacket() ; // process incoming

Ethernet packets

/*

add your stuff here if needed
* Spi_Ethernet_doPacket() must be called as often
as possible
* otherwise packets could be lost
*/
}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 327

CHAPTER 6
Libraries

mikroPascal for 8051

HW Connection

WEG wogna WOLLI Fis=E] (= E = R =
I AU
T L =i I I 1 - @
—i] as GEfji— = = 43 = = =
—afa =~ [Hi—
i e £ ot 10=F
= m
- ifu S L = i
T m
2] as pfi] wecss el
] i wna [WECE3
i3] gap e Lsa [— O
g eyl g eacal] i [I
- 95033 § ¥
il o My ﬁmﬁ |=mw=]
| sk M fe =i 1
1 ETmLh i % o] rer
ETH-E5T 1I:] :. | rerme
REEEEES Eils
11 Tt [H1
1 TPour [
| mn

|

o fe e [| [~

—

L

OSCILLATOR
e,

E

Ilhﬂ
e T s ¥ s s s s e s e e e e B | |

P1.0
P14

P13
Pid
P15
F1H
P17

XTAL1
GND

(

€628S681V

veC

|_n_n_n_n_u_u_u_u_u_n_n_n_n_n_u_u_u_u_uE|

328 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

SPI GRAPHIC LCD LIBRARY

The mikroPascal for 8051 provides a library for operating Graphic LCD 128x64 (with
commonly used Samsung KS108/KS107 controller) via SPI interface.

For creating a custom set of GLCD images use GLCD Bitmap Editor Tool.

Note: The library uses the SPI module for communication. User must initialize SPI
module before using the SPI Graphic LCD Library.

Note: This Library is designed to work with the mikroElektronika's Serial LCD/GLCD
Adapter Board pinout, see schematic at the bottom of this page for details.

External dependencies of SPI Graphic LCD Library

The implementation of SPI Graphic LCD Library routines is based on Port Expander
Library routines.

External dependencies are the same as Port Expander Library external dependencies.
Library Routines
Basic routines:

- Spi_Glcd_Init

- Spi_Glcd_Set_Side

- Spi_Glcd_Set_Page
- Spi_Glcd_Set X

- Spi_Glcd_Read_Data
- Spi_Glcd_Write_Data

Advanced routines:

- Spi_Gled_Fill

- Spi_Glcd_Dot

- Spi_Glcd_Line

- Spi_Glcd_V _Line

- Spi_Glcd_H_Line

- Spi_Glcd_Rectangle
- Spi_Glcd_Box

- Spi_Glcd_Circle

- Spi_Glcd_Set_Font
- Spi_Glcd_Write_Char
- Spi_Glcd_Write_Text
- Spi_Glcd_Image

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 329

CHAPTER 6
Libraries mikroPascal for 8051

Spi_Glcd_Init

Prototype |[procedure Spi Glcd Init(DeviceAddress : byte);

Returns Nothing.

Initializes the GLCD module via SPI interface.

e Parameters :
Description
- DeviceAddress: spi expander hardware address, see schematic at the
bottom of this page
SPExpanderCS and sPExpanderRST variables must be defined before using this
. function.
Requires
The SPI module needs to be initialized. See Spi_Init and Spi_Init_ Advanced routines.
// port expander pinout definition
var SPExpanderRST : sbit at P1.BO;
SPExpanderCS : sbit at P1.B1;
Example

Spi Init Advanced (MASTER OSC DIV4 or CLK IDLE LOW or
IDLE 2 ACTIVE or DATA ORDER MSB);
Spi Glcd Init(0);

Spi_Glcd_Set_Side

Prototype procedure SPI Glcd Set Side(x pos : byte);

Returns Nothing.
Selects GLCD side. Refer to the GLCD datasheet for detail explanation.

Parameters :

- x_pos: position on x-axis. Valid values: 0..127
Description
The parameter < pos specifies the GLCD side: values from 0 to 63 specify the
left side, values from 64 to 127 specify the right side.

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

The following two lines are equivalent, and both of them select the left side of GLCD:

Example SPI Glcd Set Side (0);

SPI Glcd Set side(10);

330 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Spi_Glcd_Set_Page

Prototype procedure Spi Glcd Set Page(page : byte);

Returns Nothing.

Selects page of GLCD.

Parameters :

Description | page: page number. Valid values: 0..7

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example Spi_Glcd Set Page (5);

Spi_Glcd_Set_X

Prototype procedure SPI Glcd Set X(x_pos : byte);

Returns Nothing.

Sets x-axis position to = pos dots from the left border of GLCD within the
selected side.

Parameters :
Description
- x _pos: position on x-axis. Valid values: 0..63

Note: For side, x axis and page layout explanation see schematic at the bottom
of this page.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Example Spi Glcd Set X (25);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 331

CHAPTER 6
Libraries mikroPascal for 8051

Spi_Glcd_Read _Data

Prototype |function Spi Glcd Read Data() : byte;
Returns One byte from GLCD memory.
. Reads data from the current location of GLCD memory and moves to the next
Description .
location.
GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init rou-
tines.
Requires
GLCD side, x-axis position and page should be set first. See the functions
Spi_Glcd_Set_Side, Spi_Glcd_Set X, and Spi_Glcd_Set_Page.
var data : byte;
Example S
data := Spi Glcd Read Data();

Spi_Glcd_Write_Data

Prototype procedure Spi Glcd Write Data (Ddata : byte);

Returns Nothing.
Writes one byte to the current location in GLCD memory and moves to the next
location.
Description Parameters :
- Ddata: data to be written
GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.
Requires GLCD side, x-axis position and page should be set first. See the functions
Spi_Glcd_Set_Side, Spi_Glcd_Set_X, and Spi_Glcd_Set_Page.
var ddata : byte;
Example

Spi Glcd Write Data(ddata);

332 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Spi_Glcd_Fill

Prototype procedure Spi Glcd Fill (pattern: byte);

Returns Nothing.

Fills GLCD memory with byte pattern.

Parameters :

Description |- pattern: byte to fill GLCD memory with

To clear the GLCD screen, use spi Glcd Fill (0).

To fill the screen completely, use spi Glcd Fill (0xFF).

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

// Clear screen

Example Spi Gled Fill(0);
Spi_Glcd_Dot
Prototype |procedure Spi Gled Dot (x pos : byte; y pos : byte; color : byte);

Returns Nothing.

Draws a dot on GLCD at coordinates (x pos, vy pos).
Parameters :

- x pos: X position. Valid values: 0..127
- v pos: y position. Valid values: 0..63

Description |_ color: color parameter. Valid values: 0..2

The parameter color determines the dot state: O clears dot, 1 puts a dot, and 2

inverts dot state.

Note: For x and y axis layout explanation see schematic at the bottom of this page.
Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.
Example // Invert the dot in the upper left corner

Spi Glcd Dot (0, 0, 2);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 333

CHAPTER 6

Libraries mikroPascal for 8051
Spi_Glcd_Line
procedure SPI Glcd Line(x start : integer; y start : integer;
PrOtOtype x end : integer; y end : integer; color : byte);
Returns Nothing.

Draws a line on GLCD.
Parameters :

- x_start: X coordinate of the line start. Valid values: 0..127
Description |-y start: y coordinate of the line start. Valid values: 0..63
- x_end: X coordinate of the line end. Valid values: 0..127

- v _end: y coordinate of the line end. Valid values: 0..63

- color: color parameter. Valid values: 0..2

Parameter co1or determines the line color: 0 white, 1 black, and 2 inverts each dot.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

// Draw a line between dots (0,0) and (20,30)

Example Spi Gled Line(0, 0, 20, 30, 1);:

Spi_Glcd_V_Line

procedure Spi Glcd V Line(y start: byte; y end: byte; x pos:

Prototype byte; color: byte);
Returns Nothing.
Draws a vertical line on GLCD.
Parameters :
Describtion | V-5 27 Y coordinate of the line start. Valid values: 0..63
p - v _end: y coordinate of the line end. Valid values: 0..63
- x_pos: X coordinate of vertical line. Valid values: 0..127
- color: color parameter. Valid values: 0..2
Parameter color determines the line color: 0 white, 1 black, and 2 inverts each dot.
Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.
Example // Draw a vertical line between dots (10,5) and (10,25)

Spi Glecd V Line(5, 25, 10, 1);

334 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Spi_Glcd_H_Line

procedure Spi Glcd V Line(x start : byte; x end : byte; y pos

PrOtOtype byte; color : byte);

Returns Nothing.

Draws a horizontal line on GLCD.
Parameters :

- x_start: X coordinate of the line start. Valid values: 0..127
Description |- x end: x coordinate of the line end. Valid values: 0..127

- v pos: y coordinate of horizontal line. Valid values: 0..63

- color: color parameter. Valid values: 0..2

The parameter color determines the line color: 0 white, 1 black, and 2 inverts
each dot.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

// Draw a horizontal line between dots (10,20) and (50,20)

Example Spi Glcd H Line (10, 50, 20, 1);

Spi_Glcd_Rectangle

procedure Spi Glcd Rectangle(x upper left : byte; y upper left :

PrOtOtype byte; x bottom right : byte; y bottom right : byte; color : byte);

Returns Nothing.

Draws a rectangle on GLCD.
Parameters :

- x_upper left: X coordinate of the upper left rectangle corner. Valid values: 0..127

-y upper left:y coordinate of the upper left rectangle corner. Valid values: 0..63

- x_bottom right: X coordinate of the lower right rectangle corner. Valid values:
0..127

- v bottom right:y coordinate of the lower right rectangle corner. Valid values:
0..63

- color: color parameter. Valid values: 0..2

Description

The parameter color determines the color of the rectangle border: 0 white, 1
black, and 2 inverts each dot.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

// Draw a rectangle between dots (5,5) and (40,40)

Example Spi_Glcd_Rectangle(5, 5, 40, 40, 1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 335

CHAPTER 6

Libraries mikroPascal for 8051
Spi_Glcd_Box
Prototype procedure Spi Glcd Box (x upper left : byte; y upper left : byte;

X bottom right : byte; y bottom right : byte; color : byte);

Returns Nothing.

Draws a box on GLCD.
Parameters :

- x_upper left:X coordinate of the upper left box corner. Valid values: 0..127
- v upper left:y coordinate of the upper left box corner. Valid values: 0..63

Description |_ % bottom right: X coordinate of the lower right box corner. Valid values: 0..127
- v bottom right:y coordinate of the lower right box corner. Valid values: 0..63
- color: color parameter. Valid values: 0..2
The parameter color determines the color of the box fill: 0 white, 1 black, and 2
inverts each dot.
Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.
// Draw a box between dots (5,15) and (20,40)
Example

Spi Glcd Box (5, 15, 20, 40, 1);

Spi_Glcd_Circle

procedure Spi Glcd Circle(x center : integer; y center : integer;
Prototype . . - - - -

radius : integer; color : byte);
Returns Nothing.

Draws a circle on GLCD.
Parameters :

- x_center: X coordinate of the circle center. Valid values: 0..127
Description |- v center:y coordinate of the circle center. Valid values: 0..63
- radius: radius size

- color: color parameter. Valid values: 0..2

The parameter color determines the color of the circle line: 0 white, 1 black,
and 2 inverts each dot.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routine.

// Draw a circle with center in (50,50) and radius=10

Example Spi Glcd Circle(50, 50, 10, 1);

336 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Spi_Glcd_Set Font

procedure SPI Glcd Set Font (const activeFont : “byte; aFontWidth

PrOtOtype : byte; aFontHeight : byte; aFontOffs : word);

Returns Nothing.
Sets font that will be used with Spi_Glcd_Write_Char and Spi_Glcd_Write_Text
routines.
Parameters :

- activeront : font to be set. Needs to be formatted as an array of char

- aFontwidth: width of the font characters in dots.

Description |- arFontreight: height of the font characters in dots.

- arontOffs: number that represents difference between the mikroPascal
character set and regular ASCII set (eg. if ‘A" is 65 in ASCII character, and 'A’
is 45 in the mikroPascal character set, aFontOffs is 20). Demo fonts supplied
with the library have an offset of 32, which means that they start with space.

The user can use fonts given in the file “__Lib_GLCD_fonts.mpas” file located in
the Uses folder or create his own fonts.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

// Use the custom 5x7 font "myfont" which starts with space (32):

Example Spi Glcd Set Font (myfont, 5, 7, 32);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 337

CHAPTER 6
Libraries mikroPascal for 8051

Spi_Glcd_Write_Char

procedure SPI Glcd Write Char(chrl : byte; x pos : byte; page num
: byte; color : byte);

Prototype

Returns Nothing.

Prints character on GLCD.

Parameters :

- chr1: character to be written

- x_pos: character starting position on x-axis. Valid values: 0..(127-FontWidth)
- page num: the number of the page on which character will be written. Valid
Description | values: 0..7

- color: color parameter. Valid values: 0..2

The parameter color determines the color of the character: 0 white, 1 black,
and 2 inverts each dot.

Note: For x axis and page layout explanation see schematic at the bottom of
this page.

GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

Requires Use the Spi_Glcd_Set_Font to specify the font for display; if no font is specified, then
the default 5x8 font supplied with the library will be used.
E I // Write character 'C' on the position 10 inside the page 2:
xample Spi Gled Write Char("c", 10, 2, 1);

338 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Spi_Glcd_Write_Text

procedure SPI Glcd Write Text (var text : stringf 20] ; x pos
PrOtOtype byte; page numb : byte; color : byte);
Returns Nothing.

Prints text on GLCD.

Parameters :

- text: text to be written

- x_pos: text starting position on x-axis.

.. - page num: the number of the page on which text will be written. Valid values: 0..7

Description ; .

- color: color parameter. Valid values: 0..2

The parameter color determines the color of the text: 0 white, 1 black, and 2

inverts each dot.

Note: For x axis and page layout explanation see schematic at the bottom of

this page.

GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.
Requires Use the Spi_Glcd_Set Font to specify the font for display; if no font is specified,

then the default 5x8 font supplied with the library will be used.

// Write text "Hello world!" on the position 10 inside the page 2:
Example Spi Glcd Write Text ("Hello world!", 10, 2, 1);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 339

CHAPTER 6
Libraries mikroPascal for 8051

Spi_Glcd_Image

Prototype procedure Spi Glcd Image (const image : “byte);

Returns Nothing.

Displays bitmap on GLCD.
Parameters :

- image: image to be displayed. Bitmap array can be located in both code and
Description | RAM memory (due to the mikroPascal for 8051 pointer to const and pointer to
RAM equivalency).

Use the mikroPascal’s integrated GLCD Bitmap Editor (menu option Tools >
GLCD Bitmap Editor) to convert image to a constant array suitable for display-
ing on GLCD.

Requires GLCD needs to be initialized for SPI communication, see Spi_Glcd_Init routines.

// Draw image my image on GLCD

Exan““e Spi Glcd Image (my image) ;

Library Example

The example demonstrates how to communicate to KS0108 GLCD via the SPI module, using
serial to parallel convertor MCP23S17.

program SerialGLCD;
uses bitmap;

// Port Expander module connections

var SPExpanderRST : sbit at P1.BO;

var SPExpanderCS : sbit at P1.B1;

// End Port Expander module connections

var
counter, counter2: byte;
J3: word;
someText: stringl 20] ;

procedure delay2sS;
begin
delay ms (2000) ;
end;

begin

340 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6
Libraries

Spi_Init Advanced (MASTER OSC _DIV4 or CLK IDLE LOW or IDLE 2 ACTIVE

or DATA ORDER MSB) ;
Spi Gled Init(0);
Spi Glecd Fill (0x00);

while TRUE do
begin

Spi_Glcd_Image (@advanced8051 bmp) ;
Delay2S(); Delay2S();

Spi Gled Fill (0x0);

DelayZ2s;

Spi Glecd Box(62,40,124,56,1);
Spi Glcd Rectangle(5,5,84,35,1);
Spi Glcd Line(0, 63, 127, 0,1);

Delay2S () ;

// Initialize GLCD wvia SPI
// Clear GLCD

// Draw image

// Draw box
// Draw rectangle
// Draw line

counter := 5; // Draw horizontal and vertical line

while counter < 60 do
begin
Delay ms (250);

Spi Glcd V Line(2, 54, counter, 1);
Spi Glcd H Line(2, 120, counter, 1);

counter := counter + 5;
end;
Delay2S();

Spi Glcd Fill (0x00);

Spi Glcd Set Font (QGCharacter8x$,
see Lib GLCDFonts.c in Uses folder

Spi Glcd Write Text ('mikroE', 5,

for counter?2 := 1 to 10 do

8, 8, 32); // Choose font,
T, 2); // Write string

// Draw circles

Spi Glcd Circle (63,32, 3*counter2, 1);

Delay2S();

Spi_Glecd Box (12,20, 70,63, 2);

Delay2S();

Spi Glcd Set Font (@FontSystem5x8,
someText := 'BIG:LETTERS';

Spi Glcd Write Text (someText, 5,
Delay2S();

someText := 'SMALL:NOT:SMALLER';
Spi Glcd Write Text (someText, 20,
Delay2S();

end;

end.

// Draw box

5, 8, 32); // Change font

3, 2); // Write string

5, 1) // Write string

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 341

CHAPTER 6
Libraries mikroPascal for 8051

HW Connection

o Leftside Rightside 1 X aXis

—————— I
MCP23817 e vee %_OVCC
o e e i i
— ! i i h
D3 4:::: xjas E ————] P15 } 1
CI DO TR ——— T{lPis 4 1
o8 ‘=Gp“ M%zs RS ——{] Pz [o's) 1
[D Hz2 cs2 E [T} %
o7 a4 Hzi csi m
4‘9 oL ereT cran | 1 1
a O—m[VoD Wi [] o] 1]
g 'IW[s i Dl O I N !
Pl cE RESET [} - (] 4]]
T R i ®
sl M o | §
i s0 a0 [—
(]]
= U—I_I—HJ—[XTAL1 1]
_H]ene 1
]
vee o
Contrast
Adjustment

MMKROELERTRONIKA

EASYB0518
DEVELOPRENT SYSTEN

SPI GLCD HW connection

342 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

SPI LCD LIBRARY

The mikroPascal for 8051 provides a library for communication with LCD (with
HD44780 compliant controllers) in 4-bit mode via SPI interface.

For creating a custom set of LCD characters use LCD Custom Character Tool.

Note: The library uses the SPI module for communication. The user must initialize
the SPI module before using the SPI LCD Library.

Note: This Library is designed to work with the mikroElektronika's Serial LCD
Adapter Board pinout. See schematic at the bottom of this page for details.

External dependencies of SPI LCD Library

The implementation of SPI LCD Library routines is based on Port Expander Library
routines.

External dependencies are the same as Port Expander Library external dependen-
cies.

Library Routines

- Spi_Lcd_Config
- Spi_Lcd Out

- Spi_Lcd Out_Cp
- Spi_Lcd_Chr

- Spi_Lcd_Chr_Cp
- Spi_Lcd Cmd

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 343

CHAPTER 6
Libraries mikroPascal for 8051

Spi_Lcd_Config

Prototype procedure Spi Lcd Config(DeviceAddress: byte);
Returns Nothing.
Initializes the LCD module via SPI interface.
. Parameters :
Description
- DeviceAddress: spi expander hardware address, see schematic at the
bottom of this page
SPExpanderCS and SPExpanderRST variables must be defined before using this
. function.
Requires
The SPI module needs to be initialized. See Spi_Init and Spi_Init Advanced routines.
// port expander pinout definition
var SPExpanderCS : sbit at P1.Bl1;
SPExpanderRST : sbit at P1.BO;
Example S
Spi Init(); // initialize spi
Spi Lecd Config(0); // initialize lcd over spi inter-
face
Spi_Lcd_Out
rocedure Spi Lcd Out(row: byte; column: byte; wvar text:
Prototype pros pl_Led _out (row v b v .
stringl 20]) ;
Returns Nothing.
Prints text on the LCD starting from specified position. Both string variables and
literals can be passed as a text.
o Parameters :
Description
- row: starting position row number
- column: starting position column number
- text : text to be written
Requires LCD needs to be initialized for SPI communication, see Spi_Lcd Config routines.
Example // Write text "Hello!"™ on LCD starting from row 1, column 3:
P Spi Lcd Out(l, 3, "Hello!");

344 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Spi_Lcd Out_Cp

Prototype procedure Spi Lcd Out CP(text : stringl 20]);

Returns Nothing.

Prints text on the LCD at current cursor position. Both string variables and liter-
als can be passed as a text.

Description Parameters :

- text: text to be written

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd_Config routines.

// Write text "Here!" at current cursor position:

Example Spi Lcd Out CP("Here!");

Spi_Lcd_Chr

Prototype procedure Spi Lcd Chr(Row : byte; Column : byte; Out Char : byte);

Returns Nothing.

Prints character on LCD at specified position. Both variables and literals can be
passed as character.

e Parameters :

Description
- Row: Writing position row number
- Column: writing position column number
- out Char: character to be written

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd_Config routines.
// Write character "i" at row 2, column 3:

Example

Spi_Led Chr(2, 3, 'i');

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 345

CHAPTER 6
Libraries mikroPascal for 8051

Spi_Lcd Chr_Cp

Prototype procedure Spi Lcd Chr CP(Out Char : byte);

Returns Nothing.

Prints character on LCD at current cursor position. Both variables and literals
can be passed as character.

Description
P Parameters :
- Out Char: character to be written
Requires LCD needs to be initialized for SPI communication, see Spi_Lcd Config routines.
Example // Write character "e" at current cursor position:
P Spi Lcd Chr Cp('e');
Spi_Lcd_Cmd

Prototype |procedure Spi Lcd Cmd(out char : byte);

Returns Nothing.

Sends command to LCD.

Parameters :
Description | out char: command to be sent
Note: Predefined constants can be passed to the function, see Available LCD
Commands.
Requires LCD needs to be initialized for SPI communication, see Spi_Lcd_Config routines.
Example // Clear LCD display:

Spi_Led Cmd (LCD_CLEAR) ;

346 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6
Libraries

Available LCD Commands

Lcd Command

Purpose

LCD_FIRST ROW

Move cursor to the 1st row

LCD_SECOND ROW

Move cursor to the 2nd row

LCD_THIRD ROW

Move cursor to the 3rd row

LCD_FOURTH ROW

Move cursor to the 4th row

LCD_CLEAR

Clear display

LCD RETURN HOME

Return cursor to home position, returns a shifted display
to its original position. Display data RAM is unaffected.

LCD_CURSOR_OFF

Turn off cursor

LCD_UNDERLINE ON

Underline cursor on

LCD BLINK CURSOR ON

Blink cursor on

LCD MOVE CURSOR LEFT

Move cursor left without changing display data RAM

LCD MOVE CURSOR RIGHT

Move cursor right without changing display data RAM

LCD_TURN ON

Turn LCD display on

LCD_TURN OFF

Turn LCD display off

LCD_SHIFT LEFT

Shift display left without changing display data RAM

LCD SHIFT RIGHT

Shift display right without changing display data RAM

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

347

CHAPTER 6
Libraries mikroPascal for 8051

Library Example

This example demonstrates how to communicate LCD via the SPI module, using
serial to parallel convertor MCP23S17.

program Spi Lcd;

var text : array| 16] of byte;

// Port Expander module connections
var SPExpanderRST : sbit at P1.B0O;

var SPExpanderCS : sbit at P1.B1l;
// End Port Expander module connections

begin
text := 'mikroElektronika';
Spi Init(); // Initialize SPI
Spi Lcd Config(0); // Initialize LCD over SPI inter-
face
Spi Lcd Cmd (LCD_CLEAR) ; // Clear display
Spi_Lcd_Cmd (LCD_CURSOR_OFF); // Turn cursor off
Spi Led Out (1,6, 'mikroE'); // Print text to LCD, 1lst row, 6th
column
Spi Led Chr CP('!'); // Append '!'
Spi Led Out (2,1, text); // Print text to LCD, 2nd row, 1st
column
Spi Led Out (3,1, 'mikroE'"); // For LCD with more than two rows
Spi Lcd Out (4,15, 'mikroE"); // For LCD with more than two rows
end.

348 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

HW Connection

q

MCP23517 P10 voe [Foveo
-~ | A

P11

GPED GPAT
GPE1 GPAG
GPEZ GRAS
GPEI GPA4
cPE4 GPA3
GPBs GPAZ
[|oPes GPat
[|erer GPan
S o—m: Voo INTA

il e

«

AMR

wlaufolofelo

|

m

P15
P18
Pi7

9|8 |B|R

IHEEEEEGNE

T

/CC

-
H
2

é|
:

P1.712,
P1.513
B 14,

-
S

i
§

€G28S681V

L
50 a0

XTALT
GND

"'JE Hk
S S s S

Contrast
Adjustment

SPI LCD HW connection

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 349

CHAPTER 6
Libraries mikroPascal for 8051

SPI LCDS8 (8-BIT INTERFACE) LIBRARY

The mikroPascal for 8051 provides a library for communication with LCD (with
HD44780 compliant controllers) in 8-bit mode via SPI interface.

For creating a custom set of LCD characters use LCD Custom Character Tool.

Note: Library uses the SPI module for communication. The user must initialize the
SPI module before using the SPI LCD Library.

Note: This Library is designed to work with mikroElektronika's Serial LCD/GLCD
Adapter Board pinout, see schematic at the bottom of this page for details.

External dependencies of SPI LCD Library

The implementation of SPI LCD Library routines is based on Port Expander Library
routines.

External dependencies are the same as Port Expander Library external dependen-
cies.

Library Routines

- Spi_Lcd8 Config
- Spi_Lcd8 Out

- Spi_Lcd8 Out Cp
- Spi_Lcd8 Chr

- Spi_Lcd8 Chr_Cp
- Spi_Lcd8 Cmd

350 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Spi_Lcd8_Config

Prokﬁype procedure Spi Lcd8 Config(DeviceAddress : byte);
Returns Nothing.
Initializes the LCD module via SPI interface.
. Parameters :
Description
- DeviceAddress: spi expander hardware address, see schematic at the
bottom of this page
SPExpanderCs and SPExpanderRST variables must be defined before using this
. function.
Requires
The SPI module needs to be initialized. See Spi_Init and Spi_Init Advanced routines.
// port expander pinout definition
var SPExpanderCS : sbit at P1.Bl;
SPExpanderRST : sbit at P1.BO;
Example
Spi Init(); // initialize spi interface
Spi Lcd8 Config(0); // intialize lcd in 8bit mode via spi
Spi_Lcd8 Out
rocedure Spi Lcd8 Out w: byte; 1 : byte; ar text:
Prokﬁype P : u Spi Lcd8 Out (row yte; column yte; v ex
string] 20]) ;

Returns Nothing.

Prints text on LCD starting from specified position. Both string variables and lit-
erals can be passed as a text.

e Parameters :
Description
- row: starting position row number
- column: starting position column number
- text: text to be written
Requires LCD needs to be initialized for SPI communication, see Spi_Lcd8_Config routines.
// Write text "Hello!" on LCD starting from row 1, column 3:
Example

Spi Lcd8 Out(l, 3, "Hello!");

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 351

CHAPTER 6
Libraries mikroPascal for 8051

Spi_Lcd8 Out Cp

Prototype procedure Spi Lcd8 Out CP(text: stringl 20]);

Returns Nothing.

Prints text on LCD at current cursor position. Both string variables and literals
can be passed as a text.

Description

Parameters :
- text : text to be written
Requires LCD needs to be initialized for SPI communication, see Spi_Lcd8_Config routines.
Example // Write text "Here!" at current cursor position:
P Spi Lcd8 Out Cp ("Here!");
Spi_Lcd8 Chr

Prototype procedure Spi Lcd8 Chr (Row : byte; Column : byte; Out Char : byte);

Returns Nothing.

Prints character on LCD at specified position. Both variables and literals can be
passed as character.

e Parameters :

Description
- row: Writing position row number
- column: writing position column number
- out char: character to be written

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd8_Config routines.
// Write character "i" at row 2, column 3:

Example

Spi_Lcd8 Chr(2, 3, 'i');

352 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Spi_Lcd8 Chr_Cp

Prototype procedure Spi Lcd8 Chr CP(Out Char : byte);

Returns Nothing.
Prints character on LCD at current cursor position. Both variables and literals
can be passed as character.

Description Parameters :
- out char : character to be written

Requires LCD needs to be initialized for SPI communication, see Spi_Lcd8_Config routines.
Print “e” at current cursor position:

Example , ! L
// Write character "e" at current cursor position:
Spi Lcd8 Chr Cp('e');

Spi_Lcd8_Cmd

Prototype |procedure Spi Lcd8 Cmd(out char : byte);

Returns Nothing.

Sends command to LCD.

Parameters :
Description |_ out char: command to be sent
Note: Predefined constants can be passed to the function, see Available LCD
Commands.
Requires LCD needs to be initialized for SPI communication, see Spi_Lcd8_Config routines.
Example // Clear LCD display:

Spi Lcd8 Cmd (LCD CLEAR) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 353

CHAPTER 6
Libraries

mikroPascal for 8051

Available LCD Commands

Lcd Command

Purpose

LCD FIRST ROW

Move cursor to the 1st row

LCD_SECOND_ROW

Move cursor to the 2nd row

LCD_THIRD ROW

Move cursor to the 3rd row

LCD_FOURTH_ROW

Move cursor to the 4th row

LCD CLEAR

Clear display

LCD_RETURN HOME

Return cursor to home position, returns a shifted display
to its original position. Display data RAM is unaffected.

LCD_CURSOR_OFF

Turn off cursor

LCD_UNDERLINE ON

Underline cursor on

LCD BLINK CURSOR ON

Blink cursor on

LCD_MOVE_CURSOR_LEFT

Move cursor left without changing display data RAM

LCD MOVE CURSOR RIGHT

Move cursor right without changing display data RAM

LCD_TURN ON

Turn LCD display on

LCD_TURN OFF

Turn LCD display off

LCD_SHIFT LEFT

Shift display left without changing display data RAM

LCD SHIFT RIGHT

Shift display right without changing display data RAM

354 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Library Example

This example demonstrates how to communicate LCD in 8-bit mode via the SPI
module, using serial to parallel convertor MCP23S17.

program Spi LCD8 Test;

var text : arrayl 16] of byte;

// Port Expander module connections
var SPExpanderRST : sbit at P1.BO;

var SPExpanderCS : sbit at P1.B1l;
// End Port Expander module connections

begin
text := 'mikroElektronika';
Spi Init(); // Initialize SPI
interface
Spi Lcd8 Config(0); // Intialize LCD
in 8bit mode via SPI
Spi Lcd8 Cmd (LCD_CLEAR) ; // Clear display
Spi Lcd8 Cmd (LCD_CURSOR_OFF) ; // Turn cursor off
Spi Lcd8 Out(l,6, text); // Print text to
LCD, 1lst row, 6th column...
Spi Lcd8 Chr CP('!'); // Append '!!
Spi Led8 Out (2,1, 'mikroelektronika'); // Print text to LCD,
2nd row, 1lst column...
Spi Led8 Out (3,1, text); // For LCD modules
with more than two rows
Spi Lcd8 Out (4,15, text); // For LCD modules
with more than two rows
end.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 355

CHAPTER 6
Libraries mikroPascal for 8051

HW Connection

MCP23517

q

cran oear[}2S [l P10 wvee [l-oveo
A 27 { P11
GPB1 GPAE |— H
[lorez Gras |_16
A 25 RS
GFB3 GPA4 l—
[|cres GRaz :|i dris >
[lores ePaz[} 25 (| Pie q
= =3 Ao
[|eFes cPat -'T 17 oo
[|oea7 GPes[}— ©
ad E 20 E]
(| voo wa [— m
{| vss e [
= F 18 P10 o]
[|cs Ll
sCK az .
18 Y
. E 1o
50 a0 d w
= DECILATCR. i
@ XTALT
Liene

oo

Contrast
Adjustment

SPI LCD8 HW connection

356

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

SPI T6963C GRAPHIC LCD LIBRARY

The mikroPascal for 8051 provides a library for working with GLCDs based on
TOSHIBA T6963C controller via SPI interface. The Toshiba T6963C is a very popu-
lar LCD controller for the use in small graphics modules. It is capable of controlling
displays with a resolution up to 240x128. Because of its low power and small out-
line it is most suitable for mobile applications such as PDAs, MP3 players or mobile
measurement equipment. Although this controller is small, it has a capability of dis-
playing and merging text and graphics and it manages all interfacing signals to the
displays Row and Column drivers.

For creating a custom set of GLCD images use GLCD Bitmap Editor Tool.

Note: The library uses the SPI module for communication. The user must initialize
SPI module before using the Spi T6963C GLCD Library.

Note: This Library is designed to work with mikroElektronika's Serial GLCD 240x128
and 240x64 Adapter Boards pinout, see schematic at the bottom of this page for
details.

Note: Some mikroElektronika's adapter boards have pinout different from T6369C
datasheets. Appropriate relations between these labels are given in the table below:

Adapter Board|T6369C datasheet

RS C/D
R/W /RD
E /WR

External dependencies of Spi T6963C Graphic LCD Library

The implementation of Spi T6963C Graphic LCD Library routines is based on Port
Expander Library routines.

External dependencies are the same as Port Expander Library external dependencies.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 357

CHAPTER 6
Libraries mikroPascal for 8051

Library Routines

- Spi_T6963C_Config

- Spi_T6963C_WriteData

- Spi_T6963C_WriteCommand
- Spi_T6963C_SetPtr

- Spi_T6963C_WaitReady
- Spi_T6963C_Fill

- Spi_T6963C_Dot

- Spi_T6963C_Write_Char
- Spi_T6963C_Write_Text
- Spi_T6963C_Line

- Spi_T6963C_Rectangle
- Spi_T6963C_Box

- Spi_T6963C_Circle

- Spi_T6963C_Image

- Spi_T6963C_Sprite

- Spi_T6963C_Set_Cursor

Note: The following low level library routines are implemented as macros. These
macros can be found in the Spi_T6963C.h header file which is located in the SPI
T6963C example projects folders.

- Spi_T6963C_ClearBit

- Spi_T6963C_SetBit

- Spi_T6963C_NegBit

- Spi_T6963C_DisplayGrPanel
- Spi_T6963C_DisplayTxtPanel
- Spi_T6963C_SetGrPanel

- Spi_T6963C_SetTxtPanel

- Spi_T6963C_PanelFill

- Spi_T6963C_GrFill

- Spi_T6963C_TxtFill

- Spi_T6963C_Cursor_Height
- Spi_T6963C_Graphics

- Spi_T6963C_Text

- Spi_T6963C_Cursor

- Spi_T6963C_Cursor_Blink

358 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Spi_T6963C_Config

procedure Spi T6963C Config(width : word; height : byte; fntW :
Prokﬂype byte; DeviceAddress : byte; wr : byte; rd : byte; cd : byte; rst
: byte);

Returns Nothing.

Initalizes the Graphic Lcd controller.
Parameters :

- width: width of the GLCD panel

- height : height of the GLCD panel

- fntw: font width

- DeviceAddress: SPI expander hardware address, see schematic at the
bottom of this page

- wr : write signal pin on GLCD control port

- rd: read signal pin on GLCD control port

- cd: command/data signal pin on GLCD control port

- rst: reset signal pin on GLCD control port

Display RAM organization:
The library cuts RAM into panels : a complete panel is one graphics panel fol-
lowed by a text panel (see schematic below).

Description
schematic:
e L L e + /\
+ GRAPHICS PANEL #0 +
+ +
+ +
+ +
Lt et L + | PANEL O
+ TEXT PANEL #0 +
+ + \/
fom + /\
+ GRAPHICS PANEL #1 +
+ +
+ +
+ +
o + | PANEL 1
+ TEXT PANEL #2 + |
+ +
e e L L L LB P e + \/
SPExpanderCS and SPExpanderRST variables must be defined before using
this function.
Requires

The SPI module needs to be initialized. See the Spi_Init and Spi_Init_ Advanced
routines.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 359

CHAPTER 6
Libraries mikroPascal for 8051

// port expander pinout definition
var SPExpanderRST : sbit at P1.BO;
var SPExpanderCS : sbit at P1.Bl;
Example S
Spi Init Advanced (MASTER OSC DIV4 OR CLK IDLE LOW OR
IDLE 2 ACTIVE OR DATA ORDER MSB) ;

Spi T6963C Config (240, 64, 8, 0, O, 1, 3, 4) ;

Spi_T6963C_WriteData

Prototype procedure Spi T6963C WriteData(Ddata : byte);

Returns Nothing.
Writes data to T6963C controller via SPI interface.

Description |Parameters :

- Ddata: data to be written

Requires Toshiba GLCD module needs to be initialized. See Spi_ T6963C_Config routine.

Example Spi T6963C WriteData (AddrL) ;

Spi_T6963C_WriteCommand

Prototype procedure Spi T6963C WriteCommand(Ddata : byte);

Returns Nothing.

Writes command to T6963C controller via SPI interface.
Description |Parameters :

- Ddata: command to be written

Requires Toshiba GLCD module needs to be initialized. See Spi_ T6963C_Config routine.

Example Spi T6963C WriteCommand (Spi T6963C CURSOR POINTER SET);

360 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

Spi_T6963C_SetPtr

Prototype procedure Spi T6963C SetPtr(p : word; c : byte);
Returns Nothing.
Sets the memory pointer p for command c.
Description Parameters :
- p: address where command should be written
- ¢: command to be written
Requires SToshiba GLCD module needs to be initialized. See Spi_ T6963C_Config routine.
Example Spi T6963C SetPtr (T6963C grHomeAddr + start,

T6963C_ADDRESS POINTER SET) ;

Spi_T6963C_WaitReady

Prototype procedure Spi T6963C WaitReady();
Returns Nothing.
Description |Pools the status byte, and loops until Toshiba GLCD module is ready.
Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.
Example Spi T6963C WaitReady () ;
Spi_T6963C _Fill
Prototype procedure Spi T6963C Fill(v : byte; start : word; len : word);
Returns Nothing.

Fills controller memory block with given byte.

Parameters :
Description

- v: byte to be written

- start: starting address of the memory block

- len: length of the memory block in bytes
Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.
Example Spi T6963C Fill (0x33; O0x00FF; O0x000F);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

361

CHAPTER 6
Libraries mikroPascal for 8051

Spi_T6963C_Dot

Prototype procedure Spi T6963C Dot (x : integer; y : integer; color : byte);

Returns Nothing.
Draws a dot in the current graphic panel of GLCD at coordinates (x, y).

Parameters :

Description |_ % : dot position on x-axis

- v: dot position on y-axis

- color: color parameter. Valid values: Spi_T6963C_BLACK and
Spi_T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See Spi_ T6963C_Config routine.

Example Spi T6963C Dot (x0, y0, pcolor);

362 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

Spi_T6963C_Write_Char

procedure Spi T6963C Write Char(c : byte; x : byte; y : byte;

Prototype mode : byte);
Returns Nothing.
Writes a char in the current text panel of GLCD at coordinates (x, y).
Parameters :
- c: char to be written
- x: char position on x-axis
- v: char position on y-axis
- mode : mode parameter. Valid values:
Spi_T6963C_ROM_MODE_OR, Spi_T6963C_ROM_MODE_XOR,
Spi_T6963C_ROM_MODE_AND and Spi_T6963C_ROM_MODE_TEXT
Mode parameter explanation:
Description
- OR Mode: In the OR-Mode, text and graphics can be displayed and the data
is logically “OR-ed”. This is the most common way of combining text and
graphics for example labels on buttons.
- XOR-Mode: In this mode, the text and graphics data are combined via the
logical “exclusive OR”. This can be useful to display text in negative mode, i.e.
white text on black background.
- AND-Mode: The text and graphic data shown on display are combined via the
logical “AND function”.
- TEXT-Mode: This option is only available when displaying just a text. The Text
Attribute values are stored in the graphic area of display memory.
For more details see the T6963C datasheet.
Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.
Example Spi T6963C Write Char ("A",22,23,AND);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

363

CHAPTER 6
Libraries mikroPascal for 8051

Spi_T6963C_Write_Text

procedure Spi T6963C Write Text(str : “byte; x : byte, y : byte;

PrOtOtype mode : byte);

Returns Nothing.

Writes text in the current text panel of GLCD at coordinates (X, y).
Parameters :

- str: text to be written

- x: text position on x-axis

- y: text position on y-axis

- mode : mode parameter. Valid values:
Spi_T6963C_ROM_MODE_OR, Spi_T6963C_ROM_MODE_XOR,
Spi_T6963C_ROM_MODE_AND and Spi_T6963C_ROM_MODE_TEXT

Mode parameter explanation:

Description

- OR Mode: In the OR-Mode, text and graphics can be displayed and the data
is logically “OR-ed”. This is the most common way of combining text and
graphics for example labels on buttons.

- XOR-Mode: In this mode, the text and graphics data are combined via the
logical “exclusive OR”. This can be useful to display text in negative mode, i.e.
white text on black background.

- AND-Mode: The text and graphic data shown on the display are combined via
the logical “AND function”.

- TEXT-Mode: This option is only available when displaying just a text. The Text
Attribute values are stored in the graphic area of display memory.

For more details see the T6963C datasheet.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Spi T6963C Write Text ('GLCD LIBRARY DEMO, WELCOME !', 0, O,

Example T6963C_ROM MODE_EXOR) ;

364 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries

Spi_T6963C_Line

procedure Spi T6963C Line(x0 : integer; y0 : integer; x1 : inte-
Prokﬂype ger; yl : integer; pcolor : byte);
Returns Nothing.

Draws a line from (x0, y0) to (x1, y1).

Parameters :
Descriotion |~ =0 : x coordinate of the line start

P - y0: y coordinate of the line end

- x1: x coordinate of the line start

- y1: y coordinate of the line end

- pcolor: color parameter. Valid values:

Spi_T6963C_BLACK and Spi_T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.
Example Spi T6963C Line(0, 0, 239, 127, T6963C WHITE);

Spi_T6963C_Rectangle

Prototype

procedure Spi T6963C Rectangle (x0 : integer; yO : integer; x1
integer; yl : integer; pcolor : byte);

Returns

Nothing.

Description

Draws a rectangle on GLCD.
Parameters :

- x0: x coordinate of the upper left rectangle corner
- y0: y coordinate of the upper left rectangle corner
- x1: x coordinate of the lower right rectangle corner
- y1: y coordinate of the lower right rectangle corner
- pcolor: color parameter. Valid values:
Spi_T6963C_BLACK and Spi_T6963C_WHITE

Requires

Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example

Spi_T6963C_Rectangle (20, 20, 219, 107, T6963C_WHITE);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

365

CHAPTER 6
Libraries mikroPascal for 8051

Spi_T6963C_Box

procedure Spi T6963C Box(x0 : integer; yO : integer; x1 : inte-

Proknype ger; yl : integer; pcolor : byte);
Returns Nothing.
Draws a box on the GLCD
Parameters :
. - x0: x coordinate of the upper left box corner
Description

- y0: y coordinate of the upper left box corner

- x1: x coordinate of the lower right box corner

- y1: y coordinate of the lower right box corner

- pcolor: color parameter. Valid values:
Spi_T6963C_BLACK and Spi_T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi_T6963C Box (0, 119, 239, 127, T6963C _WHITE);

Spi_T6963C_Circle

procedure Spi T6963C Circle(x : integer; y : integer; r :
longint; pcolor : byte);

Prototype

Returns Nothing.

Draws a circle on the GLCD.
Parameters :

Description |- x: x coordinate of the circle center

- y: y coordinate of the circle center

- r: radius size

- pcolor: color parameter. Valid values:
Spi_T6963C_BLACK and Spi_T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

Example Spi T6963C Circle (120, 64, 110, T6963C WHITE);

366 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

Spi_T6963C_Image

Prototype procedure Spi T6963C_image (const pic : “byte);
Returns Nothing.
Displays bitmap on GLCD.
Parameters :
- pic: image to be displayed. Bitmap array can be located in both code and
Description | RAM memory (due to the mikroPascal for 8051 pointer to const and pointer to
RAM equivalency).
Use the mikroPascal’s integrated GLCD Bitmap Editor (menu option Tools >
GLCD Bitmap Editor) to convert image to a constant array suitable for display-
ing on GLCD.
Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.
Example Spi T6963C Image (my image);
Spi_T6963C_Sprite
Prototype Ijgocedl:lre Spi T6963C sprite(px, py, sxX, sy : byte; const pic :
yte);
Returns Nothing.
Fills graphic rectangle area (px, py) to (px+sx, py+sy) with custom size picture.
Parameters :
- px: X coordinate of the upper left picture corner. Valid values: multiples of the
font width
Description |- py: y coordinate of the upper left picture corner
- pic: picture to be displayed
- sx: picture width. Valid values: multiples of the font width
- sy: picture height
Note: If px and sx parameters are not multiples of the font width they will be
scaled to the nearest lower number that is a multiple of the font width.
Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.
Example Spi T6963C Sprite(76, 4, einstein, 88, 119); // draw a sprite

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

367

CHAPTER 6
Libraries

mikroPascal for 8051

Spi_T6963C_Set Cursor

Prototype procedure Spi T6963C set cursor(x, y : byte);
Returns Nothing.
Sets cursor to row x and column vy.
i Parameters :
Description
- x: cursor position row number
- y: cursor position column number
Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.
Example Spi T6963C Set Cursor (cposx, cposy);
Spi_T6963C_ClearBit
Prototype procedure Spi T6963C_clearBit(b : byte);
Returns Nothing.
Clears control port bit(s).
Description |Parameters :
- b: bit mask. The function will clear bit < on control port if bit x in bit mask is set to 1.
Requires Toshiba GLCD module needs to be initialized. See Spi_ T6963C_Config routine.
E I // clear bits 0 and 1 on control port
xample Spi T6963C ClearBit (0x03);
Spi_T6963C_SetBit
Prototype procedure Spi T6963C setBit (b : byte);
Returns Nothing.
Sets control port bit(s).
Description |Parameters :
- b: bit mask. The function will set bit x on control port if bit x in bit mask is set to 1.
Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.
// set bits 0 and 1 on control port
Example

Spi T6963C SetBit (0x03);

368 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

Spi_T6963C_NegBit

Prototype |procedure Spi T6963C negBit(b : byte);
Returns Nothing.
Negates control port bit(s).
Description Parameters :
- b: bit mask. The function will negate bit x on control port if bit x in bit mask is
setto 1.
Requires Toshiba GLCD module needs to be initialized. See Spi_ T6963C_Config routine.
E I // negate bits 0 and 1 on control port
xample Spi T6963C NegBit (0x03);
Spi_T6963C_DisplayGrPanel
Prototype procedure Spi T6963C DisplayGrPanel (n : byte);
Returns Nothing.
Display selected graphic panel.
Description |Parameters :
- n: graphic panel number. Valid values: 0 and 1.
Requires Toshiba GLCD module needs to be initialized. See Spi_ T6963C_Config routine.
// display graphic panel 1
Exan“ﬂe Spi T6963C DisplayGrPanel (1) ;
Spi_T6963C_DisplayTxtPanel
Prototype procedure Spi T6963C DisplayTxtPanel (n : byte);
Returns Nothing.
Display selected text panel.
Description |Parameters :
- n: text panel number. Valid values: 0 and 1.
Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.
Example // display text panel 1

Spi T6963C DisplayTxtPanel (1) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

369

CHAPTER 6
Libraries mikroPascal for 8051

Spi_T6963C_SetGrPanel

Prototype procedure Spi T6963C SetGrPanel(n : byte);

Returns Nothing.

Compute start address for selected graphic panel and set appropriate internal
pointers. All subsequent graphic operations will be preformed at this graphic
panel.

Description
Parameters :

- n: graphic panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

// set graphic panel 1 as current graphic panel.

Example Spi T6963C_SetGrPanel (1) ;

Spi_T6963C_SetTxtPanel

Prototype procedure Spi T6963C SetTxtPanel(n : byte);

Returns Nothing.

Compute start address for selected text panel and set appropriate internal point-
ers. All subsequent text operations will be preformed at this text panel.

Description Parameters :

- n: text panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

// set text panel 1 as current text panel.

Example Spi T6963C SetTxtPanel (1) ;

370 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

Spi_T6963C_PanelFill

Prototype [procedure Spi T6963C pPanelFill(v : byte);
Returns Nothing.
Fill current panel in full (graphic+text) with appropriate value (0 to clear).
Description |Parameters :
- v: value to fill panel with.
Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.
E I clear current panel
xample Spi T6963C_ PanelFill (0);
Spi_T6963C_GrFill
Prototype |procedure Spi T6963C GrFill(v : byte);
Returns Nothing.
Fill current graphic panel with appropriate value (0 to clear).
Description |Parameters :
- v: value to fill graphic panel with.
Requires Toshiba GLCD module needs to be initialized. See Spi_ T6963C_Config routine.
// clear current graphic panel
Example Spi T6963C_GrFill (0);
Spi_T6963C_TxtFill
Prototype |procedure Spi T6963C TxtFill (v : byte);
Returns Nothing.
Fill current text panel with appropriate value (0 to clear).
Description |Parameters :
- v: this value increased by 32 will be used to fill text panel.
Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.
Example // clear current text panel

Spi_T6963C_TxtFill (0);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

371

CHAPTER 6
Libraries

mikroPascal for 8051

Spi_T6963C_Cursor_Height

Prototype procedure Spi T6963C Cursor Height(n : byte);
Returns Nothing.
Set cursor size.
Description |Parameters :
- n: cursor height. Valid values: 0..7.
Requires Toshiba GLCD module needs to be initialized. See Spi_ T6963C_Config routine.
Example Spi T6963C Cursor Height(7);
Spi_T6963C_Graphics
Prototype procedure Spi T6963C Graphics(n : byte);
Returns Nothing.
Enable/disable graphic displaying.
Description Parameters :
- n: graphic enable/disable parameter. Valid values: 0 (disable graphic
dispaying) and 1 (enable graphic displaying).
Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.
// enable graphic displaying
Exan“ﬂe Spi T6963C Graphics (1) ;
Spi_T6963C_Text
Prototype procedure Spi T6963C Text (n : byte);
Returns Nothing.
Enable/disable text displaying.
Description Parameters :
- n: text enable/disable parameter. Valid values: 0 (disable text dispaying) and 1
(enable text displaying).
Requires Toshiba GLCD module needs to be initialized. See Spi_ T6963C_Config routine.
Example // enable text displaying

Spi T6963C Text(1);

372 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Spi_T6963C_Cursor

Prototype procedure Spi T6963C Cursor(n : byte);

Returns Nothing.

Set cursor on/off.
Description |Parameters :

- n: on/off parameter. Valid values: 0 (set cursor off) and 1 (set cursor on).
Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

// set cursor on

Example Spi T6963C Cursor(1l);

Spi_T6963C_Cursor_Blink

Prototype procedure Spi T6963C Cursor Blink(n : byte);

Returns Nothing.

Enable/disable cursor blinking.

. Parameters :
Description

- n: cursor blinking enable/disable parameter. Valid values: 0 (disable cursor
blinking) and 1 (enable cursor blinking).

Requires Toshiba GLCD module needs to be initialized. See Spi_T6963C_Config routine.

// enable cursor blinking

Example Spi T6963C Cursor Blink(1);

Library Example

The following drawing demo tests advanced routines of the Spi T6963C GLCD library. Hardware
configurations in this example are made for the T6963C 240x128 display, Easy8051B board and
AT89S8253.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 373

CHAPTER 6
Libraries mikroPascal for 8051

#include "Spi T6963C.h"

/*

* bitmap pictures stored in ROM
*/

extern const code char mc[] ;
extern const code char einstein[] ;

// Port Expander module connections
sbit SPExpanderRST at P1.BO;

sbit SPExpanderCS at P1.B1;

// End Port Expander module connections

procedure main() {

char idata txtl[] = " EINSTEIN WOULD HAVE LIKED mC";
char idata txt[] = " GLCD LIBRARY DEMO, WELCOME !";

byte panel ; // current panel

word i // general purpose register
byte curs ; // cursor visibility

word cposx, cposy ; // cursor x-y position

PO = 255; // Configure PORTO as input

~
*

init display for 240 pixel width and 128 pixel height
8 bits character width

data bus on MCP23S17 portB

control bus on MCP23S17 portA

bit 2 is !WR

bit 1 is !RD

bit 0 is !CD

bit 4 is RST

chip enable, reverse on, 8x8 font internaly set in library

L S

// Initialize SPI module
Spi_Init_Advanced(MASTER_OSC_DIV4 OR CLK IDLE LOW OR IDLE_2_ACTIVE
OR DATA ORDER MSB) ;

// Initialize SPI Toshiba 240x128

Spi T6963C Config (240, 128, 8, 0, 2, 1, 0, 4) ;

Delay ms(1000);

/*
* Enable both graphics and text display at the same time
*/

Spi T6963C graphics(1l) ;

Spi T6963C text(l) ;

374 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

panel = 0 ;

i =0 ;

curs = 0 ;

cposx = cposy = 0 ;

/*

* Text messages

*/

Spi T6963C write text(txt, 0, 0, Spi T6963C ROM MODE XOR) ;
Spi T6963C write text(txtl, 0, 15, Spi T6963C ROM MODE XOR) ;

/*

* Cursor

*/

Spi T6963C cursor height (8) ; // 8 pixel height

Spi T6963C_set cursor (0, 0) ; // move cursor to top left
Spi T6963C cursor (0) ; // cursor off

/*

* Draw rectangles

*/

Spi T6963C rectangle(0, 0, 239, 127, Spi T6963C WHITE) ;
Spi T6963C rectangle (20, 20, 219, 107, Spi T6963C WHITE) ;
Spi T6963C rectangle (40, 40, 199, 87, Spi T6963C WHITE) ;
Spi T6963C rectangle(60, 60, 179, 67, Spi T6963C WHITE) ;

/*
* Draw a Ccross

*/

Spi T6963C line(0, 0, 239, 127, Spi T6963C WHITE) ;
Spi T6963C line(0, 127, 239, 0, Spi T6963C WHITE) ;

/*
* Draw solid boxes

*/

Spi T6963C box (0, 0, 239, 8, Spi T6963C WHITE) ;

Spi T6963C box (0, 119, 239, 127, Spi T6963C WHITE) ;

/*

* Draw circles

*/

Spi T6963C circle (120, 64, 10, Spi T6963C WHITE)
Spi T6963C circle (120, 64, 30, Spi T6963C WHITE)
Spi T6963C circle (120, 64, 50, Spi T6963C WHITE) ;
Spi T6963C circle (120, 64, 70, Spi T6963C WHITE)
Spi T6963C circle (120, 64, 90, Spi T6963C WHITE)
Spi T6963C circle (120, 64, 110, Spi T6963C WHITE) ;
Spi T6963C circle (120, 64, 130, Spi T6963C WHITE) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 375

CHAPTER 6
Libraries mikroPascal for 8051

Spi T6963C sprite(76, 4, einstein, 88, 119) ; // Draw a sprite

Spi T6963C_setGrPanel(l) ; // Select other
graphic panel

Spi T6963C_image (mc) ; // Fill the graph-
ic screen with a picture

for(;;) { // Endless loop

/*
* If PO 0 is pressed, toggle the display between graphic panel
0 and graphic 1
*/
if (!P0_0) {
panel++ ;
panel &= 1 ;
Spi T6963C displayGrPanel (panel) ;
Delay ms (300) ;
}

/*
*
*/

else if (!PO 1) {

Spi T6963C graphics(1l) ;
Spi T6963C text (0) ;
Delay ms (300) ;

}

If PO 1 is pressed, display only graphic panel

/*
* If PO 2 is pressed, display only text panel
*/
else if (!PO0 _2) {
Spi T6963C graphics(0) ;
Spi T6963C text(l) ;
Delay ms (300) ;
}

/*
*
*/

else if (!PO _3) {

Spi T6963C graphics(l) ;
Spi T6963C text(l) ;
Delay ms (300) ;

}

If PO 3 is pressed, display text and graphic panels

376 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6
Libraries

/*
*
*/

else if (!PO _4) {

curs++ ;

If PO 4 is pressed, change cursor

if (curs ==) curs
switch (curs) {
case 0:
// no cursor
Spi T6963C cursor (0) ;
break ;
case 1:

0 ;

// blinking cursor
Spi T6963C cursor(l) ;
Spi T6963C cursor blink(1l) ;
break ;
case 2:
// non blinking cursor
Spi T6963C cursor(l) ;
Spi T6963C cursor blink(0) ;
break ;
}
Delay ms (300) ;
t

/*
* Move cursor, even 1if not visible
*/
cposx++ ;
if (cposx == Spi T6963C txtCols) {
cposx = 0 ;
cposy++ ;

if (cposy == Spi T6963C grHeight / Spi T6963C CHARACTER HEIGHT)

cposy = 0 ;
}
}
Spi T6963C set cursor(cposx, cCposy) ;

Delay ms (100) ;
}

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 377

CHAPTER 6
Libraries mikroPascal for 8051

HW Connection

MCP23I51T
De 1 n S ,
pr— = S o)
D2 s[‘]M Mo L
D1 4 oraz W-IB RET E %
GPrB3 OPA4
T Ha4 cE i il
p— e — bo»
E ——] P 1]
S] — ;:' i
—|U Jorer o[} i © il
& O—W[voD A]T i m 1l
- '“mf vas WHTE JIT P88 f]
B e d %)
P‘le![L Az 1% []
P1.B6 - A 15 [m]
s m 1 <@ 5
— CECILLATOR E %
L |—| |—| Lr—| XTAL1 Il
{ann n

Toshiba TE9E3C Graphic LCD (240x128)

MIKROE
EAS5805I8
DEV SHSTEN

10K
Contrast
Adjustment

Spi T6963C GLCD HW connection

378 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries

T6963C GRAPHIC LCD LIBRARY

The mikroPascal for 8051 provides a library for working with GLCDs based on
TOSHIBA T6963C controller. The Toshiba T6963C is a very popular LCD controller
for the use in small graphics modules. It is capable of controlling displays with a res-
olution up to 240x128. Because of its low power and small outline it is most suitable
for mobile applications such as PDAs, MP3 players or mobile measurement equip-
ment. Although small, this contoller has a capability of displaying and merging text

and graphics and it manages all the interfacing signals to the displays Row and Col-
umn drivers.

For creating a custom set of GLCD images use GLCD Bitmap Editor Tool.

Note: ChipEnable(CE), FontSelect(FS) and Reverse(MD) have to be set to appro-
priate levels by the user outside of the T6963c 1nit function. See the Library Exam-
ple code at the bottom of this page.

Note: Some mikroElektronika's adapter boards have pinout different from T6369C
datasheets. Appropriate relations between these labels are given in the table below:

Adapter Board|T6369C datasheet
RS C/D
R/W /RD
E /WR

External dependencies of T6963C Graphic LCD Library

The following variables
must be defined in all
projects using T6963C

Graphic LCD library:
var T6963C dataPort :
byte; external; sfr;
var T6963C ctrlPort :
byte; external; sfr;: T6963C Control Port.

var T6963C ctrlwr :

Description: Example :

var T6963C dataPort :

T6963C Data Port. byte at P0; sfr;

var T6963C ctrlPort :
byte at Pl; sfr;

var T6963C ctrlwr :

sbit; external; VVnKa&gnaL sbit; at P1.B2;
var T6963C ctrlrd : Read signal var T6963C ctrlrd :
sbit external; 'gnal. sbit at P1.B1;

var T6963C ctrlcd :
sbit; external;

Command/Data signal.

var T6963C ctrlcd :
sbit at P1.BO;

var T6963C ctrlrst :
sbit; external;

Reset signal.

var T6963C ctrlrst :
sbit at P1.B4;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

379

CHAPTER 6
Libraries mikroPascal for 8051

Library Routines

- T6963C_Init

- T6963C_WriteData

- T6963C_WriteCommand
- T6963C_SetPtr

- T6963C_WaitReady
- T6963C_Fill

- T6963C_Dot

- T6963C_Write_Char
- T6963C_Write_Text
- T6963C_Line

- T6963C_Rectangle
- T6963C_Box

- T6963C_Circle

- T6963C_Image

- T6963C_Sprite

- T6963C_Set_Cursor

Note: The following low level library routines are implemented as macros. These
macros can be found in the T6963c.h header file which is located in the T6963C
example projects folders.

- T6963C_ClearBit

- T6963C_SetBit

- T6963C_NegBit

- T6963C_DisplayGrPanel
- T6963C_DisplayTxtPanel
- T6963C_SetGrPanel

- T6963C_SetTxtPanel

- T6963C_PanelFill

- T6963C_GrfFill

- T6963C_TxtFill

- T6963C_Cursor_Height
- T6963C_Graphics

- T6963C_Text

- T6963C_Cursor

- T6963C_Cursor_Blink

380 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

T6963C_lInit

Prototype procedure T6963C init (width : word; height, fntW : byte);

Returns Nothing.

Initalizes the Graphic Lcd controller.
Parameters :

- width: width of the GLCD panel
- height: height of the GLCD panel
- fntw: font width

Display RAM organization:
The library cuts the RAM into panels : a complete panel is one graphics panel
followed by a text panel (see schematic below).

schematic:
Description |~~~ T A
+ GRAPHICS PANEL #0 + |
» Foo
+ +
+ +
e e T + | PANEL 0
+ TEXT PANEL #0 +
+ +\/
o + /\
+ GRAPHICS PANEL #1 +
+ +
+ +
+ +
e el B LT + | PANEL 1
+ TEXT PANEL #2 +
+ +
o + \/

Global variables :

- T6963C databort : Data Port

- T6963C ctrlport : Control Port

- T6963C ctrlwr : write signal pin

- T6963C ctrlrd : read signal pin

- T6963C ctrlcd : command/data signal pin
- T6963C ctrirst :reset signal pin

Requires

must be defined before using this function.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 381

CHAPTER 6

Libraries mikroPascal for 8051
// T6963CGLCD pinout definition
var T6963C dataPort : byte at PO; sfr; // pointer to DATA
BUS port
var T6963C ctrlPort : byte at Pl; sfr; // pointer to CONTROL
BUS port
var T6963C ctrlwr : sbit; at P1.B2; // WR write signal
E I var T6963C ctrlrd : sbit at P1.BI1; // RD read signal

xample var T6963C ctrlcd : sbit at P1.BO; // CD command/data
signal
var T6963C ctrlrst : sbit at P1.B4; // RST reset signal
// init display for 240 pixel width, 128 pixel height and 8 bits
character width
T6963C init (240, 128, 8);

T6963C_WriteData

Prototype procedure T6963C WriteData (mydata : byte);

Returns Nothing.
Writes data to T6963C controller.

Description |Parameters :

- mydata: data to be written

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C WriteData (Addrl);

T6963C_WriteCommand

Prototype procedure T6963C WriteCommand (mydata : byte);

Returns Nothing.

Writes command to T6963C controller.
Description |Parameters :

- mydata: command to be written

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C WriteCommand (T6963C CURSOR POINTER SET) ;

382 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

T6963C_SetPtr

Prototype |procedure T6963C SetPtr(p : word; c : byte);
Returns Nothing.
Sets the memory pointer p for command c.
e Parameters :
Description
- p: address where command should be written
- ¢: command to be written
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Exambple T6963C SetPtr(T6963C grHomeAddr + start,
P ‘1‘6963C7ADDRL'SSiPOlN'l‘J:’Risﬂ T);

T6963C_WaitReady

Prototype [procedure T6963C WaitReady () ;
Returns Nothing.
Description [Pools the status byte, and loops until Toshiba GLCD module is ready.
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example T6963C_WaitReady () ;
T6963C_Fill
Prototype procedure T6963C Fill(v : byte; start, len : word);
Returns Nothing.
Fills controller memory block with given byte.
Parameters :
Description
- v: byte to be written
- start: starting address of the memory block
- len: length of the memory block in bytes
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example T6963C_Fill (0x33,0x00FF, 0x000F) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

383

CHAPTER 6
Libraries mikroPascal for 8051

T6963C_Dot

Prototype procedure T6963C Dot (x, y : integer; color : byte);

Returns Nothing.

Draws a dot in the current graphic panel of GLCD at coordinates (X, y).

Parameters :
Description
- x: dot position on x-axis
- y: dot position on y-axis
- color: color parameter. Valid values: T6963C_BLACK and T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C Dot (x0, y0, pcolor);

384 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

T6963C_Write_Char

Prototype procedure T6963C Write Char(c, x, y, mode : byte);

Returns Nothing.

Writes a char in the current text panel of GLCD at coordinates (x, y).
Parameters :

- c¢: char to be written

- x: char position on x-axis

- v: char position on y-axis

- mode : mode parameter. Valid values: T6963C_ROM_MODE_OR,
T6963C_ROM_MODE_XOR, T6963C_ROM_MODE_AND and
T6963C_ROM_MODE_TEXT

Mode parameter explanation:

Description

- OR Mode: In the OR-Mode, text and graphics can be displayed and the data
is logically “OR-ed”. This is the most common way of combining text and
graphics for example labels on buttons.

- XOR-Mode: In this mode, the text and graphics data are combined via the
logical “exclusive OR”. This can be useful to display text in the negative mode,
i.e. white text on black background.

- AND-Mode: The text and graphic data shown on display are combined via the
logical “AND function”.

- TEXT-Mode: This option is only available when displaying just a text. The Text
Attribute values are stored in the graphic area of display memory.

For more details see the T6963C datasheet.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Write Char ('A',22,23,AND);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 385

CHAPTER 6
Libraries mikroPascal for 8051

T6963C_Write_Text

Prototype procedure T6963C Write Text (str : “byte; x, y, mode : byte);

Returns Nothing.

Writes text in the current text panel of GLCD at coordinates (X, y).
Parameters :

- str: text to be written

- x: text position on x-axis

- v: text position on y-axis

- mode : mode parameter. Valid values: T6963C_ROM_MODE_OR,
T6963C_ROM_MODE_XOR, T6963C_ROM_MODE_AND and
T6963C_ROM_MODE_TEXT

Mode parameter explanation:

Description

- OR Mode: In the OR-Mode, text and graphics can be displayed and the data
is logically “OR-ed”. This is the most common way of combining text and
graphics for example labels on buttons.

- XOR-Mode: In this mode, the text and graphics data are combined via the
logical “exclusive OR”. This can be useful to display text in the negative mode,
i.e. white text on black background.

- AND-Mode: The text and graphic data shown on display are combined via the
logical “AND function”.

- TEXT-Mode: This option is only available when displaying just a text. The Text
Attribute values are stored in the graphic area of display memory.

For more details see the T6963C datasheet.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

T6963C Write Text (" GLCD LIBRARY DEMO, WELCOME !", 0, O,
T6963C_ROM MODE_XOR) ;

Example

386 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

T6963C_Line

Prototype procedure T6963C Line(x0, y0, x1, yl : integer; pcolor : byte);

Returns Nothing.

Draws a line from (x0, y0) to (x1, y1).
Parameters :

- x0: x coordinate of the line start

- y0: y coordinate of the line end

- x1: X coordinate of the line start

- y1: y coordinate of the line end

- pcolor: colajor parameter. Valid values:
T6963C_BLACK and T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Description

Example T6963C Line(0, 0, 239, 127, T6963C_WHITE);

T6963C_Rectangle

Prototype procedure T6963C Rectangle(x0, y0, x1, yl : integer; pcolor : byte)

Returns Nothing.

Draws a rectangle on GLCD.
Parameters :

Description |- <0: x coordinate of the upper left rectangle corner

- v0: y coordinate of the upper left rectangle corner

- x1: x coordinate of the lower right rectangle corner

- y1: y coordinate of the lower right rectangle corner

- pcolor: color parameter. Valid values: T6963C_BLACK and T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Rectangle (20, 20, 219, 107, T6963C WHITE);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 387

CHAPTER 6
Libraries mikroPascal for 8051

T6963C_Box

Prototype procedure T6963C Box(x0, y0, x1, yl : integer; pcolor : byte);

Returns Nothing.
Draws a box on GLCD

Parameters :

Description |- =<0: x coordinate of the upper left box corner

- v0: y coordinate of the upper left box corner

- x1: x coordinate of the lower right box corner

- y1: y coordinate of the lower right box corner

- pcolor: color parameter. Valid values: T6963C_BLACK and T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C Box (0, 119, 239, 127, T6963C WHITE);

T6963C_Circle

Prototype procedure T6963C Circle(x, y : integer; r : longint; pcolor : byte);

Returns Nothing.

Draws a circle on GLCD.

Parameters :
Description | % : X coordinate of the circle center

- v: y coordinate of the circle center

- r: radius size

- pcolor: color parameter. Valid values: T6963C_BLACK and T6963C_WHITE

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_Circle (120, 64, 110, T6963C WHITE);

388 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

T6963C_Image

Prototype procedure T6963C_Image (const pic : “byte);
Returns Nothing.
Displays bitmap on GLCD.
Parameters :
- pic: image to be displayed. Bitmap array can be located in both code and
Description | RAM memory (due to the mikroPascal for 8051 pointer to const and pointer to
RAM equivalency).
Use the mikroPascal’s integrated GLCD Bitmap Editor (menu option Tools >
GLCD Bitmap Editor) to convert image to a constant array suitable for display-
ing on GLCD.
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example T6963C_ Image (mc) ;

T6963C_Sprite

Prototype procedure T6963C Sprite(px, py, sx, sy : byte; const pic : “byte);
Returns Nothing.

Fills graphic rectangle area (px, py) to (px+sx, py+sy) with custom size picture.

Parameters :

- px: X coordinate of the upper left picture corner. Valid values: multiples of the

font width

Description |- py: y coordinate of the upper left picture corner

- pic: picture to be displayed

- sx: picture width. Valid values: multiples of the font width

- sy: picture height

Note: If px and sx parameters are not multiples of the font width they will be

scaled to the nearest lower number that is a multiple of the font width.
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example T6963C_Sprite (76, 4, einstein, 88, 119); // draw a sprite

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

389

CHAPTER 6
Libraries mikroPascal for 8051

T6963C_Set_Cursor

Prototype procedure T6963C Set Cursor(x, y : byte);

Returns Nothing.

Sets cursor to row x and column vy.

.. Parameters :
Description

- x: cursor position row number
- y: cursor position column number

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C Set Cursor (cposx, cposy);

T6963C_ClearBit

Prototype procedure T6963C ClearBit (b : byte);

Returns Nothing.

Clears control port bit(s).
Description |Parameters :

- b: bit mask. The function will clear bit x on control port if bit x in bit mask is set to 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

// clear bits 0 and 1 on control port

Example T6963C ClearBit (0x03);

T6963C_SetBit

Prototype procedure T6963C_SetBit (b : byte);

Returns Nothing.

Sets control port bit(s).
Description |Parameters :

- b: bit mask. The function will set bit x on control port if bit x in bit mask is set to 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

// set bits 0 and 1 on control port

Example T6963C_SetBit (0x03) ;

390 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

T6963C_NegBit

Prototype procedure T6963C NegBit (b : byte);
Returns Nothing.
Negates control port bit(s).
i Parameters :
Description
- b: bit mask. The function will negate bit < on control port if bit x in bit mask is
set to 1.
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example // negate bits 0 and 1 on control port

T6963C NegBit (0x03);

T6963C_DisplayGrPanel

Prototype procedure T6963C DisplayGrPanel(n : byte);
Returns Nothing.
Display selected graphic panel.
Description |Parameters :
- n: graphic panel number. Valid values: 0 and 1.
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example // display graphic panel 1

T6963C DisplayGrPanel (1);

T6963C_DisplayTxtPanel

Prototype procedure T6963C DisplayTxtPanel (n : byte);
Returns Nothing.
Display selected text panel.
Description |Parameters :
- n: text panel number. Valid values: 0 and 1.
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example // display text panel 1

T6963C DisplayTxtPanel (1) ;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

391

CHAPTER 6
Libraries mikroPascal for 8051

T6963C_SetGrPanel

Prototype procedure T6963C SetGrPanel (n : byte);

Returns Nothing.

Compute start address for selected graphic panel and set appropriate internal
pointers. All subsequent graphic operations will be preformed at this graphic
panel.

Description
Parameters :

- n: graphic panel number. Valid values: 0 and 1.

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

// set graphic panel 1 as current graphic panel.

Exan“ﬂe T6963C SetGrPanel (1) ;

T6963C_SetTxtPanel
Prototype procedure T6963C_SetTxtPanel (n : byte);

Returns Nothing.

Compute start address for selected text panel and set appropriate internal point-
ers. All subsequent text operations will be preformed at this text panel.

Description Parameters :

- n: text panel number. Valid values: 0 and 1.
Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

// set text panel 1 as current text panel.

Exan“ﬂe T6963C SetTxtPanel(1l);

392 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

T6963C_PanelFill

Prototype procedure T6963C PanelFill (v : byte);
Returns Nothing.
Fill current panel in full (graphic+text) with appropriate value (0 to clear).
Description |Parameters :
- v: value to fill panel with.
Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.
E I clear current panel
xample T6963C_PanelFill (0);
T6963C_GrkFill
Prototype procedure T6963C GrFill(v : byte);
Returns Nothing.
Fill current graphic panel with appropriate value (0 to clear).
Description |Parameters :
- v: value to fill graphic panel with.
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example // clear current graphic panel

T6963C GrFill(0);

T6963C_TxtFill

Prototype procedure T6963C TxtFill(v : byte);
Returns Nothing.
Fill current text panel with appropriate value (0 to clear).
Description |Parameters :
- v: this value increased by 32 will be used to fill text panel.
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example // clear current text panel

T6963C TxtFill (0);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

393

CHAPTER 6
Libraries mikroPascal for 8051

T6963C_Cursor_Height

Prototype |procedure T6963C Cursor Height(n : byte);

Returns Nothing.

Set cursor size.
Description |Parameters :

- n: cursor height. Valid values: 0. .7.
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

Example T6963C_ Cursor Height (7);

T6963C_Graphics

Prototype procedure T6963C_Graphics(n : byte);

Returns Nothing.

Enable/disable graphic displaying.

i Parameters :
Description

- n: on/off parameter. Valid values: 0 (disable graphic dispaying) and 1 (enable
graphic displaying).

Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.

// enable graphic displaying

Example T6963C_Graphics (1) ;

T6963C_Text

Prototype procedure T6963C Text (n : byte);

Returns Nothing.

Enable/disable text displaying.

. L. Parameters :
Description

- n: on/off parameter. Valid values: 0 (disable text dispaying) and 1 (enable text
displaying).

Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.

// enable text displaying

Example T6963C Text (1) ;

394 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051

Libraries

T6963C_Cursor

Prototype procedure T6963C Cursor(n : byte);
Returns Nothing.
Set cursor on/off.
Description |Parameters :
- n: on/off parameter. Valid values: 0 (set cursor off) and 1 (set cursor on).
Requires Toshiba GLCD module needs to be initialized. See the T6963C _Init routine.
// set cursor on
Example

T6963C Cursor(l);

T6963C_Cursor_Blink

Prototype procedure T6963C_Cursor Blink(n : byte);
Returns Nothing.
Enable/disable cursor blinking.
e Parameters :
Description
- n: on/off parameter. Valid values: 0 (disable cursor blinking) and 1 (enable
cursor blinking).
Requires Toshiba GLCD module needs to be initialized. See the T6963C_Init routine.
Example // enable cursor blinking

T6963C Cursor Blink(1l);

Library Example

The following drawing demo tests advanced routines of the T6963C GLCD library. Hardware con-
figurations in this example are made for the T6963C 240x128 display, Easy8051B board and

AT8958253.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

395

CHAPTER 6
Libraries mikroPascal for 8051

program T6963C 240x128;

uses Lib T6963C Consts, bitmap, bitmap2;

var

// T6963C module connections
T6963C dataPort : byte at PO; sfr ; // DATA port
T6963C cntlPort : byte at Pl; sfr ; // CONTROL port
T6963C cntlwr : sbit at P1.B2; // WR write signal
T6963C cntlrd : sbit at P1.Bl; // RD read signal
T6963C_cntlcd : sbit at P1.BO; // CD command/data signal
T6963C _cntlrst : sbit at P1.B4; // RST reset signal

// End T6963C module connections

var panel : byte; // current panel
i : word; // general purpose register
curs : byte; // cursor visibility
Cposx,
cposy : word; // cursor x-y position
txtcols : byte; // number of text coloms

txt, txtl : stringl 29]; idata ;

begin
txtl := ' EINSTEIN WOULD HAVE LIKED mC';
txt := ' GLCD LIBRARY DEMO, WELCOME !'';
P2 := 255; // all inputs
// Clear T6963C ports
P1 := 0; // control bus
PO := 0; // data bus

*

init display for 240 pixel width and 128 pixel height
8 bits character width

data bus on PO

control bus on P1

bit 2 is !WR

bit 1 is IRD

bit 0 is !ICD

bit 4 is RST

* % X ok o ot

T6963C init (240, 128, 8) ;

enable both graphics and text display at the same time

396 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6
Libraries

T6963C graphics(l) ;
T6963C text(l) ;

panel := 0 ;
i = 0 ;
curs := 0 ;
cposx := 0 ;
cposy := 0 ;
txtcols := 240 div 8;

text colomns

width divided by font width)
{

*

text messages

T6963C write text (txt,

0, 0, T6963C_ROM MODE_XOR)

// calculate number of

// (grafic display

’

T6963C4write7text(txt1, 0, 15, T6963C_ROM MODE XOR) ;

* cursor

T6963C cursor height (8)
T6963C set cursor (0, 0)
T6963C cursor (0) ;

draw rectangles

T6963C rectangle (O, 0,
T6963C rectangle (20, 20,
T6963C rectangle (40, 40,
T6963C rectangle (60, 60,

* draw a cross

T6963C line (O, 0, 239,
T6963C line (0, 127, 239,

’

’

// cursor off

239, 127,
219, 107,
199, 87,
179, 67,

T6963C BLACK
T6963C_BLACK
T6963C_BLACK

)
)
)
T6963C BLACK)

127, T6963C BLACK) ;
0, T6963C BLACK) ;

// 8 pixel height
// move cursor to top left

’
’
’

’

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 397

CHAPTER 6
Libraries mikroPascal for 8051

*

* draw solid boxes
*

T6963C box (0, 0, 239, 8, T6963C BLACK) ;
T6963C box (0, 119, 239, 127, T6963C BLACK) ;

draw circles

T6963C circle (120, 64, 10, T6963C BLACK)
T6963C circle (120, 64, 30, T6963C BLACK)
T6963C circle (120, 64, 50, T6963C BLACK) ;
T6963C circle (120, 64, 70, T6963C BLACK)
T6963C circle (120, 64, 90, T6963C BLACK)
T6963C circle (120, 64, 110, T6963C BLACK) ;
T6963C circle (120, 64, 130, T6963C BLACK) ;

T6963C sprite(76, 4, @einstein, 88, 119) ;
// draw a sprite

T6963C_setGrPanel (1) ; // select other graphic panel
T6963C Image (@banner bmp) ;

while true do
begin
{*
* if P2 0 is pressed, toggle the display between graphic panel
0 and graphic 1
*}
if (P2 0 = 0) then

begin
panel := panel + 1;
panel := panel and 1 ;

T6963C displayGrPanel (panel) ;
Delay ms (300) ;
end
{*
* if P2 1 is pressed, display only graphic panel
*}

else
if (P2 1 = 0) then
begin
T6963C graphics (1) ;
T6963C text (0)
Delay ms(300) ;
end

398 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries

{*
* 1f P2 3 is pressed, display text and graphic panels
*}
else
if (P2 3 = 0) then
begin
T6963C graphics (1)
T6963C text (1)
Delay ms (300)
end

’
’

’

{‘k
* 1f P2 4 is pressed, change cursor

*}
else
if (P2 4 = 0) then
begin
curs := curs + 1;
if (curs = 3) then
curs := 0 ;
case curs of
0:

’

T6963C cursor (0)

’

begin
T6963C cursor(l) ;

T6963C cursor blink (1)
end;

’

begin
T6963C cursor(l) ;

T6963C cursor blink(0)
end;

’

end;

Delay ms (300)
end;

{*
*
*}

cposx := cposx + 1;

if (cposx = txtcols) then

begin

cposx := 0 ;
cposy := cposy + 1;
if (cposy = (128 div T6963C CHARACTER HEIGHT)) then //

move cursor, even 1if not visible

if y end

cposy := 0 ; // grafic height (128) div character height
end;

T6963C set cursor (cposx, cposy) ;
Delay ms (100) ;
end;
end.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 399

CHAPTER 6
Libraries mikroPascal for 8051

HW Connection

— o VOO

RSI[P14 P03 D3

g = 2 o 124
=
P
RST
(]

D&
P05
_DECILLATOR

10K

PO.6 E:
P07

€528S681V

XTAL1Y
GND

As

Toshiba TEIE3C Graphic LCD (240x128)

MRROE

ERSY805IE
DEY. SYSTEN

10K

Contrast
Adjustment

T6963C GLCD HW connection

400 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

UART LIBRARY

The UART hardware module is available with a number of 8051 compliant MCUs. The mikroPas-
cal for 8051 UART Library provides comfortable work with the Asynchronous (full duplex) mode.

Library Routines
- Uart_Init
- Uart_Data_Ready
- Uart_Read
- Uart_Write

Uart_Init

Prototype procedure Uart Init (baud rate: longint);

Returns Nothing.

Configures and initializes the UART module.
The internal UART module module is set to:

- 8-bit data, no parity
- 1 STOP bit
- disabled automatic address recognition

Description | timer1 as baudrate source (mod2 = autoreload 8bit timer)

Parameters :
- baud rate: requested baud rate

Refer to the device data sheet for baud rates allowed for specific Fosc.
Requires MCU with the UART module and TIMER1 to be used as baudrate source.

// Initialize hardware UART and establish communication at 2400
Example bps
Uart Tnit(2400);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 401

CHAPTER 6
Libraries mikroPascal for 8051

Uart_Data_Ready

Prototype function Uart Data Ready(): byte;
- 1 if data is ready for reading
Returns . . : . .
- 0 if there is no data in the receive register
Description |The function tests if data in receive buffer is ready for reading.
MCU with the UART module.
Requires The UART module must be initialized before using this routine. See the
Uart_Init routine.
var receive: byte;
Example // . read data if ready
if (Uart Data Ready()=1) then
receive := Uart Read();
Uart_Read
Prototype function Uart Read(): byte;
Returns Received byte.
. The function receives a byte via UART. Use the Uart_Data_Ready function to
Description . .)
test if data is ready first.
MCU with the UART module.
Requires The UART module must be initialized before using this routine. See Uart_Init
routine.
var receive: byte;
Example // ‘ read data if ready
if (Uart Data Ready()=1) then
receive := Uart Read();

402 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
Libraries

mikroPascal for 8051
Uart_Write
Prototype procedure Uart Write(TxData: byte);
Returns Nothing.
The function transmits a byte via the UART module.
Description |Parameters :
- TxData: data to be sent
MCU with the UART module.
Requires The UART module must be initialized before using this routine. See Uart_Init
routine.
var data: byte;
Example c.h';léa 1= 0x1E
Uart Write (data);

Library Example

This example demonstrates simple data exchange via UART. If MCU is connected to the PC, you
can test the example from the mikroPascal for 8051 USART Terminal.

program UART;
var uart rd : byte;
begin

Uart Init (4800);
Delay ms (100) ;

while TRUE do
begin

if (Uart Data Ready () <> 0) then
data

begin
uart rd := Uart Read();
Uart Write(uart rd);

end;

end;
end.

// Initialize UART module at 4800 bps
// Wait for UART module to stabilize

// Endless loop

// Check if UART module has received

// Read data
// Send the same data back

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

403

CHAPTER 6
Libraries mikroPascal for 8051

HW Connection

Ml T
RS-232 belelte]
CON O N XX oD (1| suspap
Lo CONNECT Receive
L . MCU TO PC data (Rx)
SERIAL >
CABLE :

PR
l N lcounecr Sond
Lo . PETO Mcu Data (Tx)
RS-ZSZ‘ 7/ Biowo AN

CON ® 17 ?TOT?%JS O mumos I e frove

i i

. ‘ i i

U i)

a 1

! i 5 i

8

— ——> dre [{=] i

= {] #a.1 m il

L i ©0 1

(N 1

e

1 <@ g

s] I

{ i i

L . XTALT 1

= e [

UART HW connection

404 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries

BUTTON LIBRARY

The Button library contains miscellaneous routines useful for a project development.

External dependecies of Button Library

The following variable

must be defined in all

projects using Button
library:

Description: Example :

Declares Button_Pin,
which will be used by But-
ton Library.

var Button Pin :

var Button Pin: sbit
sbit; external;

at P0.0;

Library Routines

- Button

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 405

CHAPTER 6

Libraries mikroPascal for 8051
Button
Prototype function Button(time ms : byte; active state : byte) : byte;
- 255 if the pin was in the active state for given period.
Returns :
- 0 otherwise
The function eliminates the influence of contact flickering upon pressing a but-
ton (debouncing). The Button pin is tested just after the function call and then
again after the debouncing period has expired. If the pin was in the active state
in both cases then the function returns 255 (true).
Description
P Parameters :
- time ms : debouncing period in milliseconds
- active state: determines what is considered as active state. Valid values: 0
(logical zero) and 1 (logical one)
Button Pin variable must be defined before using this function.
Requires
Button pin must be configured as input.
P2 is inverted on every P0.BO one-to-zero transition
program Button Test;
// button connections
var Button Pin : sbit at P0.BO; // declare Button Pin.
It will be used by Button Library.
// end Button connections
oldstate : bit;
begin
PO := 255; // configure PORTO as input
P2 := O0xAA; // initial PORT2 wvalue
Example
while TRUE do
begin
if (Button(l, 1) <> 0) then // detect logical one
oldstate := 1; // update flag
if (oldstate and Button(l, 0)) then // detect one-to-zero
transition
begin
P2 := not P2; // invert PORT2
oldstate := 0; // update flag
end;
end; // endless loop
end.

406 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

CONVERSIONS LIBRARY

mikroPascal for 8051 Conversions Library provides routines for numerals to strings
and BCD/decimal conversions.

Library Routines

You can get text representation of numerical value by passing it to one of the follow-
ing routines:

- ByteToStr

- ShortToStr

- WordToStr

- IntToStr

- LongintToStr

- LongWordToStr
- FloatToStr

The following functions convert decimal values to BCD and vice versa:
- Dec2Bcd

- Bcd2Dec16
- Dec2Bcd16

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 407

CHAPTER 6

Libraries mikroPascal for 8051
ByteToStr
Prototype procedure ByteToStr (input : word; var output : stringl 2]);
Returns Nothing.
Converts input byte to a string. The output string is right justified and remaining
positions on the left (if any) are filled with blanks.
Description |Parameters :
- input: byte to be converted
- output : destination string
Requires Nothing.
var t : word;
txt : string 2] ;
Example -
t = 24;
ByteToStr (t, txt); // txt is " 24" (one blank here)
ShortToStr
Prototype procedure ShortToStr (input : short; wvar output : string 3]);
Returns Nothing.
Converts input short (signed byte) number to a string. The output string is right
justified and remaining positions on the left (if any) are filled with blanks.
Description |Parameters :
- input: short number to be converted
- output : destination string
Requires Nothing.
var t : short;
txt : arrayf 4] ;
Example -
t = -24;

ByteToStr (t, txt); // txt is " -24" (one blank here)

408 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
Libraries

mikroPascal for 8051
WordToStr
Prokﬂype procedure WordToStr (input : word; wvar output : stringf 4])
Returns Nothing.
Converts input word to a string. The output string is right justified and the
remaining positions on the left (if any) are filled with blanks.
Description |Parameters :
- input: word to be converted
- output : destination string
Requires Nothing.
var t : word;
txt : stringf 4] ;
Example S
t := 437;
WordToStr (t, txt); // txt is " 437" (two blanks here)
IntToStr
Prototype procedure IntToStr (input : integer; wvar output : string] 5]);
Returns Nothing.
Converts input integer number to a string. The output string is right justified and
the remaining positions on the left (if any) are filled with blanks.
Description |Parameters :
- input: integer number to be converted
- output : destination string
Requires Nothing.
var input : integer;
txt : stringf 5] ;
Example [
P begin
input := -4220;

IntToStr (input, txt); // txt is ' -4220"'

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

409

CHAPTER 6
Libraries mikroPascal for 8051

LongintToStr

Prototype procedure LongintToStr (input : longint; wvar output : stringl 10]);

Returns Nothing.

Converts input longint number to a string. The output string is right justified and
the remaining positions on the left (if any) are filled with blanks.

Description |Parameters :

- input: longint number to be converted
- output : destination string

Requires Nothing.

var input : longint;
txt : stringf 10] ;
/]
Example begin
input := -12345678;
IntToStr (input, txt); // txt is ! -12345678"
LongWordToStr

Prototype procedure LongWordToStr (input : dword; wvar output : stringf 9]);

Returns Nothing.

Converts input double word number to a string. The output string is right justi-
fied and the remaining positions on the left (if any) are filled with blanks.

Description |Parameters :

- input: double word number to be converted
- output : destination string

Requires Nothing.

var input : longint;
txt : stringf 9] ;
/...
begin
input := 12345678;
IntToStr (input, txt); // txt is ! 12345678

Example

410 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

FloatToStr

Prototype function FloatToStr (input : real; wvar output : stringf 22]);

- 3 if input number is NaN
- 2 if input number is -INF
- 1 if input number is +INF
- 0 if conversion was successful

Returns

Converts a floating point number to a string.
Parameters :

- input: floating point number to be converted
Description |- output: destination string

The output string is left justified and null terminated after the last digit.

Note: Given floating point number will be truncated to 7 most significant digits
before conversion.

Requires Nothing.

var ffl, ff2, ff3 : real;
txt : stringf 22];

ffl := =-374.2;

E I ff2 := 123.456789;

xample ££3 := 0.000001234;
FloatToStr (f£f1, txt); // txt is "-374.2"
FloatToStr (ff2, txt); // txt is "123.4567"
FloatToStr (f£3, txt); // txt is "1.234e-6"

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 411

CHAPTER 6

Libraries mikroPascal for 8051
Dec2Bcd
Prokﬂype function Dec2Bcd(decnum : byte) : byte;
Returns Converted BCD value.

Converts input number to its appropriate BCD representation.
Description |Parameters :

- decnum: number to be converted

Requires Nothing.

var a, b : byte;

Example a2 iz 22

b := Dec2Bcd(a); // b equals 34
Bcd2Dec16
Prokﬂype function Bcd2Declé6 (bcdnum : word) : word;
Returns Converted decimal value.

Converts 16-bit BCD numeral to its decimal equivalent.
Description |Parameters :

- bednum: 16-bit BCD numeral to be converted

Requires Nothing.

var a, b : word;
Example a := 0x1234; // a equals 4660
b := Bcd2Declé6 (a); // b equals 1234

412 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Dec2Bcd16

Prototype function Dec2Bcdl6 (decnum : word) : word;

Returns Converted BCD value.

Converts decimal value to its BCD equivalent.
Description |Parameters :

- decnum decimal number to be converted

Requires Nothing.

var a, b : word;
Example % i= 2345,
b := Dec2Bcdlé6 (a); // b equals 9029

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 413

CHAPTER 6
Libraries mikroPascal for 8051

MATH LIBRARY

The mikroPascal for 8051 provides a set of library functions for floating point math
handling. See also Predefined Globals and Constants for the list of predefined math
constants.

Library Functions

- acos
- asin
- atan
- atan2
- ceill

- COS

- cosh
- eval_poly
- exp

- fabs
- floor
- frexp
- dexp
- log
-log10
- modf
- pow
- sin

- sinh
- sqrt

- tan

- tanh

414 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries
acos
Prototype function acos(x : real) : real;

The function returns the arc cosine of parameter x; that is, the value whose
Description |cosine is x. The input parameter = must be between -1 and 1 (inclusive). The
return value is in radians, between 0 and n (inclusive).

asin

Prototype |function asin(x : real) : real;

The function returns the arc sine of parameter x; that is, the value whose sine is
Description |x. The input parameter = must be between -1 and 1 (inclusive). The return value
is in radians, between - N/2 and n /2 (inclusive).

atan

Prototype function atan(arg : real) : real;

The function computes the arc tangent of parameter arg; that is, the value
Description |whose tangent is arg. The return value is in radians, between -n/2 and n/2

(inclusive).
atan2
PrOtOtype function atan2(y : real; x : real) : real;
This is the two-argument arc tangent function. It is similar to computing the arc
Describtion tangent of v/x, except that the signs of both arguments are used to determine
P the quadrant of the result and x is permitted to be zero. The return value is in
radians, between -n and n (inclusive).
ceil
Prototype function ceil (x : real) : real;

Description | The function returns value of parameter = rounded up to the next whole number.

Ccos

Prototype function cos(arg : real) : real;

Description | The function returns the cosine of arg in radians. The return value is from -1 to 1.

cosh
Prototype function cosh(x : real) : real;

I The function returns the hyperbolic cosine of x, defined mathematically as
Description

(e*+e~%) /2. If the value of x is too large (if overflow occurs), the function fails.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 415

CHAPTER 6

Libraries mikroPascal for 8051
eval_poly
Prototype funct:'l..on eya'tlipoly (x : real; wvar d : array| 10] of real; n : inte-
ger) : real;
e Function Calculates polynom for number x, with coefficients stored in [1, for
Description
degree n.
exp
Prototype function exp(x : real) : real;
.. The function returns the value of e — the base of natural logarithms — raised to
Description .
the power x (i.e. e%).
fabs
Prototype function fabs(d : real) : real;
Description | The function returns the absolute (i.e. positive) value of d.
floor
Prototype function floor(x : real) : real;
Description | The function returns the value of parameter =< rounded down to the nearest integer.
frexp
Prototype function frexp(value : real; wvar eptr : integer) : real;
The function splits a floating-point value vaiue into a normalized fraction and an
Description |integral power of 2. The return value is a normalized fraction and the integer
exponent is stored in the object pointed to by eptr.
Idexp
Prototype function ldexp(value : real; newexp : integer) real;
Descrition The function returns the result of multiplying the floating-point number vza1ue by
P 2 raised to the power newexp (i.e. returns value = 2°eWexpP),
log
Prototype function log(x : real) : real;
Description | The function returns the natural logarithm of « (i.e. 1og. (x)).

416 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroPascal for 8051
log10
Prototype function loglO(x : real) : real;
Description |The function returns the base-10 logarithm of x (i.e. 109 (x)).
modf
Prototype function modf (val : real; var iptr : real) : real;
. The function returns the signed fractional component of val, placing its whole
Description . .) ,
number component into the variable pointed to by iptr.
pow
PrOtOtype function pow(x : real; y : real) : real;
e The function returns the value of x raised to the power v (i.e. x¥). If < is nega-
Description | . . ; : : ,
tive, the function will automatically cast y into 1ongint.
sin
Prototype function sin(arg : real) real;
Description | The function returns the sine of =rg in radians. The return value is from -1 to 1.
sinh
Prototype function sinh(x : real) : real;
Description The function returns the hyperbolic sine of x, defined mathematically as (e*-c7%) /2.
If the value of x is too large (if overflow occurs), the function fails.
sqrt
Prototype function sqrt(x : real) : real;
Description | The function returns the non negative square root of x.
tan
Prototype function tan(x : real) : real;
Description The function returns the tangent of x in radians. The return value spans the
P allowed range of floating point in mikroPascal for 8051.
tanh
Prototype function tanh(x : real) : real;
. The function returns the hyperbolic tangent of =, defined mathematically as
Description |
sinh (x) /cosh (x).

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

417

CHAPTER 6
Libraries mikroPascal for 8051

STRING LIBRARY

The mikroPascal for 8051 includes a library which automatizes string related tasks.
Library Functions

- memchr
- memcmp
- memcpy
- memmove
- memset
- strcat

- strchr

- strcmp

- strcpy

- strlen

- strncat

- strncpy

- strspn

- strcspn

- strncmp
- strpbrk

- strrchr

- strstr

418 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

mikroPascal for 8051

CHAPTER 6

Libraries

memchr

Prototype

function memchr (p : "“byte; ch : byte; n : byte) : byte;

Description

The function locates the first occurrence of the word ch in the initial n words of
memory area starting at the address . The function returns the offset of this
occurrence from the memory address p or 0xrF if ch was not found.

For the parameter p you can use either a numerical value (literal/variable/con-
stant) indicating memory address or a dereferenced value of an object, for
example @mystring OF @PORTR.

memcmp

Prototype

function memcmp (pl, p2 : "“byte; n : word) : short;

Description

The function returns a positive, negative, or zero value indicating the relation-
ship of first n words of memory areas starting at addresses p1 and p2.

This function compares two memory areas starting at addresses 1 and p2 for n
words and returns a value indicating their relationship as follows:

Value Meaning

< 0 pl "less than" p2
=0 pl "equal to" p2

> 0 pl "greater than" p2

The value returned by the function is determined by the difference between the
values of the first pair of words that differ in the strings being compared.

For parameters o1 and p2 you can use either a numerical value (literal/vari-
able/constant) indicating memory address or a dereferenced value of an object,
for example @mystring Or @PORTR.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

419

CHAPTER 6
Libraries mikroPascal for 8051

memcpy

Prototype procedure memcpy (pl, p2 : “byte; nn : word);

The function copies nn words from the memory area starting at the address o2
to the memory area starting at p1. If these memory buffers overlap, the memcpy
function cannot guarantee that words are copied before being overwritten. If
i these buffers do overlap, use the memmove function.

Description
For parameters p1 and p2 you can use either a numerical value (literal/vari-
able/constant) indicating memory address or a dereferenced value of an object,
for example émystring or @ PORTB.

memmove

Prototype procedure memmove (pl, p2 : “byte; nn : word);

The function copies nn words from the memory area starting at the address p2 to the
memory area starting at p1. If these memory buffers overlap, the Memmove function
ensures that the words in p2 are copied to p1 before being overwritten.

Description
For parameters p1 and p2 you can use either a numerical value (literal/vari-
able/constant) indicating memory address or a dereferenced value of an object,
for example émystring or @PORTE.

memset

Prototype procedure memset (p : “byte; character : byte; n : word);

The function fills the first n words in the memory area starting at the address p
with the value of word character.

Description
P For parameter p you can use either a numerical value (literal/variable/constant)
indicating memory address or a dereferenced value of an object, for example
@mystring Or G@PORTB.
strcat

Prototype procedure strcat (var sl, s2 : stringf 100]);

The function appends the value of string s2 to string s1 and terminates s1 with

Description
P a null character.

420 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

mikroPascal for 8051 Libraries
strchr
Prototype function strchr(var s : string 100] ; ch : byte) : byte;

The function searches the string s for the first occurrence of the character ch.
The null character terminating s is not included in the search.

Description
The function returns the position (index) of the first character ch found in s; if no
matching character was found, the function returns 0xrr.

strcmp

Prototype function strcmp(var sl, s2 : string[100]) : integer;

The function lexicographically compares the contents of the strings s1 and s2
and returns a value indicating their relationship:

Value Meaning

D L < 0 sl "less than" s2
escription |_ s1 "equal to" s2

> 0 sl "greater than" s2

The value returned by the function is determined by the difference between the
values of the first pair of words that differ in the strings being compared.

strcpy

Prototype procedure strcpy(var sl, s2 : string] 100]);

The function copies the value of the string s2 to the string s1 and appends a

Description null character to the end of s1.

strcspn

Prototype function strcspn(var sl, s2 : string{ 100]) : word;

The function searches the string s1 for any of the characters in the string s2.

The function returns the index of the first character located in s1 that matches
any character in s2. If the first character in s1 matches a character in s2, a
value of 0 is returned. If there are no matching characters in s1, the length of
the string is returned (not including the terminating null character).

Description

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 421

CHAPTER 6

Libraries mikroPascal for 8051
strlen
Prototype function strlen(var s : stringf 100]) : word;
o The function returns the length, in words, of the string s. The length does not
Description |. .
include the null terminating character.

strncat

Prototype procedure strncat (var sl, s2 : stringl 100]; size : byte);

The function appends at most size characters from the string s2 to the string s1
Description |and terminates s1 with a null character. If s2 is shorter than the size charac-
ters, s2 is copied up to and including the null terminating character.

strncmp

Prototype function strncmp (var sl, s2 : stringl 100] ; len : byte) : integer;
The function lexicographically compares the first len words of the strings s1 and
s2 and returns a value indicating their relationship:
Value Meaning
< 0 sl "less than" s2

Description =0 sl "equal to" s2
> 0 sl "greater than" s2
The value returned by the function is determined by the difference between the
values of the first pair of words that differ in the strings being compared (within
first 1en words).

strncpy

Prototype procedure strncpy(var sl, s2 : string 100] ; size : byte);

The function copies at most size characters from the string s2 to the string s1.
Description |If s2 contains fewer characters than size, s1 is padded out with null characters
up to the total length of the size characters.

strpbrk
Prototype function strpbrk(var sl, s2 : string[100]) : byte;
The function searches s1 for the first occurrence of any character from the
e string s2. The null terminator is not included in the search. The function returns
Description

an index of the matching character in s1. If s1 contains no characters from =2,
the function returns 0xrr.

422 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6

Libraries

mikroPascal for 8051
strrchr
Prototype function strrchr(var s : stringf 100]; ch : byte) : byte;
The function searches the string s for the last occurrence of the character ch.
Descriotion The null character terminating s is not included in the search. The function
P returns an index of the last ch found in s; if no matching character was found,
the function returns 0xrr.
strspn
Prototype function strspn(var sl, s2 : string{ 100]) : word;
The function searches the string s1 for characters not found in the s2 string.
Describtion The function returns the index of first character located in s1 that does not
P match a character in s2. If the first character in s1 does not match a character in
s2, a value of 0 is returned. If all characters in s1 are found in s2, the length of
s1 is returned (not including the terminating null character).
strstr
Prototype function strstr(var sl, s2 : stringf 100]) : word;
The function locates the first occurrence of the string s2 in the string s1 (exclud-
ing the terminating null character).
Description The function returns a number indicating the position of the first occurrence of
s2 in s1; if no string was found, the function returns oxrr. If s2 is a null string,
the function returns o.

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

423

CHAPTER 6
Libraries mikroPascal for 8051

TIME LIBRARY

The Time Library contains functions and type definitions for time calculations in the UNIX time for-
mat which counts the number of seconds since the "epoch". This is very convenient for programs
that work with time intervals: the difference between two UNIX time values is a real-time differ-
ence measured in seconds.

What is the epoch?
Originally it was defined as the beginning of 1970 GMT. (January 1, 1970 Julian day) GMT,
Greenwich Mean Time, is a traditional term for the time zone in England.
The TimeStruct type is a structure type suitable for time and date storage.
Library Routines
- Time_dateToEpoch
- Time_epochToDate

- Time_datediff

Time_dateToEpoch

Prototype function Time dateToEpoch(var ts : TimeStruct) : longint;

Returns Number of seconds since January 1, 1970 0hOOmnQO0s.
This function returns the UNIX time : number of seconds since January 1, 1970
0h0OmMnQOO0s.

Description Parameters :

- ts: time and date value for calculating UNIX time.

Requires Nothing.

var tsl : TimeStruct;

Epoch : longint;
Example o
// what is the epoch of the date in ts ?
epoch := Time dateToEpoch (tsl) ;

424 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

Time_epochToDate

Prototype procedure Time epochToDate(e: longint; var ts : TimeStruct);

Returns Nothing.

Converts the UNIX time to time and date.

. Parameters :
Description

- e: UNIX time (seconds since UNIX epoch)
- ts: time and date structure for storing conversion output

Requires Nothing.

var ts2 : TimeStruct;
epoch : longint;

Example //what date i1s epoch 1234567890 ?

epoch := 1234567890 ;

Time epochToDate (epoch, ts2);

Time_dateDiff

function Time dateDiff (tl : ~TimeStruct; t2 : ~TimeStruct)
Prototype 1 . -
ongint ;
Returns Time difference in seconds as a signed long.
This function compares two dates and returns time difference in seconds as a
signed long. The result is positive if 1 is before 2, null if t1 is the same as 2
and negative if 1 is after 2.
Description

Parameters :

- £1: time and date structure (the first comparison parameter)
- £2: time and date structure (the second comparison parameter)

Requires Nothing.

var tsl, ts2 : TimeStruct;
diff : longint;
Exan““e //how many seconds between these two dates contained in tsl and
ts2 buffers?
diff := Time dateDiff (tsl, ts2);

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 425

CHAPTER 6
Libraries mikroPascal for 8051

Library Example

Demonstration of Time library routines usage for time calculations in UNIX time format.
program Time Demo;

program Time Demo;

var epoch, diff : longint;

tsl, ts2 : TimeStruct;

begin
tsl.ss := 0 ;
tsl.mn := 7 ;
tsl.hh := 17 ;
tsl.md := 23 ;
tsl.mo := 5 ;
tsl.yy := 2006 ;

{*

* What is the epoch of the date in ts ?
*}

epoch := Time dateToEpoch (tsl) ;

{*
* What date is epoch 1234567890 ?
*}

epoch := 1234567890 ;

Time epochToDate (epoch, ts2) ;

{*
* How much seconds between this two dates ?
*}
diff := Time dateDiff (tsl, ts2) ;
end.

426 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
mikroPascal for 8051 Libraries

TimeStruct type definition

type TimeStruct = record

ss : byte ; // seconds

mn : byte ; // minutes

hh : byte ; // hours

md : byte ; // day in month, from 1 to 31

wd : byte ; // day in week, monday=0, tuesday=1,
sunday=6

mo : byte ; // month number, from 1 to 12 (and not from
0 to 11 as with unix C time !)

yy : word ; // year Y2K compliant, from 1892 to 2038

end;

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 427

CHAPTER 6
Libraries mikroPascal for 8051

TRIGONOMETRY LIBRARY

The mikroPascal for 8051 implements fundamental trigonometry functions. These functions are
implemented as look-up tables. Trigonometry functions are implemented in integer format in order
to save memory.

Library Routines

- sinE3
- cosE3

sinE3

Prototype function sinE3(angle deg : word): integer;

Returns The function returns the sine of input parameter.

The function calculates sine multiplied by 1000 and rounded to the nearest integer:
result := round(sin(angle deg)*1000)

Description |Parameters:

- angle deg: input angle in degrees

Note: Return value range: -1000..1000.

Requires Nothing.

var res : integer;
Example S
res := sinE3(45); // result is 707

428 MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD

CHAPTER 6
Libraries

mikroPascal for 8051
cosE3
Prototype function cosE3(angle deg : word): integer;
Returns The function returns the cosine of input parameter.
The function calculates cosine multiplied by 1000 and rounded to the nearest
integer:
result := round(cos(angle deg)*1000)
Description Parameters:
- angle deg: input angle in degrees
Note: Return value range: -1000..1000.
Requires Nothing.
var res: integer;
Example S
res := cosE3(196); // result is -193

MIKROELEKTRONIKA - SOFTWARE AND HARDWARE SOLUTIONS FOR EMBEDDED WORLD 429

w

o0 0ol X J(
o N
o OOO.H D

OO0
(O] o

O QO|00|00e
O O|O|0|O O
O

0 o]e (o [a IYIVEYIINIeRRETNN [[NINNVIAVIN - 14OddNS TYDINHDAL *MOUY| SN 13| ses|d ‘UoiewIOoful [eUOIPPE JUeM 1SN[NOA 1o
s1onpoud uno jo Aue yum swiajqoid bupusuadxa aue nok |
W0D'301IW @310 :[lew-2

(TTRXCTOI NIV RO ETVN :sn 10e1u0D asea|d ‘lesodoud ssauisng e 1o Juswiwod ‘uonsanb 1ayio Aue saey nok §|

s g Bee - [aEISlOYNNQEIGEERINEREOE] SNOILNTOS IYVMAYVH ANY JHVMLIOS
EHIUGIIA0MIN:T

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

mikroElektronika:
MIKROE-404 MIKROE-740

http://www.mouser.com/mikroelektronika
http://www.mouser.com/access/?pn=MIKROE-404
http://www.mouser.com/access/?pn=MIKROE-740

T Life

Hu1Boe NapTHEPCTBO

000 “/1aiipINeKTPOHUKC” “LifeElectronics” LLC

MHH 7805602321 K 780501001 P/C 40702810122510004610 ®AKb "ABCO/IOT BAHK" (3A0) 6 2.CaHkm-Ilemep6bypee K/C 30101810900000000703 EUK 044030703

KomnaHus «Life Electronics» 3aHumaemcsi nocmaskamu 351€KmMpPOHHbIX KOMITOHEHMO8 UMIOPMHO20 U
omedyecmeeHHo20 rpouseodcmea om npoudeodumernel u co ckrnados KpyrHbix ducmpubbomopos Esporibi,
AMepuku u Asuu.

C koHua 2013 200a KoMraHusi akmueHo pacwiupsiem fuHelKy MocmagoK KOMIOHEHMO8 0 HarnpaeneHuo
KoakcuarbHbIl kabesb, Keapuesbie 2eHepamopbl U KOHOeHCcamopbi (KepaMuyeckue, nieHoYHbIe,
3neKmposiumuyeckue), 3a cuyém 3akntoyeHuss ducmpubbromopcKux 002060p08

Mbi1 npednasaem:

o KoHKypeHmocnocobHbie UeHbl U CKUOKU MOCMOSIHHbIM KITUeHmMam.

e CrieyuarsnbHbie ycrio8usi 07151 TOCMOSIHHbIX KITUEHIMO8.

e [lod6op aHarnoeos.

lMocmaeky KomMrnoHeHmMo8 8 ftobbix obbemax, y0oernemeopstouUx eawum MompebHoCMSsM.

lpuemnembie cpoku nocmasku, 803MOXHa yCKOPEeHHasi mMocmaska.
Locmaeky mosapa & ritobyto moyky Poccuu u cmpaH CHI™.
KomrinekcHytro nocmasky.

Pabomy no npoekmam u rnocmasky obpa3syos.

®opmuposaHue ckiada nod 3akaszyuka.

Cepmucgbukambl coomeemcmeus Ha rnocmassnseMyro npooyKyuUto (Mo XenaHu KueHma).
o TecmuposaHue nocmasnsemMou npodyKyuu.

e [locmasKy KOMMOHEHMOo8, mMpebyruux 806HHYIO U KOCMUYECKYH MPUEMKY.

e BxodHoli KOHMposib Ka4yecmea.

e Hanu4yue cepmugpukama I1SO.

B cocmaee Hawel komnaHuu opeaHu3oeaH KoHcmpykmopckuli omderst, npu3eaHHbIl MomMozamb
paspabomyukam, U UHXEHepaM.

KoHcmpykmopckuli omOen nomoaaem ocyujecmseums:

Pezaucmpauuro npoekma y npousgooumersisi KOMIOHEHMOS.

TexHu4eckyro no0depXKy rnpoekma.

Bawumy om cHaMuUs KOMroHeHma ¢ npoussoocmea.

OueHKy cmoumocmu fpoeKkma ro KOMIOHeHmam.

U3ezomoerneHue mecmosol rnnambl MOHMaX U ryckoHanadoyHbie pabomeil.

lattis % A g nncen TP intessil, Panasons (T U170 ATEL AMDIN EEEs

0KI ﬂ_[[SANYD Quaoww RENESAS SIEMENS SHARP _ ’[:E”"—:,l
g Sy, [IE moxm s U AT €N [qaL

BOURNME

NS 7, Citwbond DALLAS Meare Gllegns (inteD e | ™ RONM
International . . — .
..-nﬂm.n._,,.,_ w@ TosHiga ZETEX 'niemalofa Amphenol élantec uichicon FU]ITSU

Viccn 5, e Y Sice . @ su@ N [BTOKO

Ten: +7 (812) 336 43 04 (MHO20KaHANbHbI)
Email: org@lifeelectronics.ru

www.lifeelectronics.ru

mailto:org@lifeelectronics.ru
http://lifeelectronics.ru/

